
Submitted: July 28, 2023
Accepted: August 7, 2023
Published online: September 9, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 133–146
DOI: 10.33039/ami.2023.08.014
URL: https://ami.uni-eszterhazy.hu

Three level benchmarking of Singularity
containers for scientific calculations

Péter Polgár, Tamás Menyhárt, Csanád Bátor Baksay,
Gergely Kocsis, Tibor Gábor Tajti, Zoltán Gál∗

University of Debrecen, Faculty of Informatics,
Debrecen, Hungary

kocsis.gergely@inf.unideb.hu
tajti.tibor@inf.unideb.hu

Abstract. In this work we present our results from benchmarking Singular-
ity containers running scientific calculations intended for HPC at three levels
of complexity, comparing them against native software environments. Our
investigations were run on up-to-date hardware and the latest available soft-
ware as of early 2023. To get a more detailed picture, we examined three
different system aspects: we ran separate benchmarks on CPU, memory, and
I/O intensive operations. These aspects were tested with microbenchmarks,
and at a high level – an HPC workload pipeline which intensely loaded each
aspect. As a result of our investigations we show that Singularity container-
ization continues to provide as good, or in some cases even better performance
indicators as in a native environment – with the substantial added benefits
of application flexibility and portability.

Keywords: Container benchmarking, Singularity, HPC

AMS Subject Classification: Computer Science 68U01, 68U99

1. Introduction

The tools and methods of scientific computing undergo continuous progress, pro-
viding opportunities for researchers to achieve more sophisticated and increasingly

∗This work has been supported by the project TKP2021-NKTA of the University of Debre-
cen. Project no. TKP2021-NKTA-34 has been implemented with the support provided from the
National Research, Development and Innovation Fund of Hungary, financed under the TKP2021-
NKTA funding scheme.

https://doi.org/10.33039/ami.2023.08.014
https://ami.uni-eszterhazy.hu
mailto:kocsis.gergely@inf.unideb.hu
mailto:tajti.tibor@inf.unideb.hu


Annal. Math. et Inf. P. Polgár, T. Menyhárt, Cs. Baksay, G. Kocsis, T. Tajti, Z. Gál

accurate results using better and better facilities. In the meantime, however, his-
tory has shown that following new trends in tools and methodologies very often
leads to software compatibility issues. It is also a common requirement to be able
to run calculations or simulations in differing hardware and software environments.
Today’s answer to these issues is the use of containerization [3]. By the use of con-
tainers, researchers can build uniform software environments, sealed in portable
disk images files, and run their simulations or calculations without any regard to
the details of the real host’s software setup. From this perspective, containers work
similar to virtual machines, however, most findings have shown that they operate
with much smaller overhead, increasing their efficiency. In the case of scientific cal-
culations, Singularity (nowadays known as Apptainer or SingularityCE – of which
we used the latter) is the most common containerization solution used to overcome
incompatibility issues between environments. To prove this evident and conven-
tionally accepted statement, we have checked the first 172 HPC providers from the
Top500 [15] list to find out what containerization technologies they support. As
one can see in Figure 1, 48 out of 172 observed providers published this informa-
tion on their homepages. Note that while 3/4 of them support only Singularity
and/or Apptainer, there are only about 10% which support other containerization
technologies, but not Singularity or Apptainer. However, the question continues
to arise in an ongoing manner, whether containerization has a performance impact
on calculations, and if yes, of what sort?

Figure 1. Containerization technologies supported by 48 Top500
HPC providers. Note the majority supports exclusively Singularity

and/or Apptainer.

The overall structure of this paper from here on is as follows: In Section 2 we
describe the details and the methodology of our investigations, first by presenting
the employed hardware and OS configurations (Subsection 2.1) and then by showing
the codes, tools and methodology on each level (Subsections 2.2, 2.3, 2.4 and 2.5).
Section 3 presents our results at these respective levels. Thus Subsection 3.1 is for
our results on level L1, subsection 3.2 is for level L2, while subsection 3.3 shows our
results on the topmost level L3. On level L1 and L2 we sort our results regarding
different computational resources into separate subsections. Finally, in Section 4
we conclude our results and in Section 5 we present our plans for our related future
work.

134



Annal. Math. et Inf. Three level benchmarking of Singularity containers . . .

2. Problem formulation and applied methodology
Since the rise of containerization technology, several investigations have been con-
ducted to describe it’s pros and cons. According to [1, 4, 6, 10] CPU and memory
performance of containers are about the same or slightly worse compared to the
performance of the underlying host system. While in most cases these investiga-
tions have shown that the use of containers does not have a significant impact on
performance (in some cases they can even beat performance measures of bare metal
environments) [2, 3], it is also clear that details change as new versions of underly-
ing hardware and software systems are released. For this reason, in this work we
compare scientific calculations of three levels of complexity on both bare metal and
in containerized environments, from three different aspects (CPU, memory, I/O) to
find out whether actual setups (in early 2023) changed the details of these results.

For the first level (L1), we do “micro-benchmarking” by repeatedly running
large amounts of simple calculations. On this level we can easily find the roots of
performance strengths or weaknesses of Singularity containers or native environ-
ments. The other benefit of this level is that it is very easy to scale these tests to
study the size-dependence of time overheads.

Our second level of benchmarking (L2) uses well-known benchmark tools [3,
16] (listed in Subsection 2.3). This level gives us a basis of comparison against
others’ results. In our current work we focus on CPU, memory, and I/O intensive
calculations and tools, since results from this are easy to compare to L1.

As our topmost level (L3) we run an existing pipeline of social-sciences-related
scientific calculations, intended for HPC. The exact results and purpose of these
calculations don’t concern us, but the run-times and other performance indicators
give us an understanding of how significantly the behavior of real computational
scenarios differs from microbenchmarks and well-known benchmarking tools.

Note that an infinite multitude of measurements can be run with any number
of results. Our point is not to declare a winner, but to establish that container
portability is not at the price of performance degradation.

2.1. Specification of the applied hardware
We chose one of the most modern available laptop computers, and an LTS Linux
version as the hardware and software environments for our tests, so we can say
that our results to be found are valid for systems of late 2022 or early 2023. For a
detailed description see Table 1 and Table 2.

2.2. About the used codes at level L1
The primary purpose of L1 measurements is to execute simple, often elementary
code, repeatedly, targeting a specific piece of hardware or part of it (e.g., an on-
processor cache) to measure performance. It is important to note that we cannot
speak of a pure processor-memory-storage or video card comparison, because usu-
ally a given resource cannot work without the others, but still the main resource

135



Annal. Math. et Inf. P. Polgár, T. Menyhárt, Cs. Baksay, G. Kocsis, T. Tajti, Z. Gál

Table 1. Specification of the used hardware.
Date of measurements: 2022–2023.

Hardware Type / Specifications
CPU Intel i7-12700H, 14 core, 20 threads, 5 GHz turbo
Memory 32 GB, DDR5, 4800 MHz
Storage 500 GB, Samsung 980 PRO, 7 GB/s, PCIe 4.0

Table 2. Specification of the used software.
Date of measurements: 2022–2023.

Software / property Native (host) Container
Userspace 22.10 UwUntu 22.04 Ubuntu
Kernel version 5.15.0.60-generic —
File system ext4, ext3 image can use host’s ext4, ext3 overlay
Free space ext4 host: ~200GB ext3 overlay: ~70GB
gcc / g++ version Ubuntu 11.3.0 Ubuntu 11.3.0

can be identified. In addition to the test codes, there are other processes running
on the system, and the operating system (although very well optimized), is still
running in the background. Because of this, all measurements were performed
several times to reduce the chance of measurement error.

The majority of the code is presented without optimization. When optimized,
the run time for computation- and memory-intensive processes is significantly re-
duced in both native and container contexts. Note also that both the container and
the native system used exactly the same kernel and compiler. In an HPC environ-
ment, it is not common to update these to the current release, so our code may not
work with the software installed on the HPC system, or may not compile, or run
much slower without certain switches. But, even if not optimized, computationally
intensive code will still run significantly faster with a newer gcc or g++ compiler.
It is worth using containers precisely because these problems can be completely
eliminated, and CPU time is our real time and money.

2.3. Used benchmark tools at L2
In order to have results that are comparable to the findings of other works, we used
existing benchmarking tools to test the performance of the native and containerized
jobs. We refer to these tools as the standard benchmark tools. The applied so-
called standard benchmark tools at L2 are the following:

CPU benchmarks: 7-Zip Compression 22.01 [4, 9, 11, 12]; XZ compression
5.2.4 [11]; CppPerformanceBenchmarks 9; LAME MP3 Encoding 3.100 [11]; FFTW
3.3.6; Geekbench 5.4.6 [7]; Glibc Benchmarks; Himeno Benchmark 3.0; Timed
MAFFT Alignment 7.471 [11]; ACES DGEMM 1.0; libjpeg-turbo tjbench 2.1.0

136



Annal. Math. et Inf. Three level benchmarking of Singularity containers . . .

Memory benchmarks: CacheBench [11]; MBW 2018-09-08 [9]; RAMspeed
SMP 3.5.0 [9, 11, 12]; STREAM 2013-01-17 [11]; sysbench 1.0.20 [1]; Tinymem-
bench 2018-05-28 [9]

Storage I/O benchmarks: Bonnie++ 2.00 [10]; fio 3.28 [5]; FS-Mark 3.3 [6];
IOzone 3.465 [4, 11, 13]; PostMark 1.51 [9, 14]; sysbench 1.0.20 [1]

Most of these benchmarks were run by the Phoronix Test Suite [11] (PTS),
with the exceptions of: Geekbench; sysbench; Bonnie++; and fio. PTS ran each
benchmark at least three times, and it’s showed result is the average of these results.

2.4. About the used storage I/O benchmarking methodology
Files can be stored in different ways both in native and container environments.
We examined three storage options for native environments:

1. using the native (host) filesystem (ext4);
2. using an ext3 image on the host filesystem;
3. using /dev/shm.

We found that in Singularity container environments, standard benchmark tools
for storage I/O can only be run with one of the following four filesystem options:

1. using the native (host) filesystem (ext4);
2. using an external ext3 image overlay;
3. using an ext3 overlay embedded in the SIF container image;
4. using /dev/shm.

/dev/shm is a tmpfs memory-backed filesystem, whose maximum size is usually the
half of the overall memory size.

For all storage I/O benchmarks there was enough free space on storage to
ensure that no significant performance degradation would occur due to insufficient
free space being available.

The above options are not all the possible options, however, some were left out,
e.g., directory overlay, or tmpfs overlay, due to technical requirements which may
not be satisfied on HPC systems, such as needing root permissions. We also didn’t
examine sandbox-type containers because sandboxes are intended for development
purposes.

2.5. About the used pipeline code at L3
For the top level of our investigation, we used a real pipeline of network science
C codes [8, 17]. The abstract structure of this pipeline is presented in Figure 2.
While the exact purpose of the code is not important, in our case the significance
is that load is applied to all of the resources of interest. For example, generating
and “attacking” the networks is a highly CPU and memory intensive task, and
between the pipeline stages, the network states are serialized to- and deserialized
from storage.

137



Annal. Math. et Inf. P. Polgár, T. Menyhárt, Cs. Baksay, G. Kocsis, T. Tajti, Z. Gál

Our example pipeline is just one possible scenario from those that were applied
in the referred research [8, 17]. We found it important to do these investigations
beside the other two levels in order to have a look how the somewhat artificial
benchmarking results are related to real-world applications.

Figure 2. The example social network analysis pipeline used to
test the performance of native and containerized jobs [8, 17].

3. Results

3.1. Custom microbenchmarking (L1)
The results of our investigations on the lowermost level L1 are summed up in
Table 3. In the following subsections we consider the three main system resources
and interpret the corresponding findings for both environments as presented in
the table. While at first sight it is clear that both the native and containerized
environments have strengths, it also has to be noted that the differences are small.

3.1.1. CPU intensive benchmarks (L1)

There are several measurements of a processor’s performance because there are
many ways to measure its speed, and the result depends on the type of measure-
ment. The measurements therefore are split into the following subcategories:

Processor threads: Single-threaded operation / Multi-threaded operation (with
dynamic and static allocation!).
Data structure perspective: Computing with primitives / We use complex data
structures.
Cache aspects: Level 1, 2 and 3.
Optimization: compiler flag O2, O3 / O3+ or Ofast / without optimization.

We mainly focus on binaries running on one thread without optimization. The
container performed better with operations on whole numbers. No difference was
observed for simpler data structures such as char arrays (strings). A Dijkstra
pathfinding algorithm was also created from our own implementation. It mostly
used the level 3 processor cache for data storage, and did not use non-integer
numbers. The native operating system seemed a bit faster in this case.

138



Annal. Math. et Inf. Three level benchmarking of Singularity containers . . .

Table 3. Benchmarking results on level L1. Colored cells mark
more than 1% difference.

Microbenchmarks:
(Elapsed Time)

Native
(s)

Container
(s)

Efficiency
(%)

Main Hardware
Component

file name

whole numbers 540,50 527,41 102,48% CPU whole.c

string formatting 473,43 472,92 100,11% CPU,
CPU CACHE

strformat.c

sqrt 413,95 433,72 95,44% CPU sqrt.c

sin, cos 378,36 374,84 100,94% CPU sincos.c

log 421,33 421,53 99,95% CPU log.c

matrix-Dijkstra
algorithm

7406,86 7418,63 99,84% CPU,
CPU CACHE

dijkstra.cpp

Memory handling
(large size)

299,08 298,95 100,05% RAM filereadmem.c

file writing
(on ext4 host)

105,73 107,03 98,78% SSD filewrite.c

file reading
(on ext4 host)

26,45 23,80 111,13% SSD fileread.c

file copy
(on ext4 host)

22,43 22,02 101,86% SSD filecopy.sh

file writing
(on ext3 overlay)

124,07 130,59 95,01% SSD filewrite.c

file reading
(on ext3 overlay)

26,75 25,94 103,09% SSD fileread.c

file copy
(on ext3 overlay)

33,20 22,31 148,79% SSD filecopy.sh

The real differences come in with floating point numbers. While one could do
an almost infinite number of measurements using various mathematical functions,
we preferred calculating square roots, means, sines, natural-based logarithms. In
the case of the square roots, the native performed better, while in the other cases
the two were considered equal, or the container was slightly better.

We found that an important thing is to increase optimization, because an opti-
mization of at least O3 can reduce a floating point computation by up to a quarter.
Note that when we optimize the root mean square, we found a difference of less
than 1%. If we used a 2 years older gcc version, the runtime deteriorated by about
20%. (Which is common, especially if you want to run it on another machine or
HPC where they do not update the compilers to the latest version.) So it is more
important to keep the software in the container as up to date as possible, because
that already has a significant impact on performance.

Summing up the results one can say that CPU usage produces results within

139



Annal. Math. et Inf. P. Polgár, T. Menyhárt, Cs. Baksay, G. Kocsis, T. Tajti, Z. Gál

5% error margin, which can become an overwhelming advantage for the container
if more advanced software is installed for it in terms of operations on one thread
at the L1 benchmark level.

3.1.2. Memory benchmarks (L1)

Since DDR5 memory is so performant, even if there is a large amount of it, it is
hard to measure with precision, thus large numbers of large memory allocations,
reads, copies and free instructions were performed. In practice, a large part of
the memory was allocated, overwritten and freed 256 times. The point was that
the amount of data should not fit into the cache of the processor, but also should
not be too big in order to avoid swapping. The difference was barely 0.05%, in
favour of the container. The conclusion is that, even from the worst perspective,
the container handles and uses memory as well as the native operating system at
the L1 benchmark level.

3.1.3. Storage I/O benchmarks (L1)

Background storage can also be measured in many ways. At the L1 benchmark
level, we look at sequential writes, reads and copies. The container can use the
host’s ext4 file system or its own custom ext3 (block size 4096kB) overlay file with a
removable .img extension. This overlay file can also be used by the host by creating
a folder and mounting it. An overlay is useful because you can, for example, install
programs into it that the container can use at runtime. The container can use both
the host and the overlay filesystem at the same time.

Note that the measurements were made using a PCIe 4.0 SSD drive, which is
an order of magnitude faster than a regular SATA III M.2 SSD or any HDD. We
performed sequential read, write and copy. (Of course, there is no regularity in the
file contents.) The file size was roughly 18 GB.

Generally speaking:
Write: the container is about 2–5% slower than the host
Read: the container is about 3–11% faster than the host
Copying: the container is about 0.5% faster than the host

The host, when it wanted to copy in the overlay, was significantly slower than
when the container performed the operation on its own file. For the container it
took 22.31 seconds to copy the data on its ext3 filesystem while the same took 22.43
seconds for the host to over its ext4 filesystem. This is only 0.5% of difference. The
root of this difference is that ext3 filesystem performs worse than on the ext4 and
not the fact that we are using a container.

Of course, there are many ways to read/write copy. Multiple files can be copied
in parallel, or many small files in succession, or many large files at once, etc. But
for us only writing performed worse in the L1 benchmarks for containers. Of all
the benchmarks, storage yielded the largest differences, but the differences are still

140



Annal. Math. et Inf. Three level benchmarking of Singularity containers . . .

small, not orders of magnitude. There are seven ways to manage files for the
container (many of these ways are presented in section 2.4), so you can choose the
most appropriate one depending on the intended use-case.

3.1.4. Conclusions (L1)

Summarizing our results on level L1, we found that the advantage of container
portability does not come at the cost of sacrificing performance, as most differences
were within measurement error. Regarding memory they are identical. Regarding
CPU, the host performs slightly better, but the difference is not radical. Compile-
time optimization, however, has a huge importance and the use of state-of-the-art
software and compilers in the container is recommended. A gcc or g++ that
is only 2 years old, for example, will cause a 20% performance degradation for
computationally intensive operations.

3.2. Standard microbenchmarking (L2)
On L2 we present our findings obtained through the well-known benchmarking
tools presented in Subsection 2.3. Since there is insufficient space to consider all
of our data, we excerpt here only the most interesting but still sufficiently detailed
portions. The full dataset can be found in the supplementary material of this work.

3.2.1. CPU intensive benchmarks (L2)

The portion of CPU benchmarks where the differences between native and con-
tainer environment results are less than or equal to 1% is 82.5% (in this context
the difference means how proportionally better one was compared to the other).
We consider these differences to be within a margin of error, and in 42.42% of the
benchmarks the container won. Where the differences between native and con-
tainer results were greater than 1%, the differences are these in ascending order:
1.33%, 1.33%, 2.08%, 2.17%, 3.43%, 4.54% and 14.33%. It can be seen that these
differences are less than 5% except one case which is 14.33%. The benchmarks
producing these deviations were rerun twice. These reruns showed less than 1%
differences between the environments in most cases, and the used benchmarks did
not consistently judge a given environment type as the faster one. The only excep-
tion to this being the 7-Zip decompression benchmark, which reliably showed the
native environment performing better, but by only 0.68% and 1.25% (the original
run was 3.43%).

Thus the conclusion is that all differences in these benchmark results are within
a margin of error, and our benchmarks could not significantly differentiate the two
environments.

3.2.2. Memory benchmarks (L2)

The portion of memory benchmarks where the differences between native and con-
tainer results are less than or equal to 1% is 86.36% (in this context the difference

141



Annal. Math. et Inf. P. Polgár, T. Menyhárt, Cs. Baksay, G. Kocsis, T. Tajti, Z. Gál

means how proportionally better one was compared to the other). These less than
or equal to 1% differences are considered within a margin of error, and in 52.63%
of the benchmarks the container won. Where the differences between native and
container results were greater than 1%, the differences are these in ascending or-
der: 1.17%, 1.21% and 1.45%. It can be seen that these differences are less than
2%. The benchmarks which produce these differences were rerun twice. These
reruns showed less than 1% differences in two of three benchmarks, and the used
benchmarks did not consistently judge a given environment type as the faster one.

The conclusion is that all differences in the results are within a margin of error,
and the portion of container wins was similar to the portion of native wins.

3.2.3. Storage I/O benchmarks (L2)

Based on our measurement results we can conclude the following:

1. Bonnie++ is unreliable for comparing native and container environments.
2. With Fio’s asynchronous non-buffered reading, ext3 container overlay (both

external and embedded) wins over host ext4 and native mounted ext3 image.
3. With Fio’s reading a file backward, ext3 overlay (both container and native)

wins over host ext4 filesystem (both container and native).
4. With FS-Mark sync, IOzone and PostMark benchmarks, host ext4 filesystem

is similar to or wins over ext3 overlay (both container and native).
5. With sysbench, host ext4 was definitely better than ext3 container overlays.
6. Except reading a file backward, in everything else native host ext4 was far

better than native mounted ext3 image.

Since there are many different filesystem options in both native and container
environments and each option has its own advantages, further research is needed
to determine which native or container filesystem options or a mix of these are the
best for the most common use cases, especially for HPC environments.

3.2.4. Conclusions (L2)

During our investigations we ran 25 different tools and got 103 different results
(together with all storage runs in fact 447). To get insight on the overall picture of
this large amount of results, we have plotted them on Figure 3. On the figure one
can see for all tests a percentage value showing whether containerized or native runs
performed better. Note that since in some cases a lower measure is better while
in other cases the bigger one, this value cannot be simply written as a fraction of
the results coming from native and containerized runs. Here we do not take into
account the exact type of the benchmarking, our aim is only to see how native and
containerized jobs behave typically. On the figure ”>100” means that the difference
between the results were more than 100% for either one or the other direction, but
the exact value has not been plotted here in order to keep the figure informative
for smaller results.

142



Annal. Math. et Inf. Three level benchmarking of Singularity containers . . .

Figure 3. A summary of (L2) benchmarking results. Blue means
native wins over containerized runs, orange means the opposite.

Note that in the case of memory related benchmarking we barely found any
differences in performance just as for L1. Some CPU related runs, however, resulted
in showing that there are cases where native (blue) or containerized (orange) runs
are better. The number of cases, however, on each side is almost equal. We
found the most diverse results in the case of storage I/O related benchmarking,
and here also we see instances on both sides, meaning that it depends highly on
the type of benchmark if containerization has a negative or positive effect on the
performance. The final message of these investigations should be that one has to
know well the required resources of their jobs in order to take the best advantages
of containerization – but generally we can say once again that container technology
by itself does not require more resources than running natively.

3.3. Benchmarking via a real scientific pipeline (L3)
The used L3 pipeline mostly consists of sequentially running C programs that use
each other’s inputs and outputs for calculations. These are mainly CPU intensive
operations, but they also use memory and storage I/O, e.g., writing out and read-
ing back the results of the steps. Here, along with comparing native and container
performance of the unoptimized pipeline binaries, we also compared against opti-
mized binaries, as well as comparing old and new versions of gcc. The results are
summed up on Figure 4.

Here, the container has a gcc version released in 2020, while the host has the
latest version of 2022. Note that the code ran longer in the older container when
not optimized, but the optimization almost completely eliminated the differences
(Figure 4 (left)). This means that it is worthwhile to install as much up-to-date
software as possible in the container to make the runtime sufficiently short and
to optimize the code, as this can reduce the runtime of the code by an order
of magnitude and almost completely eliminate the differences between the non-
matching gcc versions.

143



Annal. Math. et Inf. P. Polgár, T. Menyhárt, Cs. Baksay, G. Kocsis, T. Tajti, Z. Gál

Figure 4. Runtime ratios of a real scientific pipeline. (left) shows
the obvious profit of optimizing the code during compilation. (right)

shows how the use of the latest OS can affect the performance.

On Figure 4 (right) we ran the pipeline 2 program with the state-of-the-art
tools in both cases, but for comparison we also ran it using an older software setup
(’20). When we used the old gcc, the runtime increased by 22%. So again the
up-to-dateness of the software has more impact on runtime than whether we are
looking at a host or native case for L3 Pipeline benchmarks.

4. Conclusions

As the results of our studies we have shown that the use of Singularity containers
for providing uniformized, portable environments for scientific calculations does
not affect the running times of the calculations in an unaffordably negative way. In
some cases the use of containers can even beat the performance of native software
environments. We ran our measurements at three levels of complexity. On L1
and L2 we used separate benchmarks for CPU, memory and storage I/O intensive
testing. As a result of our findings we have shown with L1 and L2 that there is
almost no difference in performance of native and containerized runs of calculations
from the aspect of memory intensive tasks. In the case of CPU intensive tasks
we found some differences, but most cases showed less than a 5% difference in
performance. Storage I/O intensive runs proved to yield the most diverse results, so
applications must be careful in choosing solutions appropriate for their workloads.

5. Further work

We have plans for further investigations of the I/O subsytem, and in the direction of
parallelization, which we did not study deeply in this work, but is a key component
of HPC computations.

144



Annal. Math. et Inf. Three level benchmarking of Singularity containers . . .

Supplementary material
Supplementary material for this work can be found at the below link:
https://arato.inf.unideb.hu/kocsis.gergely/icai2023/

References
[1] S. Abraham, A. K. Paul, R. I. S. Khan, A. R. Butt: On the Use of Containers in High

Performance Computing Environments, in: 2020 IEEE 13th International Conference on
Cloud Computing (CLOUD), 2020, pp. 284–293, doi: 10.1109/CLOUD49709.2020.00048.

[2] C. Arango, R. Dernat, J. Sanabria: Performance Evaluation of Container-based Virtu-
alization for High Performance Computing Environments, Microsoft Research WA 98052
(2005).

[3] N. G. Bachiega, P. S. L. Souza, S. M. Bruschi, S. d. R. S. de Souza: Container-Based
Performance Evaluation: A Survey and Challenges, in: 2018 IEEE International Conference
on Cloud Engineering (IC2E), 2018, pp. 398–403, doi: 10.1109/IC2E.2018.00075.

[4] R. K. Barik, R. K. Lenka, K. R. Rao, D. Ghose: Performance analysis of virtual ma-
chines and containers in cloud computing, in: 2016 International Conference on Computing,
Communication and Automation (ICCCA), 2016, pp. 1204–1210, doi: 10.1109/CCAA.2016
.7813925.

[5] J. Bhimani, J. Yang, Z. Yang, N. Mi, Q. Xu, M. Awasthi, R. Pandurangan, V. Balakr-
ishnan: Understanding performance of I/O intensive containerized applications for NVMe
SSDs, in: 2016 IEEE 35th International Performance Computing and Communications Con-
ference (IPCCC), 2016, pp. 1–8, doi: 10.1109/PCCC.2016.7820650.

[6] T. A. Bodhanya: Comparing Cloud Orchestrated Container Platforms : Under the lenses of
Performance, Cost, Ease-of-Use, and Reliability, MA thesis, Uppsala University, Department
of Information Technology, 2022, p. 31.

[7] J. Hadley, Y. Elkhatib, G. Blair, U. Roedig: MultiBox: Lightweight Containers for
Vendor-Independent Multi-cloud Deployments, in: Embracing Global Computing in Emerg-
ing Economies, ed. by R. Horne, Cham: Springer International Publishing, 2015, pp. 79–90,
isbn: 978-3-319-25043-4.

[8] G. Kocsis, I. Varga: Investigating the effectiveness of advertising on declining social net-
works, Creative Mathematics and Informatics 23.5 (2014).

[9] M. Lindström: Containers & Virtual machines : A performance, resource & power con-
sumption comparison, 2022.

[10] P. E. N, F. J. P. Mulerickal, B. Paul, Y. Sastri: Evaluation of Docker containers based
on hardware utilization, in: 2015 International Conference on Control Communication &
Computing India (ICCC), 2015, pp. 697–700, doi: 10.1109/ICCC.2015.7432984.

[11] Y. Pan, I. Chen, F. Brasileiro, G. Jayaputera, R. Sinnott: A Performance Comparison
of Cloud-Based Container Orchestration Tools, in: 2019 IEEE International Conference on
Big Knowledge (ICBK), 2019, pp. 191–198, doi: 10.1109/ICBK.2019.00033.

[12] A. M. Potdar, N. D G, S. Kengond, M. M. Mulla: Performance Evaluation of Docker
Container and Virtual Machine, Procedia Computer Science 171 (2020), Third International
Conference on Computing and Network Communications (CoCoNet’19), pp. 1419–1428, issn:
1877-0509, doi: 10.1016/j.procs.2020.04.152, url: https://www.sciencedirect.com/sci
ence/article/pii/S1877050920311315.

145

https://arato.inf.unideb.hu/kocsis.gergely/icai2023/
https://doi.org/10.1109/CLOUD49709.2020.00048
https://doi.org/10.1109/IC2E.2018.00075
https://doi.org/10.1109/CCAA.2016.7813925
https://doi.org/10.1109/CCAA.2016.7813925
https://doi.org/10.1109/PCCC.2016.7820650
https://doi.org/10.1109/ICCC.2015.7432984
https://doi.org/10.1109/ICBK.2019.00033
https://doi.org/10.1016/j.procs.2020.04.152
https://www.sciencedirect.com/science/article/pii/S1877050920311315
https://www.sciencedirect.com/science/article/pii/S1877050920311315


Annal. Math. et Inf. P. Polgár, T. Menyhárt, Cs. Baksay, G. Kocsis, T. Tajti, Z. Gál

[13] A. Putri, R. Munadi, R. Negara: Performance analysis of multi services on container
Docker, LXC, and LXD, Bulletin of Electrical Engineering and Informatics 9.5 (2020),
pp. 2008–2011, issn: 2302-9285, doi: 10.11591/eei.v9i5.1953, url: https://beei.org
/index.php/EEI/article/view/1953.

[14] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, L. Peterson: Container-Based Op-
erating System Virtualization: A Scalable, High-Performance Alternative to Hypervisors,
SIGOPS Oper. Syst. Rev. 41.3 (Mar. 2007), pp. 275–287, issn: 0163-5980, doi: 10.1145/127
2998.1273025.

[15] E. Strohmaier, J. Dongarra, H. Simon, M. Meuer: The 500 most powerful commercially
available computer systems, 2022, url: https://www.top500.org/.

[16] A. Torrez, T. Randles, R. Priedhorsky: HPC Container Runtimes have Minimal or
No Performance Impact, in: 2019 IEEE/ACM International Workshop on Containers and
New Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-HPC), 2019,
pp. 37–42, doi: 10.1109/CANOPIE-HPC49598.2019.00010.

[17] I. Varga: Weighted multiplex network of air transportation, European Physical Journal B
89.6 (2016).

146

https://doi.org/10.11591/eei.v9i5.1953
https://beei.org/index.php/EEI/article/view/1953
https://beei.org/index.php/EEI/article/view/1953
https://doi.org/10.1145/1272998.1273025
https://doi.org/10.1145/1272998.1273025
https://www.top500.org/
https://doi.org/10.1109/CANOPIE-HPC49598.2019.00010

