
Submitted: July 28, 2023
Accepted: August 7, 2023
Published online: August 23, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 9–19
DOI: 10.33039/ami.2023.08.010
URL: https://ami.uni-eszterhazy.hu

Static analysis for safe software upgrade∗

Dániel Ferenczi, Melinda Tóth

ELTE, Eötvös Loránd University, Budapest, Hungary
{danielf,toth_m}@inf.elte.hu

Abstract. Having applications accessible without downtime is no longer an
exclusive requirement of mission-critical applications or traditional domains
like communications. Running applications also require changes in the source
code and upgrading live systems. Different approaches exist depending on the
used technology. Systems implemented in Erlang can take the advantage of
the underlying BEAM virtual machine and can be upgraded easily. However,
source code has to be developed carefully once an upgrade is needed to not
introduce run-time errors during the upgrade. We are developing a method
to statically check the source code of Erlang applications for constructs that
may lead to upgrading issues.
Keywords: Erlang, static analysis, software upgrade, hot code load
AMS Subject Classification: 68M15 Reliability, testing and fault tolerance of
networks and computer systems

1. Introduction
With the ever-increasing use of e-commerce, even the owner of a simple webshop
expects her site to operate without incidents all year round. Indeed, users expect
high availability in general, and services for banking, commerce, news, and enter-
tainment are expected to operate throughout the year with minimal disruptions.
Running applications also require changes, however, the need to fix security issues
or add new features and changes may happen at any time. An outage while a
change is applied thus results in customer dissatisfaction, or even broken SLAs,
and in the end, lost revenue. This presents a demand for seamless, “zero down-
time” upgrades. The facilities for such upgrades depend on the stack chosen for

∗Application Domain Specific Highly Reliable IT Solutions project has been implemented with
the support provided from the National Research, Development and Innovation Fund of Hungary,
financed under the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges
Subprogramme) funding scheme.

https://doi.org/10.33039/ami.2023.08.010
https://ami.uni-eszterhazy.hu
mailto:{danielf, toth_m}@inf.elte.hu


Annal. Math. et Inf. D. Ferenczi, M. Tóth

the development and operation of the application. These choices also determine
what is possible during such an upgrade. Some tools [13] will launch new contain-
ers running a new version of the application in question, while slowly removing
the previous release and possibly leading to a lost state [1]. Other tools allow for
a more fine-grained approach, upgrading only the changed modules, and making
state preservation possible [13, 16]. Errors in the use of these tools will however
lead to unexpected behaviour or even downtime. This leads to the need to statically
analyse the code responsible for the upgrade.

In this work, we demonstrate such a static analysis made for the language Er-
lang [5]. Erlang is a general-purpose, dynamically typed, functional programming
language. It is designed to build distributed, concurrent, fault-tolerant computer
systems. Originally designed for writing software in the telecommunications do-
main, the language and BEAM, the virtual machine it runs on, now see use as
general tools for building fault-tolerant, concurrent, reliable software. Erlang was
designed with high availability in mind. If we look at Joe Armstrong’s, one of Er-
lang’s designer’s thesis [2], he notes that the option to “dynamically upgrade code”
should be a feature of the language itself. This contrasts with other tools, that
do not provide such feature and need additional tools to support code upgrades
without downtime.

The goal of our work is to support safe software upgrades for the Erlang pro-
gramming language by static program analysis. In this paper, we propose a method
to identify servers which might crash or produce faulty behaviour after a live up-
grade. We base our work on the static source code analyser and transformation
tool, RefactorErl [4].

The rest of the paper is structured as follows. In Section 2 we illustrate the
problem of upgrading through an example. In Section 3 we introduce RefactorErl
and the algorithm used for pattern detection. Section 4 presents a solution for the
problem in the context of gen_server behaviours. Sections 5 and 6 show possible
ways to continue our research based on our existing foundation and related work
respectively. We conclude our work in Section 7.

2. Problem statement
Erlang is distributed alongside the BEAM virtual machine, which compiles and runs
Erlang code. Support for doing zero-downtime upgrades (in Erlang terms, “hot
code loads”) is built into the BEAM environment. It allows for state-preserving
code changes on a module basis, in contrast to tools, like Kubernetes [9] that
typically route connections to containers running new software versions. BEAM
can keep two versions of the same module simultaneously. Code should thus be
written with care, as expressions can be written in a way, that make code in the
new version point to code in the previous version. Due to the limit in the number
of versions BEAM can store, this will eventually lead to calls to versions no longer
present in the virtual machine.

Avoiding these pitfalls requires care from the developer. For code meant to be

10



Annal. Math. et Inf. Static analysis for safe software upgrade

updated usually the intent is for such expressions to get updated as well during an
upgrade and point to code present in the new version of the module.

The code snippet in Figure 1 presents a typical example of problematic code
that cannot be upgraded. The module srv defines a server that can be started
with the srv:start/0 function call. The function spawns/creates a new process
and registers it with the server name. In the new process the init/1 function is
evaluated that initialises and starts the server’s tail-recursive loop function. This is
a standard way to develop a server in Erlang. The loop/1 process stores an integer
value and an updater function in its state. The process handles {num, ClientPid}
and upgrade messages. In the former case, it answers to the requester with the
updated counter value (line 19). In the latter one, it simply applies a qualified
recursive call (line 16) to handle the code change and upgrades itself.

Having function references in the loop’s state is dangerous however, as these
references might become outdated during module upgrades. A careful developer
will ensure that these references are fully qualified - which results in function calls

1 -module(srv).
2 -export([start/0,init/1,loop/1,
3 adder/1,getNum/0]).
4

5 start() ->
6 Pid = spawn(srv, init, [0]),
7 register(server, Pid).
8

9 init(InitNum) ->
10 Adder = fun adder/1,
11 srv:loop({InitNum, Adder}).
12

13 loop({InitNum, Adder}) ->
14 receive
15 upgrade ->
16 srv:loop({InitNum, Adder});
17 {num, ClientPid} ->
18 NewNum = Adder(InitNum),
19 ClientPid ! {num, NewNum},
20 loop({NewNum, Adder})
21 end.
22

23 adder(N) ->
24 N + 42.
25

26 getNum() ->
27 ClientPid = self(),
28 server ! {num, ClientPid},
29 receive
30 {num, Num} -> Num
31 end.

1 -module(srv).
2 -export([start/0,init/1,loop/1,
3 adder/1,getNum/0]).
4

5 start() ->
6 Pid = spawn(srv, init, [0]),
7 register(server, Pid).
8

9 init(InitNum) ->
10 Adder = fun srv:adder/1,
11 srv:loop({InitNum, Adder}).
12

13 loop({InitNum, Adder}) ->
14 receive
15 upgrade ->
16 srv:loop({InitNum, Adder});
17 {num, ClientPid} ->
18 NewNum = Adder(InitNum),
19 ClientPid ! {num, NewNum},
20 loop({NewNum, Adder})
21 end.
22

23 adder(N) ->
24 N + 42.
25

26 getNum() ->
27 ClientPid = self(),
28 server ! {num, ClientPid},
29 receive
30 {num, Num} -> Num
31 end.

Figure 1. Example Erlang server function. Note the differences in
line 10 on how the adder function is referred.

11



Annal. Math. et Inf. D. Ferenczi, M. Tóth

using the implementations in the latest version of the module. On the left-hand side
snippet, the reference at line 10 will keep its original value of the Adder function
through module upgrades, when execution reaches line 18. This will result in an
error as at this point the Adder symbol will eventually reference a version of the
function no longer present in the virtual machine.

The right-hand snippet presents a fix to this, by using a fully qualified reference
to the function in the fun expression. In Erlang using a fully qualified function
inside a fun expression has the fun module:function/arity syntax. Note the
difference in line 10 of the example. This, when called will reference the latest
version of the adder function.

Apart from the pattern in the example, other expressions will also make up-
grades unsafe in a similar fashion: a reference to an initial version of a function
added to the server loop’s state during the loop’s initialisation. This reference
eventually may become obsolete as the applications are upgraded.

Overall we have identified the patterns listed in Figure 2 as being unsafe.

• fun(Arg) -> Body end.
• fun function/Arity
• fun(Arg) -> module:function(Arg) end.

Figure 2. List of unsafe patterns.

In Erlang terms, we can say, that explicit fun expressions and non-fully qualified
implicit fun expressions are unsafe as they cannot be upgraded. These patterns can
also be present directly in state of the server, e.g. loop{InitNum, fun adder/1},
which also lead to undesired behaviour. Our method detects this, direct use as well.
Finally, it is important to note, that this risk is present all throughout the code,
e.g. clauses in receive blocks may also change the state, and can add references that
are unsafe for code upgrades. Our present work offers a detection method for such
patterns in RefactorErl. Other unsafe patterns also exist and are the scope of our
future work, details of which are described in Section 5.

3. Detection methodology
The mentioned upgrade-related issues can be detected before the execution of the
code, and during the development phase using static analysis techniques. In our
particular case, we want to analyse the contents of the state passed to server loops.
If the state contains function calls, they should be fully qualified, otherwise, code
upgrades during the operation of the program may lead to errors. For this analysis,
we are using RefactorErl [4] as a framework.

3.1. RefactorErl
RefactorErl is an open-source static analysis framework for Erlang. RefactorErl
allows for analysing source code represented and stored in its Semantic Program

12



Annal. Math. et Inf. Static analysis for safe software upgrade

Graph (SPG) [8]. The SPG is a three-layered rooted graph, containing lexical,
syntactic and semantic information about the analysed source code. Once the
source code is stored, the tool offers different options for analysis, through its
querying interfaces. The semantic query language provides an expressive language
for the programmer to analyse her code [15], but RefactorErl also offers the option
to run queries through a graph representation of the program. The more accessible
semantic queries are also implemented using these graph queries. In our work, we
have developed our algorithm in the graph query language and then exposed it as
a semantic query term for easier use.

RefactorErl also provides other functions: code transformations, static analysis
of security-related issues [3] and features for code comprehension but for the present
work, we will focus on targeted static analysis.

3.2. Detection algorithm
To find the code fragments that are not safe during an upgrade (such as the one
presented on Figure 1), we need to identify the arguments of the server function
(the state of the server) and point the local function references in the state. These
patterns might not be visible at the point of the server call. The state argument
could easily consist of variables having their values returned by other functions.
Figure 3 shows an example for this: in line 3 we do not know the exact values of
the state but the server loop is still initialised with an unsafe reference from line
6. In such cases considering solely syntactic information will not help us find the
possible value of the state.

1 init(InitNum) ->
2 Adder = srv:getAdder(),
3 srv:loop({InitNum, Adder}).
4

5 getAdder() ->
6 A = fun(N) -> N + 42 end,
7 A.

Figure 3. Example of a function returning a reference to a fun
expression.

To overcome this obstacle we rely on the intraprocedural dataflow analysis [14].
Using the first order dataflow relation we are able to calculate possible values of an
expression. RefactorErl builds the Dataflow Graph during the initial analysis, and
stores the direct dataflow edges in the Semantic Program Graph. The first order
dataflow reaching relation is implemented on the top of this graph. It allows us to
track information between functions, and provides a way to determine the possible
values of the state for our analysis.

When using our detection function, the developer is expected to provide a
function as an input for our query to check its arguments across every instance

13



Annal. Math. et Inf. D. Ferenczi, M. Tóth

where it is called. The algorithm will return the list of expressions where unsafe
(as in Figure 2) arguments are defined.

Algorithm 1 Finding unsafe expressions in state.
1: function find(F)
2: function_applications ← find_applications(F)
3: for all application ∈ function_applications do
4: argument_list ← get_arguments(application)
5: expression_list ← get_subexpressions(argument_list)
6: originating_exprs ← find_orig_exprs(expression_list)
7: unsafe_exprs ← filter_to_unsafe(originating_exprs)
8: end for
9: end function

Our detection algorithm finds these expressions as it is defined in Algorithm 1.
At first, we gather all instances of application of our function. Our goal is to deter-
mine the ‘safety’ of the arguments for each application. Thus, for each application
we gather the expressions used as arguments and find the originating expressions of
these with dataflow reaching. Finally, we determine whether individual originating
expressions are safe, and return them if they are not.

4. Analysing gen_server applications
Erlang distributions come bundled with a library called Open Telecom Platform.
This library provides a construct called behaviour, which allows for abstracting
away the complex, generic details of a pattern so that the developer only has to
take care of implementing the specific parts of her application. It allows for code
to follow common patterns which helps during the development life-cycle. OTP
comes bundled with some built-in behaviours which can be suited for distributed
applications: servers, state machines, event managers, and supervisors [6, 11]:

• gen_server: for implementing server applications

• gen_statem: for implementing state machines

• gen_event: for managing events and triggered actions

• supervisor: for adding fault tolerance

For the purposes of our research, it is worth looking at the gen_server be-
haviour, as server applications usually are implemented using it, rather than in
a way akin to the example shown before. A developer implementing her server
as a gen_server behaviour will have to write an Erlang module called in Erlang
terms a callback module. This module needs to implement the behaviour’s call-
back functions. The details of the implementation will of course depend on the

14



Annal. Math. et Inf. Static analysis for safe software upgrade

problem the developer is working on. The structure and purpose of a behaviours
callback functions is fixed however. For example, a server can be started with
the gen_server:start_link/4 function call that triggers a call to the callback
module’s init/1 function that returns the initialised state of the server. Sending
synchronous messages can be done through gen_server:call/2 function calls that
trigger a call to a handle_call/3 callback function that returns the reply to the
message and the modified state.

As gen_server behaviours split the implementation code to separate functions
that deal with initialisation and have their own code running between interface and
callback functions our solution will not work out of the box. An easy solution would
be to simply add the entirety of the OTP library to the RefactorErl database. This
would allow our dataflow analysis to traverse all relevant code, however, this comes
with the cost of having to analyse the OTP library itself unnecessarily, as it will
not contain code adding unsafe functions to the server state.

4.1. Example
A cleaner, more efficient solution would be to look at the behaviour functions and
their callbacks and determine the points where the state is set, use these points
as a basis for our analysis. This is possible, as behaviours enforce a structure, the
points where the state is set are defined. Figure 4 shows an abridged gen_server
implementation of the example from Figure 1.

1 -module(srvg).
2 -export([start_link/0, get_number/1]).
3 -export([init/1, handle_call/1]).
4 -behaviour(gen_server).
5 start_link() ->
6 gen_server:start_link({local, srvg}, srvg, [], []).
7

8 get_number() ->
9 gen_server:call(srvg, get_num).

10

11 init([]) ->
12 Adder = fun srvg:adder/1,
13 InitNum = 0,
14 {ok, {Adder, InitNum}}.
15

16 handle_call(get_num, _From, {Adder, Num}) ->
17 NewNum = Adder(Num),
18 {reply, NewNum, {Adder, NewNum}};
19 ...

Figure 4. Example of a behaviour. Note the definition of a “safe”
Adder in line 12.

This server can be started by calling the srvg:start_link/0 function that calls
the gen_server:start_link/4 function. The first argument is the type and name

15



Annal. Math. et Inf. D. Ferenczi, M. Tóth

of the server. The second argument of the call (srvg) defines the callback module.
The started server evaluates the init function from the srvg callback module. In
our example, the init function at line 11 initialises the server with the state in
line 14. The get_number/0 function at line 8 forwards the get_num request to the
server and it waits for the result. The behaviour eventually processes the request
with the handle_call/3 function in line 16, setting the new server state to the
{Adder, NewNum} tuple in line 18, and sends the NewNum value back to the caller
process. This value will be the return value of the gen_server:call/2 function
call in line 9.

4.2. Modified algorithm
Behaviours can set the state for example in the return expression of initialisation
or callback functions. In general, the values worth inspecting are those returned
by the callback functions required by the gen_server behaviour. In practice we
would have to change the input part defined in line 2 of Algorithm 1: server
state is no longer defined in the applications of a server loop, but in the return
value of the behaviour’s callback functions. Thus we expect the user to provide a
behaviour implementation, where we look for unsafe patterns in the return value
of the callback functions that are manipulating the state, such as handle_call/3,
handle_cast/2, handle_info/2, code_change/2 function definitions. The new
state is usually the last element of the returned tuple and we can use dataflow
reaching to calculate the possible values. Once we have these expressions, we can
filter out the non qualified function references.

The modified algorithm is preseneted in Algorithm 2. These modifications will
allow our method to be used for analysing unsafe fun expressions in gen_server
implementations.

Algorithm 2 Finding unsafe expressions in gen_server states.
1: function find(M)
2: callbacks ← find_callback_functions(M)
3: for all callback ∈ callbacks do
4: state ← get_server_state(callback)
5: expression_list ← get_subexpressions(state)
6: originating_exprs ← find_orig_exprs(expression_list)
7: unsafe_exprs ← filter_to_unsafe(originating_exprs)
8: end for
9: end function

5. Further work
In addition to unsafe fun expressions, other patterns might also introduce risk
to upgrades and are worth inspecting. Upgrades involving a change in the state

16



Annal. Math. et Inf. Static analysis for safe software upgrade

structure are a clear example, where we could analyse if function applications still
use the old state structure, or if there are references to elements removed from
the state. This can be also examined in gen_server implementations, where state
transformations for upgrades are handled by the code_change functions.

Analysing how modules depend on each other is another example. In order
for upgrades to be safe in such a setup, upgrades have to respect the order of
dependencies. Additionally, we could verify the existence of fully qualified self-
references in server loops, which are required for upgrades in the first place.

Upon identification of further patterns, these additional checkers can be imple-
mented using RefactorErl.

6. Related work
Apart from safe upgrades, code can be analysed for other properties that can
present issues during operation. RefactorErl itself can be used to check the code for
common vulnerabilities [3]. Ensuring safe upgrades is however a general problem,
present across technologies.

Past research [1] has demonstrated challenges and solutions to upgrading dis-
tributed, multi-version systems and reasoning about their correctness, although
their approach is not suited for preserving connection state.

HotSwap [16] presents a solution for software defined networks. Apart from
upgrading without disruptions, the authors also ensure that rules, blacklists stay
in effect by replaying events on the new version.

In the domain of modern container orchestration, Kustomize [10] includes tools
for ensuring correct configurations for the popular orchestration system, Kuber-
netes [7]. These system’s configuration is typically done in languages that lack
type safety, and present a risk for updates when changing several configuration
files.

Work has also been published as well on supporting zero-downtime releases
from a kernel level [12] on different protocols to allow fast and frequent updates.

It would be worth investigating how general these solutions are, their caveats,
and whether they can be applied to software stacks running Erlang.

7. Conclusion
In this work, we have looked at the importance of zero-downtime releases and sum-
marised different approaches for achieving them. We presented how it is achieved
in Erlang applications, and showed a potential cause for upgrade failures. To iden-
tify such problems before production we have extended the RefactorErl tool with
a checker for unsafe use of local fun expressions in server loops in Erlang. We have
also demonstrated how unsafe implementations can put upgrades at risk even in
gen_server implementations. We also have shown a way to efficiently search for
unsafe patterns when using behaviours.

17



Annal. Math. et Inf. D. Ferenczi, M. Tóth

Apart from local fun expressions in the state, other problems in the code might
also impede safe upgrades. Investigating further unsafe patterns and methods
for zero-downtime upgrades could be the topic of further studies, along with the
analysis of other software stacks.

References
[1] S. Ajmani, B. Liskov, L. Shrira: Modular software upgrades for distributed systems, in:

ECOOP 2006–Object-Oriented Programming: 20th European Conference, Nantes, France,
July 3-7, 2006. Proceedings 20, Springer, 2006, pp. 452–476.

[2] J. Armstrong: Making reliable distributed systems in the presence of software errors, PhD
thesis, 2003.

[3] B. Baranyai, I. Bozó, M. Tóth: Supporting Secure Coding with RefactorErl, Submitted
to the ANNALES Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae
Sectio Computatorica (2020).

[4] I. Bozó, D. Horpácsi, Z. Horváth, R. Kitlei, J. Köszegi, T. M., M. Tóth: RefactorErl -
Source Code Analysis and Refactoring in Erlang, in: Proceedings of the 12th Symposium on
Programming Languages and Software Tools, ISBN 978-9949-23-178-2, Tallin, Estonia, Oct.
2011, pp. 138–148.

[5] F. Cesarini, S. Thompson: Erlang Programming: A Concurrent Approach to Software De-
velopment, O’Reilly Media, 2009, isbn: 9780596555856.

[6] F. Cesarini, S. Vinoski: Designing for scalability with Erlang/OTP: implement robust,
fault-tolerant systems, " O’Reilly Media, Inc.", 2016.

[7] B. Copy, M. Bräger, A. P. Koufidis, E. Piselli, I. P. Barreiro: Integrating IoT Devices
Into the CERN Control and Monitoring Platform, in: Proc. ICALEPCS’19 (New York, NY,
USA), International Conference on Accelerator and Large Experimental Physics Control
Systems 17, JACoW Publishing, Geneva, Switzerland, Aug. 2020, pp. 1385–1388, isbn: 978-
3-95450-209-7, doi: 10.18429/JACoW-ICALEPCS2019-WEPHA125.

[8] Z. Horváth, L. Lövei, T. Kozsik, R. Kitlei, A. N. Víg, T. Nagy, M. Tóth, R. Király:
Modeling semantic knowledge in Erlang for refactoring, in: Knowledge Engineering: Princi-
ples and Techniques, Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT 2009, vol. 54(2009) Sp. Issue, Studia Universitatis Babeş-
Bolyai, Series Informatica, Cluj-Napoca, Romania, July 2009, pp. 7–16.

[9] Kubernetes Documentation, Accessed: 2023-01-12, url: https://kubernetes.io/docs/home
/.

[10] Kustomize Documentation, Accessed: 2023-01-12, url: https://kubectl.docs.kubernetes
.io/references/kustomize/.

[11] M. Logan, E. Merritt, R. Carlsson: Erlang and OTP in Action, 1st, USA: Manning
Publications Co., 2010, isbn: 1933988789.

[12] U. Naseer, L. Niccolini, U. Pant, A. Frindell, R. Dasineni, T. A. Benson: Zero Down-
time Release: Disruption-Free Load Balancing of a Multi-Billion User Website, in: Proceed-
ings of the Annual Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation, SIGCOMM ’20, Virtual Event, USA: Association for Computing Machinery, 2020,
pp. 529–541, isbn: 9781450379557, doi: 10.1145/3387514.3405885.

[13] I. Neamtiu, T. Dumitraş: Cloud software upgrades: Challenges and opportunities, in: 2011
International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-
Based Systems, IEEE, 2011, pp. 1–10.

18

https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA125
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubectl.docs.kubernetes.io/references/kustomize/
https://kubectl.docs.kubernetes.io/references/kustomize/
https://doi.org/10.1145/3387514.3405885


Annal. Math. et Inf. Static analysis for safe software upgrade

[14] M. Tóth, I. Bozó: Static Analysis of Complex Software Systems Implemented in Erlang,
Central European Functional Programming Summer School – Fourth Summer School, CEFP
2011, Revisited Selected Lectures, Lecture Notes in Computer Science (LNCS), Vol. 7241,
pp. 451-514, Springer-Verlag, ISSN: 0302-9743, 2012.

[15] M. Tóth, I. Bozó, J. Kőszegi, Z. Horváth: Static Analysis Based Support for Program
Comprehension in Erlang, In Acta Electrotechnica et Informatica, Volume 11, Number 03,
October 2011. Publisher: Versita, Warsaw, ISSN 1335-8243 (print), pages 3-10.

[16] L. Vanbever, J. Reich, T. Benson, N. Foster, J. Rexford: HotSwap: Correct and Ef-
ficient Controller Upgrades for Software-Defined Networks, in: Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN ’13,
Hong Kong, China: Association for Computing Machinery, 2013, pp. 133–138, isbn: 978-1-
45032-178-5, doi: 10.1145/2491185.2491194.

19

https://doi.org/10.1145/2491185.2491194

