
Submitted: July 30, 2023
Accepted: August 7, 2023
Published online: August 19, 2023

Annales Mathematicae et Informaticae
58 (2023) pp. 147–159
DOI: 10.33039/ami.2023.08.007
URL: https://ami.uni-eszterhazy.hu

An incremental algorithm for computing
the transversal hypergraph

Laszlo Szathmary

University of Debrecen, Faculty of Informatics
Debrecen, Hungary

szathmary.laszlo@inf.unideb.hu

Abstract. In this paper we present an incremental algorithm for computing
the transversal hypergraph. Our algorithm is an optimized version of Berge’s
algorithm [2] for solving the transversal hypergraph problem. The original
algorithm of Berge is the simplest and most direct scheme for generating all
minimal transversals of a hypergraph. Here we present an optimized version
of Berge’s algorithm that we call BergeOpt. We show that BergeOpt can
significantly reduce the number of expensive inclusion tests.

1. Basic concepts
Here we recall the basic notions of hypergraph theory, frequent itemset mining,
and we also point out the relation between itemsets and hypergraphs.

1.1. Hypergraphs
In this subsection we mainly rely on [3]. Hypergraph theory [2] is an important
field of discrete mathematics with many relevant applications in applied computer
science. A hypergraph is a generalization of a graph, where edges can connect
arbitrary number of vertices. Formally:

Definition 1.1 (hypergraph). A hypergraph is a pair (V, E) of a finite set V =
{v1, v2, . . . , vn} and a family E of subsets of V . The elements of V are called
vertices, the elements of E edges.

Note that some authors, e.g. [2], state that the edge-set as well as each edge must
be non-empty and that the union of all edges results in the vertex set.

https://doi.org/10.33039/ami.2023.08.007
https://ami.uni-eszterhazy.hu
mailto:szathmary.laszlo@inf.unideb.hu

Annal. Math. et Inf. L. Szathmary

Figure 1. A sample hypergraph H, where V = {a, b, c, d} and
E = {{a}, {b, c}, {a, c, d}}.

Definition 1.2 (partial hypergraph). Let H = {E1, E2, . . . , Em} be a hypergraph.
The partial hypergraph Hi of H (i = 1, . . . , n) is the hypergraph that contains the
first i edges of H, i.e. Hi = {E1, . . . , Ei}.

A hypergraph is simple if none of its edges is contained in any other of its edges.
Formally:

Definition 1.3 (simple hypergraph). A hypergraph is called simple if it satisfies
∀Ei, Ej ∈ E : Ei ⊆ Ej ⇒ i = j.

Example. The hypergraph H in Figure 1 is not simple because the edge {a} is
contained in the edge {a, c, d}.

Definition 1.4. Let H = (V, E) be a hypergraph. Then min(H) denotes the set
of minimal edges of H w.r.t. set inclusion, i.e. min(H) = {E ∈ E | ∄E′ ∈ E : E′ ⊂
E}, and max(H) denotes the set of maximal edges of H w.r.t. set inclusion, i.e.
max(H) = {E ∈ E | ∄E′ ∈ E : E′ ⊃ E}.

Clearly, for any hypergraphH, min(H) and max(H) are simple hypergraphs. More-
over, every partial hypergraph of a simple hypergraph is simple, too.
Example. In the case of hypergraph H in Figure 1, min(H) = {{a}, {b, c}} and
max(H) = {{b, c}, {a, c, d}}.

The problem that is of high interest for us concerns hypergraph transversals. A
transversal of a hypergraph H is a subset of the vertex set of H which intersects
each edge of H. A transversal is minimal if it does not contain any transversal as
proper subset. Formally:

Definition 1.5 (transversal). Let H = (V, E) be a hypergraph. A set T ⊆ V is
called a transversal of H if it meets all edges of H, i.e. ∀E ∈ E : T ∩ E ̸= ∅. A
transversal T is called minimal if no proper subset T ′ of T is a transversal.

Note that Pfaltz and Jamison call transversal (resp. minimal transversal) as blocker
(resp. minimal blocker) in [8]. Outside hypergraph theory, a transversal is usually
called a hitting set.

148

Annal. Math. et Inf. An incremental algorithm for computing the transversal hypergraph

Example. The hypergraph H in Figure 1 has two minimal transversals: {a, b}
and {a, c}. For instance, the sets {a, b, c} and {a, c, d} are transversals but they
are not minimal.

Definition 1.6 (transversal hypergraph). The family of all minimal transversals
of H constitutes a simple hypergraph on V called the transversal hypergraph of H,
which is denoted by Tr(H).

Example. Considering the hypergraph H in Figure 1, Tr(H) = {{a, b}, {a, c}}.

The following propositions capture important relations between a hypergraph and
its transversal hypergraph (for proofs see [2]).

Proposition 1.7. Let H = (V, E) be a hypergraph. Then Tr(H) is a simple hy-
pergraph, and Tr(H) = Tr(min(H)).

Proposition 1.8. Let G and H be two simple hypergraphs. Then G = Tr(H) if
and only if H = Tr(G).

Corollary 1.9. Let G and H be two simple hypergraphs. Then Tr(G) = Tr(H) iff
G = H.

Corollary 1.10 (duality property). Let H be a simple hypergraph. Then
Tr(Tr(H)) = H.

Corollary 1.10 states that calculating the transversal hypergraph H′ of a simple
hypergraph H, and calculating once again the transversal hypergraph H′′ of H′,
we get back the original hypergraph H, i.e. H′′ = H.

Example. Consider the hypergraph H in Figure 1. Since H is not simple, let
G = min(H) = {{a}, {b, c}}. Then,

G′ = Tr(G) = Tr({{a}, {b, c}}) = {{a, b}, {a, c}}
G′′ = Tr(G′) = Tr({{a, b}, {a, c}}) = {{a}, {b, c}}.

That is, G′′ = G.

1.2. Frequent itemsets
Consider the following 5 × 5 sample dataset: D = {(1, ACDE), (2, ABCDE),
(3, AB), (4, D), (5, B)}. Throughout the paper, we will refer to this example as
“dataset D”.

Below we use standard definitions of data mining. We consider a set of objects or
transactions O = {o1, o2, . . . , om}, a set of attributes or items A = {a1, a2, . . . , an},
and a relationR ⊆ O×A, whereR(o, a) means that the object o has the attribute a.
In formal concept analysis [4] the triple (O,A,R) is called a formal context. A set
of items is called an itemset or a pattern. Each transaction has a unique identifier

149

Annal. Math. et Inf. L. Szathmary

(tid), and a set of transactions is called a tidset.1 The length of an itemset is the
cardinality of the itemset, i.e. the number of items included in the itemset. An
itemset of length i is called an i-long itemset, or simply an i-itemset2. An itemset
P is said to be larger (resp. smaller) than Q if |P | > |Q| (resp. |P | < |Q|). We say
that an itemset P ⊆ A is included in an object o ∈ O, if (o, p) ∈ R for all p ∈ P .
Let f be the function that assigns to each itemset P ⊆ A the set of all objects that
include P : f(P) = {o ∈ O | o includes P}. The set of objects including the itemset
is also known as the image of the itemset.3 The (absolute) support of an itemset
P indicates how many objects include the itemset, i.e. supp(P) = |f(P)|. The
support of an itemset P can also be defined in relative value, which corresponds
to the proportion of objects including P , with respect to the whole population of
objects. An itemset P is called frequent, if its support is not less than a given
minimum support (denoted by min_supp), i.e. supp(P) ≥ min_supp.
Definition 1.11 (generator). An itemset G is called generator if it has no proper
subset H (H ⊂ G) with the same support.
Definition 1.12 (closed itemset). An itemset X is called closed if it has no proper
superset Y (X ⊂ Y) with the same support.

The closure of an itemset X (denoted by γ(X)) is the largest superset of X
with the same support. Naturally, if X = γ(X), then X is closed. The task of
frequent (closed) itemset mining consists of generating all (closed) itemsets with
supports greater than or equal to a specified min_supp.

Equivalence classes. Two itemsets P, Q ⊆ A are said to be equivalent (P ∼= Q)
iff they belong to the same set of objects (i.e. γ(P) = γ(Q)). From this definition it
follows that equivalent itemsets have the same support values. The set of itemsets
that are equivalent to an itemset P (P ’s equivalence class) is denoted by [P] =
{Q ⊆ A | P ∼= Q}. Generators are minimal elements in their equivalence classes
(w.r.t. set inclusion), i.e. a generator G ∈ [G] has no proper subset in [G]. An
equivalence class has at least one generator. Closed itemsets are maximal elements
in their equivalence classes (w.r.t. set inclusion), i.e. a closed itemset X ∈ [X] has
no proper superset in [X]. An equivalence class has exactly one closed itemset,
which means that closed itemsets are unique elements in their equivalence classes.
If an equivalence class has only one element, then the equivalence class is called
singleton. The only element of a singleton equivalence class is closed as well as
generator.

1.3. Relation between itemsets and hypergraphs
Here we show that a family of itemsets can be treated as a hypergraph, and vice
versa. As seen in Def. 1.1, a hypergraph H is a pair (V, E), where V is a finite

1For convenience, we will use separator-free set notations throughout the paper, e.g. AB stands
for {A, B}, 13 stands for {1, 3}, etc.

2For instance, ABE is a 3-itemset.
3For instance, in dataset D, the image of AB is 23.

150

Annal. Math. et Inf. An incremental algorithm for computing the transversal hypergraph

set {v1, v2, . . . , vn} and E is a family of subsets of V . The elements of V are
called vertices, the elements of E edges. In the previous subsection we saw that a
formal context is a triple (O,A,R), where O = {o1, o2, . . . , om} is a set of objects,
A = {a1, a2, . . . , an} is a set of items, and R ⊆ O×A is a relation between O and
A, where R(o, a) means that the object o has the item a. A set of items is called
an itemset.

The set A can be considered as a set of vertices V . An itemset corresponds to
an edge E ∈ E . From this it follows that a set of itemsets can be considered as a
family of edges E .

Example. Consider the hypergraph H in Figure 1, where V = {a, b, c, d} and E =
{{a}, {b, c}, {a, c, d}}. This hypergraph corresponds to the following set of itemsets:
{{a}, {b, c}, {a, c, d}}. For convenience, we will use separator-free set notations, and
we will indicate itemsets with capital letters. That is, the hypergraph H can be
considered as the following set of itemsets: {A, BC, ACD}. This holds in the
other direction too, i.e. the hypergraph representation of the family of itemsets
{A, BC, ACD} is depicted in Figure 1.

In the rest of the paper, we will treat a family of itemsets as a hypergraph
and vice-versa if there is no danger of ambiguity. Thus for a set of itemsets
{A, BC, ACD}, we write “the hypergraph {A, BC, ACD}”, etc.

2. The algorithm of Berge
In this section we review the basic algorithm of Berge [2], which is the most simple
and direct scheme for generating all minimal transversals of a hypergraph. First,
let us see two useful operations on hypergraphs:

Definition 2.1. Let H = {E1, . . . , En} and G = {E ′
1, . . . , E ′

n′} be two hypergraphs.
Then,

H ∪ G = {E1, . . . , En, E ′
1, . . . , E ′

n′}, and
H ∨ G = {Ei ∪ E ′

j , i = 1, . . . , n, j = 1, . . . , n′}.

The first operation is the union of H and G, i.e. the hypergraph whose edges
are the edges of both hypergraphs. The second operation is very similar to the
Cartesian product, i.e. the union of all possible pairs of edges, where one element
of a pair is from the first hypergraph, and the other element is from the second
hypergraph.

Proposition 2.2 ([2]). Let H and G be two simple hypergraphs. Then,

Tr(H ∪ G) = min(Tr(H) ∨ Tr(G)).

Let Hi = {E1, . . . , Ei}, i = 1, . . . , n be the partial hypergraph of the hypergraph
H. It holds that Hi = Hi−1 ∪ {Ei}, for all i = 2, . . . , n, where H1 = {E1} and
Hn = H. Thus, Tr(Hi) = Tr(Hi−1 ∪ {Ei}), and by Prop. 2.2,

151

Annal. Math. et Inf. L. Szathmary

Equation 2.3.

Tr(Hi) = min(Tr(Hi−1) ∨ Tr({Ei}))
= min(Tr(Hi−1) ∨ {{v}, v ∈ Ei}).

The algorithm of Berge is based on this equation. The algorithm computes
all minimal transversals of a given hypergraph H in two steps. First, it computes
the minimal transversals of the partial hypergraph Hi−1 and then it calculates the
Cartesian product of the set Tr(Hi−1) by the ith edge Ei ofH. Finally, non-minimal
elements are removed. Thus, the algorithm starts with the computation of Tr(H1),
which is a trivial case (H1 has one edge only, E1, whose minimal transversals are
its vertices). Then, the algorithm adds one by one the rest of the edges, computing
at each step the set of minimal transversals of the new partial hypergraph. The
algorithm terminates when the last edge En is added. The algorithm of Berge
outputs at the end all minimal transversals of the input hypergraph H [2].

3. An optimized version of Berge’s algorithm
In the previous section we reviewed the algorithm of Berge, which implements
the most simple and direct approach for calculating the minimal transversals of a
hypergraph. Here we present an optimized version of Berge’s algorithm that we
call BergeOpt.

In [7], Le Floc’h et al. presented an algorithm called JEN whose goal is to effi-
ciently extract generators from a concept lattice [4] for mining exact and approxi-
mate association rules [1]. As part of JEN, the aforementioned authors presented
a simple algorithm without a name for calculating all the minimal transversals of a
hypergraph. In the rest of this section we present this algorithm in an extended and
completed way. In addition to [7], (i) we show that this algorithm is actually an
optimization of Berge’s original algorithm (hence the name BergeOpt), and (ii) we
provide a proposition (see Prop. 3.1) and its proof.

Optimization idea. One drawback of Berge’s algorithm is that after calculat-
ing the Cartesian product of the set Tr(Hi−1) by the ith edge Ei of H (see Equa-
tion 2.3), it stores the resulting elements together in the same set, i.e. it has no
information whether an element is minimal or not. As a consequence, the filtering
of non-minimal elements can be quite expensive when the resulting set has a large
number of elements because the algorithm must test the minimality of all elements,
including also such elements that are actually minimal.

Our optimization is based on the idea to separate minimal and potentially
minimal transversals in two different lists L1 and L2, respectively. This way, our
optimized algorithm only has to check the minimality of the potentially minimal
elements in L2. As a result, the number of expensive subset checks can be reduced.

The BergeOpt algorithm exploits the following proposition:

152

Annal. Math. et Inf. An incremental algorithm for computing the transversal hypergraph

Proposition 3.1. In the BergeOpt algorithm, the potentially minimal transversals
stored in the list L2 form a simple hypergraph, i.e. L2 has no two elements ei and
ej such that ei ⊆ ej.

Proof. Assume X, Y ⊆ V are two distinct subsets in Tr(Hi−1)−Tr(Hi), i.e., they
are minimal transversals ofHi−1 that lost this status in the i-th partial hypergraph.
Assume also that X ∪{a} and Y ∪{b} are two candidates for Tr(Hi) produced by
the algorithm (i.e., {a, b} ⊆ Ei whereby a ̸∈ X and b ̸∈ Y).

Notice that any element of the L2 list will have the form X ∪ {a} for some X
and a.

Now, without loss of generality we can hypothesize X ∪ {a} ⊆ Y ∪ {b}, and
show this leads to a contradiction. First, notice that a ̸̸= b, otherwise we would
have X ⊆ Y hence a contradiction with the minimal transversal status. Next, we
deduce that Y = X̄ ∪ Ȳ where X̄ = X − {b} hence X = X̄ ∪ {b}. Yet this means
that b ∈ X ∩ Ei which contradicts X ̸∈ Tr(Hi).

Pseudo code. The pseudo code of the algorithm is given in Algorithm 1. Let
Hi = {E1, . . . , Ei}, i = 1, . . . , n be the partial hypergraph of the hypergraph H. It
holds that Hi = Hi−1 ∪ {Ei}, for all i = 2, . . . , n, where H1 = {E1} and Hn = H.
LetMT Hi

denote the set of all minimal transversals of the partial hypergraph Hi.
As input, we have a set of itemsets that we treat as a hypergraph (see Sec-

tion 1.3). The goal is to compute all the minimal transversals of this hypergraph.
The algorithm performs this task in an incremental way. First, the algorithm takes
the first itemset E1 of the input and it calculates its minimal transversals. This
is a trivial case; we only have to decompose the itemset into its 1-long subsets.
For instance, the itemset ABC has three minimal transversals namely A, B, and
C. Then, the algorithm takes the next itemset Ei of the input and it updates the
list of minimal transversals MT Hi−1 if necessary. This is done the following way.
Each minimal transversal m found so far, i.e. each element of MT Hi−1 , is tested
if it has a common part with the current itemset Ei. If it has, then m is a minimal
transversal of Hi too, thus m is added to the list L1. In the list L1 we collect
those itemsets that are minimal transversals of the partial hypergraph processed
so far, including the current itemset Ei too. Prop. 1.7 guarantees that L1 has no
two elements e1 and e2 such that e1 ⊆ e2. If the test was negative, i.e. m has no
common part with the current itemset Ei, then it means that m is not a transversal
of Ei, thus m must be extended to have an intersection with Ei (in other words,
m is a transversal of Hi−1, but not a transversal of Hi). This can be done by
decomposing Ei, and generating the one-size larger supersets of m using the 1-long
subsets of Ei (Cartesian product of m with the vertices of Ei). For instance, if
Ei = BCH, and the minimal transversal to be updated is AD, then the following
potentially minimal transversals are generated: ABD, ACD, and ADH. We call
these itemsets “potentially minimal transversals”, because with this extension it is
guaranteed that they became transversals of Hi, but it is not sure that they are
minimal, thus they are put in another list L2. It can be possible that they have

153

Annal. Math. et Inf. L. Szathmary

Algorithm 1 (“getMinTransversals” function):

Description: BergeOpt algorithm
Input: a hypergraph (H)
Output: all minimal transversals of H (MT)

1) MT ← ∅; // initialisation; no minimal transversals are found yet
2) loop over the elements of H (Ei) // an element of H is an edge (an itemset)
3) {
4) if (Ei is the first element of H) {
5) MT ← {vertices of Ei}; // decomposition (1-itemsets of Ei)
6) }
7) else
8) {
9) L1 ← ∅; L2 ← ∅; // two empty lists

10) loop over the elements of MT (m)
11) {
12) if (m ∩ Ei ̸= ∅) { // m has a common vertex with Ei

13) L1 ← L1 ∪m; // m is a minimal transversal of Ei

14) }
15) else {
16) S ← {one-size larger supersets of m using

the vertices of Ei};
17) L2 ← L2 ∪ S;
18) }
19) }
20) if (L1 ̸= ∅ and L2 ̸= ∅) {
21) cleanSupersets(L1, L2); // removing non-minimal . . .
22) } // . . . transversals from L2

23) MT ← L1 ∪ L2;
24) }
25) }
26)
27) return MT ;

subsets among the minimal transversals in L1. When all elements of MT Hi−1 are
tested against the current itemset Ei, the lists L1 and L2 are filled. At this point,
there are three possibilities (lines 20–23 of Algorithm 1): (1) L1 is non-empty and
L2 is empty, or (2) L1 is empty and L2 is non-empty, or (3) both L1 and L2
are non-empty. In the first case, L1 contains all the minimal transversals of Hi.
By Prop. 1.7, L1 is a simple hypergraph. In the second case, L2 contains all the
minimal transversals of Hi. Since L1 is empty, all elements in L2 are minimal.
Moreover, from Prop. 3.1 it follows that L2 is a simple hypergraph. In the third
case, the list L2 must be cleaned first, i.e. if an element e1 in L1 is a subset of an
element e2 in L2, then e2 must be removed because e2 is not minimal. Prop. 3.1

154

Annal. Math. et Inf. An incremental algorithm for computing the transversal hypergraph

guarantees that the elements of L2 are not comparable w.r.t. set inclusion. Then,
taking the union of the lists L1 and L2, we have all the minimal transversals of Hi.

The algorithm continues by taking the next itemset of the input set (next cur-
rent itemset) and it updates again the list of minimal transversals. The algorithm
terminates when all elements of the input set are processed. At this point, the
algorithm collected all the minimal transversals of the input set, i.e. it calculated
the transversal hypergraph of the input hypergraph.

cleanSupersets procedure: this method removes non-minimal transversals
from the list L2, i.e. itemsets that have subsets in L1. The procedure works as
follows. It enumerates all elements of L2. If the current element e2 in L2 has a
subset in L1, then e2 is removed from L2. When the procedure terminates, L2 only
contains minimal transversals.

Running example. Consider the following hypergraphH = {ACD, ACH, BCD,
DF, FH}. Let Ei denote the ith element (edge) of the hypergraph, i.e. E1 =
ACD, E2 = ACH, . . . , E5 = FH. Let Hi denote the partial hypergraph that con-
tains the first i elements of H, i.e. H1 = {ACD}, H2 = {ACD, ACH}, . . . ,
H5 = {ACD, ACH, BCD, DF, FH} = H. The notation MT Hi

denotes the set of
all minimal transversals of the partial hypergraph Hi.

Table 1. Incremental computation of the transversal hypergraph of
H = {ACD, ACH, BCD, DF , F H} with the BergeOpt algorithm.

E1 = ACD MT H1 = {A, C, D}
E2 = ACH L1 = {A, C}

L2 = {AD,CD,DH}
MT H2 = {A, C, DH}

E3 = BCD L1 = {C, DH}
L2 = {AB,AC,AD}
MT H3 = {C, DH, AB, AD}

E4 = DF L1 = {DH, AD}
L2 = {CD, CF,ABD,ABF}
MT H4 = {DH, AD, CD, CF, ABF}

E5 = FH L1 = {DH, CF, ABF}
L2 = {ADF,ADH,CDF ,CDH}
MT H5 = {DH, CF, ABF, ADF} =MT H = Tr(H)

The execution of the algorithm is depicted in Table 1. First, the algorithm
takes E1 (ACD) and computes its minimal transversals that are A, C, and D. The
algorithm continues with processing E2 (ACH). Each time when a new element of
H is handled, the already found minimal transversals are tested. The itemsets A
and C have common parts with E2, thus they are minimal transversals of ACH,
so they are added to the list L1. However, D has no common part with E2, which
means that D is a minimal transversal of H1, but not a transversal of H2. In
order to make D a transversal of H2, D is extended with the 1-long subsets of

155

Annal. Math. et Inf. L. Szathmary

ACH, thus the following candidates are generated: AD, CD, and DH. These
three itemsets are put in the list L2. Then, the algorithm removes itemsets from
L2 that have subsets in L1 since they are not minimal transversals (AD and CD).
The union of L1 and L2, which is stored in the list MT H2 , gives all the minimal
transversals of H2. The same steps are repeated with the other elements of H
(E3, E4, and E5). When the algorithm terminates, all minimal transversals of the
hypergraph H are discovered. In this example, the transversal hypergraph of H is
Tr(H) = {DH, CF, ABF, ADF}.

4. Experimental results
The BergeOpt algorithm was implemented in Java in the Coron data mining plat-
form [9].4 The experiments were carried out on an Intel Core i7 3.5 GHz machine
with 16 GB RAM running under Manjaro GNU/Linux. All times reported are real,
wall clock times.

Our algorithm BergeOpt was used as part of another algorithm called Snow
that we presented in [10]. In [10] we just mentioned BergeOpt without giving any
details. A detailed presentation of Snow is out of the scope of this paper, but we
give a short summary. Frequent closures (FCIs) and frequent generators (FGs)
as well as the precedence relation on FCIs are key components in the definition
of a variety of association rule bases (see [6] for a survey). The goal of the Snow
algorithm is to extract the precedence relation from a more common mining output,
i.e. closures and generators. Thus, the idea is the following. First, we extract
FCIs and their associated generators, i.e. we get the frequent equivalence classes
(see Section 1.2). In each equivalence class, we consider the set of FGs to be a
simple hypergraph. Using BergeOpt, we calculate the transversal hypergraph of
the generators. With this result, the order among the FCIs can be obtained very
efficiently. For a detailed description of the Snow algorithm, please refer to [10].
To conclude, in our experiments BergeOpt was used to calculate the transversal
hypergraph of the generators in each equivalence class in a dataset.

For the experiments, we used several real and synthetic dataset benchmarks.
Database characteristics are shown in Table 2 (top). The chess and connect datasets
are derived from their respective game steps. The Mushrooms database describes
mushrooms characteristics. These three datasets can be found in the UC Irvine
Machine Learning Database Repository.5 The pumsb, C20D10K, and C73D10K
datasets contain census data from the PUMS sample file. The synthetic datasets
T20I6D100K and T25I10D10K, using the IBM Almaden generator, are constructed
according to the properties of market basket data. Typically, real datasets are very
dense, while synthetic data are usually sparse.

Table 2 (bottom left and right) provides a summary of the experimental results.
The first column specifies the various minimum support values for each of the
datasets (low for the sparse dataset, higher for dense ones). The second and third

4http://coron.loria.fr
5https://archive.ics.uci.edu

156

http://coron.loria.fr
https://archive.ics.uci.edu

Annal. Math. et Inf. An incremental algorithm for computing the transversal hypergraph

Table 2. Top: database characteristics. Bottom: response times
of BergeOpt.

database # records # non-empty # attributes largest
name attributes (in average) attribute

T20I6D100K 100,000 893 20 1,000
T25I10D10K 10,000 929 25 1,000

chess 3,196 75 37 75
connect 67,557 129 43 129
pumsb 49,046 2,113 74 7,116

Mushrooms 8,416 119 23 128
C20D10K 10,000 192 20 385
C73D10K 10,000 1,592 73 2,177

min_supp # concepts BergeOpt
(including top) (seconds)

T20I6D100K
0.75% 4,711 0.03
0.50% 26,209 0.21
0.25% 149,218 1.10

T25I10D10K
0.40% 83,063 0.56
0.30% 122,582 0.86
0.20% 184,301 1.33
chess
65% 49,241 0.34
60% 98,393 0.68
55% 192,864 1.28

connect
65% 49,707 0.29
60% 68,350 0.46
55% 94,917 0.56

min_supp # concepts BergeOpt
(including top) (seconds)

pumsb
80% 33,296 0.57
78% 53,418 0.99
76% 82,539 2.04

Mushrooms
20% 1,169 0.01
10% 4,850 0.04
5% 12,789 0.15

C20D10K
0.50% 132,952 1.12
0.40% 151,394 1.18
0.30% 177,195 1.45

C73D10K
65% 47,491 0.53
60% 108,428 1.26
55% 222,253 2.70

columns comprise the number of FCIs and the execution time of BergeOpt (given
in seconds). The CPU time does not include the cost of computing FCIs and FGs
since they are assumed as given.

As can be seen, BergeOpt is able to calculate the transversal hypergraph of
the generators in the equivalence classes very efficiently in both sparse and dense
datasets. To find out why the algorithm BergeOpt performs so well, we investi-
gated the size of its input data. Figure 2 shows the distribution of hypergraph
sizes in the datasets T20I6D100K, Mushrooms, chess, and C20D10K.6 Note that
we obtained similar hypergraph-size distributions in the other four datasets too.
Figure 2 indicates that most hypergraphs only have 1 edge, which is a trivial case,
whereas large hypergraphs are relatively rare. As a consequence, BergeOpt can
perform very efficiently.

We interpret the above results as an indication that the good performance of
BergeOpt is independent of the density of the dataset. In other terms, provided

6For instance, the dataset T20I6D100K by min_supp = 0.25% contains 149,019 1-edged
hypergraphs, 171 2-edged hypergraphs, 25 3-edged hypergraphs, 0 4-edged hypergraphs, 1 5-
edged hypergraph, and 1 6-edged hypergraph.

157

Annal. Math. et Inf. L. Szathmary

Figure 2. Distribution of hypergraph sizes.

that the input hypergraphs do not contain too many edges, i.e. there are only few
FGs per FCIs, the computation is very fast. A natural question arises with this
observation: does the modest number of FGs in each class hold for all realistic
datasets in the literature? If not, could one profile those datasets which meet this
condition?

5. Conclusion
In this paper we presented an optimization of Berge’s original algorithm [2] called
BergeOpt that can significantly reduce the number of expensive inclusion tests.
Since Berge’s algorithm several other, more efficient algorithms have been intro-
duced. As pointed out in [5] for instance, the simple method of Berge needs ex-
ponential many steps to produce the whole output. It generates the first minimal
transversal near the end of the procedure and its high memory requirements make
it suitable only for small problem cases. However, as we pointed out in the previous
section, our hypergraphs are usually very small, thus we did not have to face these

158

Annal. Math. et Inf. An incremental algorithm for computing the transversal hypergraph

efficiency problems. Experimental results show that BergeOpt provides a very effi-
cient solution for the problem instance that we had to deal with, i.e. when we used
BergeOpt as part of the Snow algorithm [10] to discover the precedence relation
among FCIs.

References
[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. I. Verkamo: Fast discovery of as-

sociation rules, in: Advances in knowledge discovery and data mining, American Association
for Artificial Intelligence, 1996, pp. 307–328, isbn: 0-262-56097-6.

[2] C. Berge: Hypergraphs: Combinatorics of Finite Sets, Amsterdam: North Holland, 1989.
[3] T. Eiter, G. Gottlob: Identifying the Minimal Transversals of a Hypergraph and Related

Problems, SIAM Journal on Computing 24.6 (1995), pp. 1278–1304, issn: 0097-5397, doi:
10.1137/S0097539793250299.

[4] B. Ganter, R. Wille: Formal concept analysis: mathematical foundations, Berlin/Heidel-
berg: Springer, 1999, p. 284, isbn: 3540627715.

[5] D. J. Kavvadias, E. C. Stavropoulos: An Efficient Algorithm for the Transversal Hy-
pergraph Generation, Journal of Graph Algorithms and Applications 9.2 (2005), pp. 239–
264.

[6] M. Kryszkiewicz: Concise Representations of Association Rules, in: Proc. of the ESF Ex-
ploratory Workshop on Pattern Detection and Discovery, 2002, pp. 92–109.

[7] A. Le Floc’h, C. Fisette, R. Missaoui, P. Valtchev, R. Godin: JEN : un algorithme
efficace de construction de générateurs pour l’identification des règles d’association, Spec.
num. of Revue des Nouvelles Technologies de l’Information 1.1 (2003), pp. 135–146.

[8] J. L. Pfaltz, R. E. Jamison: Closure Systems and their Structure, Information Sciences
139.3–4 (2001), pp. 275–286.

[9] L. Szathmary: Symbolic Data Mining Methods with the Coron Platform, PhD Thesis in
Computer Science, Univ. Henri Poincaré – Nancy 1, France, Nov. 2006.

[10] L. Szathmary, P. Valtchev, A. Napoli, R. Godin, A. Boc, V. Makarenkov: A fast
compound algorithm for mining generators, closed itemsets, and computing links between
equivalence classes, Annals of Mathematics and Artificial Intelligence (AMAI) 70.1–2 (2014),
pp. 81–105, issn: 1012-2443, doi: 10.1007/s10472-013-9372-8.

159

https://doi.org/10.1137/S0097539793250299
https://doi.org/10.1007/s10472-013-9372-8

