
ANNALES
MATHEMATICAE ET

INFORMATICAE

VOLUME 57. (2023)

EDITORIAL BOARD

Sándor Bácsó (Debrecen), Sonja Gorjanc (Zagreb), Tibor Gyimóthy (Szeged),
Miklós Hoffmann (Eger), József Holovács (Eger), Tibor Juhász (Eger),

László Kovács (Miskolc), Zoltán Kovács (Eger), Gergely Kovásznai (Eger),
László Kozma (Budapest), Kálmán Liptai (Eger), Florian Luca (Mexico),

Giuseppe Mastroianni (Potenza), Ferenc Mátyás (Eger),
Ákos Pintér (Debrecen), Miklós Rontó (Miskolc), László Szalay (Sopron),

János Sztrik (Debrecen), Tibor Tajti (Eger), Gary Walsh (Ottawa)

INSTITUTE OF MATHEMATICS AND INFORMATICS
ESZTERHÁZY KÁROLY CATHOLIC UNIVERSITY

HUNGARY, EGER

Selected papers of the
2nd Formal Methods in Informatics

online workshop

The workshop was organized by
Institute of Mathematics and Informatics

Eszterházy Károly Catholic University
Hungary, Eger

November 30–December 1, 2021

Edited by
Csaba Biró

Gergely Kovásznai
Gábor Kusper

Tibor Tajti

HU ISSN 1787-6117 (Online)

A kiadásért felelős az
Eszterházy Károly Katolikus Egyetem rektora

Megjelent a Líceum Kiadó gondozásában
Kiadóvezető: Dr. Nagy Andor

Műszaki szerkesztő: Dr. Tómács Tibor
Megjelent: 2023. augusztus

Contents
R. Frisch, D. É. Dobák, J. Udvaros, Blockchain diploma authenticity

verification system using smart contract technology 1
M. Kahla, A. Novák, Z. Gy. Yang, Fine-tuning and multilingual pre-

training for abstractive summarization task for the Arabic language . . 24
G. Kovásznai, D. H. Kiss, P. Mlinkó, Formal verification for quantized

neural networks . 36
D. Lukács, G. Tóth, M. Tejfel, P4Query: Static analyser framework for

P4 . 49
B. Nagy, K. Abuhmaidan, M. Aldwairi, Logical conditions in program-

ming languages: review, discussion and generalization 65
J. Udvaros, N. Forman, D. É. Dobák, Application and impact of elec-

tronic solutions in teaching programming 78
Z. Gy. Yang, L. J. Laki, Solving Hungarian natural language processing

tasks with multilingual generative models 92
Z. Gy. Yang, N. Ligeti-Nagy, Building machine reading comprehension

model from scratch . 107

Submitted: August 10, 2022
Accepted: July 14, 2023
Published online: July 17, 2023

Annales Mathematicae et Informaticae
57 (2023) pp. 1–23
DOI: https://doi.org/10.33039/ami.2023.07.002
URL: https://ami.uni-eszterhazy.hu

Blockchain diploma authenticity
verification system using

smart contract technology

Ruben Frisch, Dóra Éva Dobák, József Udvaros

Budapest Business School,Faculty of Finance and Accountancy,
Department of Business Information Technology

frischruben1998@gmail.com
dobak.dora@uni-bge.hu

udvaros.jozsef@uni-bge.hu

Abstract. Blockchain technology and smart contracts have huge potential
which has not been exploited fully yet. The main objective of this paper
is to showcase the powerful attributes of blockchain technology and smart
contracts, showcasing our unique and powerful use case of document verifica-
tion in the field of higher education using the Ethereum protocol. Our smart
contract use case will take advantage of the main attributes of blockchain
technology to solve the problem of document forgery. These amazing at-
tributes are immutability, censorship resistance, extreme robusticity, trans-
parency, and neutrality, in addition to near-perfect availability and decen-
tralization. Ethereum enables developers to create decentralized applications
without having to invest in expensive infrastructure. Document forgery has
a very long track record in the education sector and academia. In this digital
age, it has become frighteningly simple and inexpensive to acquire fake uni-
versity diplomas, certificates, and many other types of credentials. This has
a long-term negative effect on higher-level education because it damages the
healthy competitive environment of students and the reputation and credi-
bility of institutions. The most problematic version of the diploma which is
the most susceptible to forgery is physical diplomas. Even with relatively
expensive and difficult-to-replicate security elements, such as holograms and
special security markings, these are not efficient enough to keep bad actors
away from trying to forge them and replicate them. The more complex meth-
ods we use for preventing physical document forgery, the more knowledge and
experience does the verifier needs beforehand due to the complexity and the
unique nature of anti-forgery methods and materials one has to look for dur-

https://doi.org/10.33039/ami.2023.07.002
https://ami.uni-eszterhazy.hu
mailto:frischruben1998@gmail.com
mailto:dobak.dora@uni-bge.hu
mailto:udvaros.jozsef@uni-bge.hu

Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

ing examination. The verification process of continually evolving and chang-
ing physical forgery prevention stamps, materials, holograms and others are
expensive to automate the verification procedure and introduces additional
human labor cost (training staff, hiring new employees, hiring trainers and
forgery specialists). Therefore the best prevention method for replication is
to build a system that makes it infeasible to even try to commit forgery. Usu-
ally, when an employer asks for the diploma, the student sends an electronic
photocopy of the document to them or scans it. This completely nullifies the
effect of holograms, watermarks, special UV active materials, and all other
physical security elements. Even with the use of centralized electronic doc-
ument verification systems, data manipulation is still possible, in addition,
such a system introduces the concept of having to trust a third party for
verification and single point of failure, in addition to lack of transparency,
immutability, and data availability. An ideal solution would be one that is
trustless, transparent, immutable, and always accessible. Blockchain technol-
ogy offers the optimal solution to document forgery. In this article, we will
showcase our Ethereum smart contract solution and all of the crucial aspects
of document integrity.
Keywords: Smart contract, blockchain, diploma
AMS Subject Classification: 94-06

1. Introduction
Document forgery poses a great risk to the reputation and credibility of the aca-
demic field. Counterfeit diplomas and certificates damage higher education greatly.
We aimed to develop a blockchain-based smart contract solution, which will help
in battling diploma mills and forgery services by registering documents into a se-
cure blockchain environment. Employers and institutions wish to verify documents
securely and in a quick and simple way. Registration, and verification process es-
pecially should not be a time and human resource-consuming process, and should
not require high-level skills to distinguish fake and real documents. In our smart
contract use case, we developed our contract to be able to verify the authenticity
of any type of document, as long as it has unique and descriptive data attributes,
which could be used to generate a fingerprint of the document using hash algo-
rithms such as SHA-256 [18]. We mainly focus on the field of higher education,
where document forgery, especially in the case of diplomas and certificates is very
common and is still a huge concern. Blockchain is a perfect solution, because of
its decentralized and immutable nature, where network participants can monitor
every transaction on-chain and verify data themselves without having to trust an
intermediary or third party to verify and store information [3].

This smart contract implementation takes advantage of the security guarantees
of the Ethereum network [2]. It should be noted that this particular smart contract
could be used for any kind of document verification, as long as the document has
a unique fingerprint, which is calculated from a primary key, in addition to other
descriptive type data elements, such as date, name, grade, and many others hashed

2

Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

together to make a single, unique and fixed-length data.
One of the main expectations towards our smart contract design is data pri-

vacy. Documents contain sensitive information which should not be placed on the
blockchain in raw text format. That is why the data should be always hashed first
before broadcasting a document registration transaction [20]. Hashing the data
makes it nearly impossible to decrypt, it is a one-way encryption function. This
data security aspect is especially important in the case of blockchains, where data
cannot be removed afterward, it is immutable. The content of valid blocks cannot
be modified after they become part of the chain, this is one of the major fundamen-
tal attributes of blockchains that guarantees data immutability and data integrity.
Data immutability is extremely important in our use case of document verification,
that is why there exists no better technology than a public decentralized blockchain
with amazing security guarantees in place.

Without secure hashing functions, this use case would be impossible to imple-
ment optimally. A hash function generates fixed-length data from variable-length
data inputs, making it ideal to create a unique fingerprint of the document at hand.
It is also crucial that one should not be able to recover the input data from the
hash itself. A hash function should always generate the same output for the same
input. If a user has possession of the document’s data elements, the user should
have the ability to generate the hash from the data. With the hash, the user can
query the contract’s state with a pre-defined query function, which tells the user
if the document has been registered on the blockchain or not, returning with a
logical value of true or false. So the hash function must be deterministic for this
use case to work as intended. Even if one makes a small error in the input data, a
completely different hash will be generated.

One other extremely important attribute of hash functions is collision resis-
tance, two documents should never have the same hash representation. In theory,
hash collision is possible with an extremely low chance, so before broadcasting a
document registration function into the network, the company or university should
verify that the hash does not already exist in the database. If it does, changing the
document’s primary key or any data component should solve the issue, but this is
again an extremely rare scenario. With long enough hash outputs, preferably 256
bits or more, the possibility of collision becomes almost impossible. Although it
should be nearly impossible to calculate the input data from the hash, due to its
one-way nature, it should also be fairly easy to generate the hash from the raw
input data. A hash function is needed that is fast and efficient, but secure at the
same time. An SHA-256 or SHA-512 hash function for example would be ideal for
our use case. A hash function must have a pre-defined range in our smart contract
design, meaning that the output of the hash algorithm shall have a fixed length
regardless of the input size [16].

The smart contract must have an owner, which by default will be the EOA
(Externally Owned Account) type Ethereum account that initiates the registration
of the smart contract with the special contract creation transaction. The smart
contract constructor runs one time, specifically when the contract is created. The

3

Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

constructor will set the owner’s address as the owner of the smart contract who
will have special privileges, such as document registration. The owner is saved in a
state variable, which is an address type variable or object. We must also implement
a function that will take care of owner changing, although this function could be
discarded based on the specific requirements of the institution or company. Specific
functions of the contract will require the function caller to be the contract’s owner,
this rule will be enforced by a function modifier, which is always activated when
the function is called. The function modifier has the job to decide if the function
caller has the same address as the smart contract’s defined owner stored in the
state variable.

The query function used to verify document authenticity is enabled to call for
any user, which is the whole point of this application. Anyone can verify the doc-
ument by having the necessary data at hand by calling a function. The document
verification function is free to call because functions that do not change the state of
the contract do not require a transaction that changes the state of the blockchain
by including the transaction in a block. On the other hand, document registration
and many other functions that write or modify the storage of the contract will cost
gas and require a signed and broadcasted transaction on the network [5]. In the
case of universities, it is important to have a function that enables mass document
registration, which is also implemented in our smart contract code. This will make
it much easier to manage and register diplomas for universities, not having to do it
one by one. There is also an option for mass document queries to make the mass
verification process faster and easier to manage, although this function is rarely use-
ful in most scenarios. When designing a smart contract, we must think forward,
because there is no way to change the code of the contract later. It should have
more functionality than the minimum requirement just in case it will be needed in
the future.

The source code of the smart contract should always be made publicly available.
This is usually done by adding the source code to an Ethereum block explorer. The
most popular block explorer by far is called Etherscan, which has the function to
verify source code. The code is compiled into bytecode, then the service compares
the result of the compilation with the actual bytecode of the already registered
smart contract bytecode. If they match, then the source code is verified and made
public. Without this step, only the bytecode format of the source code is available
for users on the Ethereum network, which is hard to read for most users and devel-
opers alike. The smart contract code is immutable, so after we register the contract
on the blockchain, it is impossible to modify or add new functions. Thankfully there
are Ethereum test networks for this reason, so projects can test the smart contract
meticulously before registering it on the main network. The best test networks are
Kovan and Ropsten, these have almost identical properties like the main network,
with the most notable exception being gas prices. Gas prices differ between the
test network and the main network because of significant differences in network
usage.

During the development phase of the solution, we used Solidity smart contract

4

Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

programming language, which is a high-level, object-oriented language best suited
for contract development. The version we used to code the smart contract is So-
lidity with solc compiler version 0.8.7. The integrated development environment
we chose is Remix IDE, which has all the tools needed to develop efficiently for
this fairly straightforward use case. Remix also has advanced text manipulation
features, in addition to source code compiler to bytecode format and contract cre-
ation transaction automation. Therefore the IDE handles all the required actions
such as creating and broadcasting the contract creation transaction and compiling
Solidity source code into bytecode [21].

1.1. Introduction of the main issue with traditional document
verification models

In our digital world, data quality and authenticity have utmost importance and fo-
cus. Centralized information systems are often not transparent enough and always
require trust [22]. Manipulation and forgery of documents is a huge issue in the
field of higher education, where diplomas and certificates are used as a signaling
mechanism of one’s acquired knowledge and skillset. Physical copies can be eas-
ily forged, but digitally signed PDF diplomas are not ideal either. One possible
route is a centralized document verification system [1]. Centralized services lack
the extreme security guarantees that Ethereum has as a public blockchain, such at-
tributes for example are availability, immutability, and transparency [10]. Another
less than optimal way to battle forgery is to make physical copies difficult to coun-
terfeit. Although this is not an ideal solution, because it is extremely expensive,
requires special materials, technology, and machines to produce. Physical copies
can also be lost by the owner or even stolen, can be damaged by water and fire,
and degrades with time. On the blockchain, data is always available, is immutable
after it has been included in a valid block, and every transaction is visible to all
users of the network [6]. Another problem that exists today is that diplomas and
other sensitive documents are too hard to be verified. In our smart contract based
solution, the verification process is very simple and efficient and can be done by
anyone who has the required data at hand. Another issue with centralized docu-
ment verification systems is the strong dependence on the institution’s hardware
and software infrastructure [11].

Outsourcing such sensitive tasks is a huge risk too. Data can be easily modified
by the institution later, the documents are not immutable, there is a risk of cor-
ruption or human mistake. Trusting a third party is not ideal, especially when the
document has such high value. There is also the high cost of centralized systems,
they often require expensive infrastructure and have a significant maintenance cost.
Hardware failure is another risk, which in the case of a decentralized blockchain
database is mitigated by all full nodes having a copy of the state of the blockchain.
When broadcasting information to a blockchain, we must be very careful. The
data will stay on the blockchain forever, meaning that there is no room for error
when registering documents. The institution must implement security measures to
mitigate these risks. Such risk could be a hash collision or inaccurate document

5

Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

information. Before submitting data into the smart contract, the documents must
go through a strict review phase, where syntax and semantics are checked.

2. Methodologies and methods

2.1. Analysis of viability and practicability
The implementation of our blockchain document verification system is fairly easy
and straightforward. Positive data redundancy plays an important role in this
system, the institution is advised to store all the registered documents in a secure
database server. Remember, that only the document hash would be registered
on the blockchain, the document itself and all of its information resides in the
relational database. An optional component would be a web-based user interface,
to make document queries more user-friendly, although modern block explorers
already have smart contract function calling capabilities, such as Etherscan, which
enables manual interaction with the contract itself. It is also good to note, that as
every single transaction is permanent and visible to all network participants on the
blockchain, one could query through all the transactions where the contract address
was the recipient, and eventually find the document hash manually, without even
calling the document query function.

In regards to the practicability of using public blockchain and smart contract
technology, this design has many advantages over a centralized solution [9]. The
hardware infrastructure needs of our implementation are lower than in the case of
centralized solutions, due to the fact that the document hashes are stored on the
blockchain directly in the forms of immutable and censorship-resistant transactions.
The smart contract’s storage is secured by the Ethereum protocol and its many
nodes. Centralized solutions require trust from the owners of the documents. In
the case of blockchain documents, there is no way to modify or delete registered
documents. In truth, after registering a document with a valid transaction, the
transaction will be always contained in the corresponding block, thus modifying
the storage state of the smart contract will not truly remove the document from
the blockchain, as transactions are immutable after being included on the chain.
Even if the university or company ceases to exist for any reason, the registered
documents will stay forever on the blockchain, making it a timeless and superior
solution.

The contract is programmed in a way that document duplication is impossible,
although hash collisions shall be checked strictly off-chain to prevent anomalies.
The document fingerprint hash should be passed on to the correct query function in
the smart contract to verify that the particular hash has not been already registered
by the institution. Another check would be trying to match the generated hash
with a hash already stored in the relational database the institution maintains
for document data storage. Such collisions are extremely rare when using the
correct hashing algorithm, but this use case is extremely sensitive as we are talking
about mostly certificates and diplomas where errors are unforgivable. Humans are

6

Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

prone to errors, multiple off-chain assertation mechanisms should be implemented
to prevent incorrect document registrations with the smart contract.

The document registration process is simple and easy to manage for the admin-
istrator. First, the document hash must be generated, then checked if it already
exists in the database or not. If not, then the contract owner shall call the registra-
tion function of the smart contract, and pass the document hash as the argument.
The transaction must be signed before broadcasting it to the network with the cor-
rect private key, which is only known to the owner of the contract. If the private
key is lost, the system is compromised. The contract has a function that enables
the owner to pass ownership of the contract to another address. Regardless of the
inclusion of this function, losing the private key or getting it compromised is always
catastrophic. After the transaction is signed, it can be broadcasted to the network.
Usage of a secure hardware wallet is crucial and a basic security best practice,
where the private key is always isolated in a secure element encryption hardware
component. The hardware wallet can sign transactions without ever revealing the
private key or putting the private key data into the random access memory of the
computer. Even if the computer is infected, the private key won’t be accessible, it
is encrypted and isolated on the hardware wallet, even when signing a transaction.
The transaction must be broadcasted with the correct amount of ether as a trans-
action fee. The transaction fee amount varies, it must be always checked before
sending the transaction to the network. In case of setting the transaction fee too
low, it will not be mined at all. To solve this issue, the owner should send the same
signed transaction again, but with the same nonce value as the original one, so that
the original will be overwritten by the new transaction with the correct transaction
fee set. It is good to note, that transactions can be stuck forever if the gas price
is not set high enough, so it is advised to set it higher than the minimum value.
Stuck transactions can still be corrected by broadcasting another transaction with
the same nonce as the original.

A valid transaction, which is included in a block is usually considered final by
convention when there are six additional blocks placed on the containing block.
Ethereum blocks are created and placed on the chain about every 12-13 seconds on
average, which means that a document registration transaction on average takes
about 72-78 seconds to be considered extremely immutable. Theoretically, even if
block production is stopped momentarily, the transaction cannot be modified after
it is placed on the chain, because that would require more than half of the consensus
nodes to agree on that false state of truth. The block production time varies
based on many factors, such as dynamic difficulty set by the consensus mechanism.
The consensus mechanism controls block production pace by setting the difficulty
dynamically. It tries to maintain that 12-13 seconds for successful block mining to
maintain security and stability. Lowering the block production time is dangerous
for the network, as it can increase hardware requirements for the mining nodes, as
faster block time needs quicker synchronization and more powerful hardware. The
more expensive hardware is needed, the fewer nodes will be on the network due
to a higher barrier of entry. Fewer nodes mean less decentralization, which results

7

Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

in decreased robustness and security. Another aspect of too short time duration
between successful blocks is the fact that 51% attack becomes easier to conduct, as
calculating block identifier hashes become much less time and energy-consuming.
Bitcoin has an average of 10 minutes block production time, which would be way
too slow for a smart contract platform like Ethereum. On a smart contract enabled
blockchain, the number of broadcasted transactions is significantly higher, thus it
requires faster block production time to keep up with the block space demand of
network users.

After the document hash has been successfully registered by the owner of the
contract, there is no additional step. The document owner should receive the
document in digital format along with the calculated hash. When the graduated
student wishes to prove to the employer that he or she has the required certificate
or diploma for the job application, then the student should send an email or chat
message to the employer with the document data along with the hash. Then the
employer can go to the document verification website, fill out the form quickly,
then the hash is generated. The hash is passed as an argument when calling the
read type function of the smart contract, which has a logical returning value of
false or true. If the hash has been already registered, the function returns true, the
employer has successfully verified that the applicant has the necessary document
for the job application. Another verification route would be for the employer to
calculate the hash manually, then use some kind of block explorer or wallet to
interact with the smart contract.

The most decentralized and secure, yet quite time-consuming verification pro-
cess would be to check the smart contract transaction history in a block explorer
and see if the document hash has been registered or not based on transactional
evidence. Having an archive-type full node would be the most secure way, by
running your own Ethereum node, with client software compiled by yourself from
the source code. Although these methods are bothersome and require too much
background knowledge to be a feasible alternative to using a pre-built front-end or
block explorer. Of course, in case the document owner passes false document data
and a correct hash, the verifier might make a mistake and not calculate the hash
him or herself. That is why the verifier should always check if the hash generated
from the document data is valid, as the output is deterministic. Sending only the
document data without the hash is fine too, that way this kind of manipulation
attempt is mitigated by having the verifier generate the document fingerprint.

2.2. Document integrity and permission levels
It is crucial to determine in a decentralized application, who is able to call specific
functions of the smart contract. Some functions might only be able to be called
upon by the owner of the contract, while others may be called by everyone using
the Ethereum network and signing, then broadcasting a valid transaction. In the
case of diplomas and certificates, only the company that has the right to emit these
documents should be able to register such documents into the smart contract and
blockchain. This is why we needed to implement the smart contract in a way that

8

Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

there is an explicitly defined owner of the contract with special permissions, such as
document registration, ownership transfer, and contract condition configuration. It
is also important to mention that the contract implementation should be optimized
for the specific requirements of the company or institution, therefore some functions
might be excluded or new ones might have to be included in the code, aligning to
the given specification.

In our smart contract implementation, there is only one owner, who has the
ability to call upon all existing functions of the contract and control it to the
full extent. More permission levels could be implemented, such as multiple own-
ers, multi-signature document registration, and sub-owners. Although introducing
more levels and actors to the system might increase the gas cost of the transac-
tions, due to the fact that these changes will always result in more complex code,
which is more expensive to execute for the EVM (Ethereum Virtual Machine). The
owner of the smart contract should always be the one who emits the documents,
for example in the case of diplomas this would be the university itself. The owner
of the contract can be easily determined by either monitoring the specific address
type variable of the contract, or by calling the query function which will return
with the address of the owner. The company or institution should also make the
owner’s address public, in addition to the valid smart contract address to avoid
confusion and remain fully transparent.

Keeping the owner’s private key safe is of utmost importance. Some might
believe that this task is easy and self-evident. Making sure that the private key
never gets stolen or leaked is a difficult task, which requires a safety mechanism to
be set and executed properly. The owner of the smart contract should always use a
trustworthy hardware wallet or some kind of enclave technology to keep the private
key completely isolated and encrypted at all times, even when signing a transaction.
It should never be copied into the random access memory of the machine either in
a raw format, as this opens up new possibilities for private key leakage. A multi-
signature implementation of transaction signing would significantly improve the
security of the contract, although it makes the document registration process more
time-consuming, in addition to increasing gas costs. The multi-signature would be
generated by two or more owners, meaning that it would always require a minimum
of two separate transactions to sign and broadcast a document registration or
other, which is of course more expensive than having only one owner who controls
everything about the contract. There are always drawbacks of a given mechanism,
therefore the contract should be coded with the specific requirements in mind.

In the case of universities, the multi-signature implementation might be pre-
ferred due to its increased security guarantees. The cost of the transactions could
be mitigated by implementing a mass document registration function, which would
take an array of document fingerprint hashes as an argument. This way, there is no
need to generate the multi-owner signature for each and every document at hand,
only one signature is required to make the mass registration possible. The contract
would have a variable for each owner, which stores the outcome of their signature
logically. Each owner would make a special sign transaction, which would modify

9

Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

the bool variable to the outcome of the transaction. If all of the corresponding sign
condition variables are true, then the registration function could be called and ex-
ecuted properly. If one of the owners would not sign it, the registration call would
fail and revert. There are quite a lot of ways to implement a multi-signature mech-
anism, there are many aspects to consider such as cost efficiency, data security,
code complexity, permission levels, institution or company-specific requirements,
legal environment, and more.

Smart contracts are immutable, meaning that after registering a contract on
the blockchain none shall change its code or address. Smart contracts also have a
state, which is determined by their storage memory. The storage memory consists
of variables, objects, and primitive data types. By implementing a special method
called selfdestruct, the caller can destroy the smart contract’s code and storage
memory, rendering it empty so to say. An important aspect of self-destructing lies
in its implementation explicitness, which means that a contract only has the ability
to self-destruct if it is hardcoded into the contract. Therefore it is always up to
the given specifications and requirements if the contract should have a self-destruct
function or not. The main use case of such a method is testing contracts, finding
bugs in deployed contracts, then self-destructing it when the contract is no longer
needed. It also has an important part in the contract migration mechanism, where
the contract left behind gets self-destructed after the migration is complete. An-
other important aspect is the fact that after the completion of self-destruction, the
contract’s address and transaction history remains untouched, therefore a contract
cannot be purged completely, the address and transactions will always remain, only
the code and storage is destroyed.

In our implementation, we use an on-off switch kind of smart contract condition
mechanism, in which the contract’s owner can call a specific contract activation and
deactivation function. In case the contract needs to be shut down temporarily, it
can easily be done, without purging the code and storage of the contract like in the
case of self-destruction. Almost every function of the contract shuts down in case
of deactivation, although document query remains active at all times, meaning that
everyone will be able to verify documents even after shutting down the contract.
The owner passes a bool value of true or false to the corresponding function, then
the value is assigned to the bool contract state variable. After that, calling functions
will be impossible, except for some specific methods. The condition check is done
by a function modifier structure when calling methods. After each call, the contract
checks if the contract is turned off or on, and proceeds to execute on the correct
path according to the state of the contract. Even though there is an on-off switch
built-in, the smart contract is still fully decentralized, participants can still verify
documents as usual. The implementation is of course optional, it could be excluded
from the code or changed accordingly to the needs of the company or institution.

2.3. Cost efficiency
The document verification system has a decentralized on-chain part in the form of
the smart contract, which stores document hashes and other state variable values,

10

Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

and has the required logic in form of Solidity code. Even though smart contracts
do not require maintenance in a traditional sense, it still has costs in form of the
transaction fees when calling write type functions. Write type functions make
changes to the internal state of the smart contract, to the storage memory of it.
The storage memory is stored on the blockchain where the smart contract’s every
component resides. The contract address, code, storage, and transactions are all
stored on the blockchain. When you call a function that adds or modifies the state
of the contract, the transaction will cost you a non-deterministic amount of gas
fee. The transaction fee is non-deterministic because it is unknown which code
path will get executed when calling a function, it depends on the argument of
the function call, the time the transaction has been broadcasted, and many more
factors that can take a role. Of course, it is possible to calculate the estimated gas
units you will need based on empirical data, but the system itself cannot determine
it with certainty. Each transaction gas unit will cost a non-deterministic amount
of ether in the form of Wei. Miners will only add transactions to the blockchain
which have a sufficient amount of gas included with the transaction, otherwise,
it will be ignored by the vast majority of the miners and the transaction might
get stuck forever. That is why the owner of the smart contract will always have
to check the current gas prices to avoid issues with transaction finalization. It is
advised to pay higher fees in order to ensure that the transaction will be included
in a block for sure. Other factors, such as the time of transaction propagation
could also be crucial to minimize transaction fees because the gas price tends to
fluctuate greatly based on day times. The cost of gas units is mostly affected by
the network’s capacity utilization, the number of transactions competing for block
space, and blockchain inclusion [17].

On the other hand, read-type functions do not require any gas to be paid, as
they only read from the contract’s storage memory. Read-only type functions are
often marked as view or pure in the declaration, meaning that they will never
attempt to modify or add data to the storage of the contract, only read from it. As
all of the document verification functions are read-only, they will not cost anything
for users to call them. Another cost of smart contracts is the contract creation
special transaction, this one is always needed in order to set up the smart contract
on the blockchain [15].

Algorithm 1. Smart contract Solidity source code events, storage
state attributes, constructor, fallback special function and modi-

fiers.
1 // SPDX-License-Identifier: MIT
2

3 pragma solidity >=0.7.0 <0.9.0;
4

5 contract DocumentVerificationContract {
6

7 //Events
8 event documentRegistrationEvent(
9 address transactionSender,

10 bytes32 documentHash,

11

Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

11 uint epochSeconds,
12 uint blockHeight
13);
14

15 event massDocumentRegistrationEvent(
16 address transactionSender,
17 bytes32[] arrayOfDocumentHashes,
18 uint epochSeconds,
19 uint blockHeight
20);
21

22 event setOwnerAddressEvent(
23 address transactionSender,
24 address newOwnerAddress,
25 uint epochSeconds,
26 uint blockHeight
27);
28

29 event fallbackEvent(
30 address transactionSender,
31 string fallbackMessage,
32 uint epochSeconds,
33 uint blockHeight
34);
35

36 event setContractStateEvent(
37 address transactionSender,
38 bool stateChangedTo,
39 uint epochSeconds,
40 uint blockHeight
41);
42

43 //Storage state attributes
44 bool private contractState = true;
45

46 address private contractOwner;
47

48 mapping(bytes32 => bool) private documentMapping;
49

50 bytes32[] private documentHashes;
51

52 //Constructor
53 constructor() {
54 contractOwner = msg.sender;
55 }
56

57 //Fallback special function
58 fallback() external {
59 emit fallbackEvent(
60 msg.sender,
61 "fallback method activated: "
62 "Wrong function prototype or empty ether call",
63 block.timestamp,
64 block.number
65);
66 }

12

Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

67

68 //Modifiers
69 modifier onlyOwner() {
70 require(msg.sender == contractOwner);
71 _;
72 }
73

74 modifier contractStateIsActivated() {
75 require(contractState);
76 _;
77 }
78

79 //...
80 //Function code and detailed explanations in the upcoming sections.
81 }

2.4. More about data privacy and security
The different kinds of documents that are suited for this use case often contain
sensitive, private information which must be kept hidden. Blockchain transactions
are irreversible as soon as they are included in a block and the block is valid,
therefore one must be extremely careful when submitting information in the forms
of transactions. In this document verification implementation, we must never put
raw, private data on the blockchain. Meanwhile, users must be able to verify and
prove the authenticity of documents in case they possess the correct data series to
calculate the unique fingerprint of the document.

A perfect solution is using hashing algorithms, which have attributes fitting
perfectly for this use case. This way reversing the hash into the correct data
structure is extremely time-consuming for an attacker, a near impossible task.
Therefore a document should always have some kind of primary key that is unique,
this key might be composed of several descriptive attributes. The document’s
primary key should have a decent length and should be composed of letters and
numbers. Usage of sub hashes is also a viable option, although it would make
hash generation more resource-consuming and the complexity of the system would
increase somewhat.

A well-designed hash function is always deterministic, passing the same argu-
ments to it will always generate the same output. Another crucial attribute of such
hash functions is collision resistance, every different input data should be mapped
to different output hash values. Two different documents should never have the
same hash fingerprint, but in extremely rare cases it could still happen. That is
why a collision check should be implemented off-chain to prevent such issues before
broadcasting a document registration transaction. The document hash should be
calculated almost effortlessly, consuming minimal hardware resources. Also, the
hash function should always return with fixed length hashes, in the case of SHA-
256 that is 256 bits. A good hash function makes hashes that are almost impossible
to reverse, and are always deterministic with the input data. From a data secu-
rity perspective and general efficiency and design, using hashes for our use case is
optimal [13].

13

Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

2.5. Smart contract ownership implementation
The owner of the contract is stored in the address data type variable called con-
tractOwner. It is set as private, therefore only the containing contract can see it.
Setting variables to private visibility do not mean that they cannot be monitored
by other network participants. The owner is initialized in the constructor when
the contract is created. The constructor gets executed exactly one time at contract
creation. The msg.sender global variable references an address object, specifically
the address of the externally owned account (EOA), who signed and broadcasted
the contract creation transaction. Inside the constructor code, the transaction
sender’s address is assigned to the contractOwner state variable.

Figure 1. Use case diagram with the contract owner actor and its
use cases.

The function called getOwnerAddress returns with the address of the current
contract owner. It is marked as external in the function declaration, therefore it
can only be called externally, outside of the contract. Using public visibility is

14

Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

also a viable option, although public functions cost more gas to call than external
functions. The function is also a view type function, which means that it will not
modify or add new data to the contract storage memory, only reading from it. There
might be a need for changing the owner, that is why the contract has a function
called setOwnerAddress which takes care of this task. The caller has to pass an
address type variable as an argument to the function. The newContractOwner
parameter’s value is then assigned to the contractOwner state variable, changing
the owner of the contract. The setOwnerAddressEvent event helps contract activity
monitoring by emitting the correct event when the function’s code is executed [14].
This particular event contains the transaction sender, the new contract owner’s
address, a timestamp in epoch seconds, and block height data [7].

Figure 2. Smart contract ownership Solidity code snippets.

We also need to validate that the owner called the given function, for example
in the case of document registration or when transferring ownership to another
EOA address. This is where the modifier called onlyOwner comes into play, which
can ensure that only the owner can successfully call a function declared with the
onlyOwner modifier. The require statement contains a statement that the transac-
tion signer is the same as the contract’s current owner stored in the contractOwner
state variable. If that statement is true, then the _; syntax will absorb the code of
the called function and get executed. On the other hand, if the require statement
returns a false logical value, then the function which has the onlyOwner modifier
inside its declaration will not execute and the transaction will get reverted. This
mechanism ensures that the ownership permission is always enforced whenever the
method declaration contains the modifier, also it makes it efficient for us to create
and manage permission levels safely with total control.

15

Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

Figure 3. Use case diagram with regular user actor and its use
cases.

2.6. Contract state switch mechanism
The smart contract provides an on-off switch mechanism regarding the state of the
contract’s specific functions. Another way to turn a contract off is implementing
the special selfdestruct method, although this has many drawbacks. Firstly, after
the self-destruction function is called and takes place, the contract’s code and
storage memory will be erased permanently, with no way of reverting it. Secondly,
it would be counter-productive to use self-destruction, due to the fact that our use
case is based on data immutability, which would be somewhat damaged, should
we implement the selfdestruct function [12]. Deactivating the contract means that
some functions will stop working and will revert when called. Such functions are
declared with the modifier called contractStateIsActivated. The contract can be
easily turned on by the owner again. Deactivating the smart contract’s state will
not affect the code and storage memory of it, document hashes are resistant to any
kind of manipulation or tampering.

Figure 4. Smart contract state switch mechanism Solidity code
snippets.

16

Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

The above-explained mechanism is made possible by a state variable, a modifier,
and several functions. The bool primitive data type variable called contractState
stores the logical value representing the smart contract’s state. The initialization is
not done in the constructor, instead, it takes place right after the declaration, this
way it consumes less gas to create the contract. Declaring the visibility to private
is optional, the contract’s state can still be monitored using any block explorer
by any participant. Private variables are still visible to all network participants,
although such variables cannot be used anywhere outside the contract. The next
crucial component of the on-off switch is the modifier called contractStateIsActi-
vated. The require statement in the modifier’s body ensures that if the contract’s
state is deactivated, the called function will be reverted, if the given function’s
declaration statement contains the contractStateIsActivated modifier. If the con-
tractState variable is set to true logical value, then the require statement returns
true, meaning, that the _; syntax will absorb the code of the called function, exe-
cuting it. On the other hand, in case the contractState variable is false, then the
call will be reverted.

The setContractState function is used to set the contract’s state by passing a
bool logical value when calling it. We must ensure that only the owner of the
contract has the right to change the state of the contract, that is why the function
declaration contains the onlyOwner modifier. When the owner calls the setCon-
tractState function, a bool argument must be passed along with the call. The
parameter is then assigned to the state variable that stores the contract’s state,
namely the contractState variable. At last, an event is emitted in case of success-
ful execution, called setContractStateEvent. This particular event will emit data
such as the transaction sender’s address, the bool value the state has been changed
to, in addition to the time in epoch seconds in which the transaction took place,
lastly the block height data. The function called getContractState is included in
the code to make it easy for users to read out the contract state value without
having to check through events and the transaction history of the contract. This is
an optional function, as the state variable could be declared with public visibility,
in which case the get function is generated by default.

2.7. Document hash registration onto the blockchain
The main objective of the smart contract is to register documents, such as diplomas
and certificates onto the blockchain. Precisely we use the smart contract to store
document hashes on the blockchain, which is the contract’s storage memory. There
are two data structures, a map with key-value pairs called documentMapping, and a
byte32 dynamic array with the name of documentHashes. The most important data
structure is the mapping, which is the heart of the smart contract. An important
note about the mapping structure is that it is very gas efficient. Every registered
document hash acts as a key in the mapping, which has a bool value assigned to it
acting as a value. When a document hash is registered, it means that the hash key
will have a true logical value associated with it. A document hash that has not been
already registered will have a false value in the key-value pair in the mapping data

17

Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

structure. The dynamic array on the other hand stores all the registered hashes for
convenience reasons mostly. It would be still possible to determine all the document
hashes registered in the smart contract by monitoring the transaction history and
event with a simple block explorer or full node. Another important fact is that
we cannot retrieve a hash from the mapping structure, as we can only ask for the
value with the correct key. In the case of document authenticity verification, we
can pass the document hash as an argument to the correct function in order to
determine if the bool value associated with it is true or false, registered or not.
In this current implementation, there is no way to change the key-value pair’s
value element from true to false. Such a function could be easily implemented,
although it would somewhat damage the document’s immutability property. A
bytes32 value represents a document hash, 32 bytes are 256 bits. The SHA-256 hash
algorithm is perfectly suited to generate 256-bit hash values safely from document
data concatenations.

Figure 5. Smart contract document hash registration Solidity code
snippets.

In order to register a single document hash, the owner of the contract must call
the function named registerDocument. The function takes one argument with a
data type of bytes32, which represents the 256-bit document hash. The contract’s
state must be set to true, as we can see in the function declaration that it contains
the contractStateIsActivated modifier, in addition to the onlyOwner modifier, which
ensures that only the owner could register a document with the smart contract.
Next, the function starts with checking if the hash has been already registered
or not. We must find out the value element of the key-value pair with the hash

18

Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

parameter. If the hash has the logical value true associated with it, that means that
the hash has been already registered by the institution. If it is false, then we proceed
to add it to the documentHashes dynamic array with the push method. This way
we ensure that there will not be duplicate hash values in the array. Next, the
function performs the most important core statement of the smart contract, which
is document registration. This is done by changing the value element of the key-
value pair of the argument which has been passed to the function in the mapping
data structure. Setting the value to true means that the document hash has been
registered and that the document will be stored on the blockchain forever, never to
be removed or modified in any way. There is also no way to roll back registrations,
setting the values of the key-value pairs to false. Finally, the function emits an
event named documentRegistrationEvent, which contains the transaction sender’s
address, the document hash which has been registered, in addition to the epoch
seconds, and block height data for optimal traceability.

There is a function implemented to be able to mass register documents. This
is particularly important for universities and other institutions who need to regis-
ter documents such as diplomas in big batches, periodically. The function named
massRegisterDocuments takes a dynamic, bytes32 data type array as an argument,
which contains the document hashes. The function must be called by the contract
owner in order to execute successfully. Also, the contract must be activated too.
The function immediately starts a cycle in order to iterate through all the bytes32
data elements of the passed dynamic array. In each iteration, we must check if the
given hash is already registered or not. If the key-value pair has a value element of
false associated with the hash key, then the hash is pushed into the documentHashes
state object variable in the smart contract storage memory. In each iteration, we
must also register the document hash the same way we do in the previous function,
by setting the bool value from false to true corresponding to the hash as a key
in the key-value pair. After the cycle is finished, an event named massDocumen-
tRegistrationEvent is emitted with the following data elements: The transaction
sender’s address, the dynamic array argument contents, block timestamp data,
and block height data. There are two additional functions included. First, the
function named getNumberOfRegisteredDocuments. As the name suggests, it will
return with the total number of stored hashes in the contract storage, precisely the
length property of the documentHashes state object variable. It is ensured that
the dynamic array will not contain any duplicate bytes32 values. Lastly, we have
the function named getAllRegisteredDocumentHashes. When called by the owner,
it will return the elements of the documentHashes array. The memory keyword
must be used in case of arguments, local variables, and return values in methods.
Memory variables are created at runtime and exist only while the method is being
executed, after that the memory variables are released. A popular analogy is com-
paring the two memory types to the computer random access memory and hard
drive. Memory data is only stored temporarily like RAM, and is volatile, mean-
ing that after function execution the memory variables are released. On the other
hand, storage variables are non-volatile and can be always retrieved by reading the

19

Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

contract’s storage area. From a gas cost perspective, reading from the contract’s
storage is expensive compared to using memory variables that are only temporarily
allocated. Another interesting aspect of this is when we reference storage variables
inside a function. In Solidity, that action is called a local lookup operation, and it
does not create new storage, it is just a reference to a storage variable that has
been already allocated in the contract’s storage area. It is impossible to create new
storage variables inside a function. When a function takes a memory variable argu-
ment and assigns the parameter to a referenced storage state variable, there is no
need for new storage allocation, as it is done already at the contract construction
level. The question of using memory or storage variables comes down to whether
we need to store a variable on-chain or is only needed at runtime, and also gas cost
considerations are not to be underestimated.

2.8. Document authenticity verification
One of the major use cases of the smart contract is to verify documents based on the
unique document fingerprint hash. Document verification is available to all users,
it does not require special permissions or even an activated smart contract state.
The functions responsible for this process are free to call, as they are read-only
functions. Read-only methods only access the storage memory area of the smart
contract to retrieve data, but do not modify or add any new data to it, therefore
executing these functions does not cost anything as the state of the blockchain and
the smart contract stays the same.

Figure 6. Smart contract document authenticity verification So-
lidity code snippets.

The function verifyDocumentQuery has the ability to verify one document. The
caller must pass a bytes32 document hash argument to the function. The method
then returns with the value element of the key-value pair, where the documentHash
parameter is the key. If the passed hash has been already registered by the owner of
the contract, then the value element of the key-value pair will be true, otherwise,
it will return with false. There is also a way to verify multiple documents with
one function call. This is done by calling the massVerifyDocumentQuery function
and passing a valid bytes32 dynamic array of document hashes. Next, the function
starts to iterate through the list of hashes, checking each of them if they have been

20

Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

registered or not. If one of the document hashes has not been registered in the
contract, or in other words the key-value pair holds a value of false associated with
the given hash key, then the function returns immediately with false. If all of the
document hashes are valid and registered, then the function returns with true.

2.9. Fallback method

Figure 7. Smart contract fallback function Solidity code snippets.

The fallback function is a nameless function, which has no arguments, does not
return a value. The reason why we need a fallback function is to prevent the
contract from receiving ether from users by mistake. If we declare the fallback
function without the payable keyword in the declaration, then the function will
throw an exception in case the contract receives ether without any function calls.
It is also called when the transaction contains a function call and the function
identifier is constructed incorrectly, calling a non-existent function instead [19]. In
these cases, the fallback function is called, emitting the event named fallbackEvent,
which has a transaction sender address, fallback message, block timestamp, and
block height data. Another constraint is that the fallback function must be declared
with external visibility. If we would mark the fallback function with the payable
keyword, then the contract would be able to receive ether as payment, although
in our use case this is unnecessary. Only one fallback function can be defined in
a contract. The main use of the function in our implementation is to avoid loss
of funds for users who send plain ether to the contract, such transactions will be
reverted. Another use of this method is to receive donations or payments without
having to supply a function with the transaction.

3. Conclusion
We aimed to develop a smart contract, which enables decentralized document reg-
istration and verification for the education sector and academia on the Ethereum
network, without a third party. Our main objective was to come up with a pow-
erful solution of reducing document forgery cases. We successfully deployed the
smart contract on the Ropsten Ethereum test network. All the implemented logic,
mechanisms, and functions performed as intended, according to the previously set
expected results. Another goal was to keep gas costs low for all use cases of the
system. After proper empirical evidence, we can safely say that there were no unex-
pected gas spikes, and the gas consumption of the functions is optimal thanks to the
simplistic, yet efficient and safe design. There is still much room for improvement
regarding the capabilities of the smart contract.

21

Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

One of these is implementing a multi-signature scheme for the system. With
a secure and gas-efficient multi-signature mechanism in place, we could improve
the security of the contract even further, by having multiple owners and therefore
required signatures for successful function execution such as document registra-
tion or contract deactivation, or even ownership transfers. Another requirement
might be a feature that enables the contract owner to call back documents, which
have been proved to contain errors, or in rare cases, the document owner has be-
come ineligible for ownership of the specific document. The next step of evolution
for our smart contract is the deployment on other blockchains. A great potential
blockchain candidate is called Avalanche [8] because it offers much greater trans-
action block inclusion and finality speed, lower transaction fees. Instead of using
the Proof-of-Work consensus algorithm, Avalanche implemented a Proof-of-Work
mechanism instead, which has several benefits, such as greater decentralization,
neutrality, and stronger scalability, in addition to being more resistant to 51% at-
tacks [4]. Although Ethereum has the most robust network and node infrastructure,
in addition to having the longest track record, and is still the dominant blockchain
by adoption, volume, users, developers, and decentralized applications.

The on-chain part of the system is the smart contract. There is still a need for
several off-chain components, such as a database server, a web server, and unique,
in-house developed programs. A database server is required to store all the reg-
istered documents along with the hashes for positive redundancy and traceability.
Remember, that the smart contract does not store the document data directly, only
the calculated hash of the document to prevent data leakage and maintain privacy.
Another off-chain component is a web server, to host a web interface for users to
interact with the contract more easily. Without a user-friendly web interface, the
users would only have the choice to interact with the smart contract manually with
a proper wallet and block explorer. Having more than one way to reach and com-
municate with the contract’s functions is only beneficial and increases the security
of the system. Another off-chain component that would be ideal, is a program that
calculates the document hashes and checks for collisions and other potential errors.
The software would also prepare the arguments to be passed during a function call.
Thanks to the invention of blockchain and smart contract technology, now we have
the tools necessary to fight against document forgery in an unprecedented way.

References
[1] A. Alammary, S. Alhazmi, M. Almasri, S. Gilani: Blockchain-Based Applications in Ed-

ucation: A Systematic Review, Applied Sciences 9 (June 2019), p. 2400, doi: https://doi.o
rg/10.3390/app9122400.

[2] P. Bhardwaj, Y. Chandra, D. Sagar: Ethereum Data Analytics: Exploring the Ethereum
Blockchain, Sept. 2021.

[3] V. Buterin: A Philosophy of Blockchain Validation, 2020, url: https://vitalik.ca/gene
ral/2020/08/17/philosophy.html.

[4] V. Buterin: Why Proof of Stake, 2020, url: https://vitalik.ca/general/2020/11/06/po
s2020.html.

22

https://doi.org/10.3390/app9122400
https://doi.org/10.3390/app9122400
https://vitalik.ca/general/2020/08/17/philosophy.html
https://vitalik.ca/general/2020/08/17/philosophy.html
https://vitalik.ca/general/2020/11/06/pos2020.html
https://vitalik.ca/general/2020/11/06/pos2020.html

Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

[5] G. Canfora, A. D. Sorbo, Sonia, A. V. Laudanna, C. A. Visaggio: Profiling Gas Leaks
in Solidity Smart Contracts, Aug. 2020.

[6] Chainlink: Blockchains and Oracles: Similarities, Differences, and Synergies. 2021, url:
https://blog.chain.link/blockchains-oracles-similarities-differences-synergies/.

[7] Chainlink: Events and Logging in Solidity, 2021, url: https://blog.chain.link/events-a
nd-logging-in-solidity/.

[8] Chainlink: How to Build and Deploy an Avalanche Smart Contract. 2021, url: https://bl
og.chain.link/how-to-build-and-deploy-an-avalanche-smart-contract/.

[9] Chainlink: What Is a Smart Contract?, 2021, url: https://chain.link/education/smart-
contracts.

[10] Chainlink: What Is Blockchain Technology?, 2020.
[11] G. Chen, B. Xu, M. Lu, N.-S. Chen: Exploring blockchain technology and its potential

applications for education, Smart Learning Environments 5 (Jan. 2018), doi: https://doi
.org/10.1186/s40561-017-0050-x.

[12] J. Chen, X. Xia, D. Lo, J. Grundy: Why Do Smart Contracts Self-Destruct? Investigating
the Selfdestruct Function on Ethereum, May 2020.

[13] H. Farid: An Overview of Perceptual Hashing, Journal of Online Trust and Safety 1.1 (2021),
doi: https://doi.org/10.54501/jots.v1i1.24.

[14] Á. Hajdu, D. Jovanović, G. Ciocarlie: Formal Specification and Verification of Solidity
Contracts with Events, May 2020.

[15] N. Kannengiesser, S. Lins, C. Sander, K. Winter, H. Frey, A. Sunyaev: Challenges and
Common Solutions in Smart Contract Development, Oct. 2021, doi: https://doi.org/10
.1109/TSE.2021.3116808.

[16] W. Macharia: Cryptographic Hash Functions (May 2021).
[17] G. A. Pierro, H. Rocha: The Influence Factors on Ethereum Transaction Fees, in: May

2019, pp. 24–31, doi: https://doi.org/10.1109/WETSEB.2019.00010.
[18] B. Preneel: Analysis and Design of Cryptographic Hash Functions (2013), pp. 1–30.
[19] S. Rezaei, E. Khamespanah, M. Sirjani, A. Sedaghatbaf, S. Mohammadi: Developing

Safe Smart Contracts, in: July 2020, pp. 1027–1035, doi: https://doi.org/10.1109/COMPS
AC48688.2020.0-137.

[20] J. Udvaros, N. Forman, S. M. Avornicului: Agile Storyboard and Software Development
Leveraging Smart Contract Technology in Order to Increase Stakeholder Confidence, Elec-
tronics 12.2 (2023), doi: https://doi.org/10.3390/electronics12020426.

[21] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, F.-Y. Wang: Blockchain-Enabled Smart
Contracts: Architecture, Applications, and Future Trends. IEEE TRANSACTIONS ON SYS-
TEMS, MAN, AND CYBERNETICS: SYSTEMS 49.11 (2019), doi: https://doi.org/10.1
109/TSMC.2019.2895123.

[22] Z. Zheng, S. Xie, H.-N. Dai, Weili, X. C. Chen, J. Weng, M. Imran: An Overview on
Smart Contracts: Challenges, Advances and Platforms, Dec. 2019.

23

https://blog.chain.link/blockchains-oracles-similarities-differences-synergies/
https://blog.chain.link/events-and-logging-in-solidity/
https://blog.chain.link/events-and-logging-in-solidity/
https://blog.chain.link/how-to-build-and-deploy-an-avalanche-smart-contract/
https://blog.chain.link/how-to-build-and-deploy-an-avalanche-smart-contract/
https://chain.link/education/smart-contracts
https://chain.link/education/smart-contracts
https://doi.org/10.1186/s40561-017-0050-x
https://doi.org/10.1186/s40561-017-0050-x
https://doi.org/10.54501/jots.v1i1.24
https://doi.org/10.1109/TSE.2021.3116808
https://doi.org/10.1109/TSE.2021.3116808
https://doi.org/10.1109/WETSEB.2019.00010
https://doi.org/10.1109/COMPSAC48688.2020.0-137
https://doi.org/10.1109/COMPSAC48688.2020.0-137
https://doi.org/10.3390/electronics12020426
https://doi.org/10.1109/TSMC.2019.2895123
https://doi.org/10.1109/TSMC.2019.2895123

Submitted: May 24, 2022
Accepted: November 2, 2022
Published online: November 9, 2022

Annales Mathematicae et Informaticae
57 (2023) pp. 24–35
DOI: https://doi.org/10.33039/ami.2022.11.002
URL: https://ami.uni-eszterhazy.hu

Fine-tuning and multilingual pre-training
for abstractive summarization task for the

Arabic language

Mram Kahla, Attila Novák, Zijian Győző Yang

Pázmány Péter Catholic University, Faculty of Information Technology and Bionics
{kahla.mram,novak.attila,yang.zijian.gyozo}@itk.ppke.hu

MTA-PPKE Hungarian Language Technology Research Group
Hungarian Research Centre for Linguistics

yang.zijian.gyozo@nytud.hu

Abstract. The main task of our research is to train various abstractive sum-
marization models for the Arabic language. The work for abstractive Arabic
text summarization has hardly begun so far due to the unavailability of the
datasets needed for that. In our previous research, we created the first mono-
lingual corpus in the Arabic language for abstractive text summarization.
Based on this corpus, we fine-tuned various transformer models. We tested
the PreSumm and multilingual BART models. We achieved a “state of the
art” result in this area with the PreSumm method.

The present study continues the same series of research. We extended
our corpus “AraSum” and managed to reach up to 50 thousand items, each
consisting of an article and its corresponding lead. In addition, we pre-
trained our own monolingual and trilingual BART models for the Arabic
language and fine-tuned them in addition to the mT5 model for abstractive
text summarization for the same language, using the AraSum corpus. While
there is room for improvement in the resources and the infrastructure we
possess, the results clearly demonstrate that most of our models surpassed
the XL-Sum which is considered to be state of the art for abstractive Arabic
text summarization so far. Our corpus “AraSum” will be released to facilitate
future work on abstractive Arabic text summarization.

Keywords: Arabic, mT5, BART, AraSum, Abstractive Summarization

AMS Subject Classification: 68T07, 68T50

https://doi.org/10.33039/ami.2022.11.002
https://ami.uni-eszterhazy.hu
mailto:{kahla.mram, novak.attila, yang.zijian.gyozo}@itk.ppke.hu
mailto:yang.zijian.gyozo@nytud.hu

Annal. Math. et Inf. Fine-tuning and multilingual pre-training . . .

1. Introduction and motivation
Automatic text summarization means teaching the machine to subtract information
from a text and provide a shorter overview of it. We distinguish between two
methods of text summarization. The first one is the extractive [18], in which we
select parts from the text that can function as a summary, this is practically a
classification task. The other method is abstractive [19], where, like humans, the
model independently generates a summary from a given text and sometimes uses
terms that were not included in the original text. Recent advances in the field are
usually utilizing abstractive models to get better summaries.

The focus of our research is the Arabic language, one out of the 6 languages
which the U.N recognizes as an official language. Given Arabic is complicated, it
raises a number of challenges in the present field of research.

Arabic is a morphologically and structurally diverse language. First of all, we
should keep in mind that there is a massive difference both between the written
Arabic and the spoken language and between the numerous dialects themselves.
A matter often not addressed properly causes confusion in the subject. While the
spoken form of the universal written Arabic – Fusha – is practically unused in the
daily general parlor the dialects used in its stead are extremely diverse many times
even within the same country. Grasping all these forms and the variables they
present is usually beyond the capabilities of the native speakers themselves. Thus
creating a lingual cacophony within the same linguistic realm.

Despite all these challenges the great benefit of Arabic, at least in its written
form we see, is that in its complexity it is one and the same all over the Arabic
world. So while addressing spoken Arabic in all its diversity would be an immense
task the uniform nature of its written form makes text summarization not only
possible but even reliable.

The main contributions presented in this paper include a) presenting the ex-
tended version of the first monolingual corpus ‘AraSum’ for abstractive Arabic text
summarization, b) pre-training the monolingual BART model and the trilingual
BART model including Arabic, English, and Hungarian for the Arabic language,
and c) fine-tuning the mT5 model for abstractive Arabic text summarization.

The rest of the paper is structured as follows. Section 2 presents related work
published on Arabic summarization and available corpora. Section 3 describes the
AraSum corpus source and its characteristics. Section 4 describes the models used
for training and fine-tuning, and section 4 describes the experiments we have done.
Section 5 presents the results. The last section concludes the paper.

2. Related work
The work for Arabic summarization is limited. Most existing systems use the
extractive approach. Lakhas [4] is considered the first extractive Arabic summa-
rization system that produces a 10-word summary and translates it to English and

25

Annal. Math. et Inf. M. Kahla, A. Novák, Z. Gy. Yang

then it is evaluated using the ROUGE measure [14]. Another Arabic text summa-
rization approach based on fuzzy logic was proposed by [1]. SumSAT [12] adopts an
extractive approach using a hybrid of three techniques: a) contextual exploration;
b) identification of indicative expressions, and c) the graph method.

In terms of abstractive summarization, one research [2] proposed a four-phase
abstractive summarizer for Arabic where the core of the system is an extractive
summarizer. Another research proposed by [17] was trained to generate headlines
based on the first paragraph of Arabic articles, a task that can be classified as a kind
of abstractive summarization. Using the PreSumm method[15] and the multilingual
BERT model [3], [5] fine-tuned both extractive and abstractive models.

Abstractive datasets for any language other than English are still scarce. So, the
progress in abstractive summarization for the Arabic language has hardly ever been
scratched. There are two extractive datasets available for the Arabic language. The
first is the Essex Arabic Summaries Corpus (EASC) [8], which contains 153 Arabic
articles and 765 human-generated extractive summaries of those articles created
using Mechanical Turk. The second is the KALIMAT dataset [7], which contains
20,291 machine-generated article summaries output by the extractive Gen-Summ
(=AQBTSS) algorithm [8]. For abstractive datasets, there is a headline generation
dataset which was presented in [17] where they crawled an Arabic dataset consist-
ing of approximately 300 thousand article headline: introductory paragraph pairs.
This can be classified as a kind of abstractive dataset. In addition, there is the
WikiLingua dataset [11] which is a multilingual abstractive summarization dataset
in 18 languages including Arabic. It contains articles and their summaries from
WikiHow1. A majority of the non-English articles are translated from the English
versions to the target language. The Arabic part includes summaries for 29,229
articles. A large-scale dataset crawled from the BBC news site, XL-Sum [9] also
includes Arabic news summarization data. A multilingual summarization model
was created using the whole corpus.

Available corpora in the field of Arabic text summarization were either extrac-
tive or part of a multilingual abstractive dataset. There was no major monolingual
corpus to work within the field of abstractive Arabic text summarization. This
was the first thing we created in our previous research[10]. Using this corpus, we
experimented with the PreSumm abstractive summarization method [15]. In ad-
dition, we fine-tuned the multilingual mBART-50 [22] model. We improved the
performance of the system with cross-lingual fine-tuning: using fine-tuning on a
summarization dataset in another language before further fine-tuning on Arabic.
The evaluation was performed in terms of ROUGE, and for the sake of a more
accurate assessment, we conducted a human evaluation of fluency and adequacy.
Our results were the best compared with other models for Arabic, but compared to
the results in other languages like English they are weak since we used a relatively
small corpus.

1https://www.wikihow.com

26

https://www.wikihow.com

Annal. Math. et Inf. Fine-tuning and multilingual pre-training . . .

3. AraSum corpus
Looking for a stable dataset, the most ideal source proved to be the press. Such
is the case with the trend-setting dataset by CNN/Daily Mail dataset [21]. That
is because most articles include a lead, a short summary of the given articles. The
ideal lead summary, which is usually two or three sentences maximum, sums up
the article not altering the general meaning. That, however, raised the problem
of finding articles with high-quality abstractive leads, as these are not easy to
find, especially in big quantities. What we found is that, in a majority of Arabic
sources, the lead is only a direct copy of the article’s first paragraph. Also many
times the lead provides clickbait terms, or sentences, but has little in common with
the general tone of the article. Therefore we cannot really rely on these, as these
are far from being good abstractive leads.

The focus of our attention, therefore, turned to the evaluation of Arabic versions
of global news channels. These included CNN, BBC, France 24, DW, and Sky News.
Also, a number of popular Arabic-language news sites were considered. Amongst
these, we looked into the sites of al-Mayadeen, al-Ālam, al-Ahrām, al-Jazeera,
al-Arabiyya, and Sada-elbalad.

Eventually, we managed to identify two Arabic news sources ideal for the Arabic
abstractive news summaries dataset. One of them is the Arabic version of the
German Deutsche Welle (DW) news website2. DW is also a public state-owned
international broadcaster, its satellite television service also includes a channel in
Arabic. DW has the best abstractive Arabic-language summaries we could find so
far.

The other resource we found promising was the Files section of the website
named Sada-elbalad3. However, Sada-elbalad later proved to be problematic due to
the fact that many ‘files’ contained several widely diverse topics. In these cases, the
articles address a much wider range of matters, than is mentioned in the summary,
i.e. the summary lacks key information present in the article. Therefore we decided
to omit Sada-elbalad when creating the news summary database.

We chose to download Arabic Deutsche Welle resources from Common Crawl4,
as this solution does not interfere with the site. A very positive aspect of this
resource is that the items downloaded from the DW news website address a wide
range of topics, not only dealing with politics, sports, or art. This allows the
summary database to cover a wide range of topics, making more realistic testing of
the capabilities of the summarization models as well as the creation of more robust
and less domain-dependent models possible.

We performed data processing steps on the collected articles to be ready for the
abstractive summarization task. We needed to perform text tokenization to use
our corpus with some language models (e.g. for training PreSumm-based models),
for that, we used the NLTK platform.

2https://www.dw.com/ar
3https://www.elbalad.news/category/2065
4https://commoncrawl.org/

27

https://www.dw.com/ar
https://www.elbalad.news/category/2065
https://commoncrawl.org/

Annal. Math. et Inf. M. Kahla, A. Novák, Z. Gy. Yang

We presented the first monolingual corpus of human-written abstractive news
summaries in Arabic “AraSum”. In our previous research, we compiled the first
version of the dataset consisting of more than 21000 items. The version we present
in this paper contains 50525 articles and their corresponding leads, which We ran-
domly split into (a) train, validation and test sets (90/2/8 split).

4. Models used
In this research, we trained a monolingual and a trilingual BART model, and we
fine-tuned these and the mT5 model for abstractive text summarization for the
Arabic language.

4.1. The BART model
The BART model [13] is a transformer model with an encoder-decoder architec-
ture developed by Fairseq (Facebook AI Research Sequence-to-Sequence Toolkit)5

(Figure 1). There are two types of BART models that have been published:

• BART-base: 6 encoder layers and 6 decoder layers; 12 attention heads; word
embedding dimension: 768; input sequence length: 512; 140 million parame-
ters

• BART-large: 12 encoder layers and 12 decoder layers; 16 attention heads;
word embedding dimension: 1024; input sequence length: 1024; 400 million
parameters.

Figure 1. BART model architecture [13].

4.2. The multilingual mBART model
mBART [16] is a multilingual BART model trained by applying the BART model
training algorithm to a large-scale monolingual corpus covering many languages.
For pre-training, the first version mBART, the CC25 corpus [23] was used, which
covers data in 25 languages extracted from Common Crawl. Later mBART was
extended to mBART-50 covering 50 languages [22].

5https://github.com/pytorch/fairseq/tree/master/examples/bart

28

https://github.com/pytorch/fairseq/tree/master/examples/bart

Annal. Math. et Inf. Fine-tuning and multilingual pre-training . . .

4.3. The mT5 model
mT5 [24] is an extended version of the T5 model (Text-To-Text Transfer Trans-
former) [20], which converts all text-based language problems (also ones originally
formulated as classification problems) into a text-to-text format (Figure 2), and
uses these “translation” tasks as a multitask training regime to create a unified
generative language model. The T5 model allows knowledge transfer from high-
resource tasks to low-resource tasks without the need for changes in model archi-
tecture. Unlike contextual language models such as BERT [3], which contain only
the encoder part of a transformer, the T5 model is based on a full encoder-decoder
architecture that can be used both for natural language understanding and lan-
guage generation tasks. The mT5 model is a multilingual variant of T5 that was
pre-trained on the Multilingual Colossal Clean Crawled Corpus (mC4) which covers
101 languages including Arabic.

Figure 2. T5 model architecture [20].

5. Experiments

5.1. Training
We trained a monolingual and a trilingual (English, Hungarian, Arabic) BART base
model. Unfortunately, Facebook did not publish the pre-training implementation,
so we used the pre-training functions provided by the Huggingface transformers6

libraries. The BartForCausalLM7 model was used to train the BART models we
present here.

For the monolingual Arabic BART model, we used content from the Arabic
version of Wikipedia. We used about 250,000 paragraphs for training. Hyperpa-
rameters for the training were the following: vocab: 30000, batch size: 6/GPU on
8 RTX/GTX 11 GB GPU’s, lr: 5e-6, warmup step: 500. We used the checkpoint
at step 42000 (epoch 2.7) for further fine-tuning.

6https://huggingface.co/transformers/model_doc/bart.html
7https://huggingface.co/transformers/model_doc/bart.html#bartforcausallm

29

https://huggingface.co/transformers/model_doc/bart.html
https://huggingface.co/transformers/model_doc/bart.html#bartforcausallm

Annal. Math. et Inf. M. Kahla, A. Novák, Z. Gy. Yang

Next, we trained a trilingual model using a similar amount of additional Wikipe-
dia content in English and Hungarian. We used the same hyperparameters, except
the vocabulary size: 50000.

• Arabic BART: Monolingual Arabic BART base model, trained on 244,885
paragraphs of Arabic Wikipedia text.

• Arabic 3BART: a trilingual BART base model, trained on Arabic, English,
and Hungarian Wikipedia content, about 250,000 paragraphs for each lan-
guage.

Table 1 shows the properties of the corpus used for pre-training.

Table 1. Properties of the corpus used for pre-training the Arabic
BART and 3BART model.

Arabic English Hungarian
Segments 244,885 250,000 250,000
Tokens 10,391,179 34,098,745 13,838,277
Token types 415,628 365,998 1,018,315
Avg. sent. # 3.78 5.08 2.91
Avg. token # 42.43 136.39 55.35

5.2. Fine-tuning
In the fine-tuning experiments, we trained three models:

• Arabic BART: Arabic BART fine-tuned on the AraSum corpus.

• Arabic 3BART: Following the cross-lingual approach we used in our pre-
vious research[10], the 3BART model was first fine-tuned on a multilingual
summarization corpus containing a mixture of English and Hungarian seg-
ments, and then further fine-tuned on the AraSum corpus. The English
segments were taken from the CNN / Daily Mail corpus [18], while the Hun-
garian segments were taken from the H+I corpus [25]. Hyperparameters:
batch: 4/GPU, 8 GTX/RTX 11 GB GPU’s, warmup: 5000, 80 epochs, max.
source: 512, max. target: 256, lr: 5e-5.

• mT5: We fine-tuned the mT5-small model for abstractive Arabic summa-
rization using the AraSum corpus only. The hyperparameters were: prefix =
sum, batch: 2/GPU, 8 GTX/RTX 11 GB GPU’s, lr: 2e-5, warmup: 5000, 80
epochs, max. source: 512, max. target: 128.

Table 2 shows properties of the corpora used for fine-tuning the models.

30

Annal. Math. et Inf. Fine-tuning and multilingual pre-training . . .

Table 2. Properties of the corpora used for fine-tuning the BART
and 3BART models.

Arabic
(train / test) English Hungarian

Article Lead Article Lead Article Lead
Segments 45,504 / 4,026 45,000 45,000
Tokens 19,328,851 / 1,701,039 1,633,170 / 144,424 35,502,390 2,371,380 12,052,818 1,350,827
Types 466,387 / 129,987 111,689 / 29,792 253,113 83,672 656,060 166,092
Avg. sent. # 15.82 / 15.70 1.51 / 1.54 28.69 1 11.28 1,55
Avg. token # 424.77 / 422.51 35.89 / 35.87 788.94 52,69 267.84 30.01

6. Results
We evaluated system outputs using stemmed ROUGE-N and ROUGE-L metrics.8
ROUGE-1 and ROUGE-2 measure the overlap of word unigrams and bigrams, re-
spectively. ROUGE-L measures the overlap of the longest common sub-sequence
between two texts. Stemmed ROUGE scoring is silently used in most recent publi-
cations on summarization, because it yields much nicer numbers than unstemmed
ROUGE, especially for morphologically rich languages. While it may account bet-
ter for content overlap, it ignores affixation disfluencies. It was used e.g. for
evaluating the XL-Sum model [9], a multilingual summarization model fine-tuned
from mT5 using the multilingual XL-Sum corpus for abstractive text summariza-
tion consisting of content crawled from the BBC news site. Training data for the
XL-Sum model included about the same amount of Arabic data as in the cur-
rent version of our corpus. XL-Sum can be considered a state-of-the-art model for
abstractive Arabic text summarization so far.

Table 3 illustrates the experimental results of the different models trained or
fine-tuned using the corpus, compared to the performance of the XL-Sum model.
The evaluated models are:

• XL-Sum: tested on our test corpus.

• mBART-50: mBART-50 fine-tuned for Arabic summarization using the pre-
vious version of our corpus (about half the size of the current version).

• mBART-50-rus: mBART-50 first fine-tuned for Russian using the Gazeta
corpus [6], then further fine-tuned for Arabic using the previous version of
our corpus.

• PreSumm: mBERT first fine-tuned for English using the CNN/Daily Mail
corpus[21], then further fine-tuned for Arabic using the previous version of
our corpus.

• Arabic BART: the monolingual BART model pre-trained for Arabic as de-
scribed in Section 5.1, then fine-tuned using the AraSum corpus.

8https://github.com/csebuetnlp/xl-sum/tree/master/multilingual_rouge_scoring

31

https://github.com/csebuetnlp/xl-sum/tree/master/multilingual_rouge_scoring

Annal. Math. et Inf. M. Kahla, A. Novák, Z. Gy. Yang

• Arabic 3BART: the trilingual BART model pre-trained for Arabic, English
and Hungarian then fine-tuned using English and Hungarian the AraSum
corpus as described in Section 5.1 .

• mT5: mT5-small model fine-tuned using the AraSum corpus.

• mT5++: the previous mT5-small model further fine-tuned on the union of
the AraSum and XL-Sum Arabic training sets.

Table 3. ROUGE scores on the AraSum (top) and the XL-Sum
Arabic (bottom) test sets.

Model ROUGE-1 ROUGE-2 ROUGE-L
AraSum test set

XL-Sum 30.026 12.874 23.836
mBART-50 32.648 14.617 24.878
mBART-50-rus 33.842 16.049 26.531
PreSumm 27.142 9.049 19.681
Arabic BART 27.019 7.657 18.960
Arabic 3BART 27.105 7.735 19.089
mT5 32.859 13.843 24.571
mT5++ 33.172 13.914 24.782

XL-Sum Arabic test set
XL-Sum 34.911 14.794 29.162
mBART-50 23.079 6.115 16.397
mBART-50-rus 23.777 4.589 15.114
PreSumm 18.880 4.389 13.553
Arabic BART 21.148 4.666 15.371
Arabic 3BART 20.892 4.589 15.114
mT5 22.120 5.570 15.908
mT5++ 29.128 11.049 24.070

The models based on our homemade BART and 3BART pre-training yielded
the weakest results. This is not surprising, as our computational resources (we
used NVIDIA-GTX/RTX cards with 11GB memory) were too limited to be able
to create competitive language models from scratch. Fine-tuning the mT5 small
model on the same resources using the same hardware, however, resulted in a
model that performs better in our home field than the SOTA multilingual XL-Sum
model, which is based on a much stronger mT5 base model and was trained on
much more data. Unfortunately, we did not have the chance to beat the XL-Sum
model at home, as can be seen in the bottom half of Table 3. where XL-Sum is
a multilingual summarization model trained on the whole multilingual XL-Sum
dataset crawled from BBC. mT5++ is the mT5 model further finetuned on the
union of the AraSum and the Arabic part of the XL-Sum dataset. The mBART-
based models and PerSumm were fine-tuned on an earlier version of AraSum

32

Annal. Math. et Inf. Fine-tuning and multilingual pre-training . . .

Unfortunately, our limited hardware did not allow us to improve results by
further finetuning the XL-Sum model on our corpus. However, we managed to
improve our results by further finetuning our mT5 small model for 60 epochs on
the union of the XL-Sum Arabic and the AraSum training set. The results of this
mT5++ model are better on both test corpora.

7. Conclusion
In this paper, we present the extended version of the first monolingual human writ-
ten corpus in the Arabic language for abstractive text summarization “AraSum”.
The corpus contains more than 50K Arabic articles and their corresponding leads.
We pre-trained and fine-tuned a monolingual and a trilingual BART model for
Arabic and one of today’s most popular multilingual models, mT5.

With the resources and infrastructure we used, the results showed that the
models trained on AraSum perform well, even surpassing the state-of-the-art XL-
Sum model on the test set of our corpus. We release the corpus “AraSum” at our
GitHub9 in the hope that this will foster future work on abstractive Arabic text
summarization.

References
[1] L. Al Qassem, D. Wang, H. Barada, A. Al-Rubaie, N. Almoosa: Automatic Arabic Text

Summarization Based on Fuzzy Logic, in: Proceedings of the 3rd International Conference
on Natural Language and Speech Processing, 2019, pp. 42–48.

[2] A. M. Azmi, N. I. Altmami: An abstractive Arabic text summarizer with user controlled
granularity, Information Processing and Management 54.6 (2018), pp. 903–921, issn: 0306-
4573, doi: https://doi.org/10.1016/j.ipm.2018.06.002, url: https://www.sciencedirec
t.com/science/article/pii/S030645731730417X.

[3] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova: BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding, in: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota: Asso-
ciation for Computational Linguistics, June 2019, pp. 4171–4186, doi: https://doi.org/10
.18653/v1/N19-1423, url: https://aclanthology.org/N19-1423.

[4] F. S. Douzidia, G. Lapalme: Lakhas, an Arabic summarization system, Proceedings of
DUC2004 (2004).

[5] K. N. Elmadani, M. Elgezouli, A. Showk: BERT Fine-tuning For Arabic Text Summa-
rization, ArXiv abs/2004.14135 (2020).

[6] I. Gusev: Dataset for Automatic Summarization of Russian News, AINL 2020. Communi-
cations in Computer and Information Science, vol 1292. Springer, Cham (2020) (2020), doi:
https://doi.org/10.1007/978-3-030-59082-6_9, eprint: arXiv:2006.11063.

[7] M. El-Haj, R. Koulali: KALIMAT a multipurpose Arabic corpus, in: Second Workshop on
Arabic Corpus Linguistics (WACL-2), 2013, pp. 22–25.

9https://github.com/ppke-nlpg/AraSum

33

https://doi.org/10.1016/j.ipm.2018.06.002
https://www.sciencedirect.com/science/article/pii/S030645731730417X
https://www.sciencedirect.com/science/article/pii/S030645731730417X
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.1007/978-3-030-59082-6_9
arXiv:2006.11063
https://github.com/ppke-nlpg/AraSum

Annal. Math. et Inf. M. Kahla, A. Novák, Z. Gy. Yang

[8] M. El-Haj, U. Kruschwitz, C. Fox: Using Mechanical Turk to Create a Corpus of Arabic
Summaries, in: Language Resources (LRs) and Human Language Technologies (HLT) for
Semitic Languages workshop in conjunction with the 7th International Language Resources
and Evaluation Conference (LREC 2010), Jan. 2010.

[9] T. Hasan, A. Bhattacharjee, M. S. Islam, K. Mubasshir, Y.-F. Li, Y.-B. Kang, M. S.
Rahman, R. Shahriyar: XL-Sum: Large-Scale Multilingual Abstractive Summarization for
44 Languages, in: Findings of the Association for Computational Linguistics: ACL-IJCNLP
2021, Online: Association for Computational Linguistics, Aug. 2021, pp. 4693–4703, doi:
https://doi.org/10.18653/v1/2021.findings-acl.413, url: https://aclanthology.org
/2021.findings-acl.413.

[10] M. Kahla, Z. G. Yang, A. Novák: Cross-lingual Fine-tuning for Abstractive Arabic Text
Summarization, in: Proceedings of the International Conference on Recent Advances in Nat-
ural Language Processing (RANLP 2021), Held Online: INCOMA Ltd., Sept. 2021, pp. 655–
663, url: https://aclanthology.org/2021.ranlp-main.74.

[11] F. Ladhak, E. Durmus, C. Cardie, K. McKeown: WikiLingua: A New Benchmark Dataset
for Cross-Lingual Abstractive Summarization, in: Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, Online: Association for Computational Linguistics, Nov.
2020, pp. 4034–4048, doi: https://doi.org/10.18653/v1/2020.findings-emnlp.360, url:
https://aclanthology.org/2020.findings-emnlp.360.

[12] S. M. Lakhdar, M. A. Chéragui: Building an Extractive Arabic Text Summarization Using
a Hybrid Approach, in: International Conference on Arabic Language Processing, Springer,
2019, pp. 135–148.

[13] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, L.
Zettlemoyer: BART: Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension, in: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, Online: Association for Computational
Linguistics, July 2020, pp. 7871–7880, doi: https://doi.org/10.18653/v1/2020.acl-main
.703, url: https://aclanthology.org/2020.acl-main.703.

[14] C.-Y. Lin: ROUGE: A Package for Automatic Evaluation of Summaries, in: Text Summa-
rization Branches Out, Barcelona, Spain: Association for Computational Linguistics, July
2004, pp. 74–81, url: https://www.aclweb.org/anthology/W04-1013.

[15] Y. Liu, M. Lapata: Text Summarization with Pretrained Encoders, in: Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong,
China: Association for Computational Linguistics, Nov. 2019, pp. 3730–3740, doi: https:
//doi.org/10.18653/v1/D19-1387, url: https://aclanthology.org/D19-1387.

[16] Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov, M. Ghazvininejad, M. Lewis, L. Zettle-
moyer: Multilingual Denoising Pre-training for Neural Machine Translation, Transactions
of the Association for Computational Linguistics 8 (2020), pp. 726–742, doi: https://doi.o
rg/10.1162/tacl_a_00343, url: https://aclanthology.org/2020.tacl-1.47.

[17] M. Al-Maleh, S. Desouki: Arabic text summarization using deep learning approach, Journal
of Big Data 7 (2020), pp. 1–17.

[18] R. Nallapati, B. Zhou, M. Ma: Classify or select: Neural architectures for extractive doc-
ument summarization, arXiv preprint arXiv:1611.04244 (2016).

[19] R. Paulus, C. Xiong, R. Socher: A Deep Reinforced Model for Abstractive Summarization,
CoRR abs/1705.04304 (2017), arXiv: 1705.04304, url: http://arxiv.org/abs/1705.04304.

[20] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
P. J. Liu: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Trans-
former, Journal of Machine Learning Research 21.140 (2020), pp. 1–67, url: http://jmlr.o
rg/papers/v21/20-074.html.

34

https://doi.org/10.18653/v1/2021.findings-acl.413
https://aclanthology.org/2021.findings-acl.413
https://aclanthology.org/2021.findings-acl.413
https://aclanthology.org/2021.ranlp-main.74
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://aclanthology.org/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/D19-1387
https://aclanthology.org/D19-1387
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://aclanthology.org/2020.tacl-1.47
https://arxiv.org/abs/1705.04304
http://arxiv.org/abs/1705.04304
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

Annal. Math. et Inf. Fine-tuning and multilingual pre-training . . .

[21] A. See, P. J. Liu, C. D. Manning: Get To The Point: Summarization with Pointer-
Generator Networks, in: Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Vancouver, Canada: Association for
Computational Linguistics, July 2017, pp. 1073–1083, doi: https://doi.org/10.18653/v1
/P17-1099, url: https://www.aclweb.org/anthology/P17-1099.

[22] Y. Tang, C. Tran, X. Li, P.-J. Chen, N. Goyal, V. Chaudhary, J. Gu, A. Fan: Mul-
tilingual Translation with Extensible Multilingual Pretraining and Finetuning, 2020, arXiv:
2008.00401 [cs.CL].

[23] G. Wenzek, M.-A. Lachaux, A. Conneau, V. Chaudhary, F. Guzmán, A. Joulin, E.
Grave: CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data, in:
Proceedings of the 12th Language Resources and Evaluation Conference, Marseille, France:
European Language Resources Association, May 2020, pp. 4003–4012, url: https://aclan
thology.org/2020.lrec-1.494.

[24] L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Siddhant, A. Barua, C.
Raffel: mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer, in: Proceed-
ings of the 2021 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Online: Association for Computational
Linguistics, June 2021, pp. 483–498, doi: https://doi.org/10.18653/v1/2021.naacl-main
.41, url: https://aclanthology.org/2021.naacl-main.41.

[25] Z. G. Yang, Á. Agócs, G. Kusper, T. Váradi: Abstractive text summarization for Hun-
garian, Annales Mathematicae et Informaticae 53 (2021), pp. 299–316.

35

https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://www.aclweb.org/anthology/P17-1099
https://arxiv.org/abs/2008.00401
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://aclanthology.org/2021.naacl-main.41

Submitted: July 14, 2022
Accepted: April 20, 2023
Published online: July 17, 2023

Annales Mathematicae et Informaticae
57 (2023) pp. 36–48
DOI: https://doi.org/10.33039/ami.2023.04.003
URL: https://ami.uni-eszterhazy.hu

Formal verification for quantized neural
networks

Gergely Kovásznai, Dorina Hedvig Kiss, Péter Mlinkó

Department of Computational Science, Eszterházy Károly Catholic University
kovasznai.gergely@uni-eszterhazy.hu

k.dorina33@gmail.com
Pázmány Péter Catholic University

peter.mlinko@gmail.com

Abstract. Despite of deep neural networks are being successfully used in
many fields of computing, it is still challenging to verify their trustiness.
Previously it has been shown that binarized neural networks can be verified
by being encoded into Boolean constraints. In this paper, we generalize this
encoding to quantized neural networks (QNNs). We demonstrate how to
implement QNNs in Python, using the Tensorflow and Keras libraries. Also,
we demonstrate how to implement a Boolean encoding of QNNs, as part of
our tool that is able to run a variety of solvers to verify QNNs.

Keywords: Artificial Intelligence, Deep Learning, Neural Network, Formal
Verification, SAT, SMT, Constraint Programming, Python, Keras

AMS Subject Classification: 68T07, 68T27, 68Q60

1. Introduction
Deep learning is a very successful AI technology that makes impact in a variety
of practical applications ranging from vision to speech recognition and natural
language [7]. However, many concerns have been raised about the decision-making
process behind deep learning technology, in particular, deep neural networks [4,
8]. To address this problem, one can define properties and then verify whether the
given neural network satisfies these properties [1, 13, 19, 21, 23].

There exist approaches that formulate the verification of neural networks to
Satisfiability Modulo Theories (SMT) [3, 9, 13], while others do the same to Mixed-
Integer Programming (MIP) [2, 5, 22].

https://doi.org/10.33039/ami.2023.04.003
https://ami.uni-eszterhazy.hu
mailto:kovasznai.gergely@uni-eszterhazy.hu
mailto:k.dorina33@gmail.com
mailto:peter.mlinko@gmail.com

Annal. Math. et Inf. Formal verification for quantized neural networks

One important family of deep neural networks is the class of Binarized Neural
Networks (BNNs) [10]. Since these networks are memory efficient and computa-
tionally efficient, as their parameters and activations are predominantly binary,
BNNs are useful in resource-constrained environments, like embedded devices or
mobile phones [15, 17]. Moreover, BNNs allow a compact representation in Boolean
logic, enabling verification approaches based on SAT or SMT solving, or 0-1 Integer
Linear Programming [1, 14, 19].

Some approaches [10, 14, 19] describe the structure of a BNN in terms of se-
quential composition of blocks of layers rather than individual layers. While the
blocks can produce real-typed intermediate values, each of them takes a binary
input vector and outputs a binary vector, except for the output block. Figure 1
shows a common construction of a BNN [10, 14, 19]. Each internal block is com-
posed of three layers: linear transformation with binarized weights (BLin), batch
normalization (BN), and binarization (Bin). The output block produces the classi-
fication decision for a given binary input vector. It consists of two layers: a BLin
that outputs a vector of integers, one for each output label class, followed by an
ArgMax layer.

Figure 1. A schematic view of a binarized neural network.

In this paper, we propose a very similar, generalized structure of a Quantized
Neural Network (QNN), which applies quantization instead of binarization. Since
BNNs are often not that robust, therefore it has a great potential to apply QNNs
instead of binarized ones in order to achieve higher robustness [11], while keeping
the possibility of applying logic-based verification in an efficient way. Figure 2
shows the proposed structure where the linear transformation layer (QLin) applies
quantization to the weights, and so does the activation layer (Qnt).

The focus of this paper is on what is necessary for applying logic-based verifi-
cation to QNNs. In Section 2, we define the proposed QNN structure in an exact
way, together with all the necessary concepts for the verification task based on
Boolean logic. Section 3 gives some ideas how to implement QNNs, using the Ten-
sorflow and Keras libraries. Section 4 proposes an encodings of internal blocks of
QNNs into a set of Boolean constraints, for the sake of formal verification. Finally,
in Section 5, we show some aspects of how to implement a tool for verifying the
encoded QNNs.

37

Annal. Math. et Inf. G. Kovásznai, D. H. Kiss, P. Mlinkó

Figure 2. A schematic view of a quantized neural network.

2. Preliminaries
A literal is a Boolean variable x or its negation ¬x. A Boolean cardinality con-
straint is defined as an expression

∑n
i=1 li ◦rel c, where l1, . . . , ln are literals, ◦rel ∈

{≥, ≤, >, <, =}, and c ∈ N is a constant where 0 ≤ c ≤ n.
Reifying a constraint C creates a new constraint l ⇔ C where l is a Boolean

literal. An indicator constraint means almost the same, except for that it applies
implication instead of equivalence, in the form of l ⇒ C. Note that a reified
constraint can always be translated to a conjunction of two indicator constraints,
namely (l ⇒ C) ∧ (¬l ⇒ ¬C).

According to the visualization of a BNN in Figure 1, Table 1 presents the
formal definition of a BNN structure [14, 19]. We have m − 1 internal blocks,
Block1, . . . , Blockm−1 that are placed consecutively. Let nk denote the number
of input values to Blockk. The output of the last internal block, xm, is passed to
the output block Output to obtain one of the s labels.

Table 1. BNN structure. Aj and bj are parameters of the BLin
layer, whereas βj , γj , µj , σj are parameters of the BN layer, where
µj and σj correspond to mean and standard deviation, respectively.

Structure of kth internal block, Blockk : {−1, 1}nk → {−1, 1}nk+1 on xk ∈ {−1, 1}nk

BLin y = Akxk + bk, where Ak ∈ {−1, 1}nk+1×nk and bk, y ∈ Rnk+1

BN zi = γki

(
yi−µki

σki

)
+ βki

, where βk, γk, µk, σk, z ∈ Rnk+1 . Assume σki
> 0.

Bin xk+1 = sign(z) where xk+1 ∈ {−1, 1}nk+1

Structure of output block, Output : {−1, 1}nm → [1, s] on input xm ∈ {−1, 1}nm

BLin w = Amxm + bm, where Am ∈ {−1, 1}s×nm and bm, w ∈ Rs

ArgMax o = argmax(w), where o ∈ [1, s]

In this paper, we propose a generalization of the above structure, in order to
come up with a similar QNN structure. For this, we first have to define what
we mean by quantization, similar to the DoReFa-Net method in [24]. Given a

38

Annal. Math. et Inf. Formal verification for quantized neural networks

quantization bit-width bw ∈ N, we quantize R into the finite set

Vbw =
{

Vbw(q)
∣∣∣ q = 0, . . . , 2bw

}
, where Vbw(q) = q

2bw−1 − 1,

along the threshold values

Tbw(q) = Vbw(q) − 1
2bw , where q = 1, . . . , 2bw.

For instance, bw = 1 results in a ternary quantization into Vbw = {−1, 0, 1}
along the threshold values −0.5, 0.5. As another example, bw = 2 quantizes into
Vbw = {−1, −0.5, 0, 0.5, 1} along the threshold values −0.75, −0.25, 0.25, 0.75. Note
furthermore that binarization is a special case of quantization, where bw = 0.

A value x ∈ R is quantized by the function [11]

quantbw(x) = clip
(

round(x2bw−1)
2bw−1 , −1, 1

)
,

where clip(y, a, b) clips the value of y into [a, b], and round(·) applies rounding half
up.

The proposed QNN structure uses quantization (Qnt) instead of binarization.
Furthermore, the weights in the linear transformation layers (QLin) can take quan-
tized values. In our approach, we propose to use ternary weights −1, 0, 1, to strive
for sparse weight matrices and a more straightforward encoding into Boolean con-
straints. The format definition of this QNN structure is shown in Table 2.

Table 2. QNN structure for quantization bit-width bw ∈ N. The
QLin layer applies ternary quantization. The Qnt layer uses quan-

tization as activation with respect to the bit-width bw.

Structure of kth internal block, Blockk : Vnk

bw → Vnk+1
bw on xk ∈ Vnk

bw
QLin y = Akxk + bk, where Ak ∈ Vnk+1×nk

1 and bk, y ∈ Rnk+1

BN zi = γki

(
yi−µki

σki

)
+ βki

, where βk, γk, µk, σk, z ∈ Rnk+1 . Assume σki
> 0.

Qnt xk+1 = quantbw(z) where xk+1 ∈ Vnk+1
bw

Structure of output block, Output : Vnm

bw → [1, s] on input xm ∈ Vnm

bw
QLin w = Amxm + bm, where Am ∈ Vs×nm

1 and bm, w ∈ Rs

ArgMax o = argmax(w), where o ∈ [1, s]

3. Implementing quantized neural networks
Our Python implementation of a QNN is based on a publicly available BNN im-
plementation1, using the Tensorflow and Keras libraries.

1https://github.com/Haosam/Binary-Neural-Network-Keras

39

https://github.com/Haosam/Binary-Neural-Network-Keras

Annal. Math. et Inf. G. Kovásznai, D. H. Kiss, P. Mlinkó

First, a method needs to be implemented to quantize not just a single number,
but even a matrix of real numbers. Additionally, the method takes the quantization
bit-width bw as parameter. The source code of this function can be seen in Listing 1.

1 def round_quantize(x, bw):
2 q_pow = 2**(bw-1)
3 numerator = q_pow * x
4 numerator = numerator + K.stop_gradient(K.round(numerator) - numerator)
5 return numerator / q_pow

Listing 1. Quantization function.

Quantization is a mathematical function that has several points of discontinu-
ity. Although this seems an unimportant detail, that should be taken into con-
sideration since no gradient can be computed in such points. Due to TensorFlow,
stop_gradient can be used to handle a function of this kind, as it disables gradient
calculation.

The round_quantize function is called inside the QDense layer, which is derived
from the Dense class of Keras. In addition to the properties inherited from its base
class, QDense includes the quantization bit-width bw, which will later be passed to
the round_quantize function when being called inside the call method of QDense,
as shown in Listing 2. This function calculates the quantized kernel using the given
quantization bit-width.

1 def call(self, inputs):
2 output = K.dot(inputs,round_quantize(self.kernel, self.bw))
3 if self.use_bias:
4 return K.bias_add(output, self.bias)
5 if self.activation is not None:
6 return self.activation(output)

Listing 2. Inside the QDense layer.

Listing 3 shows how to start to assemble a sequential QNN model. Note that
most layers must be uniquely labeled in order to access their parameters later on.

1 model = Sequential()
2 model.add(QDense(bw = 1, name=’qlayer0’, ...))
3 model.add(BatchNormalization(name=’bnlayer0’, ...))
4 model.add(Activation(lambda x: round_quantize(x, quantizationBw)))

Listing 3. Structure of the QNN network.

For the sake of formal verification, the parameters of all the QDense and batch
normalization layers must be extracted. This can easily be done by using the
save_weights procedure of Keras, to save the stored weights, bias values and
other parameters to a file. By using the unique labels of layers, the corresponding
parameters can be accessed as shown in Listing 4. Note that since the kernels do
not store the quantized weights, we must quantize them after reading from the file.
Notice, furthermore, that the quantization bit-width for the kernels is 1.

1 model.save_weights(datafile)
2 with h5py.File(datafile, ’r+’) as hdf:
3 kernel0 = round_quantize(np.array(hdf.get(’/qlayer0/qlayer0/kernel:0’)), 1)

40

Annal. Math. et Inf. Formal verification for quantized neural networks

4 bias0 = np.array(hdf.get(’/qlayer0/qlayer0/bias:0’))
5 variance0 = np.array(hdf.get(’/bnlayer0/bnlayer0/moving_variance:0’))
6 mean0 = np.array(hdf.get(’/bnlayer0/bnlayer0/moving_mean:0’))
7 beta0 = np.array(hdf.get(’/bnlayer0/bnlayer0/beta:0’))
8 gamma0 = np.array(hdf.get(’/bnlayer0/bnlayer0/gamma:0’))

Listing 4. Extracing the parameter of the layers qlayer0 and
bnlayer0.

4. Encoding quantized internal blocks
In this section, we show how to encode the internal blocks into a set of Boolean
constraints. In order to make it easier to distinguish Boolean variables from non-
Boolean ones, we will use the (·)bl notation.

Given the quantization bit-width bw ∈ N, let us introduce the simplified no-
tation of threshold constants Tq := Tbw(q) for all q = 1, . . . , 2bw. The quantized
output oi ∈ [−1, 1] is represented by a vector obl

i =
(
obl

i,1, . . . , obl
i,2bw

)
of Boolean

variables, i.e., obl
i,q ∈ {0, 1} for all q = 1, . . . , 2bw. Let obl

i,q be set to true iff the
block’s ith output exceeds the threshold value Tq:

γi
⟨ai, x⟩ + bi − µi

σi
+ βi ≥ Tq ⇔ obl

i,q. (4.1)

Here, x denotes the input vector to this internal block, ai the ith row vector of the
kernel A, bi the bias value, and βi, γi, µi, σi the parameters of batch normalization.
(4.1) can be reorganized into

⟨ai, x⟩ ◦rel Ci,q ⇔ obl
i,q, (4.2)

where

Ci,q = σi

γi
(Tq − βi) + µi − bi,

◦rel =





≥, if γi > 0,

≤, if γi < 0.

Optionally, the variables obl
i,q can be further constrained if this makes propagation

faster:
obl

i,q+1 ⇒ obl
i,q for all q = 1, . . . , 2bw.

A quantized input xj ∈ [−1, 1] is represented by a vector xbl
j =

(
xbl

j,1, . . . , xbl
j,2bw

)

of Boolean variables. The sum of vector elements can be calculated as 1 · xbl
j . The

actual input value xj can be calculated:

xj =
1 · xbl

j

2bw−1 − 1.

41

Annal. Math. et Inf. G. Kovásznai, D. H. Kiss, P. Mlinkó

Let ¬xbl
j =

(
¬xbl

j,1, . . . , ¬xbl
j,2bw

)
denote the piecewise negation of vector elements.

Now, let us plug each xj into (4.2), as follows:
nk∑

j=1
aij

(
1 · xbl

j

2bw−1 − 1
)

◦rel Ci,q ⇔ obl
i,q

∑

j

aij 1 · xbl
j ◦rel C ′

i,q ⇔ obl
i,q, (4.3)

where
C ′

i,q = 2bw−1
(

Ci,q +
∑

j

aij

)
.

Since ai,j ∈ {−1, 0, 1}, we can further translate (4.3) to
∑

j∈J+
i

1 · xbl
j −

∑

j∈J−
i

1 · xbl
j ◦rel C ′

i,q ⇔ obl
i,q, (4.4)

where

J+
i = {j | aij > 0},

J−
i = {j | aij < 0}.

(4.4) can be further translated to
∑

j∈J+
i

1 · xbl
j −

∑

j∈J−
i

1 ·
(
1 − ¬xbl

j

)
◦rel C ′

i,q ⇔ obl
i,q

∑

j∈J+
i

1 · xbl
j +

∑

j∈J−
i

1 · ¬xbl
j ◦rel Di,q ⇔ obl

i,q, (4.5)

where

Di,q =





⌈
C ′

i,q

⌉
+ 2bw|J−

i |, if γi > 0,
⌊
C ′

i,q

⌋
+ 2bw|J−

i |, if γi < 0.
(4.6)

Note that the left-hand side of (4.5) is a sum of Boolean literals, therefore (4.5)
represents a set of reified Boolean cardinality constraints.

5. Verification for quantized neural networks
In the previous section, we showed how to transform the QNN blocks into Boolean
constraints, which can now fed into a constraint solver, for the sake of formal
verification. In this section, we demonstrate how to implement this. Our imple-
mentation is written in Python and it leverages a range of different solver pack-
ages such as PySAT [12], PySMT [6] or Google’s OR-Tools [20]. Our tool is able
to run those solvers in parallel, due to applying ProcessPool from the module
pathos.multiprocessing [18].

42

Annal. Math. et Inf. Formal verification for quantized neural networks

5.1. Generating bounds and constraints
To implement the encoding of an internal block, we need to generate all the bounds
Di,q from (4.6), as shown in Listing 5.

1 quantizationCount = 1 << quantizationBitWidth
2

3 D = []
4 for q in range(quantizationCount):
5 C = sigma[k][i] / gamma[k][i] *
6 (quantizationBound(q) - beta[k][i]) + mu[k][i] - b[k][i]
7

8 Cprime = (C + sum(A[k][i])) * (quantizationCount >> 1)
9

10 D.append(int(math.ceil(Cprime) if gamma[k][i] > 0 else math.floor(Cprime)))
11

12 offset = sum(1 for a in A[k][i] if a < 0) * quantizationCount
13 D = [d + offset for d in D]

Listing 5. Generating bounds for an internal block.

Note that Listing 5 only shows how to generate those bounds for the kth block
and its ith output. Of course, this has to be done for each k and each i, thus the
corresponding bounds are going to be stored in a 3-dimensional matrix and can be
accessed within the vector D[k][i], as Listing 6 shows, which is about generating
the constraints (4.5).

1 lits = []
2 for j in range(len(inputVars[k])):
3 if A[k][i][j] > 0:
4 lits.extend(inputVars[k][j])
5 elif A[k][i][j] < 0:
6 lits.extend([solver.negateVar(x) for x in inputVars[k][j]])
7

8 solver.addConstraint(Constraint(
9 lits = lits,

10 relation = Relations.GreaterOrEqual if gamma[k][i] > 0 else Relations.
LessOrEqual,

11 bounds = D[k][i],
12 resLits = inputVars[k + 1][i]
13))

Listing 6. Generating constraints for an internal block.

Note that the class Constraint represents the reifed Boolean cardinality con-
straints (4.5) to add to the underlying solver. It is important to note that a
Constraint instance represents a set of actual constraints, as a list of bounds is
associated with the same left-hand side (lits) and relation. Notice furthermore
that, via the resLit parameter, the value of each inequality is made equivalent
with the corresponding input of the subsequent block.

5.2. Solver interface
One of our attempts is to extend the number of available solvers in our tool. For
easier usage and addition of the different solver packages, a Solver base class was

43

Annal. Math. et Inf. G. Kovásznai, D. H. Kiss, P. Mlinkó

introduced. It defines an interface through which the derived solver classes can be
used uniformly, but it also provides the possibility to handle the solver packages
differently. The common interface includes functions to generate Boolean variables,
negate them, or feed constraints to the underlying solver. After defining a set of
constraints for satisfiability checking, a solver can be called through the interface
to solve the problem and to return a satisfying model.

5.2.1. Gurobi’s solver interface as example

Each solver package has a different interface. They also differ in the possibility of
adding different constraints. In this section, we describe a few issues with Gurobi’s
Python API and show how to overcome them.

For example, the Gurobi solver lacks the possibility of adding “greater than”
and “less than” constraints. As a Boolean cardinality constraint is defined over
Boolean variables and integer numbers, “less than” and “greater than” Boolean
cardinality constraints can be transformed as follows:

∑

i

li < c −→
∑

i

li ≤ c − 1

∑

i

li > c −→
∑

i

li ≥ c + 1.

Since the constraints that we got from encoding quantized blocks in Section 4 assign
multiple bounds to the same left-hand sides, the above transformation of a “greater
than” constraint can be implemented as Listing 7 shows.

1 constraint.relation = Relations.GreaterOrEqual
2 for i in range(len(constraint.bounds)):
3 constraint.bounds[i] += 1

Listing 7. The translation of a “greater than” constraint for
Gurobi’s API.

Another issue that had to be handled with Gurobi’s API is the lack of adding
reified constraints, or using “not equal to” relation for a constraint. However,
Gurobi supports indicator constraints. Therefore, a reified constraint A ⇔ ∑

i li =
c can be split into two equations:

A ⇒
∑

i

li = c (5.1)

¬A ⇒
∑

i

li ̸= c. (5.2)

Since Gurobi cannot natively deal with “not equal to” constraints, (5.1) has to be
transformed by introducing two new Boolean variables A1, A2 as follows:

A1 ⇒
∑

i

li ≤ c

44

Annal. Math. et Inf. Formal verification for quantized neural networks

A2 ⇒
∑

i

li ≥ c

A ⇒ A1 ∧ A2.

In a similar way, we transform (5.2) to

¬A1 ⇒
∑

i

li ≥ c + 1

¬A2 ⇒
∑

i

li ≤ c − 1

¬A ⇒ ¬A1 ∨ ¬A2.

The above translation can be implemented by calling the addGenConstrIndicator
method from Gurobi’s API, which takes as parameters a Boolean variable var, a
Boolean value val, and a constraint constr, and then it adds the indicator constraint
(var = val) ⇒ constr to the solver. The implementation is shown in Listing 8.

1 leftHandSide = sum(constraint.lits)
2 for i in range(len(constraint.bounds)):
3 if constraint.relation == Relations.Equal:
4 [a1, a2] = self.generateVar(2)
5

6 self.model.addGenConstrIndicator(
7 a1, True, leftHandSide <= constraint.bounds[i])
8 self.model.addGenConstrIndicator(
9 a1, False, leftHandSide >= constraint.bounds[i] + 1)

10

11 self.model.addGenConstrIndicator(
12 a2, True, leftHandSide >= constraint.bounds[i])
13 self.model.addGenConstrIndicator(
14 a2, False, leftHandSide <= constraint.bounds[i] - 1)
15

16 self.model.addGenConstrIndicator(
17 constraint.resLits[i], True, a1 + a2 == 2)
18 self.model.addGenConstrIndicator(
19 constraint.resLits[i], False, a1 + a2 < 2)

Listing 8. The translation of a reified “equal to” constraint for
Gurobi’s API.

5.3. Experiments
Our preliminary experiments were run on Intel i5-7200U 2.50 GHz CPU (2 cores,
4 threads) with 8 GB memory. The time limit was set to 1200 seconds.

In our experiments, the QNN architecture consisted of 3 internal blocks that
contain QLin layers with 200, 100 and 100 neurons, respectively. The quantization
bit-width was set to 2. We trained the network on the MNIST dataset [16] with
an accuracy of 91%. To process the inputs, we added an additional preprocessing
block to the QNN before Block 1. The preprocessing block consisted of a BN
layer and a Qnt layer, and it applied quantization to the grayscale MNIST images.

45

Annal. Math. et Inf. G. Kovásznai, D. H. Kiss, P. Mlinkó

The use case for our experiments was to verify the adversarial robustness of
the resulting QNN, meaning that it might have misclassified inputs if we allowed
to add perturbation in the range [−ϵ, ϵ] to individual input values. For this, we
randomly picked 20 images that were correctly classified by the network and then
we experimented with three different maximum perturbation values by varying
ϵ ∈ {1, 3, 5}. Figure 3 shows the results of our experiments. As the figure suggests,
our tool produced the best results when running MiniCARD as an underlying
solver. All the benchmark instances were proved to be satisfiable and our tool were
able to generate the corresponding perturbation matrices. Notice that MiniCARD
timed out for only one input image when ϵ = 3.

0 5 10 15 20

0

200

400

600

800

1,000

1,200

Input images

Ru
nt

im
e

(s
)

ϵ = 1
ϵ = 3
ϵ = 5

Figure 3. Runtimes of VerBiNe when running MiniCARD on
20 MNIST images with maximum perturbation ϵ ∈ {1, 3, 5}.

6. Summary
In this paper, we proposed a structure of Quantized Neural Networks (QNNs)
consisting of blocks of suitable layers. Dense layers use ternary weights to strive
for sparse weight matrices, while activation layers apply quantization of arbitrary
bit-width. The goal is to make neural networks efficient and robust enough, while
making them suitable subjects for logic-based verification. We showed how to im-
plement QNNs in Python, using the Tensorflow and Keras libraries. For the sake of
the formal verification of QNNs, we demonstrated how to encode the internal blocks

46

Annal. Math. et Inf. Formal verification for quantized neural networks

of a QNN into a set of reified Boolean cardinality constraints. We discussed some
aspects of implementing a tool for verifying the encoded QNNs, also in Python,
where the constraints that we have specified are to be passed to the underlying
solvers. Finally, we reported on the results of our preliminary experiments.

As future work, we will define a Boolean encoding for other types of blocks,
including blocks with convolutional layers. We are about finishing the development
of our verification tool, after which we will run a thorough experimentation.

References
[1] C. Cheng, G. Nührenberg, H. Ruess: Verification of Binarized Neural Networks via Inter-

Neuron Factoring, CoRR (2017), arXiv: 1710.03107.
[2] S. Dutta, S. Jha, S. Sankaranarayanan, A. Tiwari: Output Range Analysis for Deep

Feedforward Neural Networks, in: NASA Formal Methods, Springer, 2018, pp. 121–138.
[3] R. Ehlers: Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks, in:

Automated Technology for Verification and Analysis, Springer, 2017, pp. 269–286.
[4] EU Data Protection Regulation: Regulation (EU) 2016/679 of the European Parliament

and of the Council, 2016.
[5] M. Fischetti, J. Jo: Deep Neural Networks and Mixed Integer Linear Optimization, Con-

straints 23 (3 2018), pp. 296–309, doi: https://doi.org/10.1007/s10601-018-9285-6.
[6] M. Gario, A. Micheli: PySMT: A Solver-Agnostic Library for Fast Prototyping of SMT-

based Algorithms, in: International Workshop on Satisfiability Modulo Theories (SMT), 2015.
[7] I. Goodfellow, Y. Bengio, A. Courville: Deep Learning, The MIT Press, 2016, isbn:

0262035618.
[8] B. Goodman, S. R. Flaxman: European Union Regulations on Algorithmic Decision-Making

and a "Right to Explanation", AI Magazine 38.3 (2017), pp. 50–57.
[9] X. Huang, M. Kwiatkowska, S. Wang, M. Wu: Safety Verification of Deep Neural Net-

works, in: Computer Aided Verification, Springer, 2017, pp. 3–29.
[10] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio: Binarized Neural Net-

works, in: Advances in Neural Information Processing Systems 29, Curran Associates, Inc.,
2016, pp. 4107–4115.

[11] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio: Quantized Neural
Networks: Training Neural Networks with Low Precision Weights and Activations, Journal
of Machine Learning Research 18.187 (2018), pp. 1–30.

[12] A. Ignatiev, A. Morgado, J. Marques-Silva: PySAT: A Python Toolkit for Prototyping
with SAT Oracles, in: Proc. International Conference on Theory and Applications of Sat-
isfiability Testing (SAT), vol. 10929, Lecture Notes in Computer Science, Springer, 2018,
pp. 428–437.

[13] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, M. J. Kochenderfer: Reluplex: An
Efficient SMT Solver for Verifying Deep Neural Networks, in: CAV, 2017, pp. 97–117.

[14] G. Kovásznai, K. Gajdár, N. Narodytska: Portfolio Solver for Verifying Binarized Neural
Networks, Annales Mathematicae et Informaticae 53 (2021), pp. 183–200, issn: 1787-6117,
doi: https://doi.org/10.33039/ami.2021.03.007.

[15] J. Kung, D. Zhang, G. Van der Wal, S. Chai, S. Mukhopadhyay: Efficient Object De-
tection Using Embedded Binarized Neural Networks, Journal of Signal Processing Systems
(2017), pp. 1–14.

47

https://arxiv.org/abs/1710.03107
https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.33039/ami.2021.03.007

Annal. Math. et Inf. G. Kovásznai, D. H. Kiss, P. Mlinkó

[16] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner: Gradient-Based Learning Applied to Doc-
ument Recognition, Proceedings of the IEEE 86.11 (Nov. 1998), pp. 2278–2324.

[17] B. McDanel, S. Teerapittayanon, H. T. Kung: Embedded Binarized Neural Networks, in:
EWSN, Junction Publishing, Canada / ACM, 2017, pp. 168–173.

[18] M. M. McKerns, L. Strand, T. Sullivan, A. Fang, M. A. Aivazis: Building a Framework
for Predictive Science, CoRR (2012), arXiv: 1202.1056.

[19] N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, T. Walsh: Verifying Proper-
ties of Binarized Deep Neural Networks, in: 32nd AAAI Conference on Artificial Intelligence,
2018, pp. 6615–6624.

[20] L. Perron, V. Furnon: OR-Tools, version 9.3, Google, Mar. 15, 2022, url: https://devel
opers.google.com/optimization/.

[21] G. Singh, T. Gehr, M. Püschel, M. T. Vechev: Boosting Robustness Certification of
Neural Networks, in: 7th International Conference on Learning Representations, OpenRe-
view.net, 2019.

[22] V. Tjeng, K. Y. Xiao, R. Tedrake: Evaluating Robustness of Neural Networks with Mixed
Integer Programming, in: 7th International Conference on Learning Representations, Open-
Review.net, 2019.

[23] T. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, L. Daniel, D. S. Boning, I. S. Dhillon:
Towards Fast Computation of Certified Robustness for ReLU Networks, in: ICML, 2018,
pp. 5273–5282.

[24] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, Y. Zou: DoReFa-Net: Training Low Bitwidth
Convolutional Neural Networks with Low Bitwidth Gradients, CoRR (2016), arXiv: 1606.0
6160.

48

https://arxiv.org/abs/1202.1056
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1606.06160

Submitted: May 31, 2022
Accepted: March 3, 2023
Published online: March 19, 2023

Annales Mathematicae et Informaticae
57 (2023) pp. 49–64
DOI: https://doi.org/10.33039/ami.2023.03.002
URL: https://ami.uni-eszterhazy.hu

P4Query: Static analyser framework
for P4

Dániel Lukács, Gabriella Tóth, Máté Tejfel

Faculty of Informatics, ELTE, Eötvös Loránd University,
Budapest, Hungary

{dlukacs,kistoth,matej}@inf.elte.hu

Abstract. There are many important tasks in a conventional software de-
velopment process which can be supported by different analysis techniques.
P4 is a high level domain-specific language for describing the data plane layer
of packet processing algorithms. It has several uncommon language elements
and concepts that often make the analysis of P4 programs a laborious task.
The paper presents P4Query, an analysis framework for the P4 language that
enables the specification of different P4-related analysis methods in a generic
and data-centric way. The framework uses an internal graph representation
which contains the results of applied analysis methods too. In this way, the
framework supports the rapid implementation of new analysis methods in a
way where the results will be also easily reusable by other methods.

Keywords: P4 language, static analysis, analysis framework

AMS Subject Classification: 68N20 (Theory of compilers and interpreters)

1. Introduction
Optimization, verification and refactoring are important tasks of a software devel-
opment process. All of them can be effectively supported by static functional and

The research has been supported by the project “Application Domain Specific Highly Reliable
IT Solutions” implemented with the support of the NRDI Fund of Hungary, financed under
the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Sub programme)
funding scheme.
This research is in part supported by the project no. FK_21 138949, provided by the National
Research, Development and Innovation Fund of Hungary.
Supported by the ÚNKP-21-4 New National Excellence Program of the Ministry for Innovation
and Technology from the source of the National Research, Development and Innovation Fund.

https://doi.org/10.33039/ami.2023.03.002
https://ami.uni-eszterhazy.hu
mailto:{dlukacs,kistoth,matej}@inf.elte.hu

Annal. Math. et Inf. D. Lukács, G. Tóth, M. Tejfel

non-functional (e.g. execution time estimation) analysis. This analysis can be es-
pecially interesting in the case of languages having uncommon language constructs
or language structures e.g. in the case of some domain-specific languages.

P4 [2] is a high level, domain-specific programming language. It is developed
mainly for describing the data plane layer of packet processing algorithms of differ-
ent network devices (e.g. switches, routers) in a protocol and target-independent
way. Listing 1 illustrates a P4 program. The program first defines the applied
header structure (in rows 1–23), then the parser part (in rows 24–35) describes
how the fields of the defined headers will be set from the input bit stream (input
packet). Controller parts (see rows 39–62) can modify values of fields of headers
and metadata by applying lookup tables. During an application of a lookup table
the program finds the appropriate row based on the keys in the table. The keys
can be specific fields of the packets or some metadata. After the program finds
the right row it will execute the action (usually some modifications on the packet)
described by the row. It is important to note that the data plane program only de-
fines the possible actions and describes the structure of the lookup tables, namely
the keys of the table and the possible results of the lookups. However concrete data
of the tables (which actions will be executed with which parameters for which key
values) are defined by the control plane program, therefore it will not appear in
P4. Finally, the deparse part (see rows 64–70) defines how the output bit stream
(output packet) will be created from the headers.

Listing 1. P4 example.
1 // Definitions
2 typedef bit <9> egSpec_t ;
3 typedef bit <48 > macAddr_t ;
4 typedef bit <32 > ip4Addr_t ;
5
6 // Headers
7 header ethernet_t {
8 macAddr_t dstAddr ;
9 macAddr_t srcAddr ;

10 bit <16 > etherType ;
11 }
12
13 header ipv4_t {
14 bit <8> ttl;
15 ip4Addr_t srcAddr ;
16 ip4Addr_t dstAddr ;...
17 }
18
19 struct headers {
20 ethernet_t ethernet ;
21 ipv4_t ipv4;
22 }
23
24 // Parser
25 parser MyParser (...) {
26 state start { transition parse_ethernet ; }
27 state parse_ethernet {

50

Annal. Math. et Inf. P4Query: Static analyser framework for P4

28 packet . extract (hdr. ethernet);
29 transition select (hdr. ethernet . etherType) {
30 TYPE_IPV4 : parse_ipv4 ;
31 default : accept ; } }
32 state parse_ipv4 {
33 packet . extract (hdr.ipv4);
34 transition accept ; }
35 }
36
37 // Control
38 control MyIngress (in headers hdr , ...) {
39 apply {
40 if (hdr.ipv4. isValid ()) {
41 ipv4_lpm . apply ();
42 }
43 }
44 action drop () {
45 mark_to_drop (standard_metadata);
46 }
47
48 action ipv4_forward (macAddr_t dstAddr ,
49 egSpec_t port) {
50 standard_metadata . egress_spec = port;
51 hdr. ethernet . srcAddr = hdr. ethernet . dstAddr ;
52 hdr. ethernet . dstAddr = dstAddr ;
53 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
54 }
55 table ipv4_lpm {
56 key = { hdr.ipv4. dstAddr : lpm; }
57 actions = {
58 ipv4_forward ;
59 drop;
60 NoAction ;}
61 ... }
62 }
63
64 // Deparser
65 control MyDeparser (packet_out packet ,
66 in headers hdr) {
67 apply {
68 packet .emit(hdr. ethernet);
69 packet .emit(hdr.ipv4);}
70 }

The paper describes an analysis framework for P41. The framework makes
possible development of different P4-related analysis methods in a generic and
modular way. It uses an internal graph representation where the results of the
methods are also represented as part of the graph (mainly by adding new edges
to the graph). In this way, the methods can use each other’s results as well. The
proposed tool also allows rapid prototyping of different analytical concepts using a
common toolset.

1The code is available from https://github.com/P4ELTE/P4Query.

51

https://github.com/P4ELTE/P4Query

Annal. Math. et Inf. D. Lukács, G. Tóth, M. Tejfel

2. Related work

Considering related work there are much research applying specific analysis tech-
niques for P4. Most of them concentrate on error checking of P4 programs. For
example, Assert-P4 [6] and Vera [15] can check the correctness of predefined proper-
ties using annotated P4 source code and Vera can also detect some common errors
using custom source code without annotations. They use symbolic execution for
the analysis. P4V [7] creates a formula, which describes the proper behavior of
the program and checks the satisfiability of it with SMT solver. These three tools
are created for an earlier version of P4, namely P414. There are also verification
tools, which can manage the newer version (P416) too. BF4 [4] is created as a
P4C backend, which can not only detect error possibilities, but it is able to repair
them by adding new keys to the lookup tables of the program and modify the table
contents. Another tool p4-data-flow [1] uses data flow analysis to detect potential
bugs in P4 switch codes.

Some other tools use analytical methods for different purposes. For exam-
ple, p4pktgen [11] uses symbolic execution for automatically generating test cases.
Flightplan [16] can split a P4 program into a set of cooperating P4 programs and
maps them to run as a distributed system formed of several, possibly heteroge-
neous, data planes. During this process they use several analysis techniques, to
collect variables whose values need to be transferred between different data planes.
SafeP4 [5] is a language which has precise semantics and a static type system that
can be used to obtain guarantees about the validity of all headers which are used
or modified by the program. The type checker of the language (P4Check) can also
check P4 programs executing some static analysis on them.

Comparing these approaches this paper presents a generic framework that al-
lows the implementation of several analyses methods which can use each other’s
results as well.

A major inspiration for this work was RefactorErl [3], a static analysis tool for
Erlang. RefactorErl stores program information in a graph called the Semantic
Program Graph using relation databases, and provides its own query language for
exploring the stored information. Many features in our work – such as using graph
databases and their built-in query languages instead of in-house solutions – can be
considered to be the streamlining of best practices found in RefactorErl.

As Section 4.1 introduces, P4Query uses a Gremlin graph database as a storage
backend. Recently, other works also leveraged graph databases for static analysis
purposes. ProgQuery [14] is a similar static analysis tool for Java, built on Neo4j
and its Cypher query language. The authors emphasize that using Neo4j yielded
substantial improvements in analysis time and memory usage.

The expressive power of Gremlin is proved in another recent work [18]: the
authors store C code information in Neo4j, and define recurring vulnerability pat-
terns as Gremlin queries. Using this approach, the authors discovered 18 previously
unknown vulnerabilities in the Linux kernel.

52

Annal. Math. et Inf. P4Query: Static analyser framework for P4

3. Motivation
P4 is a relatively new, domain-specific language having some uncommon language
elements (for example match-action tables). The language makes possible the de-
scription of the data plane layer of packet processing algorithms. For a real imple-
mentation, however, in addition to the program part described in P4, a suitable
control plane layer is needed. This part is more or less a black hole while we con-
sider only the P4 source code. For these reasons, testing, verification, and generally
functional and non-functional analysis of P4 programs are non-trivial tasks that
sometimes require language-specific techniques.

Section 2 introduces several applications using different analysis methods for P4.
The authors also have some earlier results for determining potentially erroneous
code parts [17] and for predicting execution cost [9] of P4 programs. These methods
usually require different analysis techniques, however these techniques often can
have very similar subtasks (for example creating an abstract syntax tree or a control
flow graph).

This paper presents a framework that allows the implementation of different
analysis methods using a common basis. The framework applies an extensible
integral graph representation where the results of the different analysis methods
are represented also as part of the graph. This makes possible execution of different
methods in a hierarchical order where methods can use the results (or some part
of the results) of previously applied methods.

The framework supports the rapid implementation of new analysis methods
applicable for P4 language in a way where results of the methods will be easily
reusable.

4. Analysis framework
Traditional compilers are designed around passes: the frontend passes parse source
code into an intermediate representation (IR), midend passes transform and add
new information to the IR, and the backend passes create target-specific object code
from the IR. Modular compilers like the P4 reference compiler P4C [12] improve this
design by structuring the passes into a library: backends assemble their own fron-
tends and midends from a catalogue of passes provided by the compiler. Moreover,
P4C allows getting information from older states of the IR, as each transformation
pass returns an immutable IR instance. Even here, the three-fold separation of
frontend-midend-backend have to remain: in order satisfy midend-dependencies,
and subsequently, backend-dependencies, the backend must sequentially execute
the frontend, the midend, and finally its own passes.

One goal of the experiment we present here is to relax the three-fold struc-
ture and allow passes to reuse (depend on) each other’s functionally arbitrarily,
and without burdening the compiler programmer with manually finding the right
sequence in which to execute the different passes.

53

Annal. Math. et Inf. D. Lukács, G. Tóth, M. Tejfel

4.1. Tool architecture
4.1.1. Description

Figure 1 depicts the four-fold design we propose as a solution for relaxing tradi-
tional compiler architecture. In principle, the components called end-user appli-
cations constitute the backend, i.e. the part that provides useful services to users.
(See Section 5 for a few examples of applications built on top of the P4Query.)
Superficially, applications provide their services by using the services provided by
the infrastructure (see Section 4.2), also known as the frontend. In reality, both
the infrastructure and applications operate on a large shared graph that collects
all our knowledge about the program code.

Parser

Symbol
table

Data
flow

AST

Call
graph

Control
dependence

Infrastructure

Applications

Visualiser Compiler

 IDE

MetricsVerification

Query

Graph
database

Graph

Gremlin
Server

Dependency
Injector

Controller

Ontology

Self-tests

injects

uses

Call
sites

Control
flow

injects

uses

uses
creates creates

Figure 1. Architectural design of P4Query.

The infrastructure consists of a set of interdependent analyser components (or
passes): higher-level analysers can only be executed when lower-level analysers
already inserted the necessary knowledge into the graph. Similarly to analysers,
applications also depend on a subset of the analysers in the infrastructure. But un-
like analysers, applications are expected to only read (never modify) the graph, and
consequently there are no application-dependent parts in the infrastructure. Ap-
plications must also provide a user interface (e.g. command line interface) through
which their services can be accessed.

In the middle, the controller component ensures (via dependency injection)
that all dependencies are satisfied without collisions. To achieve this, components
register their provided services and their requirements to the control component,
and the controller figures out in which topological order to start the analysers. The
controller also guarantees that when the user executes a work-intensive application,

54

Annal. Math. et Inf. P4Query: Static analyser framework for P4

only the minimally necessary components will be performed.
The graph is also exposed to the user (not depicted) to enable custom features

(e.g. to attach external loggers, visualisers, and validators).

4.1.2. Design goals

Besides proposing a more relaxed structure of analysis passes, we had three addi-
tional goals in sight: support for different applications through uniform APIs, ease
of extensibility, and data-driven programming.

In systems with uniform APIs, programmers have to learn only one paradigm
to maintain, extend or otherwise alter the system (e.g. in the case of P4C, visitors
and passes are the main concepts of such a uniform API). By supporting different
applications (or backends), we mean providing a comfortable way to implement
different end-user services, by reusing the same static code analysis operations.
P4Query realizes uniform APIs by relying on a graph database. The information
in the knowledge graph is accessed using graph queries written in the Gremlin (see
4.1.3) query language. The implication is that users, application developers, and
infrastructure developers are using one, uniform data structure (the graph), and
are accessing it using the same mechanism (graph queries).

Our second design goal, ease of extensibility is also illustrated by Figure 1. The
four-fold arrangement was inspired by declarative build systems and the blackboard
pattern used in distributed MI. When developers introduce new features, this ar-
rangement enables them to think declaratively: instead of thinking about where to
insert their feature inside a sequence of operations, they only have to think about
their dependencies, i.e. what kind of analysers could help them.

Finally, our third design goal is data-driven programming. Thanks to the uni-
form graph API and the controller-managed dependency resolution, programmers
are forced to think in terms of data instead of code: they have to look at what
code knowledge is in the graph already, figure out what data they want to insert,
and possibly find existing analysers that make writing queries easier for them. The
information in the graph is regulated by a well-defined graph schema, and the
graph topology is regulated by the well-defined requirements and services of the
analysers. Moreover, since the graph instance is detached from the code analysis
framework, the programmers can access it by external tools for visualising, mon-
itoring and validating purposes. Like this, programmers can almost completely
avoid understanding the existing code base, and only have to look at and interact
with the data in the graph.

4.1.3. Gremlin API

In the tool architecture described in this section, we use a Gremlin graph database
as a storage backend (knowledge graph). Gremlin is a compositional query lan-
guage and API that is implemented by many large-scale graph databases. This
makes it possible to change graph implementations with almost no modification
to the P4Query code base. In earlier work [8], we also profiled a few graph back-

55

Annal. Math. et Inf. D. Lukács, G. Tóth, M. Tejfel

ends for control flow traversals, and verified that – apart from the initial overhead
– in-memory graph databases have comparable performance to built-in memory
manipulation.

Another consequence is that analysers have to be implemented as graph query
workflows. Since Gremlin is Turing-complete [13], theoretically all of the work can
be delegated to the database, and with this, the choice of the workflow language
(e.g. Java) can become negligible. Still, in our experience, coarsely granularised
queries can hinder code maintainability, as these are often more difficult to read
and modify (due to their of lack of common convenience features, e.g. exception
handling). For this reason, we still decided to split the workload between the
controller and the database.

4.2. Infrastructure
As we see earlier in Figure 1, the heavy-lifting in P4Query is done by various
code analyser components, each adding new information about the P4 code to the
knowledge graph using what is already there. We now introduce a few analyser
modules using an example: Figure 2 depicts a small subset of the knowledge graph
taken after we executed control flow analysis, call analysis, and call sites analysis on
the P4 code in Listing 1 (specifically the MyIngress control). First, the controller
finds the topological order of their dependencies, and then starts executing them
in order. In this case, the first dependency executed is the parser, parsing the P4
code and filling the knowledge graph with the syntax tree nodes and edges.

Each analyser components adds new edges as an overlay graph. These overlays
(domains) are separated by the dom edge-attributes: for example CFG is the domain
introduced by the control flow analysis, and CALL is the domain of the call analysis,
SITES is that of call site analysis. The role edge-attribute describes edge seman-
tics inside their domain. For example, calls in CALL links a procedure to those
procedures that it calls, such as MyIngress control (node 1) calling the ipv4_lpm
table lookup (node 8). On the other hand, calls in SITES links call statements
to the called procedure, such as the direct application of table ipv4_lpm (node 7)
calling table ipv4_lpm (node 8).

At the same time, the CFG domain contains flow, entry, and return edges
(among others) to denote the flow of control between various nodes of the syntax
tree, and to identify entry and exit nodes. For example, by following these edges,
you can see how control flows from MyIngress entry point (node 1) through the
conditional (node 4), terminating on the call of ipv4_lpm (node 8). The figure also
partially includes domains of other analysers, such as SYMBOL. This analyser creates
the graph-equivalent of a symbol table by identifying which declaration declares
which name, and links usages of this name in the scope of the declaration to the
declaration.

We should note that topological order is, in general, not unique: the controller
is free to start independent analysers in any order (even in parallel). This is not a
concern as long as analysers can correctly declare their exact dependencies. Still,
since all analysers work on the same shared graph, it may happen that – due to

56

Annal. Math. et Inf. P4Query: Static analyser framework for P4

class = ControlDecl
line = 38 1

class = Term
line = 38

val = MyIngress 2

dom=SYMBOL
role=declares

class = BlockStmt
line = 39 3

dom=CFG
role=entry

class = TableDecl
line = 54 8

dom=CALL
role=calls

class = CondStmt
line = 40 4

dom=CFG
role=flow

class = Expr
line = 40 5

dom=AST
role=head

class = BlockStmt
line = 40 6

dom=CFG
role=true-flow

dom=CFG
role=return

class = DirectApp
line = 41 7

dom=CFG
role=flow

dom=SITES
role=calls

class = Term
line = 54

val = ipv4_lpm 9

dom=SYMBOL
role=declares

class = ActionDecl
line = 47 10

dom=CALL
role=calls

class = ActionDecl
line = 44 11

dom=CALL
role=calls

Figure 2. Knowledge graph excerpt of the Listing 1 code.

faulty implementation – an analyser have a “hidden” (unclaimed) dependency. In
our experience with the aforementioned analysers, these occurrences are uncom-
mon. Still, to avoid such bugs, we emphasize proper testing (Section 4.3) and
recommend implementors to avoid writing general queries (such as selecting all
elements) and always specify completely the elements to be selected.

4.3. Testing
Testing framework of the tool aims to achieve two main objectives: to provide the
correct behaviour of the analysers and to detect possible spoils of the analysers
during the development phase. To achieve these goals the tool applies unit tests

57

Annal. Math. et Inf. D. Lukács, G. Tóth, M. Tejfel

and integration tests.
Unit tests need to be fast, so they work with the smallest part of the analysers,

their functions. One function usually defines one query of the graph, which insert
new edges into it, therefore in these cases, the tests check if the right edges are
added to the graph. Using an actual P4 source to test these functions would be
too costly, therefore we define the most simple graphs to check the function.

While unit tests need to be fast, integration tests can be slower, so we can use
P4 files as the inputs to test the analysers. When one analyser needs to be tested,
it uses the P4 file and executes every analyser, that it depends on and the tests
will check the result of this running.

These tests are important for the P4Query developers, who would like to modify
the predefined analysers or supplement the tool with new analysers. After the
development of an analyser, the developer can insert the unit tests of the new
functions and the correctness of them can be checked by these tests. For unit
tests, the developer needs to define the smallest graph, which can cover most of
the behaviours of the functions. If the functions are well tested, the developer can
continue with integration tests and checks the correct behaviour with real P4 files.

The architecture gives the opportunity to insert this test framework as an ap-
plication, which depends on all of the tested analysers. As an application, it fits
into the tool as a component, which can be easily executed.

5. Case studies
In this section, we illustrate the viability of the platform by showcasing a few
applications we are currently building on top of P4Query in related research.

5.1. Visualisation
Since it is the easiest to understand, the first application we introduce is graph
visualisation. This application expects a list of analyser component names, executes
them, and then, prints a subgraph of the knowledge graph containing only the
domains of the analysers in the list. For example, to print the full version of the
graph in Figure 2, we should execute P4Query with the following arguments:
p4query draw example . p4 −A CFG SYMBOL CALL SITES AST

The subcommand draw tells P4Query to run the visualiser on the file example.p4,
while -A is a flag (defined by the visualiser UI) expects the analyser names that
will be passed to the visualiser application.

A possibly interesting implementation detail here is that the visualiser techni-
cally depends on all the analysers defined in P4Query, since it must be able to
visualise anything the user may pass. Yet, we still managed to avoid executing
those that are not requested by the user (and not dependencies of the requested
ones): we implemented dependency resolution in the controller using Java depen-
dency injection (DI), and DI offers lazy initialization of the dependencies. This

58

Annal. Math. et Inf. P4Query: Static analyser framework for P4

way we can filter the analysers and only initialize those that were requested by the
user.

5.2. Verification
Verification is a possible extension of the tool, which is added to it as an application.
The main focus is to detect errors and suspicious cases, which can be caused by the
use of invalid header or uninitialized fields. The goal of this detection is to report
these uses for the developer to avoid undefined behaviour in the programs.

The approach of the checking is defined in our previous paper [17], but in short,
it calculates the pre-and post-conditions of the different blocks (i.e the control apply
functions, the tables and actions), the parser and the deparser of the program, and
based on these condition pairs it can detect improper use of the fields and headers.
Three cases can be detected: when there are some errors in a block; when there
is any inconsistency between the blocks; and when the post-/precondition of the
parser/deparser is inconsistent with the pre-/postcondition of the control function.

Listing 2. Conditions of MyIngress.
MyIngress :
[
// true condition and ipv4_forward

(Pre:
valid : [ipv4 , ipv4.dstAddr , ipv4.ttl ,

ethernet , ethernet . dstAddr],
invalid : [drop],

Post:
valid : [ipv4 , ipv4.dstAddr , ipv4.ttl ,

ethernet , ethernet . dstAddr],
invalid : [drop]),

// true condition and drop
(Pre:

valid : [ipv4 , ipv4. dstAddr],
invalid : [drop],

Post:
valid : [drop , ipv4 , ipv4. dstAddr],
invalid : []) ,

// true condition and NoAction
(Pre:

valid : [ipv4 , ipv4. dstAddr],
invalid : [ipv4 , ipv4.dstAddr , drop],

Post:
valid : [ipv4 , ipv4. dstAddr],
invalid : [ipv4 , ipv4.dstAddr , drop]),

// false condition
(Pre:

valid : [ipv4 , ipv4. dstAddr],
invalid : [ipv4 , ipv4.dstAddr , drop],

Post:
valid : [ipv4 , ipv4. dstAddr],
invalid : [ipv4 , ipv4.dstAddr , drop]),

]

59

Annal. Math. et Inf. D. Lukács, G. Tóth, M. Tejfel

Listing 2 illustrates conditions calculated for control MyIngress in Listing 1. We
can see 4 pairs of conditions because it has 4 possible execution paths – there are
three where the condition of the branch is true, and the table executes one of the
possible actions i.e. ipv4_forward, drop or NoAction, and one where the condition
of the branch is false.

This calculation is built into the tool as an application. It uses two experts:
the call graph and the control-flow graph. While traversing backwards in the call
graph it can reach the applied (“called”) actions and tables. Whenever it reaches a
vertex like these, it starts to traverse through the proper subgraph of the control-
flow graph and calculates the conditions of the actual block. Every condition is
stored in the graph as a property of the called vertex of the call graph, therefore
when the method reaches the actual call in the control-flow graph – for example a
table is called in a control function – it can use the conditions of the called block,
which have already been calculated.

5.3. Compiler
In related research [9, 10], we work on a static cost analysis tool for P4: the tool
expects as input a P4 program source code together with execution environment
parameters, and outputs various metrics (e.g. execution time, energy efficiency)
without actually running the P4 program.

In the current paper, we will not go into details on how the cost analysis tool
calculates these metrics, but the principle is that we decompose the P4 program
into primitive instructions whose expected cost is constant and already known.
Implementations of P4 externals such as extern calls (e.g. packet.extract in List-
ing 1) and lookup tables (e.g. ipv4_lpm in Listing 1) can also be passed to the tool
in the form of these primitive instructions with known costs.

Listing 3. Stack machine code of MyIngress.
data:

...
headers = 149
headers . ethernet = 149 // size 114
...
headers .ipv4 = 263
headers .ipv4. valid = 263
headers .ipv4.size = 264
headers .ipv4. srcAddr = 265
headers .ipv4. dstAddr = 297
...

code:
...
// call isValid (hdr.ipv4) on line 144
214: load 0 // 0: local address of hdr
215: const 114 // 114: size of hdr. ethernet
216: add // address of hdr.ipv4
217: invoke 144 1
// test isValid return value
218: ifeq 224

60

Annal. Math. et Inf. P4Query: Static analyser framework for P4

// call ipv4_lpm (hdr) on line 38
219: load 0 // 0: local address of hdr
222: invoke 38 1
223: pop
// terminate with status OK
224: const 0
225: return

From this, it follows that part of the static cost analysis problem reduces to a
compilation-and-linking problem. As an experiment, we implemented a compiler
to solve this problem as an application in P4Query. The main reason we chose
P4Query, instead of the much more mature P4C compiler framework was that at
first we did not know what kind of representation or code we will need to output:
the control and extensibility provided by P4Query and Gremlin queries gave us
tools to experiment and create quick, recyclable prototypes to help us arrive at a
final vision. While P4C’s safety mechanisms (e.g. C++ static type system) support
developing stable software, in the case of prototyping and experimentation these
same mechanisms are unused, or possibly even slowing down development.

Our current target representation for cost analysis is a sequential stack machine
with an instruction set similar to JVM bytecode. Listing 3 depicts the compiler
output of MyIngress in Listing 1. In the figure all values (bits and sizes) are
represented as integers (this is a requirement by our cost analysis approach). Both
isValid and ipv4_lpm have external implementation that had to be linked with
the calls. While most P4 targets will not support stack machines, we chose this
representation as it is relatively easy to generate, and relatively straightforward to
implement. We also believe that as long as we do not count the cost of maintaining
the stack, we can still make good cost estimations.

The compiler is built on top of the control flow analyser in P4Query: we traverse
the CFG, and process each node by traversing the syntax tree under the node. We
also use the call graph to find which label to jump to when a function is called.
Thus, much of the compiler state can be delegated to the persistent knowledge
graph, and only very specific data (e.g. instruction labels) and linking requires
program state outside the graph.

6. Evaluation
Scalability is a very important aspect in the case of analyser tools. For investi-
gating scalability of P4Query we have created dummy P4 programs in which the
complexity of the program structure and program logic are increased continuously.
In the basic case, two header type were used with one header instances each. The
program first parses the two headers, then applies a table which can modify some
fields of the headers, and finally it deparses them. In the second program the same
structure is applied twice. The four headers are parsed (and finally deparsed) one
after the other and two tables are applied sequentially. The first table uses the first
header pair, and the second one the second header pair. And so on if the complexity
of one test program said to be x then there are x header instances of both header

61

Annal. Math. et Inf. D. Lukács, G. Tóth, M. Tejfel

types and x tables in the program. As a result if we increase the complexity of
a test program, its syntax tree will be more complicated and time-consuming to
process during different analysis.

Figure 3 illustrates the runtime of P4Query if we execute the CFG analyser (and
its dependencies, including the syntax tree and other analysers). We highlighted
the results, where the complexity of the program is 1, 2, 4, 8 and 16, with a
fitted linear regression curve. The diagram shows that the runtime increases in
linear time, so we expect P4Query to easily handle even more complex programs.
Additionally, we can also inspect the runtime of individual analyses: looking at the
corresponding components in each column, we see they are increasing linearly as
well, which implies that it is possible to give efficient implementations of the static
analysis algorithms in Gremlin.

Figure 3. P4Query execution time for different program sizes.

7. Conclusion and future work
Our major purpose was to create a tool, which can facilitate and support the work
of P4 developers while making the possibility to experiment with these programs.
Its modular structure gives the opportunity for the user to avoid the usage of
several tools for different analyses, although it makes the possibility to have all
information in one place.

The framework uses a graph representation of the investigated program. All
of the analysers are based on the syntax tree of the examined P4 source and they
extend it with new edges while creating new subgraphs – like control-flow or call
graph – or new labels to store the calculated information.

In the future, we would like to extend the tool with new analyses to give some
other useful information for the developers about their P4 source. Our nearest

62

Annal. Math. et Inf. P4Query: Static analyser framework for P4

idea is to supplement it with the dependency graph and def-use graph with which
we will be able to give report, which are based on the connection between the
statements.

References
[1] K. Birnfeld, D. C. da Silva, W. Cordeiro, B. B. N. de França: P4 Switch Code Data

Flow Analysis: Towards Stronger Verification of Forwarding Plane Software, in: NOMS 2020
- 2020 IEEE/IFIP Network Operations and Management Symposium, 2020, pp. 1–8, doi:
https://doi.org/10.1109/NOMS47738.2020.9110307.

[2] P. Bosshart, et. al: P4: Programming Protocol-independent Packet Processors, SIGCOMM
Comput. Commun. Rev. 44.3 (2014), pp. 87–95, issn: 0146-4833, doi: http://doi.acm.org
/10.1145/2656877.2656890.

[3] I. Bozó, D. Horpácsi, Z. Horváth, R. Kitlei, J. Köszegi, T. M., M. Tóth: RefactorErl -
Source Code Analysis and Refactoring in Erlang, in: Proceedings of the 12th Symposium on
Programming Languages and Software Tools, ISBN 978-9949-23-178-2, Tallin, Estonia, Oct.
2011, pp. 138–148.

[4] D. Dumitrescu, R. Stoenescu, L. Negreanu, C. Raiciu: Bf4: Towards Bug-Free P4 Pro-
grams, in: Proceedings of the Annual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’20, Virtual Event, USA: Association for Comput-
ing Machinery, 2020, pp. 571–585, isbn: 9781450379557, doi: https://doi.org/10.1145/33
87514.3405888.

[5] M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, M. Mezini: How to Avoid Mak-
ing a Billion-Dollar Mistake: Type-Safe Data Plane Programming with SafeP4, in: 33rd
European Conference on Object-Oriented Programming, ECOOP 2019, July 15-19, 2019,
London, United Kingdom, ed. by A. F. Donaldson, vol. 134, LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019, 12:1–12:28, doi: https://doi.org/10.4230/LIPIcs
.ECOOP.2019.12.

[6] L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, M. Barcellos: Un-
covering Bugs in P4 Programs with Assertion-Based Verification, in: Proceedings of the
Symposium on SDN Research, SOSR ’18, Los Angeles, CA, USA: Association for Computing
Machinery, 2018, isbn: 9781450356640, doi: https://doi.org/10.1145/3185467.3185499.

[7] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H. Wang, C.
Caşcaval, N. McKeown, N. Foster: P4V: Practical Verification for Programmable Data
Planes, in: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’18, Budapest, Hungary: ACM, 2018, pp. 490–503, isbn: 978-
1-4503-5567-4, doi: http://dx.doi.org/10.1145/3230543.3230582.

[8] D. Lukács, G. Pongrácz, M. Tejfel: Are Graph Databases Fast Enough for Static P4 Code
Analysis?, in: Proceedings of the 11th International Conference on Applied Informatics 2020,
CEUR Workshop Proceedings, 2020, pp. 213–223, url: http://ceur-ws.org/Vol-2650/#pa
per22.

[9] D. Lukács, G. Pongrácz, M. Tejfel: Control flow based cost analysis for P4, Open Com-
puter Science 11.1 (2021), pp. 70–79, doi: https://doi.org/10.1515/comp-2020-0131.

[10] D. Lukács, G. Pongrácz, M. Tejfel: Model Checking-Based Performance Prediction for
P4, Electronics 11.14 (2022), issn: 2079-9292, doi: https://doi.org/10.3390/electronics
11142117.

[11] A. Nötzli, J. Khan, A. Fingerhut, C. Barrett, P. Athanas: P4pktgen: Automated
Test Case Generation for P4 Programs, in: Proceedings of the Symposium on SDN Re-
search, SOSR ’18, Los Angeles, CA, USA: Association for Computing Machinery, 2018, isbn:
9781450356640, doi: https://doi.org/10.1145/3185467.3185497.

63

https://doi.org/10.1109/NOMS47738.2020.9110307
http://doi.acm.org/10.1145/2656877.2656890
http://doi.acm.org/10.1145/2656877.2656890
https://doi.org/10.1145/3387514.3405888
https://doi.org/10.1145/3387514.3405888
https://doi.org/10.4230/LIPIcs.ECOOP.2019.12
https://doi.org/10.4230/LIPIcs.ECOOP.2019.12
https://doi.org/10.1145/3185467.3185499
http://dx.doi.org/10.1145/3230543.3230582
http://ceur-ws.org/Vol-2650/#paper22
http://ceur-ws.org/Vol-2650/#paper22
https://doi.org/10.1515/comp-2020-0131
https://doi.org/10.3390/electronics11142117
https://doi.org/10.3390/electronics11142117
https://doi.org/10.1145/3185467.3185497

Annal. Math. et Inf. D. Lukács, G. Tóth, M. Tejfel

[12] P4 Language Consortium: P4C reference compiler for the P416 programming language,
https://github.com/p4lang/p4c, [Online; accessed 06-June-2021], 2017.

[13] M. A. Rodriguez: The Gremlin graph traversal machine and language (invited talk), Pro-
ceedings of the 15th Symposium on Database Programming Languages - DBPL 2015 (2015),
doi: http://dx.doi.org/10.1145/2815072.2815073.

[14] O. Rodriguez-Prieto, A. Mycroft, F. Ortin: An Efficient and Scalable Platform for
Java Source Code Analysis Using Overlaid Graph Representations, IEEE Access 8 (2020),
pp. 72239–72260, doi: https://doi.org/10.1109/ACCESS.2020.2987631.

[15] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, C. Raiciu: Debugging P4
Programs with Vera, in: Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’18, Budapest, Hungary: ACM, 2018, pp. 518–
532, isbn: 978-1-4503-5567-4, doi: http://dx.doi.org/10.1145/3230543.3230548.

[16] N. Sultana, et. al: Flightplan: Dataplane Disaggregation and Placement for P4 Programs,
in: 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21),
USENIX Association, 2021, isbn: 978-1-939133-21-2, url: https://www.usenix.org/confer
ence/nsdi21/presentation/sultana.

[17] G. Tóth, M. Tejfel: Component-based error detection of P4 programs, Acta Cybernetica
(2021), to appear.

[18] F. Yamaguchi, N. Golde, D. Arp, K. Rieck: Modeling and Discovering Vulnerabilities with
Code Property Graphs, in: 2014 IEEE Symposium on Security and Privacy, 2014, pp. 590–
604, doi: https://doi.org/10.1109/SP.2014.44.

64

http://dx.doi.org/10.1145/2815072.2815073
https://doi.org/10.1109/ACCESS.2020.2987631
http://dx.doi.org/10.1145/3230543.3230548
https://www.usenix.org/conference/nsdi21/presentation/sultana
https://www.usenix.org/conference/nsdi21/presentation/sultana
https://doi.org/10.1109/SP.2014.44

Submitted: April 8, 2022
Accepted: April 20, 2023
Published online: April 28, 2023

Annales Mathematicae et Informaticae
57 (2023) pp. 65–77
DOI: https://doi.org/10.33039/ami.2023.04.002
URL: https://ami.uni-eszterhazy.hu

Logical conditions in programming
languages: review, discussion and

generalization

Benedek Nagy, Khaled Abuhmaidan, Monther Aldwairi

Department of Mathematics, Faculty of Arts and Sciences,
Eastern Mediterranean University, Famagusta,

North Cyprus, via Mersin-10, Turkey
corresponding author: nbenedek.inf@gmail.com

Department of Computer Science,
Institute of Mathematics and Informatics,

Eszterházy Károly Catholic University,
Eger, Hungary

Faculty of Computing and Information Technology,
Sohar University, Oman
khmaidan@su.edu.om

College of Technological Innovation, Zayed University,
144534 Abu Dhabi, United Arab Emirates

monther.aldwairi@zu.ac.ae

Abstract. Boolean logic is widely used in almost every discipline includ-
ing linguistics, philosophy, mathematics, computer science and engineering.
Boolean logic is characterized by the two possible truth values, and various
logical connectives/operations allow us to make compound statements, con-
ditions. Most of the programming languages, if not all, have some of the logic
operations: conjunction, disjunction and negation. Actually, since the set of
these three operations form a basis, any logical statement can be formed by
them. However, on the one hand, there are smaller bases as well, i.e., one
of the conjunction or disjunction is already superfluous. Moreover, there are
bases with only one operation, e.g., by NAND. On the other hand, one may
allow other operations helping the programmer/user to define the conditions
of conditional statements and loops in a simpler manner. In this paper we

This research was supported by Zayed University, Research Office, Research Incentive Fund
Award #R20089.

https://doi.org/10.33039/ami.2023.04.002
https://ami.uni-eszterhazy.hu
mailto:nbenedek.inf@gmail.com
mailto:khmaidan@su.edu.om
mailto:monther.aldwairi@zu.ac.ae

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

discuss these issues, including some practical points, implementation issues
and short cut evaluations for various operations.
Keywords: High level programming languages, conditional statements, loop
conditions, logical connectives, short cut evaluation, formal logic
AMS Subject Classification: 03B70, 03B05, 68N15, 68N20, 97P40

1. Introduction
Classical Boolean logic is a well-known and widely used basis of various mathe-
matical disciplines and also of computer sciences, including hardware and software
related fields. In this paper, we are, first, analysing how it occurs in high-level pro-
gramming languages, e.g., conditional statements (see Section 2). Then overviewing
classical logic we give reasons why the logical operations conjunction, disjunction
and negation are used, and not a smaller basis of the operations. However, there
are other widely used logical operations which may help our lives to be easier, e.g.,
implication and equivalence, if they are also allowed to be used in our formula-
tions. But then, one may ask the question, why the programmers should translate
all their conditions to a form that may include only that three connectives that are
built in the programming languages, and why the others are not like that. This
is the motivation of our paper. We show how the other usual logical operations
can be used in our programs. We give some thoughts also on possible implemen-
tations, e.g., based on preprocessing or a functional representation that is close to
the so-called Polish notation introduced by Łukasiewicz [12].

2. Conditions in programs
In high-level programming languages both the branching and the loop structures
occur frequently. The branching is usually done by conditional statements. The
usual form of a conditional statement (although it may be slightly varied in various
programming languages) is either

if (condition) then statement

or

if (condition) then statement(1) else statement(2)

For details about the syntax used in various languages that are not explained
here, the readers are referred to textbooks [8–11, 22, 25, 28]. Note that some of
the languages are case sensitive and some of them are not.

In this paper we are interested and concentrate on that part which includes
logic: The (condition) in the above structures means logical condition, i.e., a logical
formula that is evaluated by the computer, and if it evaluates to true then the

66

Annal. Math. et Inf. Logical conditions in programming languages. . .

statement (or statement(1) in the second case) is executed, otherwise they are not
executed at this time (but statement(2) is executed in the second case) and the
program then continues by the next statement.

The logical condition can be a simple condition, e.g., (x < 15) or a compound
statement. In most of the programming languages the statement can also be com-
pound, i.e., a block built up by a sequence of statements, for syntax see the men-
tioned textbooks.

The loops usually have heads with conditions and bodies with statements. The
condition in the head is also a logical condition that is evaluated to be either
true or false and based on that either the statements of the body of the loop are
executed (once more) or the program continues by the statement after the body
of the loop. There are various types of loops that can be used (depending also
on the used language). Most of the languages have for loops, however, in some
of the languages that type of loop does not have a formal logical condition, but
the body should be executed for some specific values of the loop variable (e.g., in
Pascal and Python). In some other languages, including C, C++, Java and also
Javascript, the for loop is very similar to the while loops that we are explaining
shortly in the sequel. In while loops, after the word while a condition is written
(for syntactic details the author is referred to the textbooks mentioned before),
then the body with its statement(s) is written. In the programming languages in
which the for loop is similar, after the word for in brackets, first an initialisation
statement (that is executed only once before checking the loop condition at the
first time), then in the middle, the loop condition itself that is very similar to the
loop condition of while loops, finally, the third part in the bracket is the increment
statement, that is a statement which is executed after the body each time when
the body is executed, right before the loop condition is (re)checked. Finally, there
is also another type of loop, where the condition is after the body. In Pascal it
is written as follows: between repeat and until the statement(s) and right after
until the logical condition (to decide if the statement(s) in the body are executed
once more). In other languages, e.g., in C, C++, Java and Javascript, these are
written as do - while loops having the body between these words and the logical
condition after the second. For more details about its syntax in various languages
we recommend to check the mentioned textbooks. We note that any algorithms
can be implemented without this type of loop.

Here, we are concentrating on the logical conditions. Thus, let us see how one
can build complex conditions. The usual classical connectives to make compound
statement are the conjunction, disjunction and negation, see Table 1. In some high
level languages there is a simple datatype for Boolean values and there are also
built in constant values for both the truth-values.

Although in the programming language C, there is no specific type for Boolean
values, integers and pointers can be used also for this purpose in such a way that
the value 0 or NULL is understood as false, while any other values are understood
as true. In various other languages the values 0 and 1 also play the role of false
and true, for details the reader is referred to the above listed (text)books.

67

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

Table 1. The logical operations and constants in various high-level
programming languages.

Programming conjunc- disjunc- nega- Boolean/logical type
Language tion tion tion true, false

Pascal and or not boolean true false
C && || ! -

C++ && || ! bool true false
Java && || ! boolean true false

JavaScript && || ! boolean true false
Python and or not bool true false

3. Bases of Boolean logic
As we have already seen, in Boolean logic there are two truth-values: true and
false. Usually they are represented by 1 and 0, respectively. Boolean variables,
denoted by, e.g., A, may take one of these values at interpretation and evaluation.
As usual in almost every part of mathematics, the operators are unary and binary
ones. The only unary operator, the negation is usually (syntactically) written as
∼ A or ¬A in formal logic (with a formula A). In Boolean algebra, the notation
Ā is used, while various programming languages use various notations as we have
already shown them in Table 1. The (semantical) result of this operation is that the
compound statement having this operation as the main operation has the opposite
truth value than the subformula without this main operation (i.e., the truth value
of formula A).

Table 2 shows all possible Boolean operations. Note that the first and last
rows are not functions of any of the variables A and B, but always false and true
(they are in fact the Boolean constants and can be seen as functions with zero
arguments). As we have already mentioned in many programming languages the
programmer can use these constants as well, e.g., to have a (theoretically) infinite
loop with a condition that is always true. There are two other rows, which are in
fact the copies of the values of A and B, respectively. These rows do not define
logical connectives, neither.

Further, two of the rows are showing the negation of the variables A and B,
respectively, thus the unary operation negation occurs twice in the table.

The remaining ten rows define the ten binary operations, and there are no more
[7, 18]. On the one hand, obviously, the conjunction (logical and) and disjunction
(logical or) are among them. On the other hand, most of the other operations have
also their own names, as they play important roles, either in natural languages
(implication, equivalence, exclusive or), in logical deductions (implication) or in
the hardware industry (NAND, NOR).

As we have seen there are eleven Boolean operations. How it can happen
then, to use only three of them in programming languages? The answer is in the
properties of the Boolean algebra [1, 15], i.e., the concept of base set of operations.

68

Annal. Math. et Inf. Logical conditions in programming languages. . .

Table 2. The Boolean operations (based on all possible binary
Boolean functions).

formula name values
A 1 1 0 0
B 1 0 1 0
0 - 0 0 0 0

A ∤ B NAND 0 0 0 1
A ̸⊂ B 0 0 1 0

¬A negation 0 0 1 1
A ̸⊃ B 0 1 0 0

¬B negation 0 1 0 1
A

⊕
B eXclusive OR 0 1 1 0

A|B NOR, Sheffer stroke 0 1 1 1
A ∧ B and 1 0 0 0
A ≡ B EQUivalence 1 0 0 1

B - 1 0 1 0
A ⊃ B IMPlication 1 0 1 1

A - 1 1 0 0
A ⊂ B reverse implication 1 1 0 1
A ∨ B or 1 1 1 0

1 - 1 1 1 1

We say that a subset S of the operations listed in Table 2 is a base, if for any number
of Boolean variables, one can write equivalent formula L′ using the variables and
the operations of S to any logical formula (or Boolean function) L of the same
variables. A base is also called a functionally complete set of operations, and by
Post, it is known that the set must contain at least one operation without each of
the following five properties:

• monotonic (by “increasing” the input, i.e., by changing the value of any of the
arguments from 0 to 1, the value of the result cannot decrease, i.e., cannot
switch from 1 to 0, e.g., ∧ and ∨ are monotonic),

• linear/counting (those rows of Table 2 are referred here that have even number
of 1’s, and thus, also even number of 0’s),

• self-dual (those operations are counted here for which by flipping – i.e., chang-
ing from 0 to 1 or vice versa – the values of all the arguments, the result must
also change to the opposite),

• truth-preserving (if all the arguments have a value truth, then also the result
is true) and

• false-preserving (if all the arguments have a value false, then also the result
is false),

69

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

see more details, e.g., in [19].
It is well-known (see, e.g., [13, 18]) that S = {¬, ∧, ∨} is a base. On one

hand, this is the most used base, since in Boolean algebraic description usually,
exactly these operations are used. Further, these operations are used to define the
conjunctive and disjunctive normal form expressions, and it is well-known that for
any Boolean formula there is an equivalent one in conjunctive/disjunctive normal
form. On the other hand this is not a minimal base, as we recall in the next
subsection.

3.1. Why not smaller bases?
Although, S = {¬, ∧, ∨} is a base, it is not minimal: by the use of the De-Morgan
identities (and the law of double negation), i.e., (A∧B) is equivalent to ¬(¬A∨¬B)
and (A ∨ B) is equivalent to ¬(¬A ∧ ¬B), thus one may exclude either ∨ or ∧.

Then, in a minimalist language (in terms of defining as less things as possible to
make a high level programming language), one may use one of the sets S∧ = {¬, ∧}
and S∨ = {¬, ∨} and keep only negation and one of the binary connectives of S.

Moreover, there are even smaller bases: Sheffer has already shown that one
operation is enough to express any Boolean formulae/function [24], he has used
the operation named after him, as Sheffer stroke (and it is known also as NOR,
i.e., Negated OR, in Boolean algebra and logic gates). On the other hand, the
operation NAND also has this property: any logical formulae can be expressed
also by using the sole operator NAND. These operations do not have any of the
five properties described by Post.

Now, we may ask the question that is given in the head of the subsection:
if we have smaller bases, why do we use three connectives and not less in the
programming languages.

The answer is obvious: these three connectives are so natural and it is very easy
to connect them to natural languages:

• the negation refers for the negative statements, when (usually) the verb part
is negated, e.g., “John does not go to the school today.” Sometimes another
verb meaning the negation of the other exists in the language, e.g., ‘remember’
could play similar role as ‘do not forget’.

• the conjunction refers to connect two (independent) statements by the con-
nective ‘and’, e.g., “John goes to the school and Bob plays football today.” In
the language we may use various connectives, e.g., ‘and’, ‘but’, or maybe only
a semi-colon to connect the two statements and form a compound statement
in this way.

• the disjunction usually refers to sentences compounded by the connective ‘or’,
e.g., “Rick likes the taste of the coffee or he likes the hot drinks.”

However, to formalize conditions, one needs some special care, as there are
various differences in formal logic that is used in mathematics and programming
and the ‘logic’ used in natural languages.

70

Annal. Math. et Inf. Logical conditions in programming languages. . .

• The connective ‘and’ may have the meaning ‘and then’, e.g., “Bob went to the
supermarket and he has bought some drinks.” In this sense, this connective
is not always commutative. It is also dangerous to abbreviate the statements
and put the ‘and’ between some parts of the sentences without repeating the
other parts of the statement. Ambiguity occurs, e.g., “You are allowed to
distribute the softwares I wrote and I licensed.” (It may not be clear if it is
only about the softwares which I have both written and licensed or also those
which I only have written or only have licensed...)

• The connective ‘or’ frequently has ‘xor’ meaning, in the sense that we want to
allow only one of the options, e.g., “Jack is drinking a coffee or he is drinking
a tea”; “Bob will do his homework or he will fail in the course.” Thus in
some cases instead of simply writing ‘or’, in some text ‘and/or’ is written
in the usual meaning of the disjunction. (Sometimes to highlight the ‘xor’
feature, the format, “either he will do the homework or he will fail” is used,
but the usage of ‘either’ is optional in the language, even if the meaning of
the sentences should be the same.)

Now, we turn to give some notes on the usage of a base with only one operator.
The options would be to use only NAND or only NOR. However, this would make
the writing of the conditions long and hardly understandable causing extra care
and possible faults and bugs in coding. Although mathematically and theoretically,
these would be options, in practice it would be not a good way to use the high level
programming languages in any of these ways. As computers become widespread,
to allow more and more people to learn programming and write their own codes it
would be very difficult to learn.

Although, in the hardware industry, it could be a good decision, as the con-
nection of the logic gates can be easily checked by simulations and also computers
support the design of the circuits, the programmers have not been trained to con-
vert any types of Boolean logical conditions/statements to formulae using only one
connective.

4. Expanded Logic

Now, since we have seen why it is not a good idea to use to small number of logical
connectives, we show how the set of used connectives can be expanded to allow
some more of the usual connectives.

As we have shown in Table 2, the following well-known and widely used oper-
ations, i.e., connectives have three true and one false values in their truth table:
disjunction, implication, NAND. The connectives conjunction and NOR are de-
fined in the opposite way, i.e., by only one true and three false values. The other
two well-known operations, the equivalence and the XOR have two-two true and
false values. These facts turn to be important in the sequel.

71

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

4.1. Practical implementation
A preprocessor or a macro may substitute the formulae containing any of the IMP,
NAND, NOR, EQU, XOR operations to formulae with only conjunction, disjunc-
tion and negation. In this way, the code is first transformed to an equivalent code
in the traditional/usual programming language, and thus, the programmer may
use these larger set of connectives to write a more intuitive and simpler condi-
tion, but, in fact, the computer will execute the code after preprocessed in the
traditional manner. On the other hand, since programming languages are focusing
on performance when making the executable code, and the logical operations on
the machine code include e.g., XOR, this operation can be compiled and executed
directly.

Nevertheless, as a possible solution to include these new logical operations,
we give possible substitution(s) that a preprocessor may do for each of the five
operations. Let a and b abbreviate the two (simple or compound) conditions that
are connected by the given operator, their (truth-)value can be 0 and 1.

• a IMP b can be written as NOT a OR b

• a NAND b can be written as NOT a OR NOT b

• a NOR b can be written as NOT a AND NOT b

• a EQU b can be written as (a AND b) OR (NOT a AND NOT b) or (a AND
b) OR NOT (a OR b)

• a XOR b can be written as (NOT a AND b) OR (a AND NOT b)

We may need to use fully bracketed formulae to make their meaning clear. Espe-
cially, the substitution of the last two operators, the EQU and XOR seem long.
Now some tricks are shown which may be used in the programming language C,
where instead of the Boolean type, integers are used. Let a and b abbreviate
the two conditions (which may have values 0 or 1), as before, then we have the
following. We start with the operators AND and OR, which do not need to be
substituted or interpreted in other ways, as they are built in, however, for the sake
of completeness and to feel what types of ideas are behind the scene, we start with
those.

• a AND b can be written as a * b

• a OR b can be written as a + b

• a IMP b can be written as a <= b

• a NAND b can be written as !(a * b)

• a NOR b can be written as !(a + b)

• a EQU b can be written as a == b

72

Annal. Math. et Inf. Logical conditions in programming languages. . .

• a XOR b can be written as a != b or !(a == b)

As here, we are showing rewriting that is close to the style of the programming
language C, we used the sign ! for negation. At the disjunction, as the sum may
produce a value that is outside of the targeted set {0, 1}, in some cases one may
need to use it in the form !!(a+b) that transforms the value based on the double
negation law to the desired set of values. (In some other languages, e.g., in C++,
explicit type conversions can also be used to transform the resulted value back
to the set of official truth-values.) The sign ‘<=’ may seem to be an arrow ⇐ or
a horseshoe ⊂, but in fact none of them is used to represent implication in this
orientation. On the other hand, the ‘==’ can be seen as a built in equivalence
operator, although it is not highlighted in this way. Moreover, it can be used not
only in C, but in many other high-level programming languages, as the equality
operation is defined usually also on Boolean values. Thus, in this way, we may be
happy that, although it is not underlined in the textbooks and courses, in a usual
high-level programming language the programmers may use not only negation,
conjunction and disjunction, but also the equivalence operator (usually with the
lowest priority, therefore bracketing may be needed if one uses it for this purpose).

Another idea could be to use the connectives in functional form, e.g., to write
the logical expressions in prefix form (with or without brackets).

Without using any brackets, the so-called Polish notation of formulae, also
called prefix form, can be used. This form is invented by Łukasiewicz to avoid
brackets and have a unique way to read and evaluate the formulae [12]. In this
writing the operators precede their operands, as we show below.
Examples could be:
EQU AND A IMP B, C XOR B NOT A is representing the formula
((A ∧ (B ⊃ C)) ≡ (B

⊕ ¬A)).
AND OR NOT A, B IMP A, C is representing (¬A ∨ B) ∧ (A ⊃ C).

With brackets, the connectives can be interpreted as functions, and in this way,
they can be programmed in the programming language itself and they can easily
be put to a new logical library as well to include them and allow them to be used
by the programmers.

Our last example written in this form is:
AND (OR (NOT (A), B), IMP (A, C))

There is also an advantage of this form over the other without brackets, namely,
for the associative operations, e.g., for AND, OR, XOR the programmer may use
more than two parameters without any problem, misunderstanding or misinterpre-
tation.

We note that although this type of prefix notation is not widely used in logic
and mathematics, it is used in computer science, e.g., in the programming language
LISP [27]. The reverse Polish notation, the postfix notation, in which all operands
precede the operator is also used in computer science, especially in stack-based
programming [20, 26].

73

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

4.2. Shortcut for the new connectives
On the one hand, the EUQ and XOR operations are of the form of 2-2 (remember
to Table 2 and discussion on the number of the occurrences of the truth values).
In this way, we cannot do any pruning or short-cut evaluation technique. By
knowing the value of the first part one cannot involve the knowledge of the truth-
value of the whole formula in any case, the second part must also be evaluated.
This phenomenon is related to the fact that, e.g., in Gentzen sequent calculus by
working with a formula having main connective as EQU or XOR, the deduction
process is branching and in both branch we need to write and use both immediate
subformulae instead of the original formula.

Now, on the other hand, let us take a look on our other five operations (including
the original AND and OR) we deal with. All of these are 1-3 or 3-1 forms, meaning
that by knowing the truth-value of the first part of the expression, we may know
the truth-value of the whole expression (in the fortunate case). These cases are
listed below.

At operator if the first part is then the whole formula is
AND: false, false.

OR: true, true.
IMP: false, true.

NAND: false, true.
NOR: true, false.

It is clear to see how the short-cut evaluation works for AND and OR, and in
fact, these short-cut evaluations are built in features of the programming languages.
On the other hand we can also use the new short-cuts listed in the last three rows
of the previous table.

We would like to highlight and discuss one interesting issue here: we have
listed 5 operators, but there are only 4 possibilities (to have the truth-value of the
first part given and to infer from this to the truth-value of the whole formula).
Seemingly, in the table IMP and NAND are similar. Actually, if we can use the
short-cut, i.e., the evaluation can be done earlier than all parts of the formula
are evaluated, then yes, definitely, they work on the same way. However, in case
the short-cut evaluation cannot be used, i.e., the first part is true and we need to
evaluate the second part, then their difference appears: if the second part is false,
then IMP gives false and NAND gives true. Alternatively, if the second part is also
true, then IMP gives true and NAND gives a false value to the whole expression.

We note here again the analogy of the possibilities of the usage of the short-
cut techniques and the theorem proving methods Gentzen sequent-calculus and
Smullyan tableaux. These methods make a branching at some formulae, and if
only the first immediate subformula occurs in a branch, then we can make a cut,
e.g., at implication, the whole formula evaluates to true, if the first part is false
(and we do not need to check the second subformula).

Finally, we highlight that short-cut evaluations are not only used to make the
evaluation faster, but they have safety features as well by allowing to shorten some

74

Annal. Math. et Inf. Logical conditions in programming languages. . .

parts of the code.
Consider the following conditional statement with operator IMP and with vari-

ables num, divisor:

if (IMP(divisor > 0 , num/divisor > 5)) return 1 else return 0

It will return 1, if the actual value of the divisor is negative or in the case when
divisor has value 0 , without checking the fraction in the second part. Further,
it returns also 1 if divisor is positive and num/divisor is larger than 5. Finally,
it returns 0 only if divisor is positive and num/divisor is at most 5. The second
part of the implication, including the division by divisor is checked only if the
first part was evaluated to true, i.e., the value of the divisor is not 0, but it is
positive. In this way, the possible error of division by zero is avoided by the short
cut evaluation technique. Statements of this type are related to the nature of the
material implication widely used in formal logic, namely, if the condition part, the
first part of the statement has a false truth-value, then does not matter how strange
and weird is the second part, the whole statement is evaluated to be true.

In this way it is very similar to the very usual compound condition with integer
variables num, divisor and result.

The double, nested condition

if (divisor !=0) if (num/divisor > 5) result = num/divisor

can be abbreviated to a sole, but compound condition as

if (divisor != 0 && num/divisor > 5) result = num/divisor

Note that in the programming language C, the first part can be simplified and
the condition (that is in the bracket) can be written as

(divisor && num/divisor > 5)

The fact that we can write the double nested condition in one compound con-
dition without any risk is related to the fact that, for instance in the programming
language C (and in other languages), the logic is not exactly the classical Boolean
logic, but a kind of 3-valued not commutative logic (see in [16]). As the condition
written in

(num/divisor > 5 && divisor != 0)

causes a runtime error in case the value of divisor is 0, this is not equivalent
to our original form. This already leads to us to the next section.

75

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

5. Discussion, conclusion and related works
This study can be seen as a follow up study about logic in programming languages,
which we have started in [16]. There we have concentrated on how the logical
values are computed and what type of ideas and processes are behind the scene.

In this paper, we give some thoughts about which and how many logical opera-
tions can and should be used in a high-level programming language. We argued and
give hints on how is possible to include not only the widely used three operations
of Boolean algebra, but some other well-known and frequently used operations,
like the exclusive or, the equivalence and the implication in our programs to make
compound logical conditions. They may allow (beginner) programmers to write
their conditions in a simpler way, or in the way that is more closely reflected by
the condition stated in natural language. We have also studied the possibilities
of short-cut evaluations, which can also be seen, on one hand the generalizations
of the very closely related alpha and beta pruning techniques of game theory [21,
23] that are also generalised to games with chance nodes (i.e., with some random
events) [14] and for other types of operations [2, 3]. Related works are also done
by using and analysing similar techniques in the three most-known and most used
fuzzy and many-valued logic systems, in the Gödel type logic [5], in the product
logic [6] and in the Łukasiewicz-type logics [4, 17].

Acknowledgements. Comments of the anonymous reviewer are gratefully ac-
knowledged.

References
[1] B. H. Arnold: Logic and Boolean Algebra, Dover Publications, 2011, p. 144, isbn: 978-

0486483856.
[2] R. Basbous, B. Nagy: Generalized Game Trees and their Evaluation, in: CogInfoCom 2014:

5th IEEE International Conference on Cognitive Infocommunications, Vietri sul Mare, Italy,
IEEE, 2014, pp. 55–60, doi: https://doi.org/10.1109/CogInfoCom.2014.7020518.

[3] R. Basbous, B. Nagy: Strategies to Fast Evaluation of Tree Networks, Acta Polytechnica
Hungarica 12.6 (2015), pp. 127–148, doi: https://doi.org/10.12700/APH.12.6.2015.6.8,
url: http://acta.uni-obuda.hu/Basbous_Nagy_62.pdf.

[4] R. Basbous, B. Nagy, T. Tajti: Pruning Techniques in Łukasiewicz Logics, Acta Polytech-
nica Hungarica v.n (2022), doi: https://doi.org/10.12700/APH..

[5] R. Basbous, B. Nagy, T. Tajti: Short Circuit Evaluations in Gödel Type Logic, in: Ravi V.,
Panigrahi B., Das S., Suganthan P. (eds) Proceedings of the Fifth International Conference
on Fuzzy and Neuro Computing (FANCCO - 2015), vol. 415, Advances in Intelligent Systems
and Computing (AISC), Springer, Cham., 2015, pp. 119–138, doi: https://doi.org/10.10
07/978-3-319-27212-2_10.

[6] R. Basbous, T. Tajti, B. Nagy: Fast evaluations in product logic various pruning tech-
niques, in: 2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016, Van-
couver, BC, Canada, July 24-29, 2016, IEEE, 2016, pp. 140–147, doi: https://doi.org/10
.1109/FUZZ-IEEE.2016.7737680.

76

https://doi.org/10.1109/CogInfoCom.2014.7020518
https://doi.org/10.12700/APH.12.6.2015.6.8
http://acta.uni-obuda.hu/Basbous_Nagy_62.pdf
https://doi.org/10.12700/APH.
https://doi.org/10.1007/978-3-319-27212-2_10
https://doi.org/10.1007/978-3-319-27212-2_10
https://doi.org/10.1109/FUZZ-IEEE.2016.7737680
https://doi.org/10.1109/FUZZ-IEEE.2016.7737680

Annal. Math. et Inf. Logical conditions in programming languages. . .

[7] J. L. Bell, M. Machover: A Course in Mathematical Logic, North Holland, 1977, p. 599,
isbn: 978-0080934747.

[8] D. Flanagan, G. M. Novak: Java-Script: The Definitive Guide, American Institute of
Physics, 1998.

[9] J. Gosling, B. Joy, G. Steele, G. Bracha: The Java language specification, Addison-
Wesley Professional, 2000.

[10] E. Horowitz: Fundamentals of Programming Languages, Springer, Berlin, Heidelberg, 2012,
isbn: 9783642967290.

[11] B. Kernighan, D. Ritchie, C. Tondo: The C Programming Language, Prentice-Hall soft-
ware series, Prentice Hall, 1988, isbn: 9789688802052.

[12] J. Łukasiewicz: Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic, Oxford
University Press, 1951, p. 141.

[13] R. J. McEliece, R. B. Ash, C. Ash: Introduction to discrete mathematics, English, New
York etc.: Random House, 1989, pp. xv + 514, isbn: 0-394-35819-8.

[14] E. Melkó, B. Nagy: Optimal strategy in games with chance nodes, Acta Cybern. 18.2 (2007),
pp. 171–192, url: https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view
/3712.

[15] E. Mendelson: Theory and problems of Boolean algebra and switching circuits including
150 solved problems, English, Schaum’s Outline Series. New York etc.: McGraw-Hill Book
Comp. 213 p. (1970). 1970.

[16] B. Nagy: Many-valued Logics and the Logic of the C Programming Language, in: ITI 2005,
27th International Conference on Information Technology Interfaces, Cavtat/Dubrovnik,
Croatia, IEEE, 2005, pp. 657–662, doi: https://doi.org/10.1109/ITI.2005.1491200.

[17] B. Nagy, R. Basbous, T. Tajti: Lazy evaluations in Łukasiewicz type fuzzy logic, Fuzzy
Sets Syst. 376 (2019), pp. 127–151, doi: https://doi.org/10.1016/j.fss.2018.11.014.

[18] K. Pásztor-Varga, M. Várterész: A matematikai logika alaklmazásszerű tárgyalása (Math-
ematical logic from application point of view, in Hungarian, textbook), Budapest: Panem,
2003.

[19] F. J. Pelletier, N. M. Martin: Post’s Functional Completeness Theorem, Notre Dame J.
Formal Log. 31.3 (1990), pp. 462–475, doi: https://doi.org/10.1305/ndjfl/1093635508.

[20] A. Puntambekar: Data Structures, UNICORN Publishing Group, 2020, isbn: 9789333223911.
[21] E. Rich, K. Knight: Artificial Intelligence, Artificial Intelligence Series, McGraw-Hill, 1991,

isbn: 9780070522633.
[22] G. van Rossum, The Python Development Team: Python Tutorial (Release 3.6.6rcl).

CreateSpace Independent Publishing Platform, 2018.
[23] S. Russell, P. Norvig: Artificial Intelligence: A Modern Approach, CreateSpace Indepen-

dent Publishing Platform, 2016, isbn: 9781537600314.
[24] H. M. Sheffer: A set of five independent postulates for Boolean Algebras, with application

to logical constants, Transactions of the American Mathematical Society 14 (1913), pp. 481–
488.

[25] B. Stroustrup: The C++ programming language, Pearson Education India, 2000.
[26] M. A. Weiss: Data Structures and Algorithm Analysis, Redwood City, CA; Menlo Park,

CA; Reading, Ma; New York; Amsterdam; Bonn; Sidney; Singapore; Tokyo; Madrid: The
Benjamin/Cummings Publishing Company, Inc., 1995.

[27] P. H. Winston, B. K. P. Horn: LISP, United States: Pearson, Jan. 1989.
[28] N. Wirth: Algorithms & data structures, Prentice-Hall, Inc., 1985.

77

https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3712
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3712
https://doi.org/10.1109/ITI.2005.1491200
https://doi.org/10.1016/j.fss.2018.11.014
https://doi.org/10.1305/ndjfl/1093635508

Submitted: August 10, 2022
Accepted: April 20, 2023
Published online: April 24, 2023

Annales Mathematicae et Informaticae
57 (2023) pp. 78–91
DOI: https://doi.org/10.33039/ami.2023.04.001
URL: https://ami.uni-eszterhazy.hu

Application and impact of electronic
solutions in teaching programming

József Udvaros, Norbert Forman, Dóra Éva Dobák

Budapest Business School, Faculty of Finance and Accountancy,
Department of Business Information Technology

{udvaros.jozsef,forman.norbert,dobak.dora}@uni-bge.hu

Abstract. The market trends that are determining the electronics industry
today point to a sharp increase in the use of IoT devices, sensors are collecting
data around us, using wireless data transmission technologies to transmit the
measured values to cloud-based databases, which are processed with various
software. Low-power microcontrollers developed for battery power, which are
widely used today, provide sensor data collection and data transfer control.

In this article, we present a literature search on the technical IT teaching
tools in use today, some of which are inherently educational and popular
with students and teachers. We pay attention to the educational principles
of technical IT methods.

We show with examples how technical IT solutions can provide an ap-
propriate experiential learning opportunity and background in programming
education. We focus on teaching methods that use microcontrollers and var-
ious sensors to develop programming skills and acquire programming knowl-
edge. By developing both computational and algorithmic thinking, we aim
to develop both skills.
Keywords: Robots, microcontrollers, teaching methods
AMS Subject Classification: 94-06

1. Introduction
Today, most of the devices around us are based on electronic solutions which con-
tain a processor and are controlled by a software. With sensors, they are able to
convert the physical, chemical and biological signals of the outside world into elec-
tronic quantities and then information, which can thus be processed with the help
of software. The electronics used allow battery-powered devices that can handle

https://doi.org/10.33039/ami.2023.04.001
https://ami.uni-eszterhazy.hu
mailto:{udvaros.jozsef,forman.norbert,dobak.dora}@uni-bge.hu

Annal. Math. et Inf. Application and impact of electronic solutions . . .

more and more signals to run operating systems and various applications. These
electronic tools can be used effectively to improve the quality of secondary and
university programming education [12]. In particular, it has a major impact on the
development of technical and computer-minded thinking, without which students
have difficulty in today’s labor market [10].

The aim of this article is to underline the importance of using robots, microcon-
trollers and IoT (Internet of Thinks) devices in secondary and university education.
Using robots, microcontrollers and IoT in education can improve students’ algorith-
mic thinking and familiarize them with programming techniques. The acquisition
of tools using real and scientific examples supports the complex development of
STEM.

2. Methodology
In the article, we conducted a short literature search, where we focused on tech-
nical IT methods, including the project solution method. We determined which
electronic devices are used most in education. We will then conduct a research to
support our hypothesis according to which the use of robots, microcontrollers and
IoT devices in education can improve students’ algorithmic thinking and familiarize
them with programming techniques.

The contribution of robotics to education to clarify new disciplines is remark-
able. In fact, there is a need for experimental examples that facilitate the acquisi-
tion of students ’professional knowledge and thus meet the potential of the actual
systems used in various modern disciplines. In [6], the authors discuss laboratory
experience in implementing an automatic airflow control system for remote configu-
ration and monitoring of convincing size and role. An example is a non-traditional
robot. Built-in electromechanical equipment from old farms are being exploited
and revived using modern, widely available microcontrollers, smartphones, tablets,
network transceivers, motor drives and some low-cost and custom sensors.

Teachers of Technical University of Košice in their article describes the imple-
mentation of IoT technology in the teaching of microprocessor technology. The
method presented in this article combines the reality and virtualization of a micro-
processor technology laboratory. A built-in IoT monitoring device monitors stu-
dents ’microcontroller needles and sends the data through the control application
to the server to which the teacher is connected. The teacher has the opportu-
nity to monitor the development of the program tasks and student code, where
the functionality of these tasks can be checked. Thanks to the remote laboratory
implementation of IoT, students’ lesson tasks have improved [5].

Programming using microcontrollers is becoming increasingly popular in teach-
ing to help learners gain a deeper understanding of programming principles. Using
sensors, motors, and various electronic components with microcontrollers, we can
create impressive results in teaching programming, such as movement, flashing, etc.
It engages students and gets them interested in programming [15]. We can design
applications visually with the help of visual programming, a new trend within cod-

79

Annal. Math. et Inf. J. Udvaros, N. Forman, D. É. Dobák

ing. The use of visual programming is growing in popularity today. TinkerCad is
an excellent tool for visual programming. Using TinkerCad, we can assemble the
circuit, write the software code and simulate the results. This application displays
the result of each step. An application such as this can be used well during a
time of pandemic, when students are being educated online. TinkerCad supports a
variety of predefined components, such as Arduino, Raspberry PI, Micro:Bit, and
more [4, 11, 13, 14]. The authors of this article describe a method for visualizing
programming instructions using the TinkerCad online application.

In [8], the authors detail the development of an approach that provides stu-
dents with an integrated coursework and laboratory experience. The increased
performance and functionality of modern microcontrollers is both an opportunity
and a challenge for educators. Increased complexity, the need to integrate hands-
on laboratory experience, and declining pressures on curriculum hours require a
significant investment of time to modernize microcontroller instruction that few
instructors can afford. However, a successful microcontroller course offers a unique
opportunity to prepare students for large, complex systems.

In his article, Cubero describes how to direct students to become their own best
teachers, able to test their newly acquired skills without receiving minimal or no
help from an instructor. They describe “closed-loop” student-centred learning and
problem-based learning approaches that include weekly lectures and hands-on lab-
oratory activities that maintain students ’curiosity, motivation, and participation
in self-regulated learning. Students must design and test their own original cir-
cuits and software code by modifying, extending, or expanding the sample circuits
and sample codes described in the lecture notes in order to meet and demonstrate
the specific objectives or requirements of each weekly laboratory session. These
“closed-loop” student-centred learning labs ensure that all teams of students reach
a general or minimum acceptable level of practical skills that appropriately pre-
pares them for the competition of “design and construction”. This learning style
also contributes to the development of general lifelong learning skills such as prob-
lem research and identification (problem definition and analysis), independent re-
search and experimentation, decision making, communication and teamwork. Even
without prior hands-on experience in electronic circuit design, programming, and
microcontrollers, all student teams were able to apply and demonstrate new knowl-
edge and skills, design and test original circuit and software designs unsupervised;
solve and correct complex problems successfully and confidently; build a workable
remote-controlled electric vehicle or mobile robot for the ultimate race. Some went
even further and built sensor-controlled, fully autonomous mobile robots [3].

In most articles, the authors suggest using the project method or the problem-
solving method in teaching. In their article, Mendoza and his colleagues present the
content, teaching, and assessment methods of a mandatory course in the design of
microprocessor-based real-time embedded systems in the final years of undergradu-
ate telecommunications engineering. The method used was project-based learning
and assessment was based on the skills learned. Finally, the article reflects on how
well the course has achieved its objectives using a project-oriented approach [7].

80

Annal. Math. et Inf. Application and impact of electronic solutions . . .

Amiel describes a six-year experiment with his peers based on a project-oriented
learning approach to teaching the basics of electronics. The proposed teaching
framework has a dynamic structure as it adapts and modifies the conditions for
annual assessment to help motivate and interest students. The authors present the
effectiveness and value of this approach in terms of student motivation [1].

According to Sari et al., Taking advantage of the benefits of information tech-
nology in the digital age of the twenty-first century is increasing in every economy
to overcome problems and difficulties and find the solutions you want. So the devel-
opment of algorithmic thinking is important as a skill that requires the application
of knowledge from different disciplines, especially the natural sciences, technol-
ogy, engineering and mathematics, and improves the solution of real problems.
Therefore, practical studies are needed on how to develop algorithmic thinking and
what activities and learning contents can be used in classrooms. The impact of
STEM-centric physical computing activities with Arduino on teacher candidates
’algorithmic thinking skills and STEM awareness was investigated using mixed-
method research. In addition, the student-teacher roles in the activities and the
pros and cons of the activities were discussed, taking into account the views of
the future teachers. The results showed that STEM-centric physical computing
activities improve the algorithmic thinking skills of prospective teachers. There-
fore, it can be said that the activities raised the awareness of future teachers about
STEM [9].

Angeli describes in his article that those working in science, technology, en-
gineering, and mathematics play a significant role in the sustainable growth and
stability of the global economy and thus play a key role in the prosperity of all
countries in the world. In this context, computer thinking is an important skill
that allows workers to develop creative solutions to complex problems. However,
all economies in the world need more workers who are able to think computation-
ally about problems, challenges, and solutions. Therefore, integrating the teaching
of computer thinking into secondary and university education is extremely impor-
tant in order to reduce the skills gap between education and the workplace. An
important and crucial question arises as to whether teachers have the knowledge
and skills that will teach students to think computationally. Existing research
shows that teacher-education classes do not currently have the knowledge to facil-
itate computer thinking in their programs. This study focuses on two aspects of
computational thinking, such as algorithmic thinking and debugging skills, using
scaffolding programming scripts in an undergraduate training in educational tech-
nology. The results show a statistically significant improvement in learning in the
algorithmic thinking and debugging skills of preparatory teachers in the context of
LEGO WeDo robot programming activities[2].

3. Results
The use of robots, microcontrollers and IoT (Internet of Thinks) in education can
improve students’ algorithmic thinking and familiarize them with programming

81

Annal. Math. et Inf. J. Udvaros, N. Forman, D. É. Dobák

techniques. And the acquisition of tools through the use of real life and science
examples supports the complex development of STEM. In the following we will
show some of the robots and microcontrollers used in education.

Then, with the results of our research, we confirm that students achieve better
results on average when learning programming using visual tools (microcontrollers,
TinkerCAD). It can be seen that not all tasks had significant results, but we sup-
ported our claims based on these. From the analysis of the results of the 4 task
groups, we can conclude that the students achieved significantly better results in
the case of the conditional branching (if..else) and the do..while conditional loop
instruction task groups. While in the case of the counting loop instruction (for
loop instruction) and the while..do conditional loop instruction task groups, there
were no significantly better results, although on average the students taught with
the help of visual tools performed better here as well.

3.1. LEGO robots
LEGO robots are very useful in education: programming with their help, measure-
ment of various signals (use of sensors), communication between devices, construc-
tion of software-controlled mechanical systems (robots) can be learned and taught
in a playful and experiential way. However, in addition to the many benefits, it
is also important to point out that the transparency of the components is rather
low, and due to the integrity, no details are revealed. The goal of the developers
of LEGO robots was to make the devices as compact as possible, even without
background knowledge.

3.2. Single board computers – microcontrollers
The Raspberry Pi single-sheet computer, originally developed specifically for educa-
tion, and the Arduino circuit, which is indispensable for most hobbyists, including
students and teachers, are also extremely popular. The Arduino is actually a card
that has the contacts of a microcontroller used in the industry connected to more
easily accessible connectors. For hobbyists and students, the simple development
environment and the extremely rich information available on the Internet, as well
as the wide range of additional circuits available cheaply, make it very convenient
and easy to use.

These devices are already much closer to the technical systems used in practice,
the user needs to know more about digital signals, interfaces, electronic solutions,
because they encounter them more directly. In many cases, they are quite sim-
ple to use and provide very good transparency, which is especially important for
education.

In the educational application of Raspberry Pi and Arduino circuits, there are
elaborate solutions for almost every task that, while instructive, often encourage
more than just copying. Unfortunately, the vast majority of the available knowl-
edge (which can be considered as a curriculum in the case of educational use) was

82

Annal. Math. et Inf. Application and impact of electronic solutions . . .

Figure 1. Arduino Uno microcontroller.

produced by professionals with in-depth technical knowledge and attitudes, as well
as professional and didactic reliability.

Figure 2. Rasberry PI microcontroller.

3.3. PIC controller
PIC stands for Peripheral Interface Controller. The PIC microcontroller is the
smallest microcontroller in the world and is programmed to perform a large num-
ber of operations. These were originally designed to support PDP (Programmed
Data Processing) computers to control peripheral devices. It is based on RISC
architecture.

3.4. Micro:Bit
The BBC Micro:Bit is a small, programmable panel with built-in sensors (com-
pass, accelerometer, light sensor), LED matrix display, I/O connectors, Bluetooth
technology. The tool can also be programmed using an easy-to-use graphical block
language, similar to the Scratch environment.

83

Annal. Math. et Inf. J. Udvaros, N. Forman, D. É. Dobák

There are other educational tools on the market that can be considered robots,
which are especially useful in kindergartens and elementary schools to develop
algorithmic thinking in education. Such robots, resp. bots include Code&Go,
Ozobot, Bee-Bot, etc.

Figure 3. Micro:Bit microcontroller.

3.5. Characteristics of technical IT methods
Practice orientation

The real operation of technical IT teaching tools, the handling of real signals and
the creation of effects ensure a practice-orientation. Easy and inexpensive tools
help with experimental education, whether it’s a teacher demonstration or school
or home student experiments. This can improve the retention of interest and
provide an opportunity to work together.

Task orientation

With the help of electronic-electrical sensors, teachers can create projects and tasks
where students can learn how to use the tools and operating principles of the tools
needed to solve the task.

Professionally correct application

Nowadays, technical (electronic) IT tools are used by many people, many people
also share application suggestions and educational materials on the Internet, which
from a pedagogical point of view may not be suitable for achieving the goal. There
are plenty of imaginative and varied solutions to specific problems on the Internet.
We must strive to develop critical thinking, the ability to override, the right attitude
and demandingness. This requires the acquisition of certain basic professional

84

Annal. Math. et Inf. Application and impact of electronic solutions . . .

knowledge, an appropriate level of confidence, and knowledge of the most important
operating principles.

Multidisciplinarity

Technical IT methods can be used in almost all science lessons: in addition to
IT education, physics class (distance, time, acceleration, pressure, speed measure-
ment, . . .), chemistry class (CO, CO2 measurement, . . .) and biology class (blood
pressure, heart rate, . . .).

Transparency

From a pedagogical point of view, it is necessary for the students to understand
the structure of the tools and the operating principles as much as possible. This is
ensured by the transparency feature. It is usually difficult to find a balance, both
superficially and in detail, between problem presentation and solution. This is well
influenced by teachers’ experience in using the tools directly.

Scalability

The tasks in the lessons should be such that everyone can have a sense of success,
everyone can develop, as the skills of the students participating in the lessons in
the field of IT can be especially diverse. Most of the time, their interest in the
subject is not the same. In the case of technical IT methods, this is quite feasible;
the student can solve the given task on many levels, with different additions.

Visual programming is a new trend within programming that allows us to
develop applications. Nowadays, visual programming is becoming very popular.
TinkerCad online application is very suitable for visual programming. Using the
TinkerCad online application, we can assemble our circuit and then simulate the
results after writing the program. In fact, the app visualizes the steps taken. The
app can also be used during a pandemic period when students are being educated
online. TinkerCad can use a lot of predefined tools (parts, sensors) for visualization
on different platforms, such as Arduino, Raspberry PI, Micro: Bit,. . . [1, 2]. Here
are some projects to visualize your programming education using the TinkerCad
online application:

• Password-protected access
• Distance measurement
• Digital clock
• Temperature monitoring – measurement
• Engine control
• Remote control – Bluetooth, Wifi
• Brightness measurement
• Motion detection
• Line tracking
• Moisture measurement

85

Annal. Math. et Inf. J. Udvaros, N. Forman, D. É. Dobák

• Moving lights using LEDs
• Digital sandstone
• Parking system
• RFID identification
• Qcode, barcode reading
• Using the display
• Maze problem

Figure 4. Circuits with Arduino Uno microcontroller created in
TinkerCAD.

3.6. Research
We conducted our research in the second year of a secondary school in Slovakia
(which is not IT oriented). According to the curriculum, we had 15 hours for teach-
ing programming. The research was carried out in two classes, where only a mini-
mal difference can be observed between students’ knowledge level. This difference
does not affect the research results. In this research, the results of a programming
basics survey taught by an instructor are investigated. In this way, we rule out the
possibility that teaching is influenced by multiple teaching methods and personal
factors. We would like to examine the results from several perspectives. We would
like to draw the appropriate conclusions from the results that can be used in fur-
ther teaching work. The studied group is composed of 41 students, 21 students
were taught the basics of programming using the classical method (ORIGINAL
GROUP), while the other 20 students were taught using microcontrollers and Tin-
kerCAD software (CONTROLL GROUP). The aim of the teaching was to learn
and correctly use control structures. For both groups, 4 groups of tasks were eval-
uated in the assessment, which assessed the knowledge of: conditional branching
(if..else), counter loop instructions (for loop instructions), conditional loop instruc-

86

Annal. Math. et Inf. Application and impact of electronic solutions . . .

tions (while and do..while loop instructions). In all four cases, the maximum score
available in the assessment was 5 and the minimum was 0. In our research, we do
not consider gender as it is not relevant in our case.

We examined the answers given by the original and the control group in SPSS
with a hypothesis test (Independent Samples Test), based on which, on the one
hand, the standard deviations of the two groups are the same, so among the tests
offered by SPSS, the results obtained along the same standard deviation should be
taken as a basis.

Table 1. The averages of the responses to the different questions
vary between the two groups.

Table 1 shows how the averages of the responses to the different questions
vary between the two groups. Based on this the average responses for the original
recording are lower compared to the control group.

Table 2. Independent Sample Test of the responses of the two
groups.

87

Annal. Math. et Inf. J. Udvaros, N. Forman, D. É. Dobák

Table 2 (Independent Sample Test) gives an answer to the similarity/difference
of the variances of the two groups and the similarity/difference of the responses of
the two groups.

Based on this, since Sig > 5% for all questions, the standard deviation of the
responses of the two groups can be considered to be the same for all questions, so the
first row should be looked at for all questions when testing similarity/dissimilarity.
Since the Sig (2-tailed) > 5% for all questions, the hypothesis H0 is accepted,
which states that there is no significant difference between the responses of the two
groups.

In addition, we have also considered the case where we do not examine the two
groups separately for each question, but on the basis of the sum score (SUM value).

Table 3. The averages of the total response value (SUM) between
the two groups.

Table 3 shows, similar to the first study (when we looked at each question),
the control group performed better on average in terms of the total response value
(SUM).

Table 4. Independent Sample Test of total response value (SUM).

Table 4 shows the responses of both groups (original and controll) which not
show significant differences here either (because Sig (2-tailed) > 5%).

These would have been the results if the responses had followed a normal devi-
ation.

However, since the normality condition is not met, it was necessary to continue
the tests in a non-parametric direction with a Mann-Whitney test, which does not
require a normal deviation of samples.

The main difference between non-parametric and parametric tests (Independent
Samples Test) is that they are tested on a median basis instead of a mean basis.

88

Annal. Math. et Inf. Application and impact of electronic solutions . . .

Table 5. Hypothesis Test Summary.

Based on results of Table 5, the only significant difference between the two
groups’ responses is for the first and fourth questions. For the other questions and
SUM value, no significant difference is found at the 5% significance level.

4. Conclusion
Most of the devices around us are based on electronic solutions. The results of our
research show that students on average achieve better results when using visual
tools (microcontrollers, TinkerCAD) to learn programming. It can be seen that
there were not significant results for all tasks, but they also support our claims
Electronic tools can be used effectively to raise the standard of secondary and
university programming education. It has a major impact on the development of
technical and computer thinking, without which it will be difficult for students
to succeed in today’s job market. The market trends that are determining the
electronics industry today point in the direction of a sharp increase in the use of
IoT devices. With the help of electronics and technical IT methods, the following
skills can be effectively developed: algorithmic thinking, technical and computer

89

Annal. Math. et Inf. J. Udvaros, N. Forman, D. É. Dobák

thinking, problem solving, project team thinking. We can further increase efficiency
with visual programming. TinkerCad online application is very suitable for visual
programming.

References
[1] F. Amiel, D. Abboud, M. Trocan: A Project Oriented Learning Experience for Teaching

Electronics Fundamentals, Communications Magazine, IEEE 52 (Dec. 2014), pp. 98–100,
doi: https://doi.org/10.1109/MCOM.2014.6979959.

[2] C. Angeli: The effects of scaffolded programming scripts on pre-service teachers’ computa-
tional thinking: Developing algorithmic thinking through programming robots, International
Journal of Child-Computer Interaction (June 2021), p. 100329, doi: https://doi.org/10.1
016/j.ijcci.2021.100329.

[3] N. S. Cubero: Fun and effective self-learning approach to teaching microcontrollers and mo-
bile robotics, International Journal of Electrical Engineering Education 52.4 (2015), pp. 298–
319.

[4] M. Fülöp, J. Udvaros, Á. Gubán, Á. Sándor: Development of Computational Thinking
Using Microcontrollers Integrated into OOP (Object-Oriented Programming), Sustainability
(2022), doi: https://doi.org/10.3390/su14127218.

[5] P. Jacko, M. Bereš, I. Kováčová, J. Molnár, T. Vince, J. Dziak, B. Fecko, Š. Gans, D.
Kováč: Remote IoT Education Laboratory for Microcontrollers Based on the STM32 Chips,
Sensors, MDPI 22.4 (2022), issn: 14248220, doi: https://doi.org/10.3390/s22041440.

[6] D. Loukatos, N. Androulidakis, K. Arvanitis, K. Peppas, E. Chondrogiannis: Using
Open Tools to Transform Retired Equipment into Powerful engineering Education Instru-
ments: A Smart Agri-IoT Control Example, Electronics, MDPI 11.6 (2022), issn: 20799292,
doi: https://doi.org/10.3390/electronics11060855.

[7] J. Pastor, J. M. Villadangos, F. Rodríguez: Project based learning experiences for em-
bedded systems design, in: June 2016, pp. 1–6, doi: https://doi.org/10.1109/TAEE.2016.7
528370.

[8] R. B. Reese, B. A. Jones: Improving the Effectiveness of Microcontroller Education, IEEE
Xplore, doi: https://doi.org/10.1109/SECON.2010.5453894.

[9] U. Sari, H. Pektaş, Ö. Şen, H. Çelik: Algorithmic thinking development through physical
computing activities with Arduino in STEM education, Education and Information Tech-
nologies (Jan. 2022), doi: https://doi.org/10.1007/s10639-022-10893-0.

[10] J. Udvaros, K. Czakóová: Developing Of Computational Thinking Using Microcontrollers
And Simulations, in: EDULEARN21 Proceedings, 13th International Conference on Educa-
tion and New Learning Technologies, Online Conference: IATED, May 2021, pp. 7945–7951,
isbn: 978-84-09-31267-2, doi: https://doi.org/10.21125/edulearn.2021.1619.

[11] J. Udvaros, K. Czakóová: Using Teaching Methods Based On Visualizing By Tinkercad In
Teaching Programming, in: ICERI2021 Proceedings, 14th annual International Conference of
Education, Research and Innovation, Online Conference: IATED, Aug. 2021, pp. 5913–5917,
isbn: 978-84-09-34549-6, doi: https://doi.org/10.21125/iceri.2021.1333.

[12] J. Udvaros, O. Takáč: Developing Computational Thinking By Microcontrollers, in: ICERI
2020 Proceedings, 13th annual International Conference of Education, Research and Inno-
vation, Online Conference: IATED, Sept. 2020, pp. 6877–6882, isbn: 978-84-09-24232-0, doi:
https://doi.org/10.21125/iceri.2020.1474.

[13] J. Udvaros, L. Végh: New Teaching Methods By Using Microcontrollers In Teaching Pro-
gramming, in: eLearning sustainment for never-ending learning, Proceedings of the 16th In-
ternational Scientific Conference "eLearning and Software for Education", Bucharest: Editura
Universitara, Apr. 2020, pp. 630–637, doi: https://doi.org/10.12753/2066-026X-20-082.

90

https://doi.org/10.1109/MCOM.2014.6979959
https://doi.org/10.1016/j.ijcci.2021.100329
https://doi.org/10.1016/j.ijcci.2021.100329
https://doi.org/10.3390/su14127218
https://doi.org/10.3390/s22041440
https://doi.org/10.3390/electronics11060855
https://doi.org/10.1109/TAEE.2016.7528370
https://doi.org/10.1109/TAEE.2016.7528370
https://doi.org/10.1109/SECON.2010.5453894
https://doi.org/10.1007/s10639-022-10893-0
https://doi.org/10.21125/edulearn.2021.1619
https://doi.org/10.21125/iceri.2021.1333
https://doi.org/10.21125/iceri.2020.1474
https://doi.org/10.12753/2066-026X-20-082

Annal. Math. et Inf. Application and impact of electronic solutions . . .

[14] J. Udvaros, L. Végh: Possibilities of Creating Interactive 2D Animations for Education
Using HTML5 Canvas JavaScript Libraries, in: Proceedings of the 16th International Sci-
entific Conference "eLearning and Software for Education", Bucharest: Editura Universitara,
Apr. 2020, pp. 269–274, doi: https://doi.org/10.12753/2066-026X-20-119.

[15] J. Udvaros: Mikrokontrollerek programozásának oktatása TinkerCAD segítségével, Logiszti-
ka – Informatika – Menedzsment 2021 (2021), pp. 22–22.

91

https://doi.org/10.12753/2066-026X-20-119

Submitted: May 24, 2022
Accepted: November 2, 2022
Published online: November 9, 2022

Annales Mathematicae et Informaticae
57 (2023) pp. 92–106
DOI: https://doi.org/10.33039/ami.2022.11.001
URL: https://ami.uni-eszterhazy.hu

Solving Hungarian natural language
processing tasks with multilingual

generative models

Zijian Győző Yang, László János Laki

Hungarian Research Centre for Linguistics
{yang.zijian.gyozo,laki.laszlo}@nytud.hu

MTA-PPKE Hungarian Language Technology Research Group
Pázmány Péter Catholic University,

Faculty of Information Technology and Bionics
{yang.zijian.gyozo,laki.laszlo}@itk.ppke.hu

Abstract. Generative ability is a crucial need for artificial intelligence appli-
cations, such as chatbots, virtual assistants, machine translation systems etc.
In recent years, the transformer-based neural architectures gave a huge boost
to generate human-like English texts. In our research we did experiments
to create pre-trained generative transformer models for Hungarian language
and fine-tune them for multiple types of natural language processing tasks.

In our focus, multilingual models were trained. We have pre-trained a
multilingual BART, then fine-tuned it to various NLP tasks, such as text
classification, abstractive summarization. In our experiments, we focused
on transfer learning techniques to increase the performance. Furthermore,
a M2M100 multilingual model was fine-tuned for a 12-lingual Hungarian-
Centric machine translation. Last but not least, a Marian NMT based
machine translation system was also built from scratch for the 12-lingual
Hungarian-Centric machine translation task.

In our results, using the cross-lingual transfer method we could achieve
higher performance in all of our tasks. In our machine translation experi-
ment, using our fine-tuned M2M100 model we could outperform the Google
Translate, Microsoft Translator and eTranslation.

Keywords: natural language processing, multilingual model, sentiment analy-
sis, abstractive summarization, machine translation, Marian NMT, M2M100

AMS Subject Classification: 68T07, 68T09, 68T50

https://doi.org/10.33039/ami.2022.11.001
https://ami.uni-eszterhazy.hu
mailto:{yang.zijian.gyozo, laki.laszlo}@nytud.hu
mailto:{yang.zijian.gyozo, laki.laszlo}@itk.ppke.hu

Annal. Math. et Inf. Solving Hungarian natural language processing tasks . . .

1. Background
Several efforts have been made to analyze the tremendous amount of data that is
currently available with the long-term goal to understand and analyze patterns.
A highly promising approach towards that direction is the creation of generative
models, that can generate new data instances similar to the original dataset. Recent
advancements in artificial intelligence promote the development of systems with
generative ability.

One aim of this research is to facilitate the work of administrators by processing
human language. The members of the consortium that established the Infocom-
munication and Information Technology National Laboratory (ICT & IT National
Laboratory) (the National Security Service and IdomSoft Zrt.) have set a dual
goal: to support the safe introduction and use of emerging infocommunication and
information technologies and the digital transformation of public administration.

One of IdomSoft LLC.’s1 key objectives is to research and apply the potential
of Artificial Intelligence (AI) based technologies for public administration applica-
tions, enabling customers to be exempted from the provision of all data already
available in public administrations. The developments will save customers from all
the organisational and administrative tasks that can be solved by internal admin-
istrative organisation between public administrations. The aim is also to create a
secure and seamless contactless, fully digitised and automated administration.

This strategic innovation includes, among other things, the feasibility of public
administration services that can handle the specificities of the Hungarian language
at a high level of proficiency and meet the expectations of the 21st century. In order
to achieve these objectives, IdomSoft LLC. cooperates with Hungarian universities
to apply their products, which have been implemented in the R&D process, in
practice in connection with the public administration IT solutions it develops.

Neural Machine Translation (NMT) is an important task in the area of Natural
Language Processing (NLP), which is clearly highlighted by the fact that there is
an increasing demand from the side of both academic and industrial stakeholders to
push the limits of model performance and to come up with new, resource-efficient
solutions. It is getting increasingly important to establish multilingual models that
are able to handle dozens or even more than hundred languages simultaneously.
The implementation of these multilingual models in certain directions and their
application to NLP tasks in novel settings can promote the progress of machine
translation in medium- or low-resourced languages.

Transfer learning represents a key strategy in enhancing model performance.
It offers a solution to exploit the capabilities of a model that is trained for a
certain task in order to use this knowledge to tackle other related problems. For
example, cross-lingual knowledge transfer can substantially increase abstractive
summmarization quality.

Our major research focus is to train multilingual models to NLP tasks followed
by fine-tuning to specific tasks like text classification and abstractive summariza-

1https://idomsoft.hu

93

https://idomsoft.hu

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

tion. We apply cross-lingual knowledge transfer to investigate how it can enhance
model performance in our experimental settings.

Here we report that we could achieve highly superior performance with the
models when cross-lingual knowledge transfer was applied. This further confirms
that the application of transfer learning principles in NLP tasks can represent an
outstanding opportunity to boost model performance and to establish competitive
new approaches in the field of multilingual natural language processing.

2. Related work
The BART [16] is a transformer model developed by Fairseq (Facebook AI Re-
search Sequence-to-Sequence Toolkit). The architecture of BART is based on two
types of Transformers: the bidirectional encoder and the auto-regressive decoder.
BART can be seen as a hybrid of a BERT- [8] and a GPT-type model [24]. The
combination of the different features makes BART especially powerful and offers
a unique opportunity to apply it for various purposes. For example, BERT mod-
els achieve impressive results in word- and sentence-level classification, while GPT
models are well-suited for text generation tasks, such as summarization. BART
can be applied with high success in machine translation, since it brings together
the advantageous properties of both BERT-based and auto-regressive models.

The mBART (multilingual BART) is based on the seq2seq concept and it is
a denoising autoencoder model pre-trained on corpora in multiple languages [20].
The application of mBART can significantly enhance the performance of both su-
pervised and unsupervised machine translation, which can be especially promising
in the case of translation of low- or medium-resourced languages. The mBART
follows a sequence-to-sequence Transformer architecture [33] with 12 encoder and
12 decoder layers completed with an additional normalization layer. The con-
ceptual framework of mBART is based on multilingual pre-training followed by
fine-tuning to given language pairs. To pre-train the model, the CC25 corpus
was applied [7] [15], which is a dataset consisting of 25 languages from different
families. The texts were extracted from the CommonCrawl database and went
through tokenization as a pre-processing step. The application of mBART could
significantly improve the quality of both sentence-level and document-level machine
translation, for example, in the case of low resource language pairs like English-
Vietnamese or English-Turkish, more than 12 BLEU gains could be reached. On
the contrary, for high resource language pairs, this performance gain was not ob-
servable or even resulted in a slightly worse performance. The results acquired by
seq2seq-based approaches represent a significant improvement in the area of ma-
chine translation in comparison to previous efforts [20] [17]. The mBART was later
expanded to mBART50 by incorporating additional 25 languages in the pipeline
(doubling the number of the included languages), which resulted in remarkable
BLEU improvements (up to 15 BLEU improvement in the case of some low re-
source languages) [30]. Taken together, the performance enhancement observed
using mBART models suggests that there is transfer learning potential from the

94

Annal. Math. et Inf. Solving Hungarian natural language processing tasks . . .

representations acquired during multilingual pre-training. The mBART does not
contains Hungarian language knowledge, thus we have pre-trained own English-
Hungarian bilingual BART models.

Cross-lingual knowledge transfer can significantly improve model performance.
For instance, Kahla et al. pre-trained a multilingual BERT model on a Hungar-
ian corpus, then fine-tuned for abstractive summarization in Arabic. Similarly,
the learned representations from pre-training on English corpus were transferred
to Arabic in an attempt to improve the quality of summarization. The results
indicate that it is possible to significantly elevate the quality of abstractive sum-
marization by applying multilingual models pre-trained on a given language and
transfer the acquired knowledge to another language [14]. The work by Artetxe
et al. revealed important insights into the generalization ability of multilingual
models and found that these models could achieve outstanding results on cross-
lingual transfer benchmarks [2]. Additionally, cross-lingual knowledge transfer has
been applied successfully in a variety of different areas, such as temporal expression
extraction [6], name entity recognition [11], and utterance interpretation [26].

In machine translation research, there are only a few examples of multilingual
models that can translate from any languages to Hungarian and vice versa. For re-
search purposes, M2M100 [10] contains many languages including Hungarian, but
it is an English-Centric model and it cannot translate from different languages to
Hungarian. Among the industrial solutions, there are some multilingual transla-
tion systems, for instance Google Translate, Microsoft Translator or eTranslation,
which use multilingual or bilingual models to translate from different languages to
Hungarian.

The M2M100 project aimed at developing a translation tool comprising 103
different languages and 204 translation directions. A key proposition of the project
was to initiate a paradigm shift in machine translation from English-Centric ap-
proaches towards multilingual model-based solutions [1]. Machine translation from
multiple languages to multiple languages requires large datasets. This gave rise
to a series of improvements in the generation of repositories with large data vol-
ume, including data mining [3] and reverse translation [28]. Hungarian translation
capability is covered in M2M100, therefore it can be exploited in our projects as
well.

The Marian NMT framework [13] is written in C++ language, which is an easy
to install and well-annotated machine translation tool. Furthermore, its efficiency
regarding memory usage and resource requirements makes it especially competent.
Additionally, its minimal dependency on other technical solutions facilitates its
application on a wider scale [12]. Due to its highly advantageous characteristics,
Marian NMT is the most commonly used machine translation tool by academic
users and developers [4]. Marian NMT operates using an attention model sup-
ported by an encoder-decoder architecture. Marian NMT is based on a neural
machine translation model and it can reach the fastest runtime learning without
the use of pre-training. In our experiment, a Marian large model was trained with
the following specifications: 6 encoder layers and 6 decoder layers; 16 heads of at-

95

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

tention; words embedding dimension: 1024; input length: 1024 token; pre-attached
mesh size: 4096.

The Google Translate [35] was launched in 2003. During the first phase, its
operating principle was restricted to statistical machine translation, which was su-
perseded by neural network-based machine translation in 2016. The quality of
the translation has been significantly improved with the introduction of the neural
network-based approach. This largely affected the performance in terms of infer-
ences on a broader context and consequently more authentic translations. The
Google Translate provides a record of results with several types of different trans-
lated versions, for example in the case of languages with gender distinction (e.g.
French or Spanish), the feminine version is listed first followed by the masculine
version [25]. Google Translate has the ability to handle 109 different languages
with the add-on feature of translating spoken texts since 2020.

The Bing Translator is a machine translation solution developed by Microsoft
Cognitive Services. It is capable of translating texts in more than 100 different lan-
guages and it even provides a solution for translating entire documents. Initially,
it applied statistical machine translation, which was replaced by a neural network-
based approach in 2018. Xu Tan et al. have developed a tool [29] to overcome the
difference in the accuracy between multilingual and monolingual models, which is
based on the knowledge distillation principle [5]. The core principle behind knowl-
edge distillation is to increase efficiency and model performance by designating a
‘student model’, that can achieve the performance of a ‘teacher model’ or a set
of models. The way this concept is implemented to machine translation means
that there are language pair-specific teacher models that are used to train the stu-
dent model that acquire the capability of handling all the languages by the teacher
models. The effectiveness of this methodology is represented by its advanced per-
formance in translation of TED talk transcripts from 44 languages to English,
during which a BLEU-score improvement of 1 or even higher was achieved [29].

eTranslation2 is an automated translation solution that can be applied to trans-
late texts or entire documents written in any of the official languages of the Member
States of the European Union, as well as Icelandic, Norwegian, Russian and simpli-
fied Chinese. The aim of the European Commission with the launch of eTranslation
was to support small and medium-sized companies in the European Union, more-
over to facilitate the interaction between public service providers, administrative
officials and SMEs. The eTranslation tool can be especially useful, when translation
capability is required during administrative and bureaucratic tasks. It is important
to highlight that it can be easily integrated with other supporting digital solutions.
To further support the machine translation procedure, several processing steps and
text filtering options are also available under the CEF eTranslation Building Block
project. A good example of that is the built-in option, which first divides long
sentences into smaller parts before translation, which are later reconstructed to a
coherent text. The eTranslation system has been trained on texts with subject-

2https://ec.europa.eu/info/resources-partners/machine-translation-public-adminis
trations-etranslation_en

96

https://ec.europa.eu/info/resources-partners/machine-translation-public-administrations-etranslation_en
https://ec.europa.eu/info/resources-partners/machine-translation-public-administrations-etranslation_en

Annal. Math. et Inf. Solving Hungarian natural language processing tasks . . .

specific content, such as tenders, legal and medical texts, etc. The model has been
trained in 24 different languages on more than 1 billion sentences.

3. Corpora
In order to train our bilingual BART models, two different corpora were used:
Hungarian and English Wikipedia. In Table 1, you can see the characteristics of
the two corpora.

Table 1. Characteristics of the pre-training corpora for BART.

Segment Token Type
Paragraph
sentence #
(median)

Paragraph
token #
(median)

English
WikiText-103 707,391 96,534,563 596,820 5 125

Hungarian
Wikipedia 1,098,156 90,349.849 3,137,980 4 69

For fine-tuning our BART models to sentiment analysis task, we used the Hun-
garian Twitter Sentiment Corpus3 that is created by Precognox4. According to the
international benchmarks [34] we created two subcorpora from this corpus:

• 2-class (HTS2): binary classification subcorpus. We have converted the scores
1 and 2 to 0 as negative, scores 4 and 5 to 1 as positive. Score 3 was ignored
to avoid the ambiguities. Training corpus: 2,468 segments. Test corpus: 269
segments.

• 5-class (HTS5): original five-point likert scaled corpus. 1: very negative, 2:
negative, 3: neutral, 4: positive, 5: very positive. Training corpus: 3,600
segments. Test corpus: 400 segments.

For the zeroshot and transfer sentiment analysis experiments, we used the SST2
and SST5 corpora from GLUE [34] benchmark.

For the summarization task, we used the H+I corpus that Yang et al. used in
their research [36], NOL (Népszabadság online corpus; nol.hu online articles (art)
and its’ leads from 1999 to 2016) and MARCELL [32] (law documents (doc) and
its’ one line descriptions (desc) from 1991 to 2019) corpora. Table 2 shows the char-
acteristics of the fine-tuning corpora. For the zeroshot and transfer summarization
experiments, we used the CNN/Daily Mail [27] corpora.

In our machine translation task, we built Hungarian-Centric translation models
with 12 languages, which means the source text can be in 12 different languages
and the target language is Hungarian (hu) in all cases. The 12 different source
languages are the following:

3http://opendata.hu/dataset/hungarian-twitter-sentiment-corpus
4https://www.precognox.com

97

http://opendata.hu/dataset/hungarian-twitter-sentiment-corpus
https://www.precognox.com

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

Table 2. Characteristics of the fine-tuning corpora.

Segment Token # Type # Avg. token #
HTS2 2,737 42,797 13,713 15.62
HTS5 4,000 59,997 18,423 14.99

H+I 559,162 147,099,485 (art)
16,699,600 (lead)

2,949,173 (art)
749,586 (lead)

263.07 (art)
29.87 (lead)

NOL 397,343 153,003,164 (art)
15,786,166 (lead)

2,482,398 (art)
623,445 (lead)

384.52 (art)
39.71 (lead)

MARCELL 24,747 27,834,358 (doc)
277,732 (desc)

444,352 (doc)
29,189 (desc)

1124.82 (doc)
11.59 (desc)

• Bulgarian (bg), Czech (cs), German (de), English (en), Croatian (hr), Polish
(pl), Romanian (ro), Russian (ru), Slovak (sk), Slovene (sl), Serbian (sr),
Ukrainian (uk)

In order to build a machine translation from scratch, a huge amount of data is
required. In contrast, for fine-tuning task, smaller amount of data is enough. Thus,
we created two corpora for our task. First one contains 8 million (8M) segments
per language (except for Ukrainian, due to lack of data it contains only 5,805,144
segments), the second one is a sub-corpus of the 8M corpus that contains 3 million
(3M) segments for each language. The data were collected from OPUS [31] that is
composed of the following sub-corpora:

• Bible, Bible-uedin, Books, CCAligned, CCMatrix, DGT, ECB, ELITR,
ELITR-ECA, ELRC_2922, ELRC_2923, ELRC_3382, EMEA,
EUbookshop, EUconst, Europarl, GNOME, GlobalVoices, JRC,
JRC-Acquis, KDE4, KDEdoc, MultiCCAligned, MultiParaCrawl,
OpenSubtitles, PHP, ParaCrawl, QED, TED2020, Tatoeba, TildeMODEL,
Ubuntu, WMT-News, WikiMatrix, Wikimedia, Wikipedia, XLEnt

The different language pairs contain different composite of the sub-corpora. In
Table 3, you can see the characteristics of the training sub-corpora for the machine
translation task.

4. Experiments
In our pre-training experiment, we have trained two bilingual BART models of
different size:

• BART-base: base size BART model trained on English and Hungarian
Wikipedia. Main hyper-parameters: 6 encoder layers and 6 decoder layers;
12 attention heads; word embedding dimensions: 768; input length: 512; 140
million parameters.

98

Annal. Math. et Inf. Solving Hungarian natural language processing tasks . . .

Table 3. Characteristics of the machine translation corpora.

Token
8M / 3M

Type
8M / 3M

Avg. token / sent
8M / 3M

bg 101,701,016 / 38,149,260 998,060 / 586,926 12.71 / 12.72
hu 93,370,875 / 35,023,413 1,843,452 / 1,057,434 11.67 / 11.68
cs 96,854,637 / 36,345,169 1,369,081 / 797,557 12.11 / 12.12
hu 96,313,811 / 36,125,748 2,008,769 / 1,141,009 12.04 / 12.04
de 123,826,131 / 46,407,141 1,708,615 /957,634 15.48 / 15.47
hu 113,026,306 / 42,365,265 2,215,093 / 1,267,205 14.13 / 14.12
en 118,593,896 / 44,440,629 1,112,914 / 593,035 14.82 / 14.81
hu 104,287,145 / 39,072,921 2,375,910 / 1,331,924 13.04 / 13.02
hr 78,932,860 / 29,601,947 1,075,070 / 631,246 9.87 / 9.87
hu 78,540,254 / 29,445,821 1,685,025 / 961,367 9.82 / 9.82
pl 97,533,671 / 36,584,480 1,350,775 / 793,299 12.19 / 12.20
hu 98,984,434 / 37,126,013 2,062,157 / 1,166,764 12.37 / 12.38
ro 110,276,300 / 41,357,056 952,906 / 555,642 13.79 / 13.79
hu 93,431,714 / 35,058,265 1,906,878 / 1,091,748 11.68 / 11.69
ru 88,227,629 / 33,085,548 1,376,699 / 807,518 11.03 / 11.03
hu 85,205,960 / 31,956,481 1,838,741 / 1,049,578 10.65 / 10.65
sk 122,935,150 / 46,085,577 1,567,148 / 920,586 15.37 / 15.36
hu 123,016,834 / 46,105,105 2,225,916 / 1,278,686 15.38 / 15.37
sl 106,838,393 / 40,042,349 1,195,476 / 703,052 13.36 / 13.35
hu 106,714,770 / 40,013,573 1,973,244 / 1,138,862 13.34 / 13.34
sr 72,647,210 / 27,237,077 1,185,523 / 710,495 9.08 / 9.08
hu 71,058,803 / 26,642,218 1,446,568 / 832,887 8.88 / 8.88
uk 70,816,656 / 36,581,363 1,306,774 / 927,544 12.20 / 12.19
hu 69,564,268 / 35,933,267 1,556,554 / 1,088,340 11.98 / 11.98

• BART-large: large size BART model that trained on English and Hungarian
Wikipedia. Main hyper-parameters: 12 encoder layers and 12 decoder layers;
16 attention heads; word embedding dimensions: 1024; input length: 1024;
400 million parameters.

In our fine-tuning experiments, we performed three different tasks:

1. Sequence classification: Using our pre-trained bilingual BART models and
two multilingual BERT-based models (mBERT [9] and XLM-RoBERTa [19]),
we carried out three different experiments in sentence-level sentiment analy-
sis:

• baseline: We fine-tuned and tested the four models on HTS2 and HTS5.
• zeroshot: We fine-tuned the four models on SST2 and SST5, then tested

on HTS2 and HTS5.

99

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

• transfer : We fine-tuned the four models on SST2 and SST5, then further
fine-tuned on HTS2 and HTS5, finally tested on HTS2 and HTS5.

2. Text summarization: We fine-tuned the BART base model on three dif-
ferent corpora: H+I, NOL and MARCELL. Because of hardware limits, we
could not fine-tuned our BART large model on summarization task. We
carried out two different experiments in text summarization task:

• baseline: We fine-tuned and tested our model on the three corpora.
• transfer (tf): We fine-tuned our model on CNN/Daily Mail, then further

fine-tuned and tested on the three Hungarian corpora.

3. Machine translation: We fine-tuned the M2M100 large model (facebook/
m2m100_1.2B5) on the 3M sub-corpus for machine translation. The source
text can be in 12 different languages, the target text is Hungarian. In this
experiment, we fine-tuned our model with only 1 epoch.

• From scratch: In the case of machine translation, we also trained a
multilingual translation model from scratch. For this task, we used the
Marian NMT [13] framework. For training Marian NMT model, we used
the 8M corpus for machine translation. Similar to the M2M100 exper-
iment, the source text can be in 12 different languages, the target text
is Hungarian. To help the translation model, we inserted the language
code at the beginning of the source segments in the following format
(lang is the ISO language code): __lang__. A Marian large model was
trained with 66 epoch.

5. Results
In order to evaluate our experiments, the following metrics were used:

• Accuracy: In the case of sentiment analysis tasks, accuracy metrics were used.

• ROUGE [18] : For summarization tasks, we used the ROUGE metrics in the
following format: ROUGE-1/ROUGE-2/ROUGE-L.

• BLEU [21], chrF [22]: For word-level and character-level evaluation of ma-
chine translation, SacreBLEU [23] and chrF-6 metrics were used in the fol-
lowing format: BLEU/chrF-6.

In Table 4, you can see the results of the sentiment analysis experiments. For
transfer and zeroshot tasks, first, we fine-tuned the models on the English SST
corpora. Under the double line, you can see the results of the SST fine-tuning.
Above the double line, you can see the results of our experiments. In all cases,
the transfer task could increase the result of the models. It can prove that adding
relevant data to model could increase performance, even if it is in another language.

5https://huggingface.co/facebook/m2m100_1.2B

100

https://huggingface.co/facebook/m2m100_1.2B

Annal. Math. et Inf. Solving Hungarian natural language processing tasks . . .

Table 4. Sentiment analysis results.

HTS2 HTS5
BART-base (baseline) 74.44 56.75
BART-base (zeroshot) 42.96 28.75
BART-base (transfer) 74.81 57.25
BART-large (baseline) 74.07 56.00
BART-large (zeroshot) 44.81 23.50
BART-large (transfer) 74.59 56.74
mBERT (baseline) 78.51 57.74
mBERT (zeroshot) 47.41 30.50
mBERT (transfer) 80.37 57.99
XLM (baseline) 83.33 63.49
XLM (zeroshot) 68.88 40.99
XLM (transfer) 84.81 79.79

SST2 SST5
BART-base 79.01 36.72
BART-large 80.27 36.36
mBERT 90.59 49.57
XLM 93.34 50.43

In Table 5, you can see the results of the summarization task. Similar to the
classification task, under the double line, you can see the result of the fine-tuning
on the English CNN/Daily Mail corpora. Above the double line, you can see our
experiment. As you can see in the Table 5, transfer method in this case could also
increase the performance.

Table 5. Abstractive summarization results.

H+I NOL MARCELL
BART-base (baseline) 31.4/14.3/23.5 42.7/27.6/35.4 71.5/63.0/69.9
BART-base-tf 31.8/14.5/23.5 45.1/30.5/37.6 77.1/70.6/76.0

CNN/Daily Mail
BART-base 40.1/17.6/27.4
BART en original 44.2/21.3/40.9

In Table 6, you can see the results of the machine translation experiments. We
have compared our Marian and M2M100 models with Google Translate, Microsoft
Translator and eTranslation (the eTranslation cannot translate serbian, thus this
results is missing).

The M2M100 fine-tuning results in significantly higher scores then any other
tools included in our experimental analysis. Compared to Marian, M2M100 uses
only 3 million segments for each language, and only 1 epoch for fine-tuning. It
means, the model could transfer significant amount of knowledge from the pre-

101

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

Table 6. Comparision of performance of different machine trans-
lation models.

Marian M2M100 Google Microsoft eTranslation
bg 21.3/43.9 26.6/48.0 20.0/43.6 20.8/44.2 22.3/45.6
cs 22.5/46.0 28.9/50.3 22.6/45.3 23.1/45.9 24.7/47.4
de 21.9/46.2 28.3/51.4 22.7/48.0 22.8/47.8 24.0/48.8
en 27.7/49.6 34.4/54.7 25.3/49.1 26.3/50.3 28.3/51.3
hr 19.2/42.7 26.2/47.3 19.6/42.5 20.1/43.1 20.9/43.7
pl 21.2/45.2 28.3/50.2 21.4/45.4 22.2/45.7 23.9/47.2
ro 19.5/43.8 26.4/48.7 21.0/44.9 21.8/45.7 23.6/46.9
ru 19.7/43.9 25.1/48.1 19.8/44.5 21.0/45.6 20.3/44.8
sk 23.1/48.9 30.9/53.9 22.6/47.7 23.1/48.5 26.4/50.8
sl 22.7/45.8 27.7/50.5 14.4/34.4 21.5/45.0 26.0/48.4
sr 18.0/40.5 23.4/44.7 18.0/40.7 19.2/41.5 -
uk 24.2/49.8 32.6/55.2 21.8/47.0 23.3/48.2 22.9/48.5
avg 21.8/45.5 28.2/50.3 20.8/44.4 22.1/46.0 23.9/47.6

trained 100 language. Thus, less amount data and training steps are enough to
achieve higher results. Our Marian experiment used 2.5x larger corpora and 66x
more epoch and still gained lower performance than our fine-tuned M2M100 model,
but still better than the Google Translate, for instance. Our Marian model could
not outperformed the eTranslation, which is not surprising, because the eTrans-
lation uses different bilingual models to translate, and a bilingual model is more
accurate than a 12-lingual model. Therefore, our M2M100 model is an outstand-
ing result, because it uses only one model that can gain better results than the
bilingual models.

6. Conclusion
In our research, we pre-trained and fine-tuned different transformer-based multilin-
gual generative models for Hungarian natural language processing tasks. We have
carried out four different experiments. For pre-training language model, encoder-
decoder autoregressive BART models were applied. As classification task, we fine-
tuned four different models for sentiment analysis. For summarization task, our
pre-trained BART base model was fine-tuned on three different corpora. We also
did experiments in zero-shot and cross-lingual transfer learning settings. Last but
not least, we built the first (two at once) 12-lingual Hungarian-Centric machine
translation model, which uses only one model to translate from 12 languages to
Hungarian. In this task, we trained a model from scratch and the M2M100 model
was fine-tuned. Our fine-tuned M2M100 used much less data and training steps
and yet, it could outperform the Google Translate, the Microsoft Translator and
the eTranslation.

102

Annal. Math. et Inf. Solving Hungarian natural language processing tasks . . .

Acknowledgements. The research reported in the current publication was car-
ried out by affiliated members of the Pázmány Péter Catholic University and the
IdomSoft Ltd, and it was supported by the Ministry of Innovation and Technology
and the National Research, Development and Innovation Office within the frame-
work of the National Laboratory of Infocommunication and Information Technol-
ogy.

References
[1] R. Aharoni, M. Johnson, O. Firat: Massively Multilingual Neural Machine Translation,

in: Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), Minneapolis, Minnesota: Association for Computational Linguistics, June 2019,
pp. 3874–3884, doi: https://doi.org/10.18653/v1/N19-1388.

[2] M. Artetxe, S. Ruder, D. Yogatama: On the Cross-lingual Transferability of Monolingual
Representations, in: Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, Association for Computational Linguistics, 2020, doi: https://doi.or
g/10.18653/v1/2020.acl-main.421.

[3] M. Artetxe, H. Schwenk: Massively Multilingual Sentence Embeddings for Zero-Shot
Cross-Lingual Transfer and Beyond, Transactions of the Association for Computational Lin-
guistics 7 (2019), pp. 597–610, doi: https://doi.org/10.1162/tacl_a_00288.

[4] L. Barrault, O. Bojar, M. R. Costa-jussà, C. Federmann, M. Fishel, Y. Graham, B.
Haddow, M. Huck, P. Koehn, S. Malmasi, C. Monz, M. MĂźller, S. Pal, M. Post,
M. Zampieri: Findings of the 2019 Conference on Machine Translation (WMT19), in: Pro-
ceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers,
Day 1), Florence, Italy: Association for Computational Linguistics, 2019, pp. 1–61.

[5] C. Bucila, R. Caruana, A. Niculescu-Mizil: Model Compression, in: Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’06, Philadelphia, PA, USA: Association for Computing Machinery, 2006, pp. 535–541,
isbn: 1595933395.

[6] Y. Cao, W. Groves, T. K. Saha, J. R. Tetreault, A. Jaimes, H. Peng, P. S. Yu: XLTime:
A Cross-Lingual Knowledge Transfer Framework for Temporal Expression Extraction, in:
arXiv, 2022, doi: https://doi.org/10.48550/ARXIV.2205.01757.

[7] P.-J. Chen, J. Shen, M. Le, V. Chaudhary, A. El-Kishky, G. Wenzek, M. Ott, M.
Ranzato: Facebook AI’s WAT19 Myanmar-English Translation Task Submission, 2019, doi:
https://doi.org/10.48550/ARXIV.1910.06848.

[8] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova: BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding, in: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota: Asso-
ciation for Computational Linguistics, June 2019, pp. 4171–4186, doi: https://doi.org/10
.18653/v1/N19-1423.

[9] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova: BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding, in: Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota: Association
for Computational Linguistics, June 2019, pp. 4171–4186.

103

https://doi.org/10.18653/v1/N19-1388
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.48550/ARXIV.2205.01757
https://doi.org/10.48550/ARXIV.1910.06848
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

[10] A. Fan, S. Bhosale, H. Schwenk, Z. Ma, A. El-Kishky, S. Goyal, M. Baines, O. Çelebi,
G. Wenzek, V. Chaudhary, N. Goyal, T. Birch, V. Liptchinsky, S. Edunov, E. Grave,
M. Auli, A. Joulin: Beyond English-Centric Multilingual Machine Translation, ArXiv
abs/2010.11125 (2020).

[11] X. Feng, X. Feng, B. Qin, Z. Feng, T. Liu: Improving Low Resource Named Entity Recog-
nition using Cross-lingual Knowledge Transfer, in: July 2018, pp. 4071–4077, doi: https:
//doi.org/10.24963/ijcai.2018/566.

[12] M. Junczys-Dowmunt, R. Grundkiewicz, T. Dwojak, H. Hoang, K. Heafield, T. Neck-
ermann, F. Seide, U. Germann, A. F. Aji, N. Bogoychev, A. F. T. Martins, A. Birch:
Marian: Fast Neural Machine Translation in C++, in: Proceedings of ACL 2018, Sys-
tem Demonstrations, Melbourne, Australia: Association for Computational Linguistics, July
2018, pp. 116–121, doi: https://doi.org/10.18653/v1/P18-4020, url: https://aclanthol
ogy.org/P18-4020.

[13] M. Junczys-Dowmunt, R. Grundkiewicz, T. Dwojak, H. Hoang, K. Heafield, T. Neck-
ermann, F. Seide, U. Germann, A. Fikri Aji, N. Bogoychev, A. F. T. Martins, A.
Birch: Marian: Fast Neural Machine Translation in C++, in: Proceedings of ACL 2018,
System Demonstrations, Melbourne, Australia: Association for Computational Linguistics,
2018, pp. 116–121.

[14] M. Kahla, Z. G. Yang, A. Novák: Cross-lingual Fine-tuning for Abstractive Arabic Text
Summarization, in: Proceedings of the International Conference on Recent Advances in Nat-
ural Language Processing (RANLP 2021), Held Online: INCOMA Ltd., Sept. 2021, pp. 655–
663.

[15] G. Lample, A. Conneau: Cross-lingual Language Model Pretraining, 2019, doi: https://d
oi.org/10.48550/ARXIV.1901.07291.

[16] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, L.
Zettlemoyer: BART: Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension, in: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, Online: Association for Computational
Linguistics, July 2020, pp. 7871–7880, doi: https://doi.org/10.18653/v1/2020.acl-main
.703.

[17] X. Li, G. Li, L. Liu, M. Meng, S. Shi: On the Word Alignment from Neural Machine
Translation, in: Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics, Florence, Italy: Association for Computational Linguistics, July 2019,
pp. 1293–1303, doi: https://doi.org/10.18653/v1/P19-1124.

[18] C.-Y. Lin: ROUGE: A Package for Automatic Evaluation of Summaries, in: Text Summa-
rization Branches Out, Barcelona, Spain: Association for Computational Linguistics, July
2004, pp. 74–81.

[19] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, V. Stoyanov: RoBERTa: A Robustly Optimized BERT Pretraining Approach, CoRR
(2019).

[20] L. Miculicich, D. Ram, N. Pappas, J. Henderson: Document-Level Neural Machine Trans-
lation with Hierarchical Attention Networks, in: Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing, Brussels, Belgium: Association for Com-
putational Linguistics, 2018, pp. 2947–2954, doi: https://doi.org/10.18653/v1/D18-1325.

[21] K. Papineni, S. Roukos, T. Ward, W.-J. Zhu: Bleu: a Method for Automatic Evaluation
of Machine Translation, in: Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, Philadelphia, Pennsylvania, USA: Association for Computational
Linguistics, July 2002, pp. 311–318, doi: https://doi.org/10.3115/1073083.1073135.

[22] M. Popović: chrF: character n-gram F-score for automatic MT evaluation, in: Proceedings
of the Tenth Workshop on Statistical Machine Translation, Lisbon, Portugal: Association for
Computational Linguistics, Sept. 2015, pp. 392–395, doi: https://doi.org/10.18653/v1/W1
5-3049.

104

https://doi.org/10.24963/ijcai.2018/566
https://doi.org/10.24963/ijcai.2018/566
https://doi.org/10.18653/v1/P18-4020
https://aclanthology.org/P18-4020
https://aclanthology.org/P18-4020
https://doi.org/10.48550/ARXIV.1901.07291
https://doi.org/10.48550/ARXIV.1901.07291
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/P19-1124
https://doi.org/10.18653/v1/D18-1325
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049

Annal. Math. et Inf. Solving Hungarian natural language processing tasks . . .

[23] M. Post: A Call for Clarity in Reporting BLEU Scores, in: Proceedings of the Third Confer-
ence on Machine Translation: Research Papers, Brussels, Belgium: Association for Compu-
tational Linguistics, Oct. 2018, pp. 186–191, doi: https://doi.org/10.18653/v1/W18-6319.

[24] A. Radford, K. Narasimhan: Improving Language Understanding by Generative Pre-
Training, in: 2018.

[25] A. A. Rescigno, J. Monti, A. Way, E. Vanmassenhove: A Case Study of Natural Gender
Phenomena in Translation: A Comparison of Google Translate, Bing Microsoft Translator
and DeepL for English to Italian, French and Spanish, in: Workshop on the Impact of
Machine Translation (iMpacT 2020), Virtual: Association for Machine Translation in the
Americas, Oct. 2020, pp. 62–90.

[26] S. Schuster, S. Gupta, R. Shah, M. Lewis: Cross-lingual Transfer Learning for Multilin-
gual Task Oriented Dialog, in: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), Minneapolis, Minnesota: Association for Computational
Linguistics, June 2019, pp. 3795–3805, doi: https://doi.org/10.18653/v1/N19-1380.

[27] A. See, P. J. Liu, C. D. Manning: Get To The Point: Summarization with Pointer-
Generator Networks, in: Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Vancouver, Canada: Association for
Computational Linguistics, July 2017, pp. 1073–1083, doi: https://doi.org/10.18653/v1
/P17-1099.

[28] R. Sennrich, B. Haddow, A. Birch: Neural Machine Translation of Rare Words with Sub-
word Units, in: Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Berlin, Germany: Association for Computational Lin-
guistics, Aug. 2016, pp. 1715–1725, doi: https://doi.org/10.18653/v1/P16- 1162, url:
https://aclanthology.org/P16-1162.

[29] X. Tan, Y. Ren, D. He, T. Qin, T.-Y. Liu: Multilingual Neural Machine Translation with
Knowledge Distillation, in: International Conference on Learning Representations, 2019.

[30] Y. Tang, C. Tran, X. Li, P.-J. Chen, N. Goyal, V. Chaudhary, J. Gu, A. Fan: Mul-
tilingual Translation with Extensible Multilingual Pretraining and Finetuning, 2020, doi:
https://doi.org/10.48550/ARXIV.2008.00401.

[31] J. Tiedemann: Parallel Data, Tools and Interfaces in OPUS, in: Proceedings of the Eight
International Conference on Language Resources and Evaluation (LREC’12), ed. by N. C. (
Chair), K. Choukri, T. Declerck, M. U. Dogan, B. Maegaard, J. Mariani, J. Odijk,
S. Piperidis, Istanbul, Turkey: European Language Resources Association (ELRA), 2012,
isbn: 978-2-9517408-7-7.

[32] T. Váradi, S. Koeva, M. Yamalov, M. Tadić, B. Sass, B. Nitoń, M. Ogrodniczuk,
P. Pęzik, V. Barbu Mititelu, R. Ion, E. Irimia, M. Mitrofan, V. Păis, , D. Tufis, , R.
Garabík, S. Krek, A. Repar, M. Rihtar, J. Brank: The MARCELL Legislative Corpus,
English, in: Proceedings of the 12th Language Resources and Evaluation Conference, Mar-
seille, France: European Language Resources Association, May 2020, pp. 3761–3768, isbn:
979-10-95546-34-4.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
I. Polosukhin: Attention is All you Need, in: Advances in Neural Information Processing
Systems 30, ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, R. Garnett, Curran Associates, Inc., 2017, pp. 5998–6008.

[34] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, S. Bowman: GLUE: A Multi-Task
Benchmark and Analysis Platform for Natural Language Understanding, in: Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, Brussels, Belgium: Association for Computational Linguistics, Nov. 2018, pp. 353–355,
doi: https://doi.org/10.18653/v1/W18-5446.

105

https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/N19-1380
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/P16-1162
https://doi.org/10.48550/ARXIV.2008.00401
https://doi.org/10.18653/v1/W18-5446

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

[35] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y.
Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S.
Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang,
C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, J.
Dean: Google’s Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation, CoRR abs/1609.08144 (2016).

[36] Z. G. Yang, Á. Agócs, G. Kusper, T. Váradi: Abstractive text summarization for Hun-
garian, Annales Mathematicae et Informaticae 53 (2021), pp. 299–316.

106

Submitted: April 8, 2022
Accepted: March 2, 2023
Published online: March 10, 2023

Annales Mathematicae et Informaticae
57 (2023) pp. 107–123
DOI: https://doi.org/10.33039/ami.2023.03.001
URL: https://ami.uni-eszterhazy.hu

Building machine reading comprehension
model from scratch

Zijian Győző Yang, Noémi Ligeti-Nagy

Hungarian Research Centre for Linguistics
{yang.zijian.gyozo,ligeti-nagy.noemi}@nytud.hu

Abstract. In this paper, we introduce a machine reading comprehension
model and how we built this model from scratch. Reading comprehension
is a crucial requisite for artificial intelligence applications, such as Question-
Answering systems, chatbots, virtual assistants etc. Reading comprehension
task requires the highest complexity of natural language processing meth-
ods. In recent years, the transformer neural architecture could achieve the
ability to solve high complexity tasks. To make these applications available
in Hungarian as well it is inevitable to design a Hungarian corpus of read-
ing comprehension so that the pretrained models can be fine-tuned on this
dataset.

In our research, we have created the HuRC (Hungarian Reading Com-
prehension) corpus, which is the first dataset in Hungarian aiming to train,
test and evaluate language models on a reading comprehension task. We
built such a dataset based on the English ReCoRD corpus. This is a dataset
of 120,000 examples consisting of news articles containing a passage and a
close-style query, where a named entity is masked and the reference answer
has to be found in a list.

Using the evaluated dataset and transformers’ question-answering library,
we have built the first neural machine reading comprehension models in com-
monsense reasoning task for Hungarian.

1. Introduction
Machine (Reading) Comprehension is the field of NLP where we teach machines
to understand and answer questions using unstructured text. Reading comprehen-
sion (RC)—in contrast to information retrieval—requires integrating information
and reasoning about events, entities, and their relations across a full document.
Question answering is conventionally used to assess RC ability.

https://doi.org/10.33039/ami.2023.03.001
https://ami.uni-eszterhazy.hu
mailto:{yang.zijian.gyozo,ligeti-nagy.noemi}@nytud.hu

Annal. Math. et Inf. Z. Gy. Yang, N. Ligeti-Nagy

For English, there are many reading comprehension datasets, many of them
included in benchmark collections (ReCoRD and MultiRC in SuperGLUE, for ex-
ample, [24]) or used as a standalone benchmark dataset (SQuAD, [20]). Models
trained on these datasets approximate, or sometimes even surpass human perfor-
mance.

With a slight delay, but the pre-training of the transformer-based architectures
on Hungarian data has begun [5, 14]. Some multilingual models, such as XLM-
RoBERTa [2] and mT5 [25] also contain Hungarian data. In the future, it is
expected that more models will be taught in Hungarian, and it will be necessary
to measure and compare the comprehension of these models as well.

On the other hand, we still lack Hungarian datasets to train and test these
models. Recently, a Hungarian benchmark kit has been developed [12] containing
4 datasets at the time of submitting this paper. Here we present one of those
datasets, HuRC, which is a large-scale, partly automatically, but partly manually
annotated dataset aiming to test machine reading comprehension. We trained three
different models on the dataset and evaluated their performance on many ways to
illustrate the difficulty of this task in Hungarian. Furthermore, using ensemble
method, we could combine the advantages of our models to achieve the highest
performance.

2. Related work
Current English datasets often frame the task of question answering as reading
comprehension: the question is about a paragraph or a document and the answer
is a span in the document.

Dzendzik et al. [4] provides a deep summary of English machine reading com-
prehension (MRC) datasets. Based on the answer type, they differentiate cloze
answer (the question is a sentence with a missing word which has to be inserted,
e.g. ReCoRD [28]), selective or multiple choice (a number of options is given, and
the correct one(s) should be selected, e.g. MultiRC [9]), boolean (a yes/no answer
is expected, e.g. BoolQ [1]) extractive or span extractive (the answer is a substring
of the passage, e.g. SQuAD [20]) and generative or free form answer (the answer
has to be generated, e.g. NarrativeQA [10]).

The DeepMind Q&A datasets [7] consist of documents from news articles from
CNN and Daily Mail, 90k and 197k documents with 380k and 879k questions,
respectively. News portals have begun to add summary points with each news
piece in recent years, apparently to accommodate online readers’ short attention
spans. These summary points are not simply text extractions from the article, but
rather summary points that can be used to automatically create inquiries that may
require comprehension of the news story to answer. The query is built by removing
an entity from the statement and asking the reader to fill in the most relevant entity
from the text. In pre-processing, entities are detected and coreferenced, and the
text is completely masked. This is done to avoid the model relying on external
knowledge about the entities when deciding on an answer, instead relying only on

108

Annal. Math. et Inf. Building machine reading comprehension model from scratch

its understanding of the context.
A collection of children’s books was assembled from the Project Gutenberg

archives for the Children’s Book Test at Facebook [8]. Each question is made up
of 20 consecutive sentences from the book text, with the 21st sentence serving as
the query statement. A word from the query is selected and masked. The reader
has to decide which word from the text (of the chosen kind) should be used to fill
the placeholder in the query. Here not merely entities are masked: named entities,
common nouns, verbs and prepositions may be placeholders.

StanfordNLP created the SQuAD (Stanford Question Answering Dataset) in
2016 [20], which included over 100,000 question-answer pairs derived from Wikipe-
dia articles. The task was to build a machine learning model to answer questions
using a contextual document as input. The model would return the subset of
the text most likely to answer the query when given a contextual document (free
form text) and a question. The answers do not have to be entities, and no sets of
candidate answers are offered. SQuAD is the first large-scale QA dataset in which
answers are text spans that must be identified without any extra information.
Human annotators achieved an exact match score of 82.304% and a F1-score of
91.221%. No model has been able to surpass the human results on SQuAD for 2
years. In 2018, BERT was introduced [3], and the original BERT model achieved
an exact match score of 85.083% and a F1-score of 91.835%.

MultiRC (Multi-Sentence Reading Comprehension) [9] is a dataset of short
paragraphs and multi-sentence questions, which are questions that may be solved
by combining information from numerous paragraph phrases. The dataset was cre-
ated with three main objectives in mind: i) for each question, the number of right
response possibilities is not pre-determined. This eliminates the model’s reliance
on answer possibilities and forces them to judge the validity of each answer inde-
pendently of the others; ii) It is not necessary for the correct answer(s) to be a span
in the text; iii) The texts come from a variety of sources, including news, fiction,
and historical documents, thus ensuring diversity across domains.

BoolQ contains 15942 examples with naturally occurring questions [1]. Each
example consists of a question, a passage and an answer. The authors sampled
questions from a distribution of information-seeking queries. They assume this
method results in significantly more challenging examples compared to existing
datasets where the text pairs (the questions or the answers) were constructed by
annotators.

Kočiský et al. [10] states that existing RC datasets do not test the essential
integrative aspect of reading comprehension as their questions can be solved re-
lying upon superficial information, such as local context similarity or global term
frequency. They present a novel dataset to tackle this problem. In these tasks the
reader must answer questions about stories by reading entire books or movie scripts.
A successful answer requires understanding the underlying narrative. There are two
tasks proposed in the paper: “summaries only” and “stories only”, depending on
whether the human-generated summary or the full story text is used to answer
the question. NarrativeQA still proves to be challenging for language models: the

109

Annal. Math. et Inf. Z. Gy. Yang, N. Ligeti-Nagy

SOTA result is that of Masque [15]: a Rouge score of 59.87.
Zhang et al. [28] extracted their examples (more than 120 000 entries) from the

CNN/Daily Mail1 corpus to create the Reading Comprehension with Commonsense
Reasoning (ReCoRD) dataset. These news articles were divided into multiple units:
passage, cloze-style query (containing the masked entity) and the reference answer.
The last paragraph must contain the reference answer, a proper noun which can
be found in the passage. As a reading comprehension task, this named entity is
masked and the model must predict the masked entity from a list of possible entities
in the provided passage, where the same entity may be expressed with multiple
different surface forms, which are all correct. ReCoRD is part of the SuperGLUE
benchmark [24]. The results are evaluated with max (over all mentions) token-level
F1 and accuracy. The best result so far on the ReCoRD dataset is an F-score of
96.4% and an accuracy of 95.9% of the Turing NLR v5 model submitted in 2021.

Most recently, ESTER was introduced [6], which is an MRC dataset for Event
Semantic Relation Reasoning. The dataset contains natural language queries to
reason about the five most common event semantic relations. The current SOTA
systems achieve 22.1%, 63.3%, and 83.5% for token-based exact-match, F1, and
event-based HIT@1 scores, which are all significantly below human performances
(36.0%, 79.6%, 100% respectively).

Natural language processing has seen spectacular progress with the application
of neural network technology, in particular, the Transformer model [23]. Tasks
like machine reading comprehension, can be solved with high performance, if a
pre-trained language model is fine-tuned. The first breakthrough model based
on transformer architecture was the BERT (abbreviation of Bidirectional Encoder
Representations from Transformer) model [3]. The BERT model is pre-trained on
two language modeling tasks: word masking and next sentence prediction. The
first native BERT model in Hungarian was published by Nemeskey [14], named as
huBERT, which is the state of the art neural language model for Hungarian.

Cross-Language Understanding (XLU) is key challenge and serves as an ac-
celerator to the development of multilingual models. In 2020, the Facebook AI
team published an article presenting XLM-RoBERTa (abbreviated as XLM-R as
well) [2], which is a transformer-based multilingual masked language model. XLM-
R outperforms mBERT (multilingual BERT) on cross-lingual classification in the
case of languages with moderate resources available. XLM-R contains Hungarian
language knowledge.

T5 (Text-To-Text Transfer Transformer) [19] is a model and framework devel-
oped by the Google research team, which offers a new perspective to solve natural
language processing tasks. The T5 project applies transfer learning principles in
the context of the sequence-to-sequence approach. The initial idea was that all
language processing tasks (translation, question answering, classification) should
be considered as a text-to-text issue, therefore the input is a text and the output
will be another text. mT5 [25] extends the T5 to several languages that including
Hungarian. In our research, huBERT, XLM-R and mT5 models were fine-tuned

1https://github.com/abisee/cnn-dailymail

110

https://github.com/abisee/cnn-dailymail

Annal. Math. et Inf. Building machine reading comprehension model from scratch

for the RC task.
Generative Pre-Training (GPT) designates the concept of pre-training a lan-

guage model on large datasets. The application of the GPT paradigm can foster
significant advancements in natural language processing, especially in the area of
classification, question-answering and investigation of semantic similarity. GPT
models use a Transformer Decoder architecture. A key question behind GPT ex-
perimentation is how training on large datasets can improve the performance of
language models. GPT-2 achieved significant performance in several tasks already
in a zero-shot setting [18]. For Hungarian, Yang trained the first GPT-2 language
models [26].

Tajti proved that using ensemble approach could achieve higher system per-
formance [22]. He defined new voting function variants for ensemble learner com-
mittee machine algorithms which can be used as competitors of the well-known
voting functions. In our research, we used the GPT-2 model as language model to
combine our different fine-tuned RC models to gain higher system performance.

3. Building the HuRC Corpus

Figure 1. A ReCoRD [28] and a HuRC sample.

We created HuRC based on ReCoRD. To create the Hungarian counterpart of

111

Annal. Math. et Inf. Z. Gy. Yang, N. Ligeti-Nagy

ReCoRD, we used the daily news articles from Népszabadság Online2 that had
titles and summaries as well, in addition to the main text (396 886 articles). If a
component was missing from an article, it was discarded. We then selected articles
consisting of 3-6 paragraphs. An important criterion was that both the main text
and the query (the last paragraph) contained a proper noun.

We trained a NER model using huBERT [14] for detecting proper nouns. For
training NER models, the largest Hungarian NER corpus, the NYTK-NerKor
(NerKor) corpus [21] was used. NerKor contains 67,524 segments, 1,028,114 to-
kens and 128,168 type. To fine-tune the models, we used the code provided by
huggingface transformers token classification library3. The following modified pa-
rameters were used: learning rate = 1e-4, batch size: 4, max sequence length: 128.
As for the evaluation, the IOB-based seqeval [13] method and F-score were used.
In our experiments, we trained the models with 5 epoch number. At each epoch,
we have saved a checkpoint and evaluated it. Our model (the checkpoint at epoch
1) achieved an F-score of 90.18 on the test set.

As a final step, we looked for proper names which are present both in the main
article and the summary. Several pairs of proper names could occur in one article.
In our example (see the example on the right in Figure 1), Presser Gábor and
Tamás are present in both the question and the main text. In such cases, a given
article is included in the database several times, with different proper name pairs.
Thus, a total of 49 782 articles of different types were selected, of which a total of
88 655 instances constitute our dataset due to the phenomenon of multiple proper
name pairs. Table 1 summarizes the quantitative properties of our corpus.

Table 1. Characteristics of the corpora.

nol.hu Silver Gold
Segments 396,886 88,655 80,614
Segment type - 49,782 47,199
Token 146,816,535 27,703,631 25,218,760
Type 4,361,301 1,115,260 1,078,467
Passage avg. length (word) (article) 330.09 249.42 215.53
Query avg. length (word) - 63.07 63.28

Our NER model did not handle some cases as expected: Table 2 shows the phe-
nomena we corrected. Hungarian is an agglutinative language, where the majority
of syntactic relations is expressed with suffixes. Most of the incorrect cases of NER
were due to the fact that the model separated the suffixes from the proper name.
These had to be re-attached to the proper name afterwards. In many cases, the
word had a punctuation mark attached to it, but these had to be separated from
the named entity. In this sense, 6 different groups of errors were distinguished. The

2http://nol.hu
3https://github.com/huggingface/transformers/tree/master/examples/pytorch/token-c

lassification

112

http://nol.hu
https://github.com/huggingface/transformers/tree/master/examples/pytorch/token-classification
https://github.com/huggingface/transformers/tree/master/examples/pytorch/token-classification

Annal. Math. et Inf. Building machine reading comprehension model from scratch

first group was called “all”, where there was no punctuation mark on the proper
noun, and the tokens in question had to be combined into one. The other cases
are where some punctuation mark was either before the word (“front”) or after
the word (“back”). There could be more than one of these punctuation marks
(1,2). In addition to problems with punctuation, there were also cases, such as
NAME-[MASK] in Table 2, where hyphenated proper nouns were split into several
parts.

Table 2. Some examples for the errors of the NER corrected man-
ually afterwards.

examples for NER errors Modified

“all”
[MASK]-ak

[MASK]ában
Észak-[MASK]

→ [MASK]

front-1
„[MASK]tel

([MASK]mal
+[MASK]nak

→
„[MASK]
([MASK]
+[MASK]

back-1
[MASK]-vel,
[MASK]ban)
[MASK]áról:

→
[MASK],
[MASK])
[MASK]:

back-2
[MASK]ához.)
[MASK]ban!”

[MASK]ának),
→

[MASK].)
[MASK]!”
[MASK]),

front-1 back-1
([MASK]ban)

„[MASK]t,
„[MASK]ban”

→
([MASK])
„[MASK],
„[MASK]”

front-1 back-2 ([MASK]ában), → ([MASK]),

In general, the main issue was caused by the feature of our NER model; namely
that it marks strictly the lemma of the named entities, however, the suffixes are
also integral parts of the words in Hungarian. Furthermore, in the surface form
of the words, punctuation marks may be attached to the words as well. In this
task, we needed the entire named entity with suffixes, but without the punctuation
marks. Thus, we had to include the suffixes in the masked words, and to detach
the punctuation marks from them. We could separate the following cases:

• no punctuation mark on the word (all),

• one punctuation mark before the word (front-1),

• one punctuation mark after the word (back-1),

• two punctuation marks after the word (back-2),

113

Annal. Math. et Inf. Z. Gy. Yang, N. Ligeti-Nagy

• one punctuation mark before the word and one punctuation mark after the
word (front-1 back-1),

• one punctuation mark before the word and two punctuation marks after the
word (front-1 back-2).

We then made a few small improvements to the corpus we created. The resulting
corrected dataset was checked by one annotator per 100 units. For the annotation
process, we provided a self-made demo interface. The automatic masking had to
be validated against the following criteria: i) whether the named entity recogni-
tion and masking was correct (i.e. Pope Francis was masked and not just Francis,
and Gödöllőre ’Gödöllő.Sub’ was masked as [MASK] instead of [MASK]re), and
ii) whether the masked proper name was also present in the previous parts of the
article.4 As a result of the validation, 80 614 automatically generated, manually
validated text units are in the database. The dataset is already splitted into train-
ing, validation and test sets (64 614, 8 000 and 8 000 instances, respectively).5

3.1. The test set
Many studies reported that a small flaw in the test set may result in very biased
models and may ruin the evaluation easily (see for example [16]). As HuRC was
created mainly automatically, the chance of erroneous labels or masking is certainly
high. We aimed to provide a test set as clean and accurate as possible, therefore the
8 000 instances of the test set were manually validated again against the following
criteria: i) whether the named entity recognition and masking was correct,6 ii)
whether each and every named entity in the passage is listed in the list of named
entities found by the NER model. This manual validation required >100 work
hours of an annotator.7

4. Training models and experiments
There are two approaches to train reading comprehension models: extractive and
abstractive. In the case of extractive reading comprehension task, the model iden-
tifies the answer to a given question from a document context by ‘extracting’ the
corresponding correct answer. This approach can only produce answers which oc-
cur in the given document. But in our task, the masked phrase could be different
from the found answer in grammatical form. Thus, this method, in certain cases
could only give an approximate answer and may not produce the appropriate ac-
curate answer that fit the masked token. The second approach, the abstractive

4A total of 12 annotators worked on the corpus.
5https://github.com/nytud/HuRC, https://huggingface.co/datasets/NYTK/HuRC
6This is only a double-check of the first annotation process. Two erroneous masking were

found in the 8 000 instances of the test set.
7By the time this article is submitted, 50% of the test set has been validated.

114

https://github.com/nytud/HuRC
https://huggingface.co/datasets/NYTK/HuRC

Annal. Math. et Inf. Building machine reading comprehension model from scratch

method, can solve this problem. The abstractive model, based on the given doc-
ument context, can generate answer from scratch, which could fit exactly to the
masked token.

The extractive model learns the start and the end indices of the answers. It
calculates the probability of word i being the start/end of the answer span as a
dot product between ith input token and start/end vector followed by a softmax
over all of the words in the paragraph. The training objective is the log-likelihood
of the correct start and end position. For this task an encoder-only transformer
architecture is enough to solve the problem. It is important that the model has
to be equipped with Hungarian language knowledge. Thus, in our experiment, we
used the state of the art Hungarian huBERT and the XLM-RoBERTa multilingual
models.

The abstractive model needs text generation feature, hence an encoder-decoder
transformer architecture should be applied. The task can be solved as a text-to-text
task, where the input text is the concatenation of document context and question
with masked token, the output text is the answer with the correct grammatical
form. Since there is no Hungarian fully pre-trained encoder-decoder model, in our
experiment, we used the mT5 [25] multilingual model that contains Hungarian
knowledge.

To fine-tune our models, first, we have converted our collected data into format
SQuAD [20], then, for training models, we used the Question answering libraries8

that were provided by Hugging Face.
For the extractive experiments, we used 4 x GeForce GTX 1080Ti GPU (11 GB)

cards and for the abstractive experiments, we used 4 x NVIDIA A100 GPU (80 GB)
cards.

We have trained three different transformer models for the neural reading com-
prehension (NRC) task, with the following modified hyperparameters:

• Extractive Models:

– huBERT (fine-tuned huBERT model): max_seq_length=512;
doc_stride=5; max_answer_length=16; learning_rate=2e-5;
epoch=10; batch_size=10;

– XLM-R (Fine-tuned XLM-RoBERTa base model):
max_seq_length=512; doc_stride=5; max_answer_length=16;
learning_rate=2e-5; epoch=10; batch_size=4;

• Abstractive Model:

– mT5 (Fine-tuned mT5 base model): max_seq_length=1024;
doc_stride=2; max_answer_length=16; learning_rate=2e-5;
epoch=10; batch_size=4;

8https://github.com/huggingface/transformers/tree/master/examples/pytorch/questio
n-answering

115

https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering
https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering

Annal. Math. et Inf. Z. Gy. Yang, N. Ligeti-Nagy

• Ensemble Model: Using the two extractive and the abstractive models, we
combined them to achieve higher output results. In this experiment, in the
query, we replaced the [MASK] with the predicted answers that were gener-
ated by our NRC models, then using a Hungarian GPT-2 model, we counted
the perplexity values of the different queries. The final output is the query
which has the lowest perplexity. For this task we used the NYTK/text-
generation-news-gpt2-small-hungarian [27] model.

5. Results and evaluation
To evaluate our models, we used different kinds of approach. First, we used the
official SQuAD evaluation metrics [20], exact match (Match) and (macro-averaged)
F1 score (F1) respectively. Secondly, we have used the chrF-3 and chrf-6 that are
commonly used in machine translation experiments [17]. In the case of Hungarian
RC task, the answer could be different only in the suffices of the word, thus a
character based evaluation metric could present the more accurate performance of
the models.

Table 3. Results.

Match F1 chrF-3/chrF-6
Extractive

huBERT 64.50 69.03 73.12/72.43
XLM-R 58.98 63.59 67.19/66.04

Abstractive
mT5 69.51 76.26 82.96/83.28
ensemble 74.04 77.57 80.54/79.97

In Table 3, you can see the results of the models. As expected, mT5 could gain
higher performance than the extractive method, because the abstractive method
can formulate an answer in the appropriate grammatical form as opposed to the
extractive. Furthermore, using the ensemble method, we could achieve the highest
exact match and F1-score results by exploiting the advantages of all models. As
for the chrF values the mT5 gained the highest performance, it may be because
the abstractive method can generate longer answers, resulting in higher matches at
the character level, but lower efficiency at the word level. The ensemble approach
could keep control this “over-generation” feature of the abstractive method.

In the case of the test set of 8000 instances, 46.35% of the results were predicted
correctly (exact match) by all models at the same time and 17.34% were predicted
falsely. In the remaining cases at least one model could predict correctly. In
Hungarian the masked entity may differ in grammatical form from the reference
names entity in the context, thus for instance, in the case of the extractive method
we could not expect that the model gives an exact matched answer. Therefore a

116

Annal. Math. et Inf. Building machine reading comprehension model from scratch

deeper evaluation method and error analysis is needed for the erroneously predicted
answers.

5.1. Special evaluation method
To understand the complexity of this task for Hungarian, first we have to under-
stand ReCoRD’s original evaluation method (as it is applied in SuperGLUE, [24]).
As can be seen in Figure 2, multiple reference answers are provided for one masked
named entity: these are the named entities that were found in the passage and refer
to the same entity. For example, if Manchester United, United and Manchester are
found in the text of the passage, and United is the masked entity in the query, all
the appearances of the three named entities are listed as answers.9 In SuperGLUE,
models’ performance is evaluated with max (over all mentions) token-level F1 and
exact match (EM).

Figure 2. Format of the ReCoRD dataset.

But if we try to adapt this to Hungarian data, we face a serious problem: the
masked named entity may appear earlier in the text referring to the same entity of
the word, but it is very likely to have a different surface form depending on the given
syntactic function it bears in the query’s sentence. Staying with the previous exam-
ple, Manchester United may appear in the passage in multiple various forms, such
as Manchester Unitedet ’Manchester United.Acc’, Manchester Unitedről ’Manch-
ester United-Del’ etc, and the same goes for United (Unitednek ’United.Dat’, for
example) and Manchester as well. On top of that, in the query, United may appear
in a form that was not present in the passage, Unitedban ’United.Ine’, for example.
If we expect the models to give back a list of entities derived from the list of named
entities in the passage, the list would look like Manchester Unitedet ’Manchester

9Only if they refer to the football club in the given context: if Manchester is present in the
text as the city itself, that occurrence will not be listed among the answers.

117

Annal. Math. et Inf. Z. Gy. Yang, N. Ligeti-Nagy

United.Acc’, Unitednek ’United.Dat’ etc., which means word forms that definitely
do not fit into the sentence in the place of the masked entity.

On the other hand, it may be quite difficult for a language model that is not
inherently a generative one to pick the correct lemmas and conjugate correctly at
the same time. To overcome this difficulty raised by the grammatical complexity
of Hungarian, we decided to insert two lists into the instances. The first one is
similar to the answer list of the ReCoRD dataset: it contains the surface forms of
the named entities of the passage that refer to the same entity as the masked one in
the query. However, they are only listed once: if a given surface form appears more
than once in the passage, it still gets into the list once. The second list contains
all the lemmas of these surface forms the suffix of the masked entity applied to
them: they all fit into the sentence correctly, but are not necessarily present in the
passage in their current form. We call the first list “MATCH”, and the second one
“MATCH_SUFFIX”. We evaluate the models on both lists with F-score: this way
we reward correct answers and punish incorrect ones, but a non-generative model
may also have a chance to perform well on this task (on the MATCH list).

To experiment further with the evaluation options and the capabilities of the
models, we have also compiled a merged list of the two lists mentioned above. By
the time this paper is submitted, 25% of the test set (2000 instances) is supplied
with these lists. The evaluation presented below is based on this test set of 2000
instances.

6. Discussion
As can be seen in Table 4, “MATCH” list, where the reference answers are all word
forms appearing in the passage, seems to be easier for huBERT and XLM-Roberta,
while mT5 and the ensemble model perform better on the more advanced list,
where the word forms have to fit into the masked place perfectly (thus have to be
conjugated). The best overall result is that of the ensemble model, 79.58% F-score
on the “MATCH_SUFFIX” list. huBERT has the best result on the MATCH list,
76.59% F-score, which is not significantly better than the ensemble model’s result
on this list (76.19%).

If we look at the merged list, which is really permissive, each model’s perfor-
mance is better than its performance on the other two lists. The ensemble model
is again better than the other 3, with an F-score of 81.82%. However, huBERT
beats the abstractive mT5 on this merged list (78.09%).

For half of the instances of the test set each model could predict the correct
answer. These seem to be “easy” questions for them. In these cases the surface
form of the masked entity is almost always suffixless (it is the nominative form
of the lemma, without any case suffix on it), and if not, the given surface form
appears in the passage as well.

On the other hand, in 19.2% of the cases, none of the models could predict a
correct answer (on the MATCH list – this rate is 15.15% for the MATCH_SUFFIX

118

Annal. Math. et Inf. Building machine reading comprehension model from scratch

Table 4. Results of the special evaluation.

MATCH MATCH SUFFIX MERGED
huBERT (F1) 76.59 71.88 78.09
XLM-R (F1) 69.99 65.82 71.46
mT5 (F1) 71.08 76.29 77.34
ensemble (F1) 76.19 79.58 81.82
each model 49.30% 49.70% 51.05%
none of the models 19.2% 15.15% 12.75%
only huBERT 5.90% 5.55% -
only XLM-R 2.75% 2.15% -
only mT5 4.85% 10.35% -

list and 12.75% for the merged list). Table 5 shows some examples with the refer-
ence answers (of the merged list) and the answers of the models.

Table 5. Some examples for wrong prediction.

Reference huBERT XLM-R mT5
Kissen ’Kiss.Sup’,
Kiss-sel ’Kiss.Ins’,
Kiss

Alekszandrovna Alekszandrovna Aleks

Balogh Levente Varga Zoltán Varga Zoltán Varggh Levente
Neuer Thiago Dante Ribeer
MVM MFB MFB MFB
Juhászék
’Juhász.FamPl’
Juhász

Juhász kérés
’Juhász question’

Lázár János már
’Lázár János already’

Tuászsék ’Tuászs.FamPL’10

Washington Washingtonnak
’Washington.Dat’

Washingtonnak
’Washington.Dat’

Washingtonban
’Washington.Ine’

Indexnek ’Index.Dat’ Index Eximbank Index
Törökország,
Törökországnak
’Turkey.Dat’,
Törökországból
’Turkey.Ela’

Törökország közötti
’Turkey in.between’

Törökország közötti
’Turkey in.between’

Törökországba

In the first half of the table examples (see Table 5) show cases when models
have erroneously predicted a named entity regardless of the suffixes. These cases
can be seen as complete mistakes. The second half of the table shows some mixed
cases: the models often hallucinate, either by adding extra (common) nouns to the

10Tuászs is not a valid Hungarian proper name.

119

Annal. Math. et Inf. Z. Gy. Yang, N. Ligeti-Nagy

proper name, or adding some adverbs or other function words, or by generating
non-existing lemmas.

As mentioned earlier, the dataset may contain an article more than once with
different named entities masked in the query. We examined the articles in the test
set that appear multiple times. Models are able to predict the correct answer in
the different appearances of an article. Table 6 shows cases where the article has
3 different instances in the test set with different masked named entities, and the
majority of the models happen to predict the correct one in all of the cases. It
is quite interesting that in the case of the last example, in two instances Pence /
Mike Pence is the masked entity, and in one case the models predict it well (except
for XLM-RoBERTa, which happens to insist on Putyin). In the other case, mT5
also hallucinates an answer (Put Pence). For some reasons, in one case, the models
rely on the surname of the politician (Pence), and in the other, they all use the
first name of him as well (Mike, and Put can be seen as a hallucinated first name
in the case of mT5).

Table 6. Some examples for the results on articles appearing three
times in the test set with different masked named entities in their

query.

reference XLM-R huBERT mT5 ensemble
Napi Gazdaság Magyar Nemzet Napi Gazdaság Magyar Gazdaság Napi Gazdaság
Fidesz Magyar Nemzet Fidesz Fidesz Fidesz
Fidesz Magyar Nemzet Fidesz Fidesz Fidesz
Trump Trump Trump Donald Trump
Pence, Mike Pence Putyin Mike Pence Put Pence Mike Pence
Pence, Mike Pence Putyin Pence Pence Pence

As for the important role of cloze questions in NLP, one has to mention the
research of Lewis et al. [11]. Their paper is a nice and clear presentation of how
cloze-stlye query databases may be exploited for a broader range of studies. First
they trained a model to create cloze questions from sample documents. Afterwards,
they trained a standard extractive QA model on their generated data. Their results
demonstrate that self-supervised extractive QA is achievable with highly competi-
tive results. As their training data is automatically generated, the method makes
the creation of extractive QA models possible for other languages and more do-
mains as well.

7. Conclusion
In this paper we presented the first neural machine reading comprehension models
in commonsense reasoning task for Hungarian. We trained the multilingual models
XLM-R and mT5, and the Hungarian model huBERT on a reading comprehension
dataset (HuRC) designed based on the ReCoRD dataset. We tested to extractive

120

Annal. Math. et Inf. Building machine reading comprehension model from scratch

(hubERT and XLM-R) and an abstractive (mT5) model to be able to compare
their performance with regard to their different architectures as well. We also
implemented an ensemble method by using a Hungarian GPT-2 model to count
the perplexity values of the different queries built up by the predictions of the
three models. We applied a complex and thorough evaluation methodology. Our
result show that the reading comprehension task in Hungarian is still challenging
for the different models. Extractive models seemed to be perform better in giving
back already seen surface forms of the masked named entities, but the abstractive
model, mt5 beats them in conjugating the words correctly. The ensemble model
reached promising results in all evaluation configurations. We hope that our results
will advance neural models trained for reading comprehension task for Hungarian.

References
[1] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, K. Toutanova: BoolQ:

Exploring the Surprising Difficulty of Natural Yes/No Questions, in: NAACL, 2019.
[2] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, E.

Grave, M. Ott, L. Zettlemoyer, V. Stoyanov: Unsupervised Cross-lingual Representa-
tion Learning at Scale, CoRR abs/1911.02116 (2019), arXiv: 1911.02116, url: http://arx
iv.org/abs/1911.02116.

[3] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova: BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding, in: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota: Asso-
ciation for Computational Linguistics, June 2019, pp. 4171–4186, doi: https://doi.org/10
.18653/v1/N19-1423, url: https://aclanthology.org/N19-1423.

[4] D. Dzendzik, C. Vogel, J. Foster: English Machine Reading Comprehension Datasets: A
Survey, in: EMNLP, 2021.

[5] Á. Feldmann, R. Hajdu, B. Indig, B. Sass, M. Makrai, I. Mittelholcz, D. Halász, Z. G.
Yang, T. Váradi: HILBERT, magyar nyelvű BERT-large modell tanítása felhő környezetben,
in: XVII. Magyar Számítógépes Nyelvészeti Konferencia, Szeged, Magyarország: Szegedi Tu-
dományegyetem, Informatikai Intézet, 2021, pp. 29–36.

[6] R. Han, I.-H. Hsu, J. Sun, J. Baylon, Q. Ning, D. Roth, N. Peng: ESTER: A Machine
Reading Comprehension Dataset for Event Semantic Relation Reasoning, 2021, doi: https
://doi.org/10.48550/ARXIV.2104.08350, url: https://arxiv.org/abs/2104.08350.

[7] K. M. Hermann, T. Kočiský, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, P.
Blunsom: Teaching Machines to Read and Comprehend, in: Advances in Neural Information
Processing Systems (NIPS), 2015, url: http://arxiv.org/abs/1506.03340.

[8] F. Hill, A. Bordes, S. Chopra, J. Weston: The Goldilocks Principle: Reading Children’s
Books with Explicit Memory Representations, CoRR abs/1511.02301 (2016).

[9] D. Khashabi, S. Chaturvedi, M. Roth, S. Upadhyay, D. Roth: Looking Beyond the Sur-
face: A Challenge Set for Reading Comprehension over Multiple Sentences, in: Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans,
Louisiana: Association for Computational Linguistics, June 2018, pp. 252–262, doi: https:
//doi.org/10.18653/v1/N18-1023, url: https://aclanthology.org/N18-1023.

[10] T. Kočiský, J. Schwarz, P. Blunsom, C. Dyer, K. M. Hermann, G. Melis, E. Grefen-
stette: The NarrativeQA Reading Comprehension Challenge, Transactions of the Associa-
tion for Computational Linguistics TBD (2018), TBD, url: https://TBD.

121

https://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.48550/ARXIV.2104.08350
https://doi.org/10.48550/ARXIV.2104.08350
https://arxiv.org/abs/2104.08350
http://arxiv.org/abs/1506.03340
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://aclanthology.org/N18-1023
https://TBD

Annal. Math. et Inf. Z. Gy. Yang, N. Ligeti-Nagy

[11] P. Lewis, L. Denoyer, S. Riedel: Unsupervised Question Answering by Cloze Translation,
in: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
Florence, Italy: Association for Computational Linguistics, July 2019, pp. 4896–4910, doi:
https://doi.org/10.18653/v1/P19-1484, url: https://aclanthology.org/P19-1484.

[12] N. Ligeti-Nagy, G. Ferenczi, E. Héja, K. Jelencsik-Mátyus, L. J. Laki, N. Vadász,
Z. G. Yang, T. Váradi: HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális
nyelvmodellek kiértékelése céljából, in: XVIII. Magyar Számítógépes Nyelvészeti Konferencia,
Szeged: JATEPress, 2022, pp. 431–446.

[13] H. Nakayama: seqeval: A Python framework for sequence labeling evaluation, Software avail-
able from https://github.com/chakki-works/seqeval, 2018, url: https://github.com/chakk
i-works/seqeval.

[14] D. M. Nemeskey: Introducing huBERT, in: XVII. Magyar Számítógépes Nyelvészeti Konfer-
encia, Szeged, Magyarország: Szegedi Tudományegyetem, Informatikai Intézet, 2021, pp. 3–
14.

[15] K. Nishida, I. Saito, K. Nishida, K. Shinoda, A. Otsuka, H. Asano, J. Tomita: Multi-
style Generative Reading Comprehension, 2019, arXiv: 1901.02262 [cs.CL].

[16] C. G. Northcutt, A. Athalye, J. Mueller: Pervasive Label Errors in Test Sets Destabilize
Machine Learning Benchmarks, ArXiv abs/2103.14749 (2021).

[17] M. Popović: chrF: character n-gram F-score for automatic MT evaluation, in: Proceedings
of the Tenth Workshop on Statistical Machine Translation, Lisbon, Portugal: Association for
Computational Linguistics, Sept. 2015, pp. 392–395, doi: https://doi.org/10.18653/v1/W1
5-3049, url: https://aclanthology.org/W15-3049.

[18] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever: Language Models are
Unsupervised Multitask Learners (2019).

[19] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
P. J. Liu: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Trans-
former, Journal of Machine Learning Research 21.140 (2020), pp. 1–67.

[20] P. Rajpurkar, J. Zhang, K. Lopyrev, P. Liang: SQuAD: 100,000+ Questions for Machine
Comprehension of Text, in: Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, Austin, Texas: Association for Computational Linguistics,
Nov. 2016, pp. 2383–2392, doi: https://doi.org/10.18653/v1/D16-1264, url: https://ac
lanthology.org/D16-1264.

[21] E. Simon, N. Vadász: Introducing NYTK-NerKor, A Gold Standard Hungarian Named
Entity Annotated Corpus, in: Text, Speech, and Dialogue - 24th International Conference,
TSD 2021, Olomouc, Czech Republic, September 6-9, 2021, Proceedings, ed. by K. Ekstein,
F. Pártl, M. Konopík, vol. 12848, Lecture Notes in Computer Science, Springer, 2021,
pp. 222–234.

[22] T. G. Tajti: New voting functions for neural network algorithms, Annales Mathematicae et
Informaticae 52 (2020), pp. 229–242.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
I. Polosukhin: Attention is All you Need, in: Advances in Neural Information Processing
Systems 30, ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, R. Garnett, Curran Associates, Inc., 2017, pp. 5998–6008.

[24] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, S. R.
Bowman: SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding
Systems, 2020, arXiv: 1905.00537 [cs.CL].

[25] L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Siddhant, A. Barua, C.
Raffel: mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer, in: Proceed-
ings of the 2021 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Online: Association for Computational
Linguistics, June 2021, pp. 483–498, doi: https://doi.org/10.18653/v1/2021.naacl-main
.41, url: https://aclanthology.org/2021.naacl-main.41.

122

https://doi.org/10.18653/v1/P19-1484
https://aclanthology.org/P19-1484
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://arxiv.org/abs/1901.02262
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://aclanthology.org/W15-3049
https://doi.org/10.18653/v1/D16-1264
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
https://arxiv.org/abs/1905.00537
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://aclanthology.org/2021.naacl-main.41

Annal. Math. et Inf. Building machine reading comprehension model from scratch

[26] Z. G. Yang: "Az invazív medvék nem tolerálják a suzukis agressziót" - Magyar GPT-2 kísér-
leti modell, in: XVIII. Magyar Számítógépes Nyelvészeti Konferencia, Szeged, Magyarország:
Szegedi Tudományegyetem, Informatikai Intézet, 2022, pp. 463–476.

[27] Yang Zijian Győző: "Az invazív medvék nem tolerálják a suzukis agressziót" - Magyar
GPT-2 kísérleti modell, in: XVIII. Magyar Számítógépes Nyelvészeti Konferencia, Szeged,
Magyarország: Szegedi Tudományegyetem, Informatikai Intézet, 2022, pp. 463–476.

[28] S. Zhang, X. Liu, J. Liu, J. Gao, K. Duh, B. V. Durme: ReCoRD: Bridging the Gap
between Human and Machine Commonsense Reading Comprehension, 2018, arXiv: 1810.1
2885 [cs.CL].

123

https://arxiv.org/abs/1810.12885
https://arxiv.org/abs/1810.12885

