
Submitted: August 10, 2022
Accepted: July 14, 2023
Published online: July 17, 2023

Annales Mathematicae et Informaticae
57 (2023) pp. 1–23
DOI: https://doi.org/10.33039/ami.2023.07.002
URL: https://ami.uni-eszterhazy.hu

Blockchain diploma authenticity
verification system using

smart contract technology

Ruben Frisch, Dóra Éva Dobák, József Udvaros

Budapest Business School,Faculty of Finance and Accountancy,
Department of Business Information Technology

frischruben1998@gmail.com
dobak.dora@uni-bge.hu

udvaros.jozsef@uni-bge.hu

Abstract. Blockchain technology and smart contracts have huge potential
which has not been exploited fully yet. The main objective of this paper
is to showcase the powerful attributes of blockchain technology and smart
contracts, showcasing our unique and powerful use case of document verifica-
tion in the field of higher education using the Ethereum protocol. Our smart
contract use case will take advantage of the main attributes of blockchain
technology to solve the problem of document forgery. These amazing at-
tributes are immutability, censorship resistance, extreme robusticity, trans-
parency, and neutrality, in addition to near-perfect availability and decen-
tralization. Ethereum enables developers to create decentralized applications
without having to invest in expensive infrastructure. Document forgery has
a very long track record in the education sector and academia. In this digital
age, it has become frighteningly simple and inexpensive to acquire fake uni-
versity diplomas, certificates, and many other types of credentials. This has
a long-term negative effect on higher-level education because it damages the
healthy competitive environment of students and the reputation and credi-
bility of institutions. The most problematic version of the diploma which is
the most susceptible to forgery is physical diplomas. Even with relatively
expensive and difficult-to-replicate security elements, such as holograms and
special security markings, these are not efficient enough to keep bad actors
away from trying to forge them and replicate them. The more complex meth-
ods we use for preventing physical document forgery, the more knowledge and
experience does the verifier needs beforehand due to the complexity and the
unique nature of anti-forgery methods and materials one has to look for dur-



Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

ing examination. The verification process of continually evolving and chang-
ing physical forgery prevention stamps, materials, holograms and others are
expensive to automate the verification procedure and introduces additional
human labor cost (training staff, hiring new employees, hiring trainers and
forgery specialists). Therefore the best prevention method for replication is
to build a system that makes it infeasible to even try to commit forgery. Usu-
ally, when an employer asks for the diploma, the student sends an electronic
photocopy of the document to them or scans it. This completely nullifies the
effect of holograms, watermarks, special UV active materials, and all other
physical security elements. Even with the use of centralized electronic doc-
ument verification systems, data manipulation is still possible, in addition,
such a system introduces the concept of having to trust a third party for
verification and single point of failure, in addition to lack of transparency,
immutability, and data availability. An ideal solution would be one that is
trustless, transparent, immutable, and always accessible. Blockchain technol-
ogy offers the optimal solution to document forgery. In this article, we will
showcase our Ethereum smart contract solution and all of the crucial aspects
of document integrity.
Keywords: Smart contract, blockchain, diploma
AMS Subject Classification: 94-06

1. Introduction
Document forgery poses a great risk to the reputation and credibility of the aca-
demic field. Counterfeit diplomas and certificates damage higher education greatly.
We aimed to develop a blockchain-based smart contract solution, which will help
in battling diploma mills and forgery services by registering documents into a se-
cure blockchain environment. Employers and institutions wish to verify documents
securely and in a quick and simple way. Registration, and verification process es-
pecially should not be a time and human resource-consuming process, and should
not require high-level skills to distinguish fake and real documents. In our smart
contract use case, we developed our contract to be able to verify the authenticity
of any type of document, as long as it has unique and descriptive data attributes,
which could be used to generate a fingerprint of the document using hash algo-
rithms such as SHA-256 [18]. We mainly focus on the field of higher education,
where document forgery, especially in the case of diplomas and certificates is very
common and is still a huge concern. Blockchain is a perfect solution, because of
its decentralized and immutable nature, where network participants can monitor
every transaction on-chain and verify data themselves without having to trust an
intermediary or third party to verify and store information [3].

This smart contract implementation takes advantage of the security guarantees
of the Ethereum network [2]. It should be noted that this particular smart contract
could be used for any kind of document verification, as long as the document has
a unique fingerprint, which is calculated from a primary key, in addition to other
descriptive type data elements, such as date, name, grade, and many others hashed

2



Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

together to make a single, unique and fixed-length data.
One of the main expectations towards our smart contract design is data pri-

vacy. Documents contain sensitive information which should not be placed on the
blockchain in raw text format. That is why the data should be always hashed first
before broadcasting a document registration transaction [20]. Hashing the data
makes it nearly impossible to decrypt, it is a one-way encryption function. This
data security aspect is especially important in the case of blockchains, where data
cannot be removed afterward, it is immutable. The content of valid blocks cannot
be modified after they become part of the chain, this is one of the major fundamen-
tal attributes of blockchains that guarantees data immutability and data integrity.
Data immutability is extremely important in our use case of document verification,
that is why there exists no better technology than a public decentralized blockchain
with amazing security guarantees in place.

Without secure hashing functions, this use case would be impossible to imple-
ment optimally. A hash function generates fixed-length data from variable-length
data inputs, making it ideal to create a unique fingerprint of the document at hand.
It is also crucial that one should not be able to recover the input data from the
hash itself. A hash function should always generate the same output for the same
input. If a user has possession of the document’s data elements, the user should
have the ability to generate the hash from the data. With the hash, the user can
query the contract’s state with a pre-defined query function, which tells the user
if the document has been registered on the blockchain or not, returning with a
logical value of true or false. So the hash function must be deterministic for this
use case to work as intended. Even if one makes a small error in the input data, a
completely different hash will be generated.

One other extremely important attribute of hash functions is collision resis-
tance, two documents should never have the same hash representation. In theory,
hash collision is possible with an extremely low chance, so before broadcasting a
document registration function into the network, the company or university should
verify that the hash does not already exist in the database. If it does, changing the
document’s primary key or any data component should solve the issue, but this is
again an extremely rare scenario. With long enough hash outputs, preferably 256
bits or more, the possibility of collision becomes almost impossible. Although it
should be nearly impossible to calculate the input data from the hash, due to its
one-way nature, it should also be fairly easy to generate the hash from the raw
input data. A hash function is needed that is fast and efficient, but secure at the
same time. An SHA-256 or SHA-512 hash function for example would be ideal for
our use case. A hash function must have a pre-defined range in our smart contract
design, meaning that the output of the hash algorithm shall have a fixed length
regardless of the input size [16].

The smart contract must have an owner, which by default will be the EOA
(Externally Owned Account) type Ethereum account that initiates the registration
of the smart contract with the special contract creation transaction. The smart
contract constructor runs one time, specifically when the contract is created. The

3



Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

constructor will set the owner’s address as the owner of the smart contract who
will have special privileges, such as document registration. The owner is saved in a
state variable, which is an address type variable or object. We must also implement
a function that will take care of owner changing, although this function could be
discarded based on the specific requirements of the institution or company. Specific
functions of the contract will require the function caller to be the contract’s owner,
this rule will be enforced by a function modifier, which is always activated when
the function is called. The function modifier has the job to decide if the function
caller has the same address as the smart contract’s defined owner stored in the
state variable.

The query function used to verify document authenticity is enabled to call for
any user, which is the whole point of this application. Anyone can verify the doc-
ument by having the necessary data at hand by calling a function. The document
verification function is free to call because functions that do not change the state of
the contract do not require a transaction that changes the state of the blockchain
by including the transaction in a block. On the other hand, document registration
and many other functions that write or modify the storage of the contract will cost
gas and require a signed and broadcasted transaction on the network [5]. In the
case of universities, it is important to have a function that enables mass document
registration, which is also implemented in our smart contract code. This will make
it much easier to manage and register diplomas for universities, not having to do it
one by one. There is also an option for mass document queries to make the mass
verification process faster and easier to manage, although this function is rarely use-
ful in most scenarios. When designing a smart contract, we must think forward,
because there is no way to change the code of the contract later. It should have
more functionality than the minimum requirement just in case it will be needed in
the future.

The source code of the smart contract should always be made publicly available.
This is usually done by adding the source code to an Ethereum block explorer. The
most popular block explorer by far is called Etherscan, which has the function to
verify source code. The code is compiled into bytecode, then the service compares
the result of the compilation with the actual bytecode of the already registered
smart contract bytecode. If they match, then the source code is verified and made
public. Without this step, only the bytecode format of the source code is available
for users on the Ethereum network, which is hard to read for most users and devel-
opers alike. The smart contract code is immutable, so after we register the contract
on the blockchain, it is impossible to modify or add new functions. Thankfully there
are Ethereum test networks for this reason, so projects can test the smart contract
meticulously before registering it on the main network. The best test networks are
Kovan and Ropsten, these have almost identical properties like the main network,
with the most notable exception being gas prices. Gas prices differ between the
test network and the main network because of significant differences in network
usage.

During the development phase of the solution, we used Solidity smart contract

4



Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

programming language, which is a high-level, object-oriented language best suited
for contract development. The version we used to code the smart contract is So-
lidity with solc compiler version 0.8.7. The integrated development environment
we chose is Remix IDE, which has all the tools needed to develop efficiently for
this fairly straightforward use case. Remix also has advanced text manipulation
features, in addition to source code compiler to bytecode format and contract cre-
ation transaction automation. Therefore the IDE handles all the required actions
such as creating and broadcasting the contract creation transaction and compiling
Solidity source code into bytecode [21].

1.1. Introduction of the main issue with traditional document
verification models

In our digital world, data quality and authenticity have utmost importance and fo-
cus. Centralized information systems are often not transparent enough and always
require trust [22]. Manipulation and forgery of documents is a huge issue in the
field of higher education, where diplomas and certificates are used as a signaling
mechanism of one’s acquired knowledge and skillset. Physical copies can be eas-
ily forged, but digitally signed PDF diplomas are not ideal either. One possible
route is a centralized document verification system [1]. Centralized services lack
the extreme security guarantees that Ethereum has as a public blockchain, such at-
tributes for example are availability, immutability, and transparency [10]. Another
less than optimal way to battle forgery is to make physical copies difficult to coun-
terfeit. Although this is not an ideal solution, because it is extremely expensive,
requires special materials, technology, and machines to produce. Physical copies
can also be lost by the owner or even stolen, can be damaged by water and fire,
and degrades with time. On the blockchain, data is always available, is immutable
after it has been included in a valid block, and every transaction is visible to all
users of the network [6]. Another problem that exists today is that diplomas and
other sensitive documents are too hard to be verified. In our smart contract based
solution, the verification process is very simple and efficient and can be done by
anyone who has the required data at hand. Another issue with centralized docu-
ment verification systems is the strong dependence on the institution’s hardware
and software infrastructure [11].

Outsourcing such sensitive tasks is a huge risk too. Data can be easily modified
by the institution later, the documents are not immutable, there is a risk of cor-
ruption or human mistake. Trusting a third party is not ideal, especially when the
document has such high value. There is also the high cost of centralized systems,
they often require expensive infrastructure and have a significant maintenance cost.
Hardware failure is another risk, which in the case of a decentralized blockchain
database is mitigated by all full nodes having a copy of the state of the blockchain.
When broadcasting information to a blockchain, we must be very careful. The
data will stay on the blockchain forever, meaning that there is no room for error
when registering documents. The institution must implement security measures to
mitigate these risks. Such risk could be a hash collision or inaccurate document

5



Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

information. Before submitting data into the smart contract, the documents must
go through a strict review phase, where syntax and semantics are checked.

2. Methodologies and methods

2.1. Analysis of viability and practicability
The implementation of our blockchain document verification system is fairly easy
and straightforward. Positive data redundancy plays an important role in this
system, the institution is advised to store all the registered documents in a secure
database server. Remember, that only the document hash would be registered
on the blockchain, the document itself and all of its information resides in the
relational database. An optional component would be a web-based user interface,
to make document queries more user-friendly, although modern block explorers
already have smart contract function calling capabilities, such as Etherscan, which
enables manual interaction with the contract itself. It is also good to note, that as
every single transaction is permanent and visible to all network participants on the
blockchain, one could query through all the transactions where the contract address
was the recipient, and eventually find the document hash manually, without even
calling the document query function.

In regards to the practicability of using public blockchain and smart contract
technology, this design has many advantages over a centralized solution [9]. The
hardware infrastructure needs of our implementation are lower than in the case of
centralized solutions, due to the fact that the document hashes are stored on the
blockchain directly in the forms of immutable and censorship-resistant transactions.
The smart contract’s storage is secured by the Ethereum protocol and its many
nodes. Centralized solutions require trust from the owners of the documents. In
the case of blockchain documents, there is no way to modify or delete registered
documents. In truth, after registering a document with a valid transaction, the
transaction will be always contained in the corresponding block, thus modifying
the storage state of the smart contract will not truly remove the document from
the blockchain, as transactions are immutable after being included on the chain.
Even if the university or company ceases to exist for any reason, the registered
documents will stay forever on the blockchain, making it a timeless and superior
solution.

The contract is programmed in a way that document duplication is impossible,
although hash collisions shall be checked strictly off-chain to prevent anomalies.
The document fingerprint hash should be passed on to the correct query function in
the smart contract to verify that the particular hash has not been already registered
by the institution. Another check would be trying to match the generated hash
with a hash already stored in the relational database the institution maintains
for document data storage. Such collisions are extremely rare when using the
correct hashing algorithm, but this use case is extremely sensitive as we are talking
about mostly certificates and diplomas where errors are unforgivable. Humans are

6



Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

prone to errors, multiple off-chain assertation mechanisms should be implemented
to prevent incorrect document registrations with the smart contract.

The document registration process is simple and easy to manage for the admin-
istrator. First, the document hash must be generated, then checked if it already
exists in the database or not. If not, then the contract owner shall call the registra-
tion function of the smart contract, and pass the document hash as the argument.
The transaction must be signed before broadcasting it to the network with the cor-
rect private key, which is only known to the owner of the contract. If the private
key is lost, the system is compromised. The contract has a function that enables
the owner to pass ownership of the contract to another address. Regardless of the
inclusion of this function, losing the private key or getting it compromised is always
catastrophic. After the transaction is signed, it can be broadcasted to the network.
Usage of a secure hardware wallet is crucial and a basic security best practice,
where the private key is always isolated in a secure element encryption hardware
component. The hardware wallet can sign transactions without ever revealing the
private key or putting the private key data into the random access memory of the
computer. Even if the computer is infected, the private key won’t be accessible, it
is encrypted and isolated on the hardware wallet, even when signing a transaction.
The transaction must be broadcasted with the correct amount of ether as a trans-
action fee. The transaction fee amount varies, it must be always checked before
sending the transaction to the network. In case of setting the transaction fee too
low, it will not be mined at all. To solve this issue, the owner should send the same
signed transaction again, but with the same nonce value as the original one, so that
the original will be overwritten by the new transaction with the correct transaction
fee set. It is good to note, that transactions can be stuck forever if the gas price
is not set high enough, so it is advised to set it higher than the minimum value.
Stuck transactions can still be corrected by broadcasting another transaction with
the same nonce as the original.

A valid transaction, which is included in a block is usually considered final by
convention when there are six additional blocks placed on the containing block.
Ethereum blocks are created and placed on the chain about every 12-13 seconds on
average, which means that a document registration transaction on average takes
about 72-78 seconds to be considered extremely immutable. Theoretically, even if
block production is stopped momentarily, the transaction cannot be modified after
it is placed on the chain, because that would require more than half of the consensus
nodes to agree on that false state of truth. The block production time varies
based on many factors, such as dynamic difficulty set by the consensus mechanism.
The consensus mechanism controls block production pace by setting the difficulty
dynamically. It tries to maintain that 12-13 seconds for successful block mining to
maintain security and stability. Lowering the block production time is dangerous
for the network, as it can increase hardware requirements for the mining nodes, as
faster block time needs quicker synchronization and more powerful hardware. The
more expensive hardware is needed, the fewer nodes will be on the network due
to a higher barrier of entry. Fewer nodes mean less decentralization, which results

7



Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

in decreased robustness and security. Another aspect of too short time duration
between successful blocks is the fact that 51% attack becomes easier to conduct, as
calculating block identifier hashes become much less time and energy-consuming.
Bitcoin has an average of 10 minutes block production time, which would be way
too slow for a smart contract platform like Ethereum. On a smart contract enabled
blockchain, the number of broadcasted transactions is significantly higher, thus it
requires faster block production time to keep up with the block space demand of
network users.

After the document hash has been successfully registered by the owner of the
contract, there is no additional step. The document owner should receive the
document in digital format along with the calculated hash. When the graduated
student wishes to prove to the employer that he or she has the required certificate
or diploma for the job application, then the student should send an email or chat
message to the employer with the document data along with the hash. Then the
employer can go to the document verification website, fill out the form quickly,
then the hash is generated. The hash is passed as an argument when calling the
read type function of the smart contract, which has a logical returning value of
false or true. If the hash has been already registered, the function returns true, the
employer has successfully verified that the applicant has the necessary document
for the job application. Another verification route would be for the employer to
calculate the hash manually, then use some kind of block explorer or wallet to
interact with the smart contract.

The most decentralized and secure, yet quite time-consuming verification pro-
cess would be to check the smart contract transaction history in a block explorer
and see if the document hash has been registered or not based on transactional
evidence. Having an archive-type full node would be the most secure way, by
running your own Ethereum node, with client software compiled by yourself from
the source code. Although these methods are bothersome and require too much
background knowledge to be a feasible alternative to using a pre-built front-end or
block explorer. Of course, in case the document owner passes false document data
and a correct hash, the verifier might make a mistake and not calculate the hash
him or herself. That is why the verifier should always check if the hash generated
from the document data is valid, as the output is deterministic. Sending only the
document data without the hash is fine too, that way this kind of manipulation
attempt is mitigated by having the verifier generate the document fingerprint.

2.2. Document integrity and permission levels
It is crucial to determine in a decentralized application, who is able to call specific
functions of the smart contract. Some functions might only be able to be called
upon by the owner of the contract, while others may be called by everyone using
the Ethereum network and signing, then broadcasting a valid transaction. In the
case of diplomas and certificates, only the company that has the right to emit these
documents should be able to register such documents into the smart contract and
blockchain. This is why we needed to implement the smart contract in a way that

8



Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

there is an explicitly defined owner of the contract with special permissions, such as
document registration, ownership transfer, and contract condition configuration. It
is also important to mention that the contract implementation should be optimized
for the specific requirements of the company or institution, therefore some functions
might be excluded or new ones might have to be included in the code, aligning to
the given specification.

In our smart contract implementation, there is only one owner, who has the
ability to call upon all existing functions of the contract and control it to the
full extent. More permission levels could be implemented, such as multiple own-
ers, multi-signature document registration, and sub-owners. Although introducing
more levels and actors to the system might increase the gas cost of the transac-
tions, due to the fact that these changes will always result in more complex code,
which is more expensive to execute for the EVM (Ethereum Virtual Machine). The
owner of the smart contract should always be the one who emits the documents,
for example in the case of diplomas this would be the university itself. The owner
of the contract can be easily determined by either monitoring the specific address
type variable of the contract, or by calling the query function which will return
with the address of the owner. The company or institution should also make the
owner’s address public, in addition to the valid smart contract address to avoid
confusion and remain fully transparent.

Keeping the owner’s private key safe is of utmost importance. Some might
believe that this task is easy and self-evident. Making sure that the private key
never gets stolen or leaked is a difficult task, which requires a safety mechanism to
be set and executed properly. The owner of the smart contract should always use a
trustworthy hardware wallet or some kind of enclave technology to keep the private
key completely isolated and encrypted at all times, even when signing a transaction.
It should never be copied into the random access memory of the machine either in
a raw format, as this opens up new possibilities for private key leakage. A multi-
signature implementation of transaction signing would significantly improve the
security of the contract, although it makes the document registration process more
time-consuming, in addition to increasing gas costs. The multi-signature would be
generated by two or more owners, meaning that it would always require a minimum
of two separate transactions to sign and broadcast a document registration or
other, which is of course more expensive than having only one owner who controls
everything about the contract. There are always drawbacks of a given mechanism,
therefore the contract should be coded with the specific requirements in mind.

In the case of universities, the multi-signature implementation might be pre-
ferred due to its increased security guarantees. The cost of the transactions could
be mitigated by implementing a mass document registration function, which would
take an array of document fingerprint hashes as an argument. This way, there is no
need to generate the multi-owner signature for each and every document at hand,
only one signature is required to make the mass registration possible. The contract
would have a variable for each owner, which stores the outcome of their signature
logically. Each owner would make a special sign transaction, which would modify

9



Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

the bool variable to the outcome of the transaction. If all of the corresponding sign
condition variables are true, then the registration function could be called and ex-
ecuted properly. If one of the owners would not sign it, the registration call would
fail and revert. There are quite a lot of ways to implement a multi-signature mech-
anism, there are many aspects to consider such as cost efficiency, data security,
code complexity, permission levels, institution or company-specific requirements,
legal environment, and more.

Smart contracts are immutable, meaning that after registering a contract on
the blockchain none shall change its code or address. Smart contracts also have a
state, which is determined by their storage memory. The storage memory consists
of variables, objects, and primitive data types. By implementing a special method
called selfdestruct, the caller can destroy the smart contract’s code and storage
memory, rendering it empty so to say. An important aspect of self-destructing lies
in its implementation explicitness, which means that a contract only has the ability
to self-destruct if it is hardcoded into the contract. Therefore it is always up to
the given specifications and requirements if the contract should have a self-destruct
function or not. The main use case of such a method is testing contracts, finding
bugs in deployed contracts, then self-destructing it when the contract is no longer
needed. It also has an important part in the contract migration mechanism, where
the contract left behind gets self-destructed after the migration is complete. An-
other important aspect is the fact that after the completion of self-destruction, the
contract’s address and transaction history remains untouched, therefore a contract
cannot be purged completely, the address and transactions will always remain, only
the code and storage is destroyed.

In our implementation, we use an on-off switch kind of smart contract condition
mechanism, in which the contract’s owner can call a specific contract activation and
deactivation function. In case the contract needs to be shut down temporarily, it
can easily be done, without purging the code and storage of the contract like in the
case of self-destruction. Almost every function of the contract shuts down in case
of deactivation, although document query remains active at all times, meaning that
everyone will be able to verify documents even after shutting down the contract.
The owner passes a bool value of true or false to the corresponding function, then
the value is assigned to the bool contract state variable. After that, calling functions
will be impossible, except for some specific methods. The condition check is done
by a function modifier structure when calling methods. After each call, the contract
checks if the contract is turned off or on, and proceeds to execute on the correct
path according to the state of the contract. Even though there is an on-off switch
built-in, the smart contract is still fully decentralized, participants can still verify
documents as usual. The implementation is of course optional, it could be excluded
from the code or changed accordingly to the needs of the company or institution.

2.3. Cost efficiency
The document verification system has a decentralized on-chain part in the form of
the smart contract, which stores document hashes and other state variable values,

10



Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

and has the required logic in form of Solidity code. Even though smart contracts
do not require maintenance in a traditional sense, it still has costs in form of the
transaction fees when calling write type functions. Write type functions make
changes to the internal state of the smart contract, to the storage memory of it.
The storage memory is stored on the blockchain where the smart contract’s every
component resides. The contract address, code, storage, and transactions are all
stored on the blockchain. When you call a function that adds or modifies the state
of the contract, the transaction will cost you a non-deterministic amount of gas
fee. The transaction fee is non-deterministic because it is unknown which code
path will get executed when calling a function, it depends on the argument of
the function call, the time the transaction has been broadcasted, and many more
factors that can take a role. Of course, it is possible to calculate the estimated gas
units you will need based on empirical data, but the system itself cannot determine
it with certainty. Each transaction gas unit will cost a non-deterministic amount
of ether in the form of Wei. Miners will only add transactions to the blockchain
which have a sufficient amount of gas included with the transaction, otherwise,
it will be ignored by the vast majority of the miners and the transaction might
get stuck forever. That is why the owner of the smart contract will always have
to check the current gas prices to avoid issues with transaction finalization. It is
advised to pay higher fees in order to ensure that the transaction will be included
in a block for sure. Other factors, such as the time of transaction propagation
could also be crucial to minimize transaction fees because the gas price tends to
fluctuate greatly based on day times. The cost of gas units is mostly affected by
the network’s capacity utilization, the number of transactions competing for block
space, and blockchain inclusion [17].

On the other hand, read-type functions do not require any gas to be paid, as
they only read from the contract’s storage memory. Read-only type functions are
often marked as view or pure in the declaration, meaning that they will never
attempt to modify or add data to the storage of the contract, only read from it. As
all of the document verification functions are read-only, they will not cost anything
for users to call them. Another cost of smart contracts is the contract creation
special transaction, this one is always needed in order to set up the smart contract
on the blockchain [15].

Algorithm 1. Smart contract Solidity source code events, storage
state attributes, constructor, fallback special function and modi-

fiers.
1 // SPDX-License-Identifier: MIT
2

3 pragma solidity >=0.7.0 <0.9.0;
4

5 contract DocumentVerificationContract {
6

7 //Events
8 event documentRegistrationEvent(
9 address transactionSender,

10 bytes32 documentHash,

11



Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

11 uint epochSeconds,
12 uint blockHeight
13 );
14

15 event massDocumentRegistrationEvent(
16 address transactionSender,
17 bytes32[] arrayOfDocumentHashes,
18 uint epochSeconds,
19 uint blockHeight
20 );
21

22 event setOwnerAddressEvent(
23 address transactionSender,
24 address newOwnerAddress,
25 uint epochSeconds,
26 uint blockHeight
27 );
28

29 event fallbackEvent(
30 address transactionSender,
31 string fallbackMessage,
32 uint epochSeconds,
33 uint blockHeight
34 );
35

36 event setContractStateEvent(
37 address transactionSender,
38 bool stateChangedTo,
39 uint epochSeconds,
40 uint blockHeight
41 );
42

43 //Storage state attributes
44 bool private contractState = true;
45

46 address private contractOwner;
47

48 mapping(bytes32 => bool) private documentMapping;
49

50 bytes32[] private documentHashes;
51

52 //Constructor
53 constructor() {
54 contractOwner = msg.sender;
55 }
56

57 //Fallback special function
58 fallback() external {
59 emit fallbackEvent(
60 msg.sender,
61 "fallback method activated: "
62 "Wrong function prototype or empty ether call",
63 block.timestamp,
64 block.number
65 );
66 }

12



Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

67

68 //Modifiers
69 modifier onlyOwner() {
70 require(msg.sender == contractOwner);
71 _;
72 }
73

74 modifier contractStateIsActivated() {
75 require(contractState);
76 _;
77 }
78

79 //...
80 //Function code and detailed explanations in the upcoming sections.
81 }

2.4. More about data privacy and security
The different kinds of documents that are suited for this use case often contain
sensitive, private information which must be kept hidden. Blockchain transactions
are irreversible as soon as they are included in a block and the block is valid,
therefore one must be extremely careful when submitting information in the forms
of transactions. In this document verification implementation, we must never put
raw, private data on the blockchain. Meanwhile, users must be able to verify and
prove the authenticity of documents in case they possess the correct data series to
calculate the unique fingerprint of the document.

A perfect solution is using hashing algorithms, which have attributes fitting
perfectly for this use case. This way reversing the hash into the correct data
structure is extremely time-consuming for an attacker, a near impossible task.
Therefore a document should always have some kind of primary key that is unique,
this key might be composed of several descriptive attributes. The document’s
primary key should have a decent length and should be composed of letters and
numbers. Usage of sub hashes is also a viable option, although it would make
hash generation more resource-consuming and the complexity of the system would
increase somewhat.

A well-designed hash function is always deterministic, passing the same argu-
ments to it will always generate the same output. Another crucial attribute of such
hash functions is collision resistance, every different input data should be mapped
to different output hash values. Two different documents should never have the
same hash fingerprint, but in extremely rare cases it could still happen. That is
why a collision check should be implemented off-chain to prevent such issues before
broadcasting a document registration transaction. The document hash should be
calculated almost effortlessly, consuming minimal hardware resources. Also, the
hash function should always return with fixed length hashes, in the case of SHA-
256 that is 256 bits. A good hash function makes hashes that are almost impossible
to reverse, and are always deterministic with the input data. From a data secu-
rity perspective and general efficiency and design, using hashes for our use case is
optimal [13].

13



Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

2.5. Smart contract ownership implementation
The owner of the contract is stored in the address data type variable called con-
tractOwner. It is set as private, therefore only the containing contract can see it.
Setting variables to private visibility do not mean that they cannot be monitored
by other network participants. The owner is initialized in the constructor when
the contract is created. The constructor gets executed exactly one time at contract
creation. The msg.sender global variable references an address object, specifically
the address of the externally owned account (EOA), who signed and broadcasted
the contract creation transaction. Inside the constructor code, the transaction
sender’s address is assigned to the contractOwner state variable.

Figure 1. Use case diagram with the contract owner actor and its
use cases.

The function called getOwnerAddress returns with the address of the current
contract owner. It is marked as external in the function declaration, therefore it
can only be called externally, outside of the contract. Using public visibility is

14



Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

also a viable option, although public functions cost more gas to call than external
functions. The function is also a view type function, which means that it will not
modify or add new data to the contract storage memory, only reading from it. There
might be a need for changing the owner, that is why the contract has a function
called setOwnerAddress which takes care of this task. The caller has to pass an
address type variable as an argument to the function. The newContractOwner
parameter’s value is then assigned to the contractOwner state variable, changing
the owner of the contract. The setOwnerAddressEvent event helps contract activity
monitoring by emitting the correct event when the function’s code is executed [14].
This particular event contains the transaction sender, the new contract owner’s
address, a timestamp in epoch seconds, and block height data [7].

Figure 2. Smart contract ownership Solidity code snippets.

We also need to validate that the owner called the given function, for example
in the case of document registration or when transferring ownership to another
EOA address. This is where the modifier called onlyOwner comes into play, which
can ensure that only the owner can successfully call a function declared with the
onlyOwner modifier. The require statement contains a statement that the transac-
tion signer is the same as the contract’s current owner stored in the contractOwner
state variable. If that statement is true, then the _; syntax will absorb the code of
the called function and get executed. On the other hand, if the require statement
returns a false logical value, then the function which has the onlyOwner modifier
inside its declaration will not execute and the transaction will get reverted. This
mechanism ensures that the ownership permission is always enforced whenever the
method declaration contains the modifier, also it makes it efficient for us to create
and manage permission levels safely with total control.

15



Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

Figure 3. Use case diagram with regular user actor and its use
cases.

2.6. Contract state switch mechanism
The smart contract provides an on-off switch mechanism regarding the state of the
contract’s specific functions. Another way to turn a contract off is implementing
the special selfdestruct method, although this has many drawbacks. Firstly, after
the self-destruction function is called and takes place, the contract’s code and
storage memory will be erased permanently, with no way of reverting it. Secondly,
it would be counter-productive to use self-destruction, due to the fact that our use
case is based on data immutability, which would be somewhat damaged, should
we implement the selfdestruct function [12]. Deactivating the contract means that
some functions will stop working and will revert when called. Such functions are
declared with the modifier called contractStateIsActivated. The contract can be
easily turned on by the owner again. Deactivating the smart contract’s state will
not affect the code and storage memory of it, document hashes are resistant to any
kind of manipulation or tampering.

Figure 4. Smart contract state switch mechanism Solidity code
snippets.

16



Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

The above-explained mechanism is made possible by a state variable, a modifier,
and several functions. The bool primitive data type variable called contractState
stores the logical value representing the smart contract’s state. The initialization is
not done in the constructor, instead, it takes place right after the declaration, this
way it consumes less gas to create the contract. Declaring the visibility to private
is optional, the contract’s state can still be monitored using any block explorer
by any participant. Private variables are still visible to all network participants,
although such variables cannot be used anywhere outside the contract. The next
crucial component of the on-off switch is the modifier called contractStateIsActi-
vated. The require statement in the modifier’s body ensures that if the contract’s
state is deactivated, the called function will be reverted, if the given function’s
declaration statement contains the contractStateIsActivated modifier. If the con-
tractState variable is set to true logical value, then the require statement returns
true, meaning, that the _; syntax will absorb the code of the called function, exe-
cuting it. On the other hand, in case the contractState variable is false, then the
call will be reverted.

The setContractState function is used to set the contract’s state by passing a
bool logical value when calling it. We must ensure that only the owner of the
contract has the right to change the state of the contract, that is why the function
declaration contains the onlyOwner modifier. When the owner calls the setCon-
tractState function, a bool argument must be passed along with the call. The
parameter is then assigned to the state variable that stores the contract’s state,
namely the contractState variable. At last, an event is emitted in case of success-
ful execution, called setContractStateEvent. This particular event will emit data
such as the transaction sender’s address, the bool value the state has been changed
to, in addition to the time in epoch seconds in which the transaction took place,
lastly the block height data. The function called getContractState is included in
the code to make it easy for users to read out the contract state value without
having to check through events and the transaction history of the contract. This is
an optional function, as the state variable could be declared with public visibility,
in which case the get function is generated by default.

2.7. Document hash registration onto the blockchain
The main objective of the smart contract is to register documents, such as diplomas
and certificates onto the blockchain. Precisely we use the smart contract to store
document hashes on the blockchain, which is the contract’s storage memory. There
are two data structures, a map with key-value pairs called documentMapping, and a
byte32 dynamic array with the name of documentHashes. The most important data
structure is the mapping, which is the heart of the smart contract. An important
note about the mapping structure is that it is very gas efficient. Every registered
document hash acts as a key in the mapping, which has a bool value assigned to it
acting as a value. When a document hash is registered, it means that the hash key
will have a true logical value associated with it. A document hash that has not been
already registered will have a false value in the key-value pair in the mapping data

17



Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

structure. The dynamic array on the other hand stores all the registered hashes for
convenience reasons mostly. It would be still possible to determine all the document
hashes registered in the smart contract by monitoring the transaction history and
event with a simple block explorer or full node. Another important fact is that
we cannot retrieve a hash from the mapping structure, as we can only ask for the
value with the correct key. In the case of document authenticity verification, we
can pass the document hash as an argument to the correct function in order to
determine if the bool value associated with it is true or false, registered or not.
In this current implementation, there is no way to change the key-value pair’s
value element from true to false. Such a function could be easily implemented,
although it would somewhat damage the document’s immutability property. A
bytes32 value represents a document hash, 32 bytes are 256 bits. The SHA-256 hash
algorithm is perfectly suited to generate 256-bit hash values safely from document
data concatenations.

Figure 5. Smart contract document hash registration Solidity code
snippets.

In order to register a single document hash, the owner of the contract must call
the function named registerDocument. The function takes one argument with a
data type of bytes32, which represents the 256-bit document hash. The contract’s
state must be set to true, as we can see in the function declaration that it contains
the contractStateIsActivated modifier, in addition to the onlyOwner modifier, which
ensures that only the owner could register a document with the smart contract.
Next, the function starts with checking if the hash has been already registered
or not. We must find out the value element of the key-value pair with the hash

18



Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

parameter. If the hash has the logical value true associated with it, that means that
the hash has been already registered by the institution. If it is false, then we proceed
to add it to the documentHashes dynamic array with the push method. This way
we ensure that there will not be duplicate hash values in the array. Next, the
function performs the most important core statement of the smart contract, which
is document registration. This is done by changing the value element of the key-
value pair of the argument which has been passed to the function in the mapping
data structure. Setting the value to true means that the document hash has been
registered and that the document will be stored on the blockchain forever, never to
be removed or modified in any way. There is also no way to roll back registrations,
setting the values of the key-value pairs to false. Finally, the function emits an
event named documentRegistrationEvent, which contains the transaction sender’s
address, the document hash which has been registered, in addition to the epoch
seconds, and block height data for optimal traceability.

There is a function implemented to be able to mass register documents. This
is particularly important for universities and other institutions who need to regis-
ter documents such as diplomas in big batches, periodically. The function named
massRegisterDocuments takes a dynamic, bytes32 data type array as an argument,
which contains the document hashes. The function must be called by the contract
owner in order to execute successfully. Also, the contract must be activated too.
The function immediately starts a cycle in order to iterate through all the bytes32
data elements of the passed dynamic array. In each iteration, we must check if the
given hash is already registered or not. If the key-value pair has a value element of
false associated with the hash key, then the hash is pushed into the documentHashes
state object variable in the smart contract storage memory. In each iteration, we
must also register the document hash the same way we do in the previous function,
by setting the bool value from false to true corresponding to the hash as a key
in the key-value pair. After the cycle is finished, an event named massDocumen-
tRegistrationEvent is emitted with the following data elements: The transaction
sender’s address, the dynamic array argument contents, block timestamp data,
and block height data. There are two additional functions included. First, the
function named getNumberOfRegisteredDocuments. As the name suggests, it will
return with the total number of stored hashes in the contract storage, precisely the
length property of the documentHashes state object variable. It is ensured that
the dynamic array will not contain any duplicate bytes32 values. Lastly, we have
the function named getAllRegisteredDocumentHashes. When called by the owner,
it will return the elements of the documentHashes array. The memory keyword
must be used in case of arguments, local variables, and return values in methods.
Memory variables are created at runtime and exist only while the method is being
executed, after that the memory variables are released. A popular analogy is com-
paring the two memory types to the computer random access memory and hard
drive. Memory data is only stored temporarily like RAM, and is volatile, mean-
ing that after function execution the memory variables are released. On the other
hand, storage variables are non-volatile and can be always retrieved by reading the

19



Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

contract’s storage area. From a gas cost perspective, reading from the contract’s
storage is expensive compared to using memory variables that are only temporarily
allocated. Another interesting aspect of this is when we reference storage variables
inside a function. In Solidity, that action is called a local lookup operation, and it
does not create new storage, it is just a reference to a storage variable that has
been already allocated in the contract’s storage area. It is impossible to create new
storage variables inside a function. When a function takes a memory variable argu-
ment and assigns the parameter to a referenced storage state variable, there is no
need for new storage allocation, as it is done already at the contract construction
level. The question of using memory or storage variables comes down to whether
we need to store a variable on-chain or is only needed at runtime, and also gas cost
considerations are not to be underestimated.

2.8. Document authenticity verification
One of the major use cases of the smart contract is to verify documents based on the
unique document fingerprint hash. Document verification is available to all users,
it does not require special permissions or even an activated smart contract state.
The functions responsible for this process are free to call, as they are read-only
functions. Read-only methods only access the storage memory area of the smart
contract to retrieve data, but do not modify or add any new data to it, therefore
executing these functions does not cost anything as the state of the blockchain and
the smart contract stays the same.

Figure 6. Smart contract document authenticity verification So-
lidity code snippets.

The function verifyDocumentQuery has the ability to verify one document. The
caller must pass a bytes32 document hash argument to the function. The method
then returns with the value element of the key-value pair, where the documentHash
parameter is the key. If the passed hash has been already registered by the owner of
the contract, then the value element of the key-value pair will be true, otherwise,
it will return with false. There is also a way to verify multiple documents with
one function call. This is done by calling the massVerifyDocumentQuery function
and passing a valid bytes32 dynamic array of document hashes. Next, the function
starts to iterate through the list of hashes, checking each of them if they have been

20



Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

registered or not. If one of the document hashes has not been registered in the
contract, or in other words the key-value pair holds a value of false associated with
the given hash key, then the function returns immediately with false. If all of the
document hashes are valid and registered, then the function returns with true.

2.9. Fallback method

Figure 7. Smart contract fallback function Solidity code snippets.

The fallback function is a nameless function, which has no arguments, does not
return a value. The reason why we need a fallback function is to prevent the
contract from receiving ether from users by mistake. If we declare the fallback
function without the payable keyword in the declaration, then the function will
throw an exception in case the contract receives ether without any function calls.
It is also called when the transaction contains a function call and the function
identifier is constructed incorrectly, calling a non-existent function instead [19]. In
these cases, the fallback function is called, emitting the event named fallbackEvent,
which has a transaction sender address, fallback message, block timestamp, and
block height data. Another constraint is that the fallback function must be declared
with external visibility. If we would mark the fallback function with the payable
keyword, then the contract would be able to receive ether as payment, although
in our use case this is unnecessary. Only one fallback function can be defined in
a contract. The main use of the function in our implementation is to avoid loss
of funds for users who send plain ether to the contract, such transactions will be
reverted. Another use of this method is to receive donations or payments without
having to supply a function with the transaction.

3. Conclusion
We aimed to develop a smart contract, which enables decentralized document reg-
istration and verification for the education sector and academia on the Ethereum
network, without a third party. Our main objective was to come up with a pow-
erful solution of reducing document forgery cases. We successfully deployed the
smart contract on the Ropsten Ethereum test network. All the implemented logic,
mechanisms, and functions performed as intended, according to the previously set
expected results. Another goal was to keep gas costs low for all use cases of the
system. After proper empirical evidence, we can safely say that there were no unex-
pected gas spikes, and the gas consumption of the functions is optimal thanks to the
simplistic, yet efficient and safe design. There is still much room for improvement
regarding the capabilities of the smart contract.

21



Annal. Math. et Inf. R. Frisch, D. É. Dobák, J. Udvaros

One of these is implementing a multi-signature scheme for the system. With
a secure and gas-efficient multi-signature mechanism in place, we could improve
the security of the contract even further, by having multiple owners and therefore
required signatures for successful function execution such as document registra-
tion or contract deactivation, or even ownership transfers. Another requirement
might be a feature that enables the contract owner to call back documents, which
have been proved to contain errors, or in rare cases, the document owner has be-
come ineligible for ownership of the specific document. The next step of evolution
for our smart contract is the deployment on other blockchains. A great potential
blockchain candidate is called Avalanche [8] because it offers much greater trans-
action block inclusion and finality speed, lower transaction fees. Instead of using
the Proof-of-Work consensus algorithm, Avalanche implemented a Proof-of-Work
mechanism instead, which has several benefits, such as greater decentralization,
neutrality, and stronger scalability, in addition to being more resistant to 51% at-
tacks [4]. Although Ethereum has the most robust network and node infrastructure,
in addition to having the longest track record, and is still the dominant blockchain
by adoption, volume, users, developers, and decentralized applications.

The on-chain part of the system is the smart contract. There is still a need for
several off-chain components, such as a database server, a web server, and unique,
in-house developed programs. A database server is required to store all the reg-
istered documents along with the hashes for positive redundancy and traceability.
Remember, that the smart contract does not store the document data directly, only
the calculated hash of the document to prevent data leakage and maintain privacy.
Another off-chain component is a web server, to host a web interface for users to
interact with the contract more easily. Without a user-friendly web interface, the
users would only have the choice to interact with the smart contract manually with
a proper wallet and block explorer. Having more than one way to reach and com-
municate with the contract’s functions is only beneficial and increases the security
of the system. Another off-chain component that would be ideal, is a program that
calculates the document hashes and checks for collisions and other potential errors.
The software would also prepare the arguments to be passed during a function call.
Thanks to the invention of blockchain and smart contract technology, now we have
the tools necessary to fight against document forgery in an unprecedented way.

References
[1] A. Alammary, S. Alhazmi, M. Almasri, S. Gilani: Blockchain-Based Applications in Ed-

ucation: A Systematic Review, Applied Sciences 9 (June 2019), p. 2400, doi: https://doi.o
rg/10.3390/app9122400.

[2] P. Bhardwaj, Y. Chandra, D. Sagar: Ethereum Data Analytics: Exploring the Ethereum
Blockchain, Sept. 2021.

[3] V. Buterin: A Philosophy of Blockchain Validation, 2020, url: https://vitalik.ca/gene
ral/2020/08/17/philosophy.html.

[4] V. Buterin: Why Proof of Stake, 2020, url: https://vitalik.ca/general/2020/11/06/po
s2020.html.

22



Annal. Math. et Inf. Blockchain diploma authenticity verification system . . .

[5] G. Canfora, A. D. Sorbo, Sonia, A. V. Laudanna, C. A. Visaggio: Profiling Gas Leaks
in Solidity Smart Contracts, Aug. 2020.

[6] Chainlink: Blockchains and Oracles: Similarities, Differences, and Synergies. 2021, url:
https://blog.chain.link/blockchains-oracles-similarities-differences-synergies/.

[7] Chainlink: Events and Logging in Solidity, 2021, url: https://blog.chain.link/events-a
nd-logging-in-solidity/.

[8] Chainlink: How to Build and Deploy an Avalanche Smart Contract. 2021, url: https://bl
og.chain.link/how-to-build-and-deploy-an-avalanche-smart-contract/.

[9] Chainlink: What Is a Smart Contract?, 2021, url: https://chain.link/education/smart-
contracts.

[10] Chainlink: What Is Blockchain Technology?, 2020.
[11] G. Chen, B. Xu, M. Lu, N.-S. Chen: Exploring blockchain technology and its potential

applications for education, Smart Learning Environments 5 (Jan. 2018), doi: https://doi
.org/10.1186/s40561-017-0050-x.

[12] J. Chen, X. Xia, D. Lo, J. Grundy: Why Do Smart Contracts Self-Destruct? Investigating
the Selfdestruct Function on Ethereum, May 2020.

[13] H. Farid: An Overview of Perceptual Hashing, Journal of Online Trust and Safety 1.1 (2021),
doi: https://doi.org/10.54501/jots.v1i1.24.

[14] Á. Hajdu, D. Jovanović, G. Ciocarlie: Formal Specification and Verification of Solidity
Contracts with Events, May 2020.

[15] N. Kannengiesser, S. Lins, C. Sander, K. Winter, H. Frey, A. Sunyaev: Challenges and
Common Solutions in Smart Contract Development, Oct. 2021, doi: https://doi.org/10
.1109/TSE.2021.3116808.

[16] W. Macharia: Cryptographic Hash Functions (May 2021).
[17] G. A. Pierro, H. Rocha: The Influence Factors on Ethereum Transaction Fees, in: May

2019, pp. 24–31, doi: https://doi.org/10.1109/WETSEB.2019.00010.
[18] B. Preneel: Analysis and Design of Cryptographic Hash Functions (2013), pp. 1–30.
[19] S. Rezaei, E. Khamespanah, M. Sirjani, A. Sedaghatbaf, S. Mohammadi: Developing

Safe Smart Contracts, in: July 2020, pp. 1027–1035, doi: https://doi.org/10.1109/COMPS
AC48688.2020.0-137.

[20] J. Udvaros, N. Forman, S. M. Avornicului: Agile Storyboard and Software Development
Leveraging Smart Contract Technology in Order to Increase Stakeholder Confidence, Elec-
tronics 12.2 (2023), doi: https://doi.org/10.3390/electronics12020426.

[21] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, F.-Y. Wang: Blockchain-Enabled Smart
Contracts: Architecture, Applications, and Future Trends. IEEE TRANSACTIONS ON SYS-
TEMS, MAN, AND CYBERNETICS: SYSTEMS 49.11 (2019), doi: https://doi.org/10.1
109/TSMC.2019.2895123.

[22] Z. Zheng, S. Xie, H.-N. Dai, Weili, X. C. Chen, J. Weng, M. Imran: An Overview on
Smart Contracts: Challenges, Advances and Platforms, Dec. 2019.

23


