
Submitted: April 8, 2022
Accepted: April 20, 2023
Published online: April 28, 2023

Annales Mathematicae et Informaticae
57 (2023) pp. 65–77
DOI: https://doi.org/10.33039/ami.2023.04.002
URL: https://ami.uni-eszterhazy.hu

Logical conditions in programming
languages: review, discussion and

generalization∗

Benedek Nagyab∗, Khaled Abuhmaidanc, Monther Aldwairid

aDepartment of Mathematics, Faculty of Arts and Sciences,
Eastern Mediterranean University, Famagusta,

North Cyprus, via Mersin-10, Turkey
corresponding author: nbenedek.inf@gmail.com

bDepartment of Computer Science,
Institute of Mathematics and Informatics,

Eszterházy Károly Catholic University,
Eger, Hungary

cFaculty of Computing and Information Technology,
Sohar University, Oman
khmaidan@su.edu.om

dCollege of Technological Innovation, Zayed University,
144534 Abu Dhabi, United Arab Emirates

monther.aldwairi@zu.ac.ae

Abstract. Boolean logic is widely used in almost every discipline includ-
ing linguistics, philosophy, mathematics, computer science and engineering.
Boolean logic is characterized by the two possible truth values, and various
logical connectives/operations allow us to make compound statements, con-
ditions. Most of the programming languages, if not all, have some of the logic
operations: conjunction, disjunction and negation. Actually, since the set of
these three operations form a basis, any logical statement can be formed by
them. However, on the one hand, there are smaller bases as well, i.e., one
of the conjunction or disjunction is already superfluous. Moreover, there are
bases with only one operation, e.g., by NAND. On the other hand, one may
allow other operations helping the programmer/user to define the conditions
of conditional statements and loops in a simpler manner. In this paper we

∗This research was supported by Zayed University, Research Office, Research Incentive Fund
Award #R20089.

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

discuss these issues, including some practical points, implementation issues
and short cut evaluations for various operations.
Keywords: High level programming languages, conditional statements, loop
conditions, logical connectives, short cut evaluation, formal logic
AMS Subject Classification: 03B70, 03B05, 68N15, 68N20, 97P40

1. Introduction
Classical Boolean logic is a well-known and widely used basis of various mathe-
matical disciplines and also of computer sciences, including hardware and software
related fields. In this paper, we are, first, analysing how it occurs in high-level pro-
gramming languages, e.g., conditional statements (see Section 2). Then overviewing
classical logic we give reasons why the logical operations conjunction, disjunction
and negation are used, and not a smaller basis of the operations. However, there
are other widely used logical operations which may help our lives to be easier, e.g.,
implication and equivalence, if they are also allowed to be used in our formula-
tions. But then, one may ask the question, why the programmers should translate
all their conditions to a form that may include only that three connectives that are
built in the programming languages, and why the others are not like that. This
is the motivation of our paper. We show how the other usual logical operations
can be used in our programs. We give some thoughts also on possible implemen-
tations, e.g., based on preprocessing or a functional representation that is close to
the so-called Polish notation introduced by Łukasiewicz [12].

2. Conditions in programs
In high-level programming languages both the branching and the loop structures
occur frequently. The branching is usually done by conditional statements. The
usual form of a conditional statement (although it may be slightly varied in various
programming languages) is either

if (condition) then statement

or

if (condition) then statement(1) else statement(2)

For details about the syntax used in various languages that are not explained
here, the readers are referred to textbooks [8–11, 22, 25, 28]. Note that some of
the languages are case sensitive and some of them are not.

In this paper we are interested and concentrate on that part which includes
logic: The (condition) in the above structures means logical condition, i.e., a logical
formula that is evaluated by the computer, and if it evaluates to true then the

66

Annal. Math. et Inf. Logical conditions in programming languages. . .

statement (or statement(1) in the second case) is executed, otherwise they are not
executed at this time (but statement(2) is executed in the second case) and the
program then continues by the next statement.

The logical condition can be a simple condition, e.g., (x < 15) or a compound
statement. In most of the programming languages the statement can also be com-
pound, i.e., a block built up by a sequence of statements, for syntax see the men-
tioned textbooks.

The loops usually have heads with conditions and bodies with statements. The
condition in the head is also a logical condition that is evaluated to be either
true or false and based on that either the statements of the body of the loop are
executed (once more) or the program continues by the statement after the body
of the loop. There are various types of loops that can be used (depending also
on the used language). Most of the languages have for loops, however, in some
of the languages that type of loop does not have a formal logical condition, but
the body should be executed for some specific values of the loop variable (e.g., in
Pascal and Python). In some other languages, including C, C++, Java and also
Javascript, the for loop is very similar to the while loops that we are explaining
shortly in the sequel. In while loops, after the word while a condition is written
(for syntactic details the author is referred to the textbooks mentioned before),
then the body with its statement(s) is written. In the programming languages in
which the for loop is similar, after the word for in brackets, first an initialisation
statement (that is executed only once before checking the loop condition at the
first time), then in the middle, the loop condition itself that is very similar to the
loop condition of while loops, finally, the third part in the bracket is the increment
statement, that is a statement which is executed after the body each time when
the body is executed, right before the loop condition is (re)checked. Finally, there
is also another type of loop, where the condition is after the body. In Pascal it
is written as follows: between repeat and until the statement(s) and right after
until the logical condition (to decide if the statement(s) in the body are executed
once more). In other languages, e.g., in C, C++, Java and Javascript, these are
written as do - while loops having the body between these words and the logical
condition after the second. For more details about its syntax in various languages
we recommend to check the mentioned textbooks. We note that any algorithms
can be implemented without this type of loop.

Here, we are concentrating on the logical conditions. Thus, let us see how one
can build complex conditions. The usual classical connectives to make compound
statement are the conjunction, disjunction and negation, see Table 1. In some high
level languages there is a simple datatype for Boolean values and there are also
built in constant values for both the truth-values.

Although in the programming language C, there is no specific type for Boolean
values, integers and pointers can be used also for this purpose in such a way that
the value 0 or NULL is understood as false, while any other values are understood
as true. In various other languages the values 0 and 1 also play the role of false
and true, for details the reader is referred to the above listed (text)books.

67

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

Table 1. The logical operations and constants in various high-level
programming languages.

Programming conjunc- disjunc- nega- Boolean/logical type
Language tion tion tion true, false

Pascal and or not boolean true false
C && || ! -

C++ && || ! bool true false
Java && || ! boolean true false

JavaScript && || ! boolean true false
Python and or not bool true false

3. Bases of Boolean logic
As we have already seen, in Boolean logic there are two truth-values: true and
false. Usually they are represented by 1 and 0, respectively. Boolean variables,
denoted by, e.g., A, may take one of these values at interpretation and evaluation.
As usual in almost every part of mathematics, the operators are unary and binary
ones. The only unary operator, the negation is usually (syntactically) written as
∼ A or ¬A in formal logic (with a formula A). In Boolean algebra, the notation
Ā is used, while various programming languages use various notations as we have
already shown them in Table 1. The (semantical) result of this operation is that the
compound statement having this operation as the main operation has the opposite
truth value than the subformula without this main operation (i.e., the truth value
of formula A).

Table 2 shows all possible Boolean operations. Note that the first and last
rows are not functions of any of the variables A and B, but always false and true
(they are in fact the Boolean constants and can be seen as functions with zero
arguments). As we have already mentioned in many programming languages the
programmer can use these constants as well, e.g., to have a (theoretically) infinite
loop with a condition that is always true. There are two other rows, which are in
fact the copies of the values of A and B, respectively. These rows do not define
logical connectives, neither.

Further, two of the rows are showing the negation of the variables A and B,
respectively, thus the unary operation negation occurs twice in the table.

The remaining ten rows define the ten binary operations, and there are no more
[7, 18]. On the one hand, obviously, the conjunction (logical and) and disjunction
(logical or) are among them. On the other hand, most of the other operations have
also their own names, as they play important roles, either in natural languages
(implication, equivalence, exclusive or), in logical deductions (implication) or in
the hardware industry (NAND, NOR).

As we have seen there are eleven Boolean operations. How it can happen
then, to use only three of them in programming languages? The answer is in the
properties of the Boolean algebra [1, 15], i.e., the concept of base set of operations.

68

Annal. Math. et Inf. Logical conditions in programming languages. . .

Table 2. The Boolean operations (based on all possible binary
Boolean functions).

formula name values
A 1 1 0 0
B 1 0 1 0
0 - 0 0 0 0

A ∤ B NAND 0 0 0 1
A ̸⊂ B 0 0 1 0

¬A negation 0 0 1 1
A ̸⊃ B 0 1 0 0

¬B negation 0 1 0 1
A

⊕
B eXclusive OR 0 1 1 0

A|B NOR, Sheffer stroke 0 1 1 1
A ∧ B and 1 0 0 0
A ≡ B EQUivalence 1 0 0 1

B - 1 0 1 0
A ⊃ B IMPlication 1 0 1 1

A - 1 1 0 0
A ⊂ B reverse implication 1 1 0 1
A ∨ B or 1 1 1 0

1 - 1 1 1 1

We say that a subset S of the operations listed in Table 2 is a base, if for any number
of Boolean variables, one can write equivalent formula L′ using the variables and
the operations of S to any logical formula (or Boolean function) L of the same
variables. A base is also called a functionally complete set of operations, and by
Post, it is known that the set must contain at least one operation without each of
the following five properties:

• monotonic (by “increasing” the input, i.e., by changing the value of any of the
arguments from 0 to 1, the value of the result cannot decrease, i.e., cannot
switch from 1 to 0, e.g., ∧ and ∨ are monotonic),

• linear/counting (those rows of Table 2 are referred here that have even number
of 1’s, and thus, also even number of 0’s),

• self-dual (those operations are counted here for which by flipping – i.e., chang-
ing from 0 to 1 or vice versa – the values of all the arguments, the result must
also change to the opposite),

• truth-preserving (if all the arguments have a value truth, then also the result
is true) and

• false-preserving (if all the arguments have a value false, then also the result
is false),

69

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

see more details, e.g., in [19].
It is well-known (see, e.g., [13, 18]) that S = {¬, ∧, ∨} is a base. On one

hand, this is the most used base, since in Boolean algebraic description usually,
exactly these operations are used. Further, these operations are used to define the
conjunctive and disjunctive normal form expressions, and it is well-known that for
any Boolean formula there is an equivalent one in conjunctive/disjunctive normal
form. On the other hand this is not a minimal base, as we recall in the next
subsection.

3.1. Why not smaller bases?
Although, S = {¬, ∧, ∨} is a base, it is not minimal: by the use of the De-Morgan
identities (and the law of double negation), i.e., (A∧B) is equivalent to ¬(¬A∨¬B)
and (A ∨ B) is equivalent to ¬(¬A ∧ ¬B), thus one may exclude either ∨ or ∧.

Then, in a minimalist language (in terms of defining as less things as possible to
make a high level programming language), one may use one of the sets S∧ = {¬, ∧}
and S∨ = {¬, ∨} and keep only negation and one of the binary connectives of S.

Moreover, there are even smaller bases: Sheffer has already shown that one
operation is enough to express any Boolean formulae/function [24], he has used
the operation named after him, as Sheffer stroke (and it is known also as NOR,
i.e., Negated OR, in Boolean algebra and logic gates). On the other hand, the
operation NAND also has this property: any logical formulae can be expressed
also by using the sole operator NAND. These operations do not have any of the
five properties described by Post.

Now, we may ask the question that is given in the head of the subsection:
if we have smaller bases, why do we use three connectives and not less in the
programming languages.

The answer is obvious: these three connectives are so natural and it is very easy
to connect them to natural languages:

• the negation refers for the negative statements, when (usually) the verb part
is negated, e.g., “John does not go to the school today.” Sometimes another
verb meaning the negation of the other exists in the language, e.g., ‘remember’
could play similar role as ‘do not forget’.

• the conjunction refers to connect two (independent) statements by the con-
nective ‘and’, e.g., “John goes to the school and Bob plays football today.” In
the language we may use various connectives, e.g., ‘and’, ‘but’, or maybe only
a semi-colon to connect the two statements and form a compound statement
in this way.

• the disjunction usually refers to sentences compounded by the connective ‘or’,
e.g., “Rick likes the taste of the coffee or he likes the hot drinks.”

However, to formalize conditions, one needs some special care, as there are
various differences in formal logic that is used in mathematics and programming
and the ‘logic’ used in natural languages.

70

Annal. Math. et Inf. Logical conditions in programming languages. . .

• The connective ‘and’ may have the meaning ‘and then’, e.g., “Bob went to the
supermarket and he has bought some drinks.” In this sense, this connective
is not always commutative. It is also dangerous to abbreviate the statements
and put the ‘and’ between some parts of the sentences without repeating the
other parts of the statement. Ambiguity occurs, e.g., “You are allowed to
distribute the softwares I wrote and I licensed.” (It may not be clear if it is
only about the softwares which I have both written and licensed or also those
which I only have written or only have licensed...)

• The connective ‘or’ frequently has ‘xor’ meaning, in the sense that we want to
allow only one of the options, e.g., “Jack is drinking a coffee or he is drinking
a tea”; “Bob will do his homework or he will fail in the course.” Thus in
some cases instead of simply writing ‘or’, in some text ‘and/or’ is written
in the usual meaning of the disjunction. (Sometimes to highlight the ‘xor’
feature, the format, “either he will do the homework or he will fail” is used,
but the usage of ‘either’ is optional in the language, even if the meaning of
the sentences should be the same.)

Now, we turn to give some notes on the usage of a base with only one operator.
The options would be to use only NAND or only NOR. However, this would make
the writing of the conditions long and hardly understandable causing extra care
and possible faults and bugs in coding. Although mathematically and theoretically,
these would be options, in practice it would be not a good way to use the high level
programming languages in any of these ways. As computers become widespread,
to allow more and more people to learn programming and write their own codes it
would be very difficult to learn.

Although, in the hardware industry, it could be a good decision, as the con-
nection of the logic gates can be easily checked by simulations and also computers
support the design of the circuits, the programmers have not been trained to con-
vert any types of Boolean logical conditions/statements to formulae using only one
connective.

4. Expanded Logic

Now, since we have seen why it is not a good idea to use to small number of logical
connectives, we show how the set of used connectives can be expanded to allow
some more of the usual connectives.

As we have shown in Table 2, the following well-known and widely used oper-
ations, i.e., connectives have three true and one false values in their truth table:
disjunction, implication, NAND. The connectives conjunction and NOR are de-
fined in the opposite way, i.e., by only one true and three false values. The other
two well-known operations, the equivalence and the XOR have two-two true and
false values. These facts turn to be important in the sequel.

71

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

4.1. Practical implementation
A preprocessor or a macro may substitute the formulae containing any of the IMP,
NAND, NOR, EQU, XOR operations to formulae with only conjunction, disjunc-
tion and negation. In this way, the code is first transformed to an equivalent code
in the traditional/usual programming language, and thus, the programmer may
use these larger set of connectives to write a more intuitive and simpler condi-
tion, but, in fact, the computer will execute the code after preprocessed in the
traditional manner. On the other hand, since programming languages are focusing
on performance when making the executable code, and the logical operations on
the machine code include e.g., XOR, this operation can be compiled and executed
directly.

Nevertheless, as a possible solution to include these new logical operations,
we give possible substitution(s) that a preprocessor may do for each of the five
operations. Let a and b abbreviate the two (simple or compound) conditions that
are connected by the given operator, their (truth-)value can be 0 and 1.

• a IMP b can be written as NOT a OR b

• a NAND b can be written as NOT a OR NOT b

• a NOR b can be written as NOT a AND NOT b

• a EQU b can be written as (a AND b) OR (NOT a AND NOT b) or (a AND
b) OR NOT (a OR b)

• a XOR b can be written as (NOT a AND b) OR (a AND NOT b)

We may need to use fully bracketed formulae to make their meaning clear. Espe-
cially, the substitution of the last two operators, the EQU and XOR seem long.
Now some tricks are shown which may be used in the programming language C,
where instead of the Boolean type, integers are used. Let a and b abbreviate
the two conditions (which may have values 0 or 1), as before, then we have the
following. We start with the operators AND and OR, which do not need to be
substituted or interpreted in other ways, as they are built in, however, for the sake
of completeness and to feel what types of ideas are behind the scene, we start with
those.

• a AND b can be written as a * b

• a OR b can be written as a + b

• a IMP b can be written as a <= b

• a NAND b can be written as !(a * b)

• a NOR b can be written as !(a + b)

• a EQU b can be written as a == b

72

Annal. Math. et Inf. Logical conditions in programming languages. . .

• a XOR b can be written as a != b or !(a == b)

As here, we are showing rewriting that is close to the style of the programming
language C, we used the sign ! for negation. At the disjunction, as the sum may
produce a value that is outside of the targeted set {0, 1}, in some cases one may
need to use it in the form !!(a+b) that transforms the value based on the double
negation law to the desired set of values. (In some other languages, e.g., in C++,
explicit type conversions can also be used to transform the resulted value back
to the set of official truth-values.) The sign ‘<=’ may seem to be an arrow ⇐ or
a horseshoe ⊂, but in fact none of them is used to represent implication in this
orientation. On the other hand, the ‘==’ can be seen as a built in equivalence
operator, although it is not highlighted in this way. Moreover, it can be used not
only in C, but in many other high-level programming languages, as the equality
operation is defined usually also on Boolean values. Thus, in this way, we may be
happy that, although it is not underlined in the textbooks and courses, in a usual
high-level programming language the programmers may use not only negation,
conjunction and disjunction, but also the equivalence operator (usually with the
lowest priority, therefore bracketing may be needed if one uses it for this purpose).

Another idea could be to use the connectives in functional form, e.g., to write
the logical expressions in prefix form (with or without brackets).

Without using any brackets, the so-called Polish notation of formulae, also
called prefix form, can be used. This form is invented by Łukasiewicz to avoid
brackets and have a unique way to read and evaluate the formulae [12]. In this
writing the operators precede their operands, as we show below.
Examples could be:
EQU AND A IMP B, C XOR B NOT A is representing the formula
((A ∧ (B ⊃ C)) ≡ (B

⊕ ¬A)).
AND OR NOT A, B IMP A, C is representing (¬A ∨ B) ∧ (A ⊃ C).

With brackets, the connectives can be interpreted as functions, and in this way,
they can be programmed in the programming language itself and they can easily
be put to a new logical library as well to include them and allow them to be used
by the programmers.

Our last example written in this form is:
AND (OR (NOT (A), B), IMP (A, C))

There is also an advantage of this form over the other without brackets, namely,
for the associative operations, e.g., for AND, OR, XOR the programmer may use
more than two parameters without any problem, misunderstanding or misinterpre-
tation.

We note that although this type of prefix notation is not widely used in logic
and mathematics, it is used in computer science, e.g., in the programming language
LISP [27]. The reverse Polish notation, the postfix notation, in which all operands
precede the operator is also used in computer science, especially in stack-based
programming [20, 26].

73

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

4.2. Shortcut for the new connectives
On the one hand, the EUQ and XOR operations are of the form of 2-2 (remember
to Table 2 and discussion on the number of the occurrences of the truth values).
In this way, we cannot do any pruning or short-cut evaluation technique. By
knowing the value of the first part one cannot involve the knowledge of the truth-
value of the whole formula in any case, the second part must also be evaluated.
This phenomenon is related to the fact that, e.g., in Gentzen sequent calculus by
working with a formula having main connective as EQU or XOR, the deduction
process is branching and in both branch we need to write and use both immediate
subformulae instead of the original formula.

Now, on the other hand, let us take a look on our other five operations (including
the original AND and OR) we deal with. All of these are 1-3 or 3-1 forms, meaning
that by knowing the truth-value of the first part of the expression, we may know
the truth-value of the whole expression (in the fortunate case). These cases are
listed below.

At operator if the first part is then the whole formula is
AND: false, false.

OR: true, true.
IMP: false, true.

NAND: false, true.
NOR: true, false.

It is clear to see how the short-cut evaluation works for AND and OR, and in
fact, these short-cut evaluations are built in features of the programming languages.
On the other hand we can also use the new short-cuts listed in the last three rows
of the previous table.

We would like to highlight and discuss one interesting issue here: we have
listed 5 operators, but there are only 4 possibilities (to have the truth-value of the
first part given and to infer from this to the truth-value of the whole formula).
Seemingly, in the table IMP and NAND are similar. Actually, if we can use the
short-cut, i.e., the evaluation can be done earlier than all parts of the formula
are evaluated, then yes, definitely, they work on the same way. However, in case
the short-cut evaluation cannot be used, i.e., the first part is true and we need to
evaluate the second part, then their difference appears: if the second part is false,
then IMP gives false and NAND gives true. Alternatively, if the second part is also
true, then IMP gives true and NAND gives a false value to the whole expression.

We note here again the analogy of the possibilities of the usage of the short-
cut techniques and the theorem proving methods Gentzen sequent-calculus and
Smullyan tableaux. These methods make a branching at some formulae, and if
only the first immediate subformula occurs in a branch, then we can make a cut,
e.g., at implication, the whole formula evaluates to true, if the first part is false
(and we do not need to check the second subformula).

Finally, we highlight that short-cut evaluations are not only used to make the
evaluation faster, but they have safety features as well by allowing to shorten some

74

Annal. Math. et Inf. Logical conditions in programming languages. . .

parts of the code.
Consider the following conditional statement with operator IMP and with vari-

ables num, divisor:

if (IMP(divisor > 0 , num/divisor > 5)) return 1 else return 0

It will return 1, if the actual value of the divisor is negative or in the case when
divisor has value 0 , without checking the fraction in the second part. Further,
it returns also 1 if divisor is positive and num/divisor is larger than 5. Finally,
it returns 0 only if divisor is positive and num/divisor is at most 5. The second
part of the implication, including the division by divisor is checked only if the
first part was evaluated to true, i.e., the value of the divisor is not 0, but it is
positive. In this way, the possible error of division by zero is avoided by the short
cut evaluation technique. Statements of this type are related to the nature of the
material implication widely used in formal logic, namely, if the condition part, the
first part of the statement has a false truth-value, then does not matter how strange
and weird is the second part, the whole statement is evaluated to be true.

In this way it is very similar to the very usual compound condition with integer
variables num, divisor and result.

The double, nested condition

if (divisor !=0) if (num/divisor > 5) result = num/divisor

can be abbreviated to a sole, but compound condition as

if (divisor != 0 && num/divisor > 5) result = num/divisor

Note that in the programming language C, the first part can be simplified and
the condition (that is in the bracket) can be written as

(divisor && num/divisor > 5)

The fact that we can write the double nested condition in one compound con-
dition without any risk is related to the fact that, for instance in the programming
language C (and in other languages), the logic is not exactly the classical Boolean
logic, but a kind of 3-valued not commutative logic (see in [16]). As the condition
written in

(num/divisor > 5 && divisor != 0)

causes a runtime error in case the value of divisor is 0, this is not equivalent
to our original form. This already leads to us to the next section.

75

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

5. Discussion, conclusion and related works
This study can be seen as a follow up study about logic in programming languages,
which we have started in [16]. There we have concentrated on how the logical
values are computed and what type of ideas and processes are behind the scene.

In this paper, we give some thoughts about which and how many logical opera-
tions can and should be used in a high-level programming language. We argued and
give hints on how is possible to include not only the widely used three operations
of Boolean algebra, but some other well-known and frequently used operations,
like the exclusive or, the equivalence and the implication in our programs to make
compound logical conditions. They may allow (beginner) programmers to write
their conditions in a simpler way, or in the way that is more closely reflected by
the condition stated in natural language. We have also studied the possibilities
of short-cut evaluations, which can also be seen, on one hand the generalizations
of the very closely related alpha and beta pruning techniques of game theory [21,
23] that are also generalised to games with chance nodes (i.e., with some random
events) [14] and for other types of operations [2, 3]. Related works are also done
by using and analysing similar techniques in the three most-known and most used
fuzzy and many-valued logic systems, in the Gödel type logic [5], in the product
logic [6] and in the Łukasiewicz-type logics [4, 17].

Acknowledgements. Comments of the anonymous reviewer are gratefully ac-
knowledged.

References
[1] B. H. Arnold: Logic and Boolean Algebra, Dover Publications, 2011, p. 144, isbn: 978-

0486483856.
[2] R. Basbous, B. Nagy: Generalized Game Trees and their Evaluation, in: CogInfoCom 2014:

5th IEEE International Conference on Cognitive Infocommunications, Vietri sul Mare, Italy,
IEEE, 2014, pp. 55–60, doi: https://doi.org/10.1109/CogInfoCom.2014.7020518.

[3] R. Basbous, B. Nagy: Strategies to Fast Evaluation of Tree Networks, Acta Polytechnica
Hungarica 12.6 (2015), pp. 127–148, doi: https://doi.org/10.12700/APH.12.6.2015.6.8,
url: http://acta.uni-obuda.hu/Basbous_Nagy_62.pdf.

[4] R. Basbous, B. Nagy, T. Tajti: Pruning Techniques in Łukasiewicz Logics, Acta Polytech-
nica Hungarica v.n (2022), doi: https://doi.org/10.12700/APH..

[5] R. Basbous, B. Nagy, T. Tajti: Short Circuit Evaluations in Gödel Type Logic, in: Ravi V.,
Panigrahi B., Das S., Suganthan P. (eds) Proceedings of the Fifth International Conference
on Fuzzy and Neuro Computing (FANCCO - 2015), vol. 415, Advances in Intelligent Systems
and Computing (AISC), Springer, Cham., 2015, pp. 119–138, doi: https://doi.org/10.10
07/978-3-319-27212-2_10.

[6] R. Basbous, T. Tajti, B. Nagy: Fast evaluations in product logic various pruning tech-
niques, in: 2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016, Van-
couver, BC, Canada, July 24-29, 2016, IEEE, 2016, pp. 140–147, doi: https://doi.org/10
.1109/FUZZ-IEEE.2016.7737680.

76

Annal. Math. et Inf. Logical conditions in programming languages. . .

[7] J. L. Bell, M. Machover: A Course in Mathematical Logic, North Holland, 1977, p. 599,
isbn: 978-0080934747.

[8] D. Flanagan, G. M. Novak: Java-Script: The Definitive Guide, American Institute of
Physics, 1998.

[9] J. Gosling, B. Joy, G. Steele, G. Bracha: The Java language specification, Addison-
Wesley Professional, 2000.

[10] E. Horowitz: Fundamentals of Programming Languages, Springer, Berlin, Heidelberg, 2012,
isbn: 9783642967290.

[11] B. Kernighan, D. Ritchie, C. Tondo: The C Programming Language, Prentice-Hall soft-
ware series, Prentice Hall, 1988, isbn: 9789688802052.

[12] J. Łukasiewicz: Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic, Oxford
University Press, 1951, p. 141.

[13] R. J. McEliece, R. B. Ash, C. Ash: Introduction to discrete mathematics, English, New
York etc.: Random House, 1989, pp. xv + 514, isbn: 0-394-35819-8.

[14] E. Melkó, B. Nagy: Optimal strategy in games with chance nodes, Acta Cybern. 18.2 (2007),
pp. 171–192, url: https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view
/3712.

[15] E. Mendelson: Theory and problems of Boolean algebra and switching circuits including
150 solved problems, English, Schaum’s Outline Series. New York etc.: McGraw-Hill Book
Comp. 213 p. (1970). 1970.

[16] B. Nagy: Many-valued Logics and the Logic of the C Programming Language, in: ITI 2005,
27th International Conference on Information Technology Interfaces, Cavtat/Dubrovnik,
Croatia, IEEE, 2005, pp. 657–662, doi: https://doi.org/10.1109/ITI.2005.1491200.

[17] B. Nagy, R. Basbous, T. Tajti: Lazy evaluations in Łukasiewicz type fuzzy logic, Fuzzy
Sets Syst. 376 (2019), pp. 127–151, doi: https://doi.org/10.1016/j.fss.2018.11.014.

[18] K. Pásztor-Varga, M. Várterész: A matematikai logika alaklmazásszerű tárgyalása (Math-
ematical logic from application point of view, in Hungarian, textbook), Budapest: Panem,
2003.

[19] F. J. Pelletier, N. M. Martin: Post’s Functional Completeness Theorem, Notre Dame J.
Formal Log. 31.3 (1990), pp. 462–475, doi: https://doi.org/10.1305/ndjfl/1093635508.

[20] A. Puntambekar: Data Structures, UNICORN Publishing Group, 2020, isbn: 9789333223911.
[21] E. Rich, K. Knight: Artificial Intelligence, Artificial Intelligence Series, McGraw-Hill, 1991,

isbn: 9780070522633.
[22] G. van Rossum, The Python Development Team: Python Tutorial (Release 3.6.6rcl).

CreateSpace Independent Publishing Platform, 2018.
[23] S. Russell, P. Norvig: Artificial Intelligence: A Modern Approach, CreateSpace Indepen-

dent Publishing Platform, 2016, isbn: 9781537600314.
[24] H. M. Sheffer: A set of five independent postulates for Boolean Algebras, with application

to logical constants, Transactions of the American Mathematical Society 14 (1913), pp. 481–
488.

[25] B. Stroustrup: The C++ programming language, Pearson Education India, 2000.
[26] M. A. Weiss: Data Structures and Algorithm Analysis, Redwood City, CA; Menlo Park,

CA; Reading, Ma; New York; Amsterdam; Bonn; Sidney; Singapore; Tokyo; Madrid: The
Benjamin/Cummings Publishing Company, Inc., 1995.

[27] P. H. Winston, B. K. P. Horn: LISP, United States: Pearson, Jan. 1989.
[28] N. Wirth: Algorithms & data structures, Prentice-Hall, Inc., 1985.

77

