Annales Mathematicae et Informaticae

57 (2023) pp. 49-64

DOI: https://doi.org/10.33039/ami.2023.03.002
URL: https://ami.uni-eszterhazy.hu

P4Query: Static analyser framework
for P4*

Daniel Lukacs, Gabriella Téth, Maté Tejfel

Faculty of Informatics, ELTE, E6tvos Lorand University,
Budapest, Hungary
{dlukacs,kistoth,matej }@inf.elte.hu

Abstract. There are many important tasks in a conventional software de-
velopment process which can be supported by different analysis techniques.
P4 is a high level domain-specific language for describing the data plane layer
of packet processing algorithms. It has several uncommon language elements
and concepts that often make the analysis of P4 programs a laborious task.
The paper presents P4Query, an analysis framework for the P4 language that
enables the specification of different P4-related analysis methods in a generic
and data-centric way. The framework uses an internal graph representation
which contains the results of applied analysis methods too. In this way, the
framework supports the rapid implementation of new analysis methods in a
way where the results will be also easily reusable by other methods.

Keywords: P4 language, static analysis, analysis framework

AMS Subject Classification: 68N20 (Theory of compilers and interpreters)

1. Introduction

Optimization, verification and refactoring are important tasks of a software devel-
opment process. All of them can be effectively supported by static functional and

*The research has been supported by the project “Application Domain Specific Highly Reliable
IT Solutions” implemented with the support of the NRDI Fund of Hungary, financed under
the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Sub programme)
funding scheme.
This research is in part supported by the project no. FK_ 21 138949, provided by the National
Research, Development and Innovation Fund of Hungary.
Supported by the UNKP-21-4 New National Excellence Program of the Ministry for Innovation
and Technology from the source of the National Research, Development and Innovation Fund.

Submitted: May 31, 2022
Accepted: March 3, 2023
Published online: March 19, 2023

OO Utk W

Annal. Math. et Inf. D. Lukdcs, G. Toth, M. Tejfel

non-functional (e.g. execution time estimation) analysis. This analysis can be es-
pecially interesting in the case of languages having uncommon language constructs
or language structures e.g. in the case of some domain-specific languages.

P4 [2] is a high level, domain-specific programming language. It is developed
mainly for describing the data plane layer of packet processing algorithms of differ-
ent network devices (e.g. switches, routers) in a protocol and target-independent
way. Listing 1 illustrates a P4 program. The program first defines the applied
header structure (in rows 1-23), then the parser part (in rows 24-35) describes
how the fields of the defined headers will be set from the input bit stream (input
packet). Controller parts (see rows 39-62) can modify values of fields of headers
and metadata by applying lookup tables. During an application of a lookup table
the program finds the appropriate row based on the keys in the table. The keys
can be specific fields of the packets or some metadata. After the program finds
the right row it will execute the action (usually some modifications on the packet)
described by the row. It is important to note that the data plane program only de-
fines the possible actions and describes the structure of the lookup tables, namely
the keys of the table and the possible results of the lookups. However concrete data
of the tables (which actions will be executed with which parameters for which key
values) are defined by the control plane program, therefore it will not appear in
P4. Finally, the deparse part (see rows 64-70) defines how the output bit stream
(output packet) will be created from the headers.

Listing 1. P4 example.

// Definitions

typedef bit<9> egSpec_t;
typedef bit<48> macAddr_t;
typedef bit<32> ip4Addr_t;

// Headers

header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16> etherType;

}

header ipv4d_t {
bit<8> ttl;
ip4Addr_t srcAddr;
ip4Addr_t dstAddr;...

}

struct headers {
ethernet_t ethernet;
ipvé4_t ipvéd;

}

// Parser

parser MyParser(...) {
state start { transition parse_ethernet; }
state parse_ethernet {

50

Annal. Math. et Inf.

P4 Query: Static analyser framework for Pj

packet.extract (hdr.ethernet);
transition select (hdr.ethernet.etherType) {
TYPE_IPV4: parse_ipv4;
default: accept; } }
state parse_ipvd {
packet.extract (hdr.ipv4);
transition accept; }

}

// Control
control MyIngress(in headers hdr, ...) {
apply {
if (hdr.ipv4.isValid()) {
ipv4_lpm.apply O);
}
}
action drop() {
mark_to_drop(standard_metadata);

}

action ipv4_forward(macAddr_t dstAddr,
egSpec_t port) {

standard_metadata.egress_spec = port;
hdr .ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = dstAddr;
hdr .ipv4.ttl = hdr.ipv4.ttl - 1;
}
table ipv4_lpm {
key = { hdr.ipv4.dstAddr: lpm; }
actions = {
ipv4_forward;
drop;
NoAction;}
}
}
//Deparser

control MyDeparser (packet_out packet,
in headers hdr) {
apply {
packet.emit (hdr.ethernet);
packet.emit (hdr.ipv4);}

The paper describes an analysis framework for P4!.

The framework makes

possible development of different P4-related analysis methods in a generic and
modular way. It uses an internal graph representation where the results of the
methods are also represented as part of the graph (mainly by adding new edges
to the graph). In this way, the methods can use each other’s results as well. The
proposed tool also allows rapid prototyping of different analytical concepts using a

common toolset.

IThe code is available from https://github.com/P4ELTE/P4Query.

51

Annal. Math. et Inf. D. Lukdcs, G. Toth, M. Tejfel

2. Related work

Considering related work there are much research applying specific analysis tech-
niques for P4. Most of them concentrate on error checking of P4 programs. For
example, Assert-P4 [6] and Vera [15] can check the correctness of predefined proper-
ties using annotated P4 source code and Vera can also detect some common errors
using custom source code without annotations. They use symbolic execution for
the analysis. P4V [7] creates a formula, which describes the proper behavior of
the program and checks the satisfiability of it with SMT solver. These three tools
are created for an earlier version of P4, namely P4,4. There are also verification
tools, which can manage the newer version (P4;6) too. BF4 [4] is created as a
P4C backend, which can not only detect error possibilities, but it is able to repair
them by adding new keys to the lookup tables of the program and modify the table
contents. Another tool p4-data-flow [1] uses data flow analysis to detect potential
bugs in P4 switch codes.

Some other tools use analytical methods for different purposes. For exam-
ple, pdpktgen [11] uses symbolic execution for automatically generating test cases.
Flightplan [16] can split a P4 program into a set of cooperating P4 programs and
maps them to run as a distributed system formed of several, possibly heteroge-
neous, data planes. During this process they use several analysis techniques, to
collect variables whose values need to be transferred between different data planes.
SafeP4 [5] is a language which has precise semantics and a static type system that
can be used to obtain guarantees about the validity of all headers which are used
or modified by the program. The type checker of the language (P4Check) can also
check P4 programs executing some static analysis on them.

Comparing these approaches this paper presents a generic framework that al-
lows the implementation of several analyses methods which can use each other’s
results as well.

A major inspiration for this work was RefactorErl [3], a static analysis tool for
Erlang. RefactorErl stores program information in a graph called the Semantic
Program Graph using relation databases, and provides its own query language for
exploring the stored information. Many features in our work — such as using graph
databases and their built-in query languages instead of in-house solutions — can be
considered to be the streamlining of best practices found in RefactorErl.

As Section 4.1 introduces, P4Query uses a Gremlin graph database as a storage
backend. Recently, other works also leveraged graph databases for static analysis
purposes. ProgQuery [14] is a similar static analysis tool for Java, built on Neo4j
and its Cypher query language. The authors emphasize that using Neo4j yielded
substantial improvements in analysis time and memory usage.

The expressive power of Gremlin is proved in another recent work [18]: the
authors store C code information in Neod4j, and define recurring vulnerability pat-
terns as Gremlin queries. Using this approach, the authors discovered 18 previously
unknown vulnerabilities in the Linux kernel.

52

Annal. Math. et Inf. P4 Query: Static analyser framework for Pj

3. Motivation

P4 is a relatively new, domain-specific language having some uncommon language
elements (for example match-action tables). The language makes possible the de-
scription of the data plane layer of packet processing algorithms. For a real imple-
mentation, however, in addition to the program part described in P4, a suitable
control plane layer is needed. This part is more or less a black hole while we con-
sider only the P4 source code. For these reasons, testing, verification, and generally
functional and non-functional analysis of P4 programs are non-trivial tasks that
sometimes require language-specific techniques.

Section 2 introduces several applications using different analysis methods for P4.
The authors also have some earlier results for determining potentially erroneous
code parts [17] and for predicting execution cost [9] of P4 programs. These methods
usually require different analysis techniques, however these techniques often can
have very similar subtasks (for example creating an abstract syntax tree or a control
flow graph).

This paper presents a framework that allows the implementation of different
analysis methods using a common basis. The framework applies an extensible
integral graph representation where the results of the different analysis methods
are represented also as part of the graph. This makes possible execution of different
methods in a hierarchical order where methods can use the results (or some part
of the results) of previously applied methods.

The framework supports the rapid implementation of new analysis methods
applicable for P4 language in a way where results of the methods will be easily
reusable.

4. Analysis framework

Traditional compilers are designed around passes: the frontend passes parse source
code into an intermediate representation (IR), midend passes transform and add
new information to the IR, and the backend passes create target-specific object code
from the IR. Modular compilers like the P4 reference compiler P4C [12] improve this
design by structuring the passes into a library: backends assemble their own fron-
tends and midends from a catalogue of passes provided by the compiler. Moreover,
P4C allows getting information from older states of the IR, as each transformation
pass returns an immutable IR instance. Even here, the three-fold separation of
frontend-midend-backend have to remain: in order satisfy midend-dependencies,
and subsequently, backend-dependencies, the backend must sequentially execute
the frontend, the midend, and finally its own passes.

One goal of the experiment we present here is to relax the three-fold struc-
ture and allow passes to reuse (depend on) each other’s functionally arbitrarily,
and without burdening the compiler programmer with manually finding the right
sequence in which to execute the different passes.

53

Annal. Math. et Inf. D. Lukdcs, G. Toth, M. Tejfel

4.1. Tool architecture

4.1.1. Description

Figure 1 depicts the four-fold design we propose as a solution for relaxing tradi-
tional compiler architecture. In principle, the components called end-user appli-
cations constitute the backend, i.e. the part that provides useful services to users.
(See Section 5 for a few examples of applications built on top of the P4Query.)
Superficially, applications provide their services by using the services provided by
the infrastructure (see Section 4.2), also known as the frontend. In reality, both
the infrastructure and applications operate on a large shared graph that collects
all our knowledge about the program code.

Visualiser{” Veriﬁcation{” Compiler{” Metrics{” uses
Query ;;:|| |1DE$:|| Self-tests $:|| injects
uses

Gremlin
Control Data Call
dependence {l flow {l graph {l Server {l
Control J Call
flow E sites Controller
Dependency {l Graph
Symbol {l Injector database
table

R %es creﬁs—) Ontology{l
Parser {l [«—AST {l uses

3
L

Figure 1. Architectural design of P4Query.

The infrastructure consists of a set of interdependent analyser components (or
passes): higher-level analysers can only be executed when lower-level analysers
already inserted the necessary knowledge into the graph. Similarly to analysers,
applications also depend on a subset of the analysers in the infrastructure. But un-
like analysers, applications are expected to only read (never modify) the graph, and
consequently there are no application-dependent parts in the infrastructure. Ap-
plications must also provide a user interface (e.g. command line interface) through
which their services can be accessed.

In the middle, the controller component ensures (via dependency injection)
that all dependencies are satisfied without collisions. To achieve this, components
register their provided services and their requirements to the control component,
and the controller figures out in which topological order to start the analysers. The
controller also guarantees that when the user executes a work-intensive application,

54

Annal. Math. et Inf. P4 Query: Static analyser framework for Pj

only the minimally necessary components will be performed.
The graph is also exposed to the user (not depicted) to enable custom features
(e.g. to attach external loggers, visualisers, and validators).

4.1.2. Design goals

Besides proposing a more relaxed structure of analysis passes, we had three addi-
tional goals in sight: support for different applications through uniform APIs, ease
of extensibility, and data-driven programming.

In systems with uniform APIs, programmers have to learn only one paradigm
to maintain, extend or otherwise alter the system (e.g. in the case of P4C, visitors
and passes are the main concepts of such a uniform API). By supporting different
applications (or backends), we mean providing a comfortable way to implement
different end-user services, by reusing the same static code analysis operations.
P4Query realizes uniform APIs by relying on a graph database. The information
in the knowledge graph is accessed using graph queries written in the Gremlin (see
4.1.3) query language. The implication is that users, application developers, and
infrastructure developers are using one, uniform data structure (the graph), and
are accessing it using the same mechanism (graph queries).

Our second design goal, ease of extensibility is also illustrated by Figure 1. The
four-fold arrangement was inspired by declarative build systems and the blackboard
pattern used in distributed MI. When developers introduce new features, this ar-
rangement enables them to think declaratively: instead of thinking about where to
insert their feature inside a sequence of operations, they only have to think about
their dependencies, i.e. what kind of analysers could help them.

Finally, our third design goal is data-driven programming. Thanks to the uni-
form graph API and the controller-managed dependency resolution, programmers
are forced to think in terms of data instead of code: they have to look at what
code knowledge is in the graph already, figure out what data they want to insert,
and possibly find existing analysers that make writing queries easier for them. The
information in the graph is regulated by a well-defined graph schema, and the
graph topology is regulated by the well-defined requirements and services of the
analysers. Moreover, since the graph instance is detached from the code analysis
framework, the programmers can access it by external tools for visualising, mon-
itoring and validating purposes. Like this, programmers can almost completely
avoid understanding the existing code base, and only have to look at and interact
with the data in the graph.

4.1.3. Gremlin API

In the tool architecture described in this section, we use a Gremlin graph database
as a storage backend (knowledge graph). Gremlin is a compositional query lan-
guage and API that is implemented by many large-scale graph databases. This
makes it possible to change graph implementations with almost no modification
to the P4Query code base. In earlier work [8], we also profiled a few graph back-

55

Annal. Math. et Inf. D. Lukdcs, G. Toth, M. Tejfel

ends for control flow traversals, and verified that — apart from the initial overhead
— in-memory graph databases have comparable performance to built-in memory
manipulation.

Another consequence is that analysers have to be implemented as graph query
workflows. Since Gremlin is Turing-complete [13], theoretically all of the work can
be delegated to the database, and with this, the choice of the workflow language
(e.g. Java) can become negligible. Still, in our experience, coarsely granularised
queries can hinder code maintainability, as these are often more difficult to read
and modify (due to their of lack of common convenience features, e.g. exception
handling). For this reason, we still decided to split the workload between the
controller and the database.

4.2. Infrastructure

As we see earlier in Figure 1, the heavy-lifting in P4Query is done by various
code analyser components, each adding new information about the P4 code to the
knowledge graph using what is already there. We now introduce a few analyser
modules using an example: Figure 2 depicts a small subset of the knowledge graph
taken after we executed control flow analysis, call analysis, and call sites analysis on
the P4 code in Listing 1 (specifically the MyIngress control). First, the controller
finds the topological order of their dependencies, and then starts executing them
in order. In this case, the first dependency executed is the parser, parsing the P4
code and filling the knowledge graph with the syntax tree nodes and edges.

Each analyser components adds new edges as an overlay graph. These overlays
(domains) are separated by the dom edge-attributes: for example CFG is the domain
introduced by the control flow analysis, and CALL is the domain of the call analysis,
SITES is that of call site analysis. The role edge-attribute describes edge seman-
tics inside their domain. For example, calls in CALL links a procedure to those
procedures that it calls, such as MyIngress control (node 1) calling the ipv4_lpm
table lookup (node 8). On the other hand, calls in SITES links call statements
to the called procedure, such as the direct application of table ipv4_lpm (node 7)
calling table ipv4_lpm (node 8).

At the same time, the CFG domain contains flow, entry, and return edges
(among others) to denote the flow of control between various nodes of the syntax
tree, and to identify entry and exit nodes. For example, by following these edges,
you can see how control flows from MyIngress entry point (node 1) through the
conditional (node 4), terminating on the call of ipv4_lpm (node 8). The figure also
partially includes domains of other analysers, such as SYMBOL. This analyser creates
the graph-equivalent of a symbol table by identifying which declaration declares
which name, and links usages of this name in the scope of the declaration to the
declaration.

We should note that topological order is, in general, not unique: the controller
is free to start independent analysers in any order (even in parallel). This is not a
concern as long as analysers can correctly declare their exact dependencies. Still,
since all analysers work on the same shared graph, it may happen that — due to

56

Annal. Math. et Inf. P4Query: Static analyser framework for Pj

class = ControlDecl

dom=SYMBOL dom=CFG
role=declares role=entry

class = BlockStmt

dom=CFG
role=flow

class = CondStmt

line = 40

class = Term
line = 38

val = Mylngress | 2

dom=CFG
role=return

dom=CALL dom=AST\ dom=CFG
role=calls [role=head \role=true-flow
(class = Expr\ (class = BlockStmtw
(ine =40 [5) line=40 | 6)

dom=CFG
role=flow

class = DirectApp

dom=SITES
role=calls

class = TableDecl
line = 54 B

dom=SYMBOLdom=CALL dom=CALL
role=declares | role=calls role=calls

class = Term
line = 54

T (tine=47 | 10 J{ tine=44 | 11)

Figure 2. Knowledge graph excerpt of the Listing 1 code.

(class = ActionDecﬂ (class = ActionDecﬂ

faulty implementation — an analyser have a “hidden” (unclaimed) dependency. In
our experience with the aforementioned analysers, these occurrences are uncom-
mon. Still, to avoid such bugs, we emphasize proper testing (Section 4.3) and
recommend implementors to avoid writing general queries (such as selecting all
elements) and always specify completely the elements to be selected.

4.3. Testing

Testing framework of the tool aims to achieve two main objectives: to provide the
correct behaviour of the analysers and to detect possible spoils of the analysers
during the development phase. To achieve these goals the tool applies unit tests

57

Annal. Math. et Inf. D. Lukdcs, G. Toth, M. Tejfel

and integration tests.

Unit tests need to be fast, so they work with the smallest part of the analysers,
their functions. One function usually defines one query of the graph, which insert
new edges into it, therefore in these cases, the tests check if the right edges are
added to the graph. Using an actual P4 source to test these functions would be
too costly, therefore we define the most simple graphs to check the function.

While unit tests need to be fast, integration tests can be slower, so we can use
P4 files as the inputs to test the analysers. When one analyser needs to be tested,
it uses the P4 file and executes every analyser, that it depends on and the tests
will check the result of this running.

These tests are important for the P4Query developers, who would like to modify
the predefined analysers or supplement the tool with new analysers. After the
development of an analyser, the developer can insert the unit tests of the new
functions and the correctness of them can be checked by these tests. For unit
tests, the developer needs to define the smallest graph, which can cover most of
the behaviours of the functions. If the functions are well tested, the developer can
continue with integration tests and checks the correct behaviour with real P4 files.

The architecture gives the opportunity to insert this test framework as an ap-
plication, which depends on all of the tested analysers. As an application, it fits
into the tool as a component, which can be easily executed.

5. Case studies

In this section, we illustrate the viability of the platform by showcasing a few
applications we are currently building on top of P4Query in related research.

5.1. Visualisation

Since it is the easiest to understand, the first application we introduce is graph
visualisation. This application expects a list of analyser component names, executes
them, and then, prints a subgraph of the knowledge graph containing only the
domains of the analysers in the list. For example, to print the full version of the
graph in Figure 2, we should execute P4Query with the following arguments:

p4query draw example.pd4 —A CFG SYMBOL CALL SITES AST

The subcommand draw tells P4Query to run the visualiser on the file example.p4,
while -A is a flag (defined by the visualiser UI) expects the analyser names that
will be passed to the visualiser application.

A possibly interesting implementation detail here is that the visualiser techni-
cally depends on all the analysers defined in P4Query, since it must be able to
visualise anything the user may pass. Yet, we still managed to avoid executing
those that are not requested by the user (and not dependencies of the requested
ones): we implemented dependency resolution in the controller using Java depen-
dency injection (DI), and DI offers lazy initialization of the dependencies. This

58

Annal. Math. et Inf. P4 Query: Static analyser framework for Pj

way we can filter the analysers and only initialize those that were requested by the
user.

5.2. Verification

Verification is a possible extension of the tool, which is added to it as an application.
The main focus is to detect errors and suspicious cases, which can be caused by the
use of invalid header or uninitialized fields. The goal of this detection is to report
these uses for the developer to avoid undefined behaviour in the programs.

The approach of the checking is defined in our previous paper [17], but in short,
it calculates the pre-and post-conditions of the different blocks (i.e the control apply
functions, the tables and actions), the parser and the deparser of the program, and
based on these condition pairs it can detect improper use of the fields and headers.
Three cases can be detected: when there are some errors in a block; when there
is any inconsistency between the blocks; and when the post-/precondition of the
parser/deparser is inconsistent with the pre-/postcondition of the control function.

Listing 2. Conditions of MyIngress.

MyIngress:
[
// true condition and ipvé4_forward
(Pre:
valid: [ipv4, ipv4.dstAddr, ipvé4.ttl,
ethernet, ethernet.dstAddr],
invalid: [dropl],
Post:
valid: [ipv4, ipv4.dstAddr, ipvé4.ttl,
ethernet, ethernet.dstAddr],
invalid: [dropl),
// true condition and drop

(Pre:
valid: [ipv4, ipv4.dstAddr],
invalid: [dropl],

Post:
valid: [drop, ipv4, ipv4.dstAddr],

invalid: []),
// true condition and NoAction

(Pre:
valid: [ipv4, ipv4.dstAddr],
invalid: [ipv4, ipvé4.dstAddr, dropl,
Post:
valid: [ipv4, ipv4.dstAddr],

invalid: [ipv4, ipv4.dstAddr, dropl),
// false condition

(Pre:
valid: [ipv4, ipv4.dstAddr],
invalid: [ipv4, ipv4.dstAddr, dropl,
Post:
valid: [ipv4, ipv4.dstAddr],

invalid: [ipv4, ipvé4.dstAddr, dropl),

59

Annal. Math. et Inf. D. Lukdcs, G. Toth, M. Tejfel

Listing 2 illustrates conditions calculated for control MyIngress in Listing 1. We
can see 4 pairs of conditions because it has 4 possible execution paths — there are
three where the condition of the branch is true, and the table executes one of the
possible actions i.e. ipv/_forward, drop or NoAction, and one where the condition
of the branch is false.

This calculation is built into the tool as an application. It uses two experts:
the call graph and the control-flow graph. While traversing backwards in the call
graph it can reach the applied (“called”) actions and tables. Whenever it reaches a
vertex like these, it starts to traverse through the proper subgraph of the control-
flow graph and calculates the conditions of the actual block. Every condition is
stored in the graph as a property of the called vertex of the call graph, therefore
when the method reaches the actual call in the control-flow graph — for example a
table is called in a control function — it can use the conditions of the called block,
which have already been calculated.

5.3. Compiler

In related research [9, 10], we work on a static cost analysis tool for P4: the tool
expects as input a P4 program source code together with execution environment
parameters, and outputs various metrics (e.g. execution time, energy efficiency)
without actually running the P4 program.

In the current paper, we will not go into details on how the cost analysis tool
calculates these metrics, but the principle is that we decompose the P4 program
into primitive instructions whose expected cost is constant and already known.
Implementations of P4 externals such as extern calls (e.g. packet.extract in List-
ing 1) and lookup tables (e.g. ipv4_lpm in Listing 1) can also be passed to the tool
in the form of these primitive instructions with known costs.

Listing 3. Stack machine code of MyIngress.

data:

headers = 149
headers.ethernet = 149 // size 114

headers.ipv4 = 263
headers.ipv4.valid = 263
headers.ipv4.size = 264
headers.ipv4.srcAddr = 265
headers.ipv4.dstAddr = 297
code:

// call isValid(hdr.ipv4) on line 144

214: load O // 0: local address of hdr
215: const 114 // 114: size of hdr.ethernet
216: add // address of hdr.ipvéd

217: invoke 144 1
// test isValid return value
218: ifeq 224

60

Annal. Math. et Inf. P4 Query: Static analyser framework for Pj

// call ipv4_lpm(hdr) on line 38

219: load O // 0: local address of hdr
222: invoke 38 1
223: pop

// terminate with status 0K
224 : const O
225: return

From this, it follows that part of the static cost analysis problem reduces to a
compilation-and-linking problem. As an experiment, we implemented a compiler
to solve this problem as an application in P4Query. The main reason we chose
P4Query, instead of the much more mature P4C compiler framework was that at
first we did not know what kind of representation or code we will need to output:
the control and extensibility provided by P4Query and Gremlin queries gave us
tools to experiment and create quick, recyclable prototypes to help us arrive at a
final vision. While P4C’s safety mechanisms (e.g. C++ static type system) support
developing stable software, in the case of prototyping and experimentation these
same mechanisms are unused, or possibly even slowing down development.

Our current target representation for cost analysis is a sequential stack machine
with an instruction set similar to JVM bytecode. Listing 3 depicts the compiler
output of MyIngress in Listing 1. In the figure all values (bits and sizes) are
represented as integers (this is a requirement by our cost analysis approach). Both
isValid and ipv4_lpm have external implementation that had to be linked with
the calls. While most P4 targets will not support stack machines, we chose this
representation as it is relatively easy to generate, and relatively straightforward to
implement. We also believe that as long as we do not count the cost of maintaining
the stack, we can still make good cost estimations.

The compiler is built on top of the control flow analyser in P4Query: we traverse
the CFG, and process each node by traversing the syntax tree under the node. We
also use the call graph to find which label to jump to when a function is called.
Thus, much of the compiler state can be delegated to the persistent knowledge
graph, and only very specific data (e.g. instruction labels) and linking requires
program state outside the graph.

6. Evaluation

Scalability is a very important aspect in the case of analyser tools. For investi-
gating scalability of P4Query we have created dummy P4 programs in which the
complexity of the program structure and program logic are increased continuously.
In the basic case, two header type were used with one header instances each. The
program first parses the two headers, then applies a table which can modify some
fields of the headers, and finally it deparses them. In the second program the same
structure is applied twice. The four headers are parsed (and finally deparsed) one
after the other and two tables are applied sequentially. The first table uses the first
header pair, and the second one the second header pair. And so on if the complexity
of one test program said to be = then there are x header instances of both header

61

Annal. Math. et Inf. D. Lukdcs, G. Toth, M. Tejfel

types and z tables in the program. As a result if we increase the complexity of
a test program, its syntax tree will be more complicated and time-consuming to
process during different analysis.

Figure 3 illustrates the runtime of P4Query if we execute the CFG analyser (and
its dependencies, including the syntax tree and other analysers). We highlighted
the results, where the complexity of the program is 1, 2, 4, 8 and 16, with a
fitted linear regression curve. The diagram shows that the runtime increases in
linear time, so we expect P4Query to easily handle even more complex programs.
Additionally, we can also inspect the runtime of individual analyses: looking at the
corresponding components in each column, we see they are increasing linearly as
well, which implies that it is possible to give efficient implementations of the static
analysis algorithms in Gremlin.

25000

20308
20000 ;

15520
C s Other

15000
> 13430
& Control flow
£ 11386 . s Symbol table
; 10000 - [I Syntax tree
: I
<

5000 I I

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Program complexity

Figure 3. P4Query execution time for different program sizes.

7. Conclusion and future work

Our major purpose was to create a tool, which can facilitate and support the work
of P4 developers while making the possibility to experiment with these programs.
Its modular structure gives the opportunity for the user to avoid the usage of
several tools for different analyses, although it makes the possibility to have all
information in one place.

The framework uses a graph representation of the investigated program. All
of the analysers are based on the syntax tree of the examined P4 source and they
extend it with new edges while creating new subgraphs — like control-flow or call
graph — or new labels to store the calculated information.

In the future, we would like to extend the tool with new analyses to give some
other useful information for the developers about their P4 source. Our nearest

62

Annal. Math. et Inf. P4 Query: Static analyser framework for Pj

idea is to supplement it with the dependency graph and def-use graph with which
we will be able to give report, which are based on the connection between the
statements.

References

[1]

2]

3]

(4]

[5]

(10]

(11]

K. BIRNFELD, D. C. DA SiLvA, W. CORDEIRO, B. B. N. DE FRANGA: P4 Switch Code Data
Flow Analysis: Towards Stronger Verification of Forwarding Plane Software, in: NOMS 2020
- 2020 IEEE/IFIP Network Operations and Management Symposium, 2020, pp. 1-8, DOI:
https://doi.org/10.1109/N0MS47738.2020.9110307.

P. BOSSHART, et. AL: P4: Programming Protocol-independent Packet Processors, SIGCOMM
Comput. Commun. Rev. 44.3 (2014), pp. 87-95, 1SsN: 0146-4833, DOI: http://doi.acm.org
/10.1145/2656877 .2656890.

1. Boz6, D. HorpPAcsI, Z. HORVATH, R. KiTLEL, J. KOszect, T. M., M. TOTH: RefactorErl -
Source Code Analysis and Refactoring in Erlang, in: Proceedings of the 12th Symposium on
Programming Languages and Software Tools, ISBN 978-9949-23-178-2, Tallin, Estonia, Oct.
2011, pp. 138-148.

D. DuMITRESCU, R. STOENESCU, L. NEGREANU, C. Raiciu: Bf4: Towards Bug-Free P4 Pro-
grams, in: Proceedings of the Annual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’20, Virtual Event, USA: Association for Comput-
ing Machinery, 2020, pp. 571-585, ISBN: 9781450379557, DOIL: https://doi.org/10.1145/33
87514 .3405888.

M. EicHHOLZ, E. CAMPBELL, N. FOSTER, G. SALVANESCHI, M. MEZINI: How to Avoid Mak-
ing a Billion-Dollar Mistake: Type-Safe Data Plane Programming with SafeP4, in: 33rd
European Conference on Object-Oriented Programming, ECOOP 2019, July 15-19, 2019,
London, United Kingdom, ed. by A. F. DONALDSON, vol. 134, LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum fiur Informatik, 2019, 12:1-12:28, DOI: https://doi.org/10.4230/LIPIcs
.ECO0P.2019.12.

L. FrREIRE, M. NEVES, L. LEAL, K. LEVCHENKO, A. SCHAEFFER-FILHO, M. BARCELLOS: Un-
covering Bugs in P4 Programs with Assertion-Based Verification, in: Proceedings of the
Symposium on SDN Research, SOSR ’18, Los Angeles, CA, USA: Association for Computing
Machinery, 2018, 1SBN: 9781450356640, DOI: https://doi.org/10.1145/3185467.3185499.

J. Ly, W. HALLAHAN, C. SCHLESINGER, M. SHARIF, J. LEE, R. SourLkE, H. Wanc, C.
CagcavaL, N. McKEOwN, N. FOSTER: P4V: Practical Verification for Programmable Data
Planes, in: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’18, Budapest, Hungary: ACM, 2018, pp. 490-503, I1SBN: 978-
1-4503-5567-4, DOL: http://dx.doi.org/10.1145/3230543.3230582.

D. LukAcs, G. PONGRACZ, M. TEJFEL: Are Graph Databases Fast Enough for Static P4 Code
Analysis?, in: Proceedings of the 11th International Conference on Applied Informatics 2020,
CEUR Workshop Proceedings, 2020, pp. 213-223, URL: http://ceur-ws.org/Vol-2650/#pa
per22.

D. LukAcs, G. PONGRACZ, M. TEJFEL: Control flow based cost analysis for P4, Open Com-
puter Science 11.1 (2021), pp. 70-79, DOI: https://doi.org/10.1515/comp-2020-0131.

D. LukAcs, G. PONGRACZ, M. TEJFEL: Model Checking-Based Performance Prediction for
P4, Electronics 11.14 (2022), 1sSN: 2079-9292, DOL: https://doi.org/10.3390/electronics
11142117.

A. NOTzLl, J. KHAN, A. FINGERHUT, C. BARRETT, P. ATHANAS: P/pktgen: Automated
Test Case Generation for P4 Programs, in: Proceedings of the Symposium on SDN Re-
search, SOSR ’18, Los Angeles, CA, USA: Association for Computing Machinery, 2018, 1SBN:
9781450356640, DOI: https://doi.org/10.1145/3185467.3185497.

63

Annal. Math. et Inf. D. Lukdcs, G. Toth, M. Tejfel

(12]

(13]

[14]

(15]

(16]

(17]

(18]

P4 LANGUAGE CONSORTIUM: P4C reference compiler for the P4i¢ programming language,
https://github.com/p4lang/p4c, [Online; accessed 06-June-2021], 2017.

M. A. RODRIGUEZ: The Gremlin graph traversal machine and language (invited talk), Pro-
ceedings of the 15th Symposium on Database Programming Languages - DBPL 2015 (2015),
DOI: http://dx.doi.org/10.1145/2815072.2815073.

O. RODRIGUEZ-PRIETO, A. MYCROFT, F. ORTIN: An Efficient and Scalable Platform for
Java Source Code Analysis Using Overlaid Graph Representations, IEEE Access 8 (2020),
pp- 72239-72260, DOIL: https://doi.org/10.1109/ACCESS.2020.2987631.

R. STOENESscu, D. DumiTRESCcU, M. Popovici, L. NEGREANU, C. Raiciu: Debugging P/
Programs with Vera, in: Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’18, Budapest, Hungary: ACM, 2018, pp. 518—
532, 1SBN: 978-1-4503-5567-4, DOI: http://dx.doi.org/10.1145/3230543.3230548.

N. SULTANA, et. AL: Flightplan: Dataplane Disaggregation and Placement for Pj Programs,
in: 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21),
USENIX Association, 2021, 1sBN: 978-1-939133-21-2, URL: https://www.usenix.org/confer
ence/nsdi2l/presentation/sultana.

G. TOtH, M. TEJFEL: Component-based error detection of P4 programs, Acta Cybernetica
(2021), to appear.

F. YamacucHl, N. GOLDE, D. Arp, K. RIECK: Modeling and Discovering Vulnerabilities with
Code Property Graphs, in: 2014 IEEE Symposium on Security and Privacy, 2014, pp. 590—
604, DOI: https://doi.org/10.1109/SP.2014.44.

64

Annales Mathematicae et Informaticae

57 (2023) pp. 65-77

DOI: https://doi.org/10.33039/ami.2023.04.002
URL: https://ami.uni-eszterhazy.hu

Logical conditions in programming
languages: review, discussion and
generalization”

Benedek Nagy®*, Khaled Abuhmaidan®, Monther Aldwairi‘

“Department of Mathematics, Faculty of Arts and Sciences,
Eastern Mediterranean University, Famagusta,
North Cyprus, via Mersin-10, Turkey
corresponding author: nbenedek.inf@gmail.com

"Department of Computer Science,
Institute of Mathematics and Informatics,
Eszterhazy Karoly Catholic University,
Eger, Hungary

“Faculty of Computing and Information Technology,
Sohar University, Oman
khmaidan@su.edu.om

dCollege of Technological Innovation, Zayed University,
144534 Abu Dhabi, United Arab Emirates
monther.aldwairi@zu.ac.ae

Abstract. Boolean logic is widely used in almost every discipline includ-
ing linguistics, philosophy, mathematics, computer science and engineering.
Boolean logic is characterized by the two possible truth values, and various
logical connectives/operations allow us to make compound statements, con-
ditions. Most of the programming languages, if not all, have some of the logic
operations: conjunction, disjunction and negation. Actually, since the set of
these three operations form a basis, any logical statement can be formed by
them. However, on the one hand, there are smaller bases as well, i.e., one
of the conjunction or disjunction is already superfluous. Moreover, there are
bases with only one operation, e.g., by NAND. On the other hand, one may
allow other operations helping the programmer/user to define the conditions
of conditional statements and loops in a simpler manner. In this paper we

*This research was supported by Zayed University, Research Office, Research Incentive Fund
Award #R20089.

Submitted: April 8, 2022
Accepted: April 20, 2023
Published online: April 28, 2023

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

discuss these issues, including some practical points, implementation issues
and short cut evaluations for various operations.

Keywords: High level programming languages, conditional statements, loop
conditions, logical connectives, short cut evaluation, formal logic

AMS Subject Classification: 03B70, 03B05, 68N15, 68N20, 97P40

1. Introduction

Classical Boolean logic is a well-known and widely used basis of various mathe-
matical disciplines and also of computer sciences, including hardware and software
related fields. In this paper, we are, first, analysing how it occurs in high-level pro-
gramming languages, e.g., conditional statements (see Section 2). Then overviewing
classical logic we give reasons why the logical operations conjunction, disjunction
and negation are used, and not a smaller basis of the operations. However, there
are other widely used logical operations which may help our lives to be easier, e.g.,
implication and equivalence, if they are also allowed to be used in our formula-
tions. But then, one may ask the question, why the programmers should translate
all their conditions to a form that may include only that three connectives that are
built in the programming languages, and why the others are not like that. This
is the motivation of our paper. We show how the other usual logical operations
can be used in our programs. We give some thoughts also on possible implemen-
tations, e.g., based on preprocessing or a functional representation that is close to
the so-called Polish notation introduced by Lukasiewicz [12].

2. Conditions in programs

In high-level programming languages both the branching and the loop structures
occur frequently. The branching is usually done by conditional statements. The
usual form of a conditional statement (although it may be slightly varied in various
programming languages) is either

if (condition) then statement
or

if (condition) then statement(1) else statement(2)

For details about the syntax used in various languages that are not explained
here, the readers are referred to textbooks [8—11, 22, 25, 28]. Note that some of
the languages are case sensitive and some of them are not.

In this paper we are interested and concentrate on that part which includes

logic: The (condition) in the above structures means logical condition, i.e., a logical
formula that is evaluated by the computer, and if it evaluates to true then the

66

Annal. Math. et Inf. Logical conditions in programming languages. . .

statement (or statement(1) in the second case) is executed, otherwise they are not
executed at this time (but statement(2) is executed in the second case) and the
program then continues by the next statement.

The logical condition can be a simple condition, e.g., (z < 15) or a compound
statement. In most of the programming languages the statement can also be com-
pound, i.e., a block built up by a sequence of statements, for syntax see the men-
tioned textbooks.

The loops usually have heads with conditions and bodies with statements. The
condition in the head is also a logical condition that is evaluated to be either
true or false and based on that either the statements of the body of the loop are
executed (once more) or the program continues by the statement after the body
of the loop. There are various types of loops that can be used (depending also
on the used language). Most of the languages have for loops, however, in some
of the languages that type of loop does not have a formal logical condition, but
the body should be executed for some specific values of the loop variable (e.g., in
Pascal and Python). In some other languages, including C, C++, Java and also
Javascript, the for loop is very similar to the while loops that we are explaining
shortly in the sequel. In while loops, after the word while a condition is written
(for syntactic details the author is referred to the textbooks mentioned before),
then the body with its statement(s) is written. In the programming languages in
which the for loop is similar, after the word for in brackets, first an initialisation
statement (that is executed only once before checking the loop condition at the
first time), then in the middle, the loop condition itself that is very similar to the
loop condition of while loops, finally, the third part in the bracket is the increment
statement, that is a statement which is executed after the body each time when
the body is executed, right before the loop condition is (re)checked. Finally, there
is also another type of loop, where the condition is after the body. In Pascal it
is written as follows: between repeat and until the statement(s) and right after
until the logical condition (to decide if the statement(s) in the body are executed
once more). In other languages, e.g., in C, C++, Java and Javascript, these are
written as do - while loops having the body between these words and the logical
condition after the second. For more details about its syntax in various languages
we recommend to check the mentioned textbooks. We note that any algorithms
can be implemented without this type of loop.

Here, we are concentrating on the logical conditions. Thus, let us see how one
can build complex conditions. The usual classical connectives to make compound
statement are the conjunction, disjunction and negation, see Table 1. In some high
level languages there is a simple datatype for Boolean values and there are also
built in constant values for both the truth-values.

Although in the programming language C, there is no specific type for Boolean
values, integers and pointers can be used also for this purpose in such a way that
the value 0 or NULL is understood as false, while any other values are understood
as true. In various other languages the values 0 and 1 also play the role of false
and true, for details the reader is referred to the above listed (text)books.

67

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

Table 1. The logical operations and constants in various high-level
programming languages.

Programming | conjunc- disjunc- nega- Boolean/logical type
Language tion tion tion true, false
Pascal and or not | boolean true false
C && I ! -

C++ && | ! bool true false
Java && | ! boolean true false
JavaScript && | ! boolean true false
Python and or not | bool true false

3. Bases of Boolean logic

As we have already seen, in Boolean logic there are two truth-values: true and
false. Usually they are represented by 1 and 0, respectively. Boolean variables,
denoted by, e.g., A, may take one of these values at interpretation and evaluation.
As usual in almost every part of mathematics, the operators are unary and binary
ones. The only unary operator, the negation is usually (syntactically) written as
~ A or =A in formal logic (with a formula A). In Boolean algebra, the notation
A is used, while various programming languages use various notations as we have
already shown them in Table 1. The (semantical) result of this operation is that the
compound statement having this operation as the main operation has the opposite
truth value than the subformula without this main operation (i.e., the truth value
of formula A).

Table 2 shows all possible Boolean operations. Note that the first and last
rows are not functions of any of the variables A and B, but always false and true
(they are in fact the Boolean constants and can be seen as functions with zero
arguments). As we have already mentioned in many programming languages the
programmer can use these constants as well, e.g., to have a (theoretically) infinite
loop with a condition that is always true. There are two other rows, which are in
fact the copies of the values of A and B, respectively. These rows do not define
logical connectives, neither.

Further, two of the rows are showing the negation of the variables A and B,
respectively, thus the unary operation negation occurs twice in the table.

The remaining ten rows define the ten binary operations, and there are no more
[7, 18]. On the one hand, obviously, the conjunction (logical and) and disjunction
(logical or) are among them. On the other hand, most of the other operations have
also their own names, as they play important roles, either in natural languages
(implication, equivalence, exclusive or), in logical deductions (implication) or in
the hardware industry (NAND, NOR).

As we have seen there are eleven Boolean operations. How it can happen
then, to use only three of them in programming languages? The answer is in the
properties of the Boolean algebra [1, 15], i.e., the concept of base set of operations.

68

Annal. Math. et Inf. Logical conditions in programming languages. . .

Table 2. The Boolean operations (based on all possible binary
Boolean functions).

formula name values
A 1 1 0 0
B 1 0 1 0
0 -0 0 0 0
AtB NAND |O 0 0 1
A¢g B 0 0 1 0
—-A negation | 0 0 1 1
AP B 0 1 0 0
-B negation | 0 1 0 1
APB eXclusive OR |0 1 1 0
AlB NOR, Sheffer stroke | 0 1 1 1
ANB and |1 0 0 O
A=B EQUivalence |1 0 0 1
B -11 0 1 0
ADB IMPlication | 1 0 1 1
A -1 1 0 0
ACB reverse implication | 1 1 0 1
AV B or |1 1 1 0
1 -1 1 1 1

We say that a subset S of the operations listed in Table 2 is a base, if for any number
of Boolean variables, one can write equivalent formula L’ using the variables and
the operations of S to any logical formula (or Boolean function) L of the same
variables. A base is also called a functionally complete set of operations, and by
Post, it is known that the set must contain at least one operation without each of
the following five properties:

monotonic (by “increasing” the input, i.e., by changing the value of any of the
arguments from 0 to 1, the value of the result cannot decrease, i.e., cannot
switch from 1 to 0, e.g., A and V are monotonic),

linear /counting (those rows of Table 2 are referred here that have even number
of 1’s, and thus, also even number of 0’s),

self-dual (those operations are counted here for which by flipping — i.e., chang-
ing from 0 to 1 or vice versa — the values of all the arguments, the result must
also change to the opposite),

truth-preserving (if all the arguments have a value truth, then also the result
is true) and

false-preserving (if all the arguments have a value false, then also the result
is false),

69

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

see more details, e.g., in [19].

It is well-known (see, e.g., [13, 18]) that S = {—,A,V} is a base. On one
hand, this is the most used base, since in Boolean algebraic description usually,
exactly these operations are used. Further, these operations are used to define the
conjunctive and disjunctive normal form expressions, and it is well-known that for
any Boolean formula there is an equivalent one in conjunctive/disjunctive normal
form. On the other hand this is not a minimal base, as we recall in the next
subsection.

3.1. Why not smaller bases?

Although, S = {—, A, V} is a base, it is not minimal: by the use of the De-Morgan
identities (and the law of double negation), i.e., (AA B) is equivalent to =(-AV-B)
and (A V B) is equivalent to =(=A A =B), thus one may exclude either V or A.

Then, in a minimalist language (in terms of defining as less things as possible to
make a high level programming language), one may use one of the sets Sy = {—, A}
and Sy = {—, vV} and keep only negation and one of the binary connectives of S.

Moreover, there are even smaller bases: Sheffer has already shown that one
operation is enough to express any Boolean formulae/function [24], he has used
the operation named after him, as Sheffer stroke (and it is known also as NOR,
i.e., Negated OR, in Boolean algebra and logic gates). On the other hand, the
operation NAND also has this property: any logical formulae can be expressed
also by using the sole operator NAND. These operations do not have any of the
five properties described by Post.

Now, we may ask the question that is given in the head of the subsection:
if we have smaller bases, why do we use three connectives and not less in the
programming languages.

The answer is obvious: these three connectives are so natural and it is very easy
to connect them to natural languages:

« the negation refers for the negative statements, when (usually) the verb part
is negated, e.g., “John does not go to the school today.” Sometimes another
verb meaning the negation of the other exists in the language, e.g., ‘remember’
could play similar role as ‘do not forget’.

« the conjunction refers to connect two (independent) statements by the con-
nective ‘and’, e.g., “John goes to the school and Bob plays football today.” In
the language we may use various connectives, e.g., ‘and’, ‘but’, or maybe only
a semi-colon to connect the two statements and form a compound statement
in this way.

« the disjunction usually refers to sentences compounded by the connective ‘or’,
e.g., “Rick likes the taste of the coffee or he likes the hot drinks.”

However, to formalize conditions, one needs some special care, as there are
various differences in formal logic that is used in mathematics and programming
and the ‘logic’ used in natural languages.

70

Annal. Math. et Inf. Logical conditions in programming languages. . .

e The connective ‘and’ may have the meaning ‘and then’, e.g., “Bob went to the
supermarket and he has bought some drinks.” In this sense, this connective
is not always commutative. It is also dangerous to abbreviate the statements
and put the ‘and’ between some parts of the sentences without repeating the
other parts of the statement. Ambiguity occurs, e.g., “You are allowed to
distribute the softwares I wrote and I licensed.” (It may not be clear if it is
only about the softwares which I have both written and licensed or also those
which T only have written or only have licensed...)

e The connective ‘or’ frequently has ‘xor’ meaning, in the sense that we want to
allow only one of the options, e.g., “Jack is drinking a coffee or he is drinking
a tea”; “Bob will do his homework or he will fail in the course.” Thus in
some cases instead of simply writing ‘or’, in some text ‘and/or’ is written
in the usual meaning of the disjunction. (Sometimes to highlight the ‘xor’
feature, the format, “either he will do the homework or he will fail” is used,
but the usage of ‘either’ is optional in the language, even if the meaning of
the sentences should be the same.)

Now, we turn to give some notes on the usage of a base with only one operator.
The options would be to use only NAND or only NOR. However, this would make
the writing of the conditions long and hardly understandable causing extra care
and possible faults and bugs in coding. Although mathematically and theoretically,
these would be options, in practice it would be not a good way to use the high level
programming languages in any of these ways. As computers become widespread,
to allow more and more people to learn programming and write their own codes it
would be very difficult to learn.

Although, in the hardware industry, it could be a good decision, as the con-
nection of the logic gates can be easily checked by simulations and also computers
support the design of the circuits, the programmers have not been trained to con-
vert any types of Boolean logical conditions/statements to formulae using only one
connective.

4. Expanded Logic

Now, since we have seen why it is not a good idea to use to small number of logical
connectives, we show how the set of used connectives can be expanded to allow
some more of the usual connectives.

As we have shown in Table 2, the following well-known and widely used oper-
ations, i.e., connectives have three true and one false values in their truth table:
disjunction, implication, NAND. The connectives conjunction and NOR are de-
fined in the opposite way, i.e., by only one true and three false values. The other
two well-known operations, the equivalence and the XOR have two-two true and
false values. These facts turn to be important in the sequel.

71

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

4.1. Practical implementation

A preprocessor or a macro may substitute the formulae containing any of the IMP,
NAND, NOR, EQU, XOR operations to formulae with only conjunction, disjunc-
tion and negation. In this way, the code is first transformed to an equivalent code
in the traditional/usual programming language, and thus, the programmer may
use these larger set of connectives to write a more intuitive and simpler condi-
tion, but, in fact, the computer will execute the code after preprocessed in the
traditional manner. On the other hand, since programming languages are focusing
on performance when making the executable code, and the logical operations on
the machine code include e.g., XOR, this operation can be compiled and executed
directly.

Nevertheless, as a possible solution to include these new logical operations,
we give possible substitution(s) that a preprocessor may do for each of the five
operations. Let a and b abbreviate the two (simple or compound) conditions that
are connected by the given operator, their (truth-)value can be 0 and 1.

e a IMP b can be written as NOT a OR b
e a NAND b can be written as NOT a OR NOT b
e a NOR b can be written as NOT a AND NOT b

e a EQU b can be written as (a AND b) OR (NOT a AND NOT b) or (a AND
b) OR NOT (a OR b)

e a XOR b can be written as (NOT a AND b) OR (a AND NOT b)

We may need to use fully bracketed formulae to make their meaning clear. Espe-
cially, the substitution of the last two operators, the EQU and XOR seem long.
Now some tricks are shown which may be used in the programming language C,
where instead of the Boolean type, integers are used. Let a and b abbreviate
the two conditions (which may have values 0 or 1), as before, then we have the
following. We start with the operators AND and OR, which do not need to be
substituted or interpreted in other ways, as they are built in, however, for the sake
of completeness and to feel what types of ideas are behind the scene, we start with
those.

e a AND b can be written as a * b

e a OR b can be writtenas a + b

e a IMP b can be written as a <= b
e a NAND b can be written as ! (a * b)
e a NOR b can be written as ! (a + b)

e a EQU b can be written as a ==

72

Annal. Math. et Inf. Logical conditions in programming languages. . .

e a XOR b can be writtenasa !'=b or !(a == b)

As here, we are showing rewriting that is close to the style of the programming
language C, we used the sign ! for negation. At the disjunction, as the sum may
produce a value that is outside of the targeted set {0,1}, in some cases one may
need to use it in the form !! (a+b) that transforms the value based on the double
negation law to the desired set of values. (In some other languages, e.g., in C++,
explicit type conversions can also be used to transform the resulted value back
to the set of official truth-values.) The sign ‘<=" may seem to be an arrow < or
a horseshoe C, but in fact none of them is used to represent implication in this
orientation. On the other hand, the ‘==’ can be seen as a built in equivalence
operator, although it is not highlighted in this way. Moreover, it can be used not
only in C, but in many other high-level programming languages, as the equality
operation is defined usually also on Boolean values. Thus, in this way, we may be
happy that, although it is not underlined in the textbooks and courses, in a usual
high-level programming language the programmers may use not only negation,
conjunction and disjunction, but also the equivalence operator (usually with the
lowest priority, therefore bracketing may be needed if one uses it for this purpose).

Another idea could be to use the connectives in functional form, e.g., to write
the logical expressions in prefix form (with or without brackets).

Without using any brackets, the so-called Polish notation of formulae, also
called prefix form, can be used. This form is invented by f.ukasiewicz to avoid
brackets and have a unique way to read and evaluate the formulae [12]. In this
writing the operators precede their operands, as we show below.

Examples could be:

EQU AND A IMP B,C XOR B NOT A is representing the formula
(AA (B> C)) = (B@-A)).

AND OR NOT A, B IMP A, C is representing (—AV B) A (A D C).

With brackets, the connectives can be interpreted as functions, and in this way,
they can be programmed in the programming language itself and they can easily
be put to a new logical library as well to include them and allow them to be used
by the programmers.

Our last example written in this form is:
AND (OR (NOT (A), B), IMP (A, C))

There is also an advantage of this form over the other without brackets, namely,
for the associative operations, e.g., for AND, OR, XOR the programmer may use
more than two parameters without any problem, misunderstanding or misinterpre-
tation.

We note that although this type of prefix notation is not widely used in logic
and mathematics, it is used in computer science, e.g., in the programming language
LISP [27]. The reverse Polish notation, the postfix notation, in which all operands
precede the operator is also used in computer science, especially in stack-based
programming [20, 26].

73

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

4.2. Shortcut for the new connectives

On the one hand, the EUQ and XOR operations are of the form of 2-2 (remember
to Table 2 and discussion on the number of the occurrences of the truth values).
In this way, we cannot do any pruning or short-cut evaluation technique. By
knowing the value of the first part one cannot involve the knowledge of the truth-
value of the whole formula in any case, the second part must also be evaluated.
This phenomenon is related to the fact that, e.g., in Gentzen sequent calculus by
working with a formula having main connective as EQU or XOR, the deduction
process is branching and in both branch we need to write and use both immediate
subformulae instead of the original formula.

Now, on the other hand, let us take a look on our other five operations (including
the original AND and OR) we deal with. All of these are 1-3 or 3-1 forms, meaning
that by knowing the truth-value of the first part of the expression, we may know
the truth-value of the whole expression (in the fortunate case). These cases are
listed below.

At operator if the first part is then the whole formula is

AND: false, false.
OR: true, true.
IMP: false, true.
NAND: false, true.
NOR: true, false.

It is clear to see how the short-cut evaluation works for AND and OR, and in
fact, these short-cut evaluations are built in features of the programming languages.
On the other hand we can also use the new short-cuts listed in the last three rows
of the previous table.

We would like to highlight and discuss one interesting issue here: we have
listed 5 operators, but there are only 4 possibilities (to have the truth-value of the
first part given and to infer from this to the truth-value of the whole formula).
Seemingly, in the table IMP and NAND are similar. Actually, if we can use the
short-cut, i.e., the evaluation can be done earlier than all parts of the formula
are evaluated, then yes, definitely, they work on the same way. However, in case
the short-cut evaluation cannot be used, i.e., the first part is true and we need to
evaluate the second part, then their difference appears: if the second part is false,
then IMP gives false and NAND gives true. Alternatively, if the second part is also
true, then IMP gives true and NAND gives a false value to the whole expression.

We note here again the analogy of the possibilities of the usage of the short-
cut techniques and the theorem proving methods Gentzen sequent-calculus and
Smullyan tableaux. These methods make a branching at some formulae, and if
only the first immediate subformula occurs in a branch, then we can make a cut,
e.g., at implication, the whole formula evaluates to true, if the first part is false
(and we do not need to check the second subformula).

Finally, we highlight that short-cut evaluations are not only used to make the
evaluation faster, but they have safety features as well by allowing to shorten some

74

Annal. Math. et Inf. Logical conditions in programming languages. . .

parts of the code.

Consider the following conditional statement with operator IMP and with vari-
ables num, divisor:

if (IMP(divisor > 0 , num/divisor > 5)) return 1 else returnO

It will return 1, if the actual value of the divisor is negative or in the case when
divisor has value 0 , without checking the fraction in the second part. Further,
it returns also 1 if divisor is positive and num/divisor is larger than 5. Finally,
it returns 0 only if divisor is positive and num/divisor is at most 5. The second
part of the implication, including the division by divisor is checked only if the
first part was evaluated to true, i.e., the value of the divisor is not 0, but it is
positive. In this way, the possible error of division by zero is avoided by the short
cut evaluation technique. Statements of this type are related to the nature of the
material implication widely used in formal logic, namely, if the condition part, the
first part of the statement has a false truth-value, then does not matter how strange
and weird is the second part, the whole statement is evaluated to be true.

In this way it is very similar to the very usual compound condition with integer
variables num, divisor and result.

The double, nested condition

if (divisor !'=0) if (num/divisor > 5) result = num/divisor

can be abbreviated to a sole, but compound condition as

if (divisor != 0 && num/divisor > 5) result = num/divisor

Note that in the programming language C, the first part can be simplified and
the condition (that is in the bracket) can be written as

(divisor && num/divisor > 5)

The fact that we can write the double nested condition in one compound con-
dition without any risk is related to the fact that, for instance in the programming
language C (and in other languages), the logic is not exactly the classical Boolean
logic, but a kind of 3-valued not commutative logic (see in [16]). As the condition
written in

(num/divisor > 5 && divisor != 0)

causes a runtime error in case the value of divisor is 0, this is not equivalent
to our original form. This already leads to us to the next section.

75

Annal. Math. et Inf. B. Nagy, K. Abuhmaidan, M. Aldwairi

5. Discussion, conclusion and related works

This study can be seen as a follow up study about logic in programming languages,
which we have started in [16]. There we have concentrated on how the logical
values are computed and what type of ideas and processes are behind the scene.

In this paper, we give some thoughts about which and how many logical opera-
tions can and should be used in a high-level programming language. We argued and
give hints on how is possible to include not only the widely used three operations
of Boolean algebra, but some other well-known and frequently used operations,
like the exclusive or, the equivalence and the implication in our programs to make
compound logical conditions. They may allow (beginner) programmers to write
their conditions in a simpler way, or in the way that is more closely reflected by
the condition stated in natural language. We have also studied the possibilities
of short-cut evaluations, which can also be seen, on one hand the generalizations
of the very closely related alpha and beta pruning techniques of game theory [21,
23] that are also generalised to games with chance nodes (i.e., with some random
events) [14] and for other types of operations [2, 3]. Related works are also done
by using and analysing similar techniques in the three most-known and most used
fuzzy and many-valued logic systems, in the Godel type logic [5], in the product
logic [6] and in the Lukasiewicz-type logics [4, 17].

Acknowledgements. Comments of the anonymous reviewer are gratefully ac-
knowledged.

References

(1] B. H. ARNOLD: Logic and Boolean Algebra, Dover Publications, 2011, p. 144, 1SBN: 978-
0486483856.

[2] R. BasBous, B. NAGY: Generalized Game Trees and their Evaluation, in: CoglnfoCom 2014:
5th IEEE International Conference on Cognitive Infocommunications, Vietri sul Mare, Italy,
IEEE, 2014, pp. 55-60, DOI: https://doi.org/10.1109/CogInfoCom.2014.7020518.

[3] R. BasBous, B. NaGyY: Strategies to Fast Evaluation of Tree Networks, Acta Polytechnica
Hungarica 12.6 (2015), pp. 127-148, DOI: https://doi.org/10.12700/APH.12.6.2015.6.8,
URL: http://acta.uni-obuda.hu/Basbous_Nagy_62.pdf.

[4] R. BasBous, B. Nacy, T. TAJTL: Pruning Techniques in Lukasiewicz Logics, Acta Polytech-
nica Hungarica v.n (2022), DOIL: https://doi.org/10.12700/APH..

[5] R. BasBous, B. Nacy, T. TAJTL: Short Circuit Evaluations in Gédel Type Logic, in: Ravi V.,
Panigrahi B., Das S., Suganthan P. (eds) Proceedings of the Fifth International Conference
on Fuzzy and Neuro Computing (FANCCO - 2015), vol. 415, Advances in Intelligent Systems
and Computing (AISC), Springer, Cham., 2015, pp. 119-138, DOI: https://doi.org/10.10
07/978-3-319-27212-2_10.

[6] R. BasBous, T. TaJT1, B. NAGY: Fast evaluations in product logic various pruning tech-
niques, in: 2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016, Van-
couver, BC, Canada, July 24-29, 2016, IEEE, 2016, pp. 140-147, DOI: https://doi.org/10
.1109/FUZZ-1EEE.2016.7737680.

76

Annal. Math. et Inf. Logical conditions in programming languages. . .

7
8]
9]

[10]

[11]

[12]

[13]

(14]

(15]

(16]

(17]

(18]

(19]

20]
(21]

(22]

23]

24]

[25]
[26]

27]
(28]

J. L. BELL, M. MACHOVER: A Course in Mathematical Logic, North Holland, 1977, p. 599,
ISBN: 978-0080934747.

D. FLANAGAN, G. M. Novak: Java-Script: The Definitive Guide, American Institute of
Physics, 1998.

J. GosLINg, B. Joy, G. STEELE, G. BRACHA: The Java language specification, Addison-
Wesley Professional, 2000.

E. HorowiTz: Fundamentals of Programming Languages, Springer, Berlin, Heidelberg, 2012,
ISBN: 9783642967290.

B. KERNIGHAN, D. RITCHIE, C. TONDO: The C Programming Language, Prentice-Hall soft-
ware series, Prentice Hall, 1988, 1SBN: 9789688802052.

J. LUKASIEWICZ: Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic, Oxford
University Press, 1951, p. 141.

R. J. McELIECE, R. B. AsH, C. AsH: Introduction to discrete mathematics, English, New
York etc.: Random House, 1989, pp. xv + 514, 1SBN: 0-394-35819-8.

E. MELKO, B. NAGY: Optimal strategy in games with chance nodes, Acta Cybern. 18.2 (2007),
pp. 171-192, URL: https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view
/3712.

E. MENDELSON: Theory and problems of Boolean algebra and switching circuits including
150 solved problems, English, Schaum’s Outline Series. New York etc.: McGraw-Hill Book
Comp. 213 p. (1970). 1970.

B. Nacy: Many-valued Logics and the Logic of the C Programming Language, in: ITI 2005,
27th International Conference on Information Technology Interfaces, Cavtat/Dubrovnik,
Croatia, IEEE, 2005, pp. 657—662, DOI: https://doi.org/10.1109/ITI.2005.1491200.

B. Nacy, R. BasBous, T. TAJTL: Lazy evaluations in Lukasiewicz type fuzzy logic, Fuzzy
Sets Syst. 376 (2019), pp. 127-151, DOI: https://doi.org/10.1016/j.fss.2018.11.014.

K. PASZTOR-VARGA, M. VARTERESZ: A matematikai logika alaklmazdsszerd tdrgyaldsa (Math-
ematical logic from application point of view, in Hungarian, textbook), Budapest: Panem,
2003.

F. J. PELLETIER, N. M. MARTIN: Post’s Functional Completeness Theorem, Notre Dame J.
Formal Log. 31.3 (1990), pp. 462-475, DOI: https://doi.org/10.1305/ndjf1/1093635508.

A. PUNTAMBEKAR: Data Structures, UNICORN Publishing Group, 2020, 1SBN: 9789333223911.

E. RicH, K. KNIGHT: Artificial Intelligence, Artificial Intelligence Series, McGraw-Hill, 1991,
ISBN: 9780070522633.

G. VAN RossuM, THE PYTHON DEVELOPMENT TEAM: Python Tutorial (Release 3.6.6rcl).
CreateSpace Independent Publishing Platform, 2018.

S. RuUssELL, P. NORviG: Artificial Intelligence: A Modern Approach, CreateSpace Indepen-
dent Publishing Platform, 2016, 1SBN: 9781537600314.

H. M. SHEFFER: A set of five independent postulates for Boolean Algebras, with application
to logical constants, Transactions of the American Mathematical Society 14 (1913), pp. 481—
488.

B. STROUSTRUP: The C++ programming language, Pearson Education India, 2000.

M. A. WEIss: Data Structures and Algorithm Analysis, Redwood City, CA; Menlo Park,
CA; Reading, Ma; New York; Amsterdam; Bonn; Sidney; Singapore; Tokyo; Madrid: The
Benjamin/Cummings Publishing Company, Inc., 1995.

P. H. WinsToN, B. K. P. HOrRN: LISP, United States: Pearson, Jan. 1989.
N. WIRTH: Algorithms & data structures, Prentice-Hall, Inc., 1985.

7

Annales Mathematicae et Informaticae

57 (2023) pp. 78-91

DOI: https://doi.org/10.33039/ami.2023.04.001
URL: https://ami.uni-eszterhazy.hu

Application and impact of electronic
solutions in teaching programming

Jo6zsef Udvaros, Norbert Forman, Déra Eva Dobsk

Budapest Business School, Faculty of Finance and Accountancy,
Department of Business Information Technology
{udvaros.jozsef,forman.norbert,dobak.dora}@uni-bge.hu

Abstract. The market trends that are determining the electronics industry
today point to a sharp increase in the use of IoT devices, sensors are collecting
data around us, using wireless data transmission technologies to transmit the
measured values to cloud-based databases, which are processed with various
software. Low-power microcontrollers developed for battery power, which are
widely used today, provide sensor data collection and data transfer control.

In this article, we present a literature search on the technical IT teaching
tools in use today, some of which are inherently educational and popular
with students and teachers. We pay attention to the educational principles
of technical IT methods.

We show with examples how technical IT solutions can provide an ap-
propriate experiential learning opportunity and background in programming
education. We focus on teaching methods that use microcontrollers and var-
ious sensors to develop programming skills and acquire programming knowl-
edge. By developing both computational and algorithmic thinking, we aim
to develop both skills.

Keywords: Robots, microcontrollers, teaching methods

AMS Subject Classification: 94-06

1. Introduction

Today, most of the devices around us are based on electronic solutions which con-
tain a processor and are controlled by a software. With sensors, they are able to
convert the physical, chemical and biological signals of the outside world into elec-
tronic quantities and then information, which can thus be processed with the help
of software. The electronics used allow battery-powered devices that can handle

Submitted: August 10, 2022
Accepted: April 20, 2023
Published online: April 24, 2023

Annal. Math. et Inf. Application and impact of electronic solutions . ..

more and more signals to run operating systems and various applications. These
electronic tools can be used effectively to improve the quality of secondary and
university programming education [12]. In particular, it has a major impact on the
development of technical and computer-minded thinking, without which students
have difficulty in today’s labor market [10].

The aim of this article is to underline the importance of using robots, microcon-
trollers and IoT (Internet of Thinks) devices in secondary and university education.
Using robots, microcontrollers and IoT in education can improve students’ algorith-
mic thinking and familiarize them with programming techniques. The acquisition
of tools using real and scientific examples supports the complex development of
STEM.

2. Methodology

In the article, we conducted a short literature search, where we focused on tech-
nical IT methods, including the project solution method. We determined which
electronic devices are used most in education. We will then conduct a research to
support our hypothesis according to which the use of robots, microcontrollers and
ToT devices in education can improve students’ algorithmic thinking and familiarize
them with programming techniques.

The contribution of robotics to education to clarify new disciplines is remark-
able. In fact, there is a need for experimental examples that facilitate the acquisi-
tion of students 'professional knowledge and thus meet the potential of the actual
systems used in various modern disciplines. In [6], the authors discuss laboratory
experience in implementing an automatic airflow control system for remote configu-
ration and monitoring of convincing size and role. An example is a non-traditional
robot. Built-in electromechanical equipment from old farms are being exploited
and revived using modern, widely available microcontrollers, smartphones, tablets,
network transceivers, motor drives and some low-cost and custom sensors.

Teachers of Technical University of KosSice in their article describes the imple-
mentation of IoT technology in the teaching of microprocessor technology. The
method presented in this article combines the reality and virtualization of a micro-
processor technology laboratory. A built-in IoT monitoring device monitors stu-
dents 'microcontroller needles and sends the data through the control application
to the server to which the teacher is connected. The teacher has the opportu-
nity to monitor the development of the program tasks and student code, where
the functionality of these tasks can be checked. Thanks to the remote laboratory
implementation of IoT, students’ lesson tasks have improved [5].

Programming using microcontrollers is becoming increasingly popular in teach-
ing to help learners gain a deeper understanding of programming principles. Using
sensors, motors, and various electronic components with microcontrollers, we can
create impressive results in teaching programming, such as movement, flashing, etc.
It engages students and gets them interested in programming [15]. We can design
applications visually with the help of visual programming, a new trend within cod-

79

Annal. Math. et Inf. J. Udvaros, N. Forman, D. E. Dobdk

ing. The use of visual programming is growing in popularity today. TinkerCad is
an excellent tool for visual programming. Using TinkerCad, we can assemble the
circuit, write the software code and simulate the results. This application displays
the result of each step. An application such as this can be used well during a
time of pandemic, when students are being educated online. TinkerCad supports a
variety of predefined components, such as Arduino, Raspberry PI, Micro:Bit, and
more [4, 11, 13, 14]. The authors of this article describe a method for visualizing
programming instructions using the TinkerCad online application.

In [8], the authors detail the development of an approach that provides stu-
dents with an integrated coursework and laboratory experience. The increased
performance and functionality of modern microcontrollers is both an opportunity
and a challenge for educators. Increased complexity, the need to integrate hands-
on laboratory experience, and declining pressures on curriculum hours require a
significant investment of time to modernize microcontroller instruction that few
instructors can afford. However, a successful microcontroller course offers a unique
opportunity to prepare students for large, complex systems.

In his article, Cubero describes how to direct students to become their own best
teachers, able to test their newly acquired skills without receiving minimal or no
help from an instructor. They describe “closed-loop” student-centred learning and
problem-based learning approaches that include weekly lectures and hands-on lab-
oratory activities that maintain students ’curiosity, motivation, and participation
in self-regulated learning. Students must design and test their own original cir-
cuits and software code by modifying, extending, or expanding the sample circuits
and sample codes described in the lecture notes in order to meet and demonstrate
the specific objectives or requirements of each weekly laboratory session. These
“closed-loop” student-centred learning labs ensure that all teams of students reach
a general or minimum acceptable level of practical skills that appropriately pre-
pares them for the competition of “design and construction”. This learning style
also contributes to the development of general lifelong learning skills such as prob-
lem research and identification (problem definition and analysis), independent re-
search and experimentation, decision making, communication and teamwork. Even
without prior hands-on experience in electronic circuit design, programming, and
microcontrollers, all student teams were able to apply and demonstrate new knowl-
edge and skills, design and test original circuit and software designs unsupervised;
solve and correct complex problems successfully and confidently; build a workable
remote-controlled electric vehicle or mobile robot for the ultimate race. Some went
even further and built sensor-controlled, fully autonomous mobile robots [3].

In most articles, the authors suggest using the project method or the problem-
solving method in teaching. In their article, Mendoza and his colleagues present the
content, teaching, and assessment methods of a mandatory course in the design of
microprocessor-based real-time embedded systems in the final years of undergradu-
ate telecommunications engineering. The method used was project-based learning
and assessment was based on the skills learned. Finally, the article reflects on how
well the course has achieved its objectives using a project-oriented approach [7].

80

Annal. Math. et Inf. Application and impact of electronic solutions . ..

Amiel describes a six-year experiment with his peers based on a project-oriented
learning approach to teaching the basics of electronics. The proposed teaching
framework has a dynamic structure as it adapts and modifies the conditions for
annual assessment to help motivate and interest students. The authors present the
effectiveness and value of this approach in terms of student motivation [1].

According to Sari et al., Taking advantage of the benefits of information tech-
nology in the digital age of the twenty-first century is increasing in every economy
to overcome problems and difficulties and find the solutions you want. So the devel-
opment of algorithmic thinking is important as a skill that requires the application
of knowledge from different disciplines, especially the natural sciences, technol-
ogy, engineering and mathematics, and improves the solution of real problems.
Therefore, practical studies are needed on how to develop algorithmic thinking and
what activities and learning contents can be used in classrooms. The impact of
STEM-centric physical computing activities with Arduino on teacher candidates
’algorithmic thinking skills and STEM awareness was investigated using mixed-
method research. In addition, the student-teacher roles in the activities and the
pros and cons of the activities were discussed, taking into account the views of
the future teachers. The results showed that STEM-centric physical computing
activities improve the algorithmic thinking skills of prospective teachers. There-
fore, it can be said that the activities raised the awareness of future teachers about
STEM [9].

Angeli describes in his article that those working in science, technology, en-
gineering, and mathematics play a significant role in the sustainable growth and
stability of the global economy and thus play a key role in the prosperity of all
countries in the world. In this context, computer thinking is an important skill
that allows workers to develop creative solutions to complex problems. However,
all economies in the world need more workers who are able to think computation-
ally about problems, challenges, and solutions. Therefore, integrating the teaching
of computer thinking into secondary and university education is extremely impor-
tant in order to reduce the skills gap between education and the workplace. An
important and crucial question arises as to whether teachers have the knowledge
and skills that will teach students to think computationally. Existing research
shows that teacher-education classes do not currently have the knowledge to facil-
itate computer thinking in their programs. This study focuses on two aspects of
computational thinking, such as algorithmic thinking and debugging skills, using
scaffolding programming scripts in an undergraduate training in educational tech-
nology. The results show a statistically significant improvement in learning in the
algorithmic thinking and debugging skills of preparatory teachers in the context of
LEGO WeDo robot programming activities[2].

3. Results

The use of robots, microcontrollers and IoT (Internet of Thinks) in education can
improve students’ algorithmic thinking and familiarize them with programming

81

Annal. Math. et Inf. J. Udvaros, N. Forman, D. E. Dobdk

techniques. And the acquisition of tools through the use of real life and science
examples supports the complex development of STEM. In the following we will
show some of the robots and microcontrollers used in education.

Then, with the results of our research, we confirm that students achieve better
results on average when learning programming using visual tools (microcontrollers,
TinkerCAD). It can be seen that not all tasks had significant results, but we sup-
ported our claims based on these. From the analysis of the results of the 4 task
groups, we can conclude that the students achieved significantly better results in
the case of the conditional branching (if..else) and the do..while conditional loop
instruction task groups. While in the case of the counting loop instruction (for
loop instruction) and the while..do conditional loop instruction task groups, there
were no significantly better results, although on average the students taught with
the help of visual tools performed better here as well.

3.1. LEGO robots

LEGO robots are very useful in education: programming with their help, measure-
ment of various signals (use of sensors), communication between devices, construc-
tion of software-controlled mechanical systems (robots) can be learned and taught
in a playful and experiential way. However, in addition to the many benefits, it
is also important to point out that the transparency of the components is rather
low, and due to the integrity, no details are revealed. The goal of the developers
of LEGO robots was to make the devices as compact as possible, even without
background knowledge.

3.2. Single board computers — microcontrollers

The Raspberry Pi single-sheet computer, originally developed specifically for educa-
tion, and the Arduino circuit, which is indispensable for most hobbyists, including
students and teachers, are also extremely popular. The Arduino is actually a card
that has the contacts of a microcontroller used in the industry connected to more
easily accessible connectors. For hobbyists and students, the simple development
environment and the extremely rich information available on the Internet, as well
as the wide range of additional circuits available cheaply, make it very convenient
and easy to use.

These devices are already much closer to the technical systems used in practice,
the user needs to know more about digital signals, interfaces, electronic solutions,
because they encounter them more directly. In many cases, they are quite sim-
ple to use and provide very good transparency, which is especially important for
education.

In the educational application of Raspberry Pi and Arduino circuits, there are
elaborate solutions for almost every task that, while instructive, often encourage
more than just copying. Unfortunately, the vast majority of the available knowl-
edge (which can be considered as a curriculum in the case of educational use) was

82

Annal. Math. et Inf. Application and impact of electronic solutions . ..

Figure 1. Arduino Uno microcontroller.

produced by professionals with in-depth technical knowledge and attitudes, as well
as professional and didactic reliability.

Figure 2. Rasberry PI microcontroller.

3.3. PIC controller

PIC stands for Peripheral Interface Controller. The PIC microcontroller is the
smallest microcontroller in the world and is programmed to perform a large num-
ber of operations. These were originally designed to support PDP (Programmed
Data Processing) computers to control peripheral devices. It is based on RISC
architecture.

3.4. Micro:Bit

The BBC Micro:Bit is a small, programmable panel with built-in sensors (com-
pass, accelerometer, light sensor), LED matrix display, I/O connectors, Bluetooth
technology. The tool can also be programmed using an easy-to-use graphical block
language, similar to the Scratch environment.

83

Annal. Math. et Inf. J. Udvaros, N. Forman, D. E. Dobdk

There are other educational tools on the market that can be considered robots,
which are especially useful in kindergartens and elementary schools to develop
algorithmic thinking in education. Such robots, resp. bots include Code&Go,
Ozobot, Bee-Bot, etc.

Figure 3. Micro:Bit microcontroller.

3.5. Characteristics of technical IT methods

Practice orientation

The real operation of technical IT teaching tools, the handling of real signals and
the creation of effects ensure a practice-orientation. Easy and inexpensive tools
help with experimental education, whether it’s a teacher demonstration or school
or home student experiments. This can improve the retention of interest and
provide an opportunity to work together.

Task orientation

With the help of electronic-electrical sensors, teachers can create projects and tasks
where students can learn how to use the tools and operating principles of the tools
needed to solve the task.

Professionally correct application

Nowadays, technical (electronic) IT tools are used by many people, many people
also share application suggestions and educational materials on the Internet, which
from a pedagogical point of view may not be suitable for achieving the goal. There
are plenty of imaginative and varied solutions to specific problems on the Internet.
We must strive to develop critical thinking, the ability to override, the right attitude
and demandingness. This requires the acquisition of certain basic professional

84

Annal. Math. et Inf. Application and impact of electronic solutions . ..

knowledge, an appropriate level of confidence, and knowledge of the most important
operating principles.

Multidisciplinarity

Technical IT methods can be used in almost all science lessons: in addition to
IT education, physics class (distance, time, acceleration, pressure, speed measure-
ment, ...), chemistry class (CO, CO2 measurement, ...) and biology class (blood
pressure, heart rate, ...).

Transparency

From a pedagogical point of view, it is necessary for the students to understand
the structure of the tools and the operating principles as much as possible. This is
ensured by the transparency feature. It is usually difficult to find a balance, both
superficially and in detail, between problem presentation and solution. This is well
influenced by teachers’ experience in using the tools directly.

Scalability

The tasks in the lessons should be such that everyone can have a sense of success,
everyone can develop, as the skills of the students participating in the lessons in
the field of IT can be especially diverse. Most of the time, their interest in the
subject is not the same. In the case of technical IT methods, this is quite feasible;
the student can solve the given task on many levels, with different additions.

Visual programming is a new trend within programming that allows us to
develop applications. Nowadays, visual programming is becoming very popular.
TinkerCad online application is very suitable for visual programming. Using the
TinkerCad online application, we can assemble our circuit and then simulate the
results after writing the program. In fact, the app visualizes the steps taken. The
app can also be used during a pandemic period when students are being educated
online. TinkerCad can use a lot of predefined tools (parts, sensors) for visualization
on different platforms, such as Arduino, Raspberry PI, Micro: Bit,...[1, 2]. Here
are some projects to visualize your programming education using the TinkerCad
online application:

o Password-protected access

e Distance measurement

o Digital clock

e Temperature monitoring — measurement

o Engine control

e Remote control — Bluetooth, Wifi

e Brightness measurement

o Motion detection

e Line tracking

e Moisture measurement

85

Annal. Math. et Inf. J. Udvaros, N. Forman, D. E. Dobdk

e Moving lights using LEDs
e Digital sandstone

o Parking system

e RFID identification

¢ Qcode, barcode reading

e Using the display

e Magze problem

Figure 4. Circuits with Arduino Uno microcontroller created in
TinkerCAD.

3.6. Research

We conducted our research in the second year of a secondary school in Slovakia
(which is not IT oriented). According to the curriculum, we had 15 hours for teach-
ing programming. The research was carried out in two classes, where only a mini-
mal difference can be observed between students’ knowledge level. This difference
does not affect the research results. In this research, the results of a programming
basics survey taught by an instructor are investigated. In this way, we rule out the
possibility that teaching is influenced by multiple teaching methods and personal
factors. We would like to examine the results from several perspectives. We would
like to draw the appropriate conclusions from the results that can be used in fur-
ther teaching work. The studied group is composed of 41 students, 21 students
were taught the basics of programming using the classical method (ORIGINAL
GROUP), while the other 20 students were taught using microcontrollers and Tin-
kerCAD software (CONTROLL GROUP). The aim of the teaching was to learn
and correctly use control structures. For both groups, 4 groups of tasks were eval-
uated in the assessment, which assessed the knowledge of: conditional branching
(if..else), counter loop instructions (for loop instructions), conditional loop instruc-

86

Annal. Math. et Inf.

Application and impact of electronic solutions . ..

tions (while and do..while loop instructions). In all four cases, the maximum score
available in the assessment was 5 and the minimum was 0. In our research, we do
not consider gender as it is not relevant in our case.

recording are lower compared to the control group.

We examined the answers given by the original and the control group in SPSS
with a hypothesis test (Independent Samples Test), based on which, on the one
hand, the standard deviations of the two groups are the same, so among the tests
offered by SPSS, the results obtained along the same standard deviation should be
taken as a basis.

Table 1. The averages of the responses to the different questions

Group Statistics

vary between the two groups.

Std. Error
ROUND N Mean Std. Deviation Mean
Q1 ~ ORIGINAL 21 333 1,278 279
CONTROLL 20 425 1,118 250
Q2 ORIGINAL 21 3,57 1,599 349
| 7CONTROLL 20 4,05 11486 256
Q3 CHGI[JXL B ? 3,2747 1,640 (35; 7
I CONTROLL 20 3,30 1,455 325
Q4 _ ORIGINAL 21 2,57 1,502 328
CONTROLL 20 3,60 1.231 275

Table 1 shows how the averages of the responses to the different questions
vary between the two groups. Based on this the average responses for the original

Table 2.

Levene's Test{or Equality of

Variances

groups.

Independent Samples Test

dr Sig. (2-tailed)

Hest for Equallty of Means

hean
Difference

S1d. Error
Difference

Independent Sample Test of the responses of the two

95% Confidence Interval of the

Difference

Lower

Upper

o1

Q2

a3

04

Equal variances
assumed

Equal variances not
assumed

Equal variances
assumed

Equal variances not
assumed

Equal variances
assumed

Equal variances not
assumed
Equalvariances
assumed

Equal variances not
assumed

450

1,283

445

.885

506

264

508

353

-2439

<2447

-1.097

-1,105

-128

-128

-2.391

2,403

39

38,731

39

38,811

39

38171

019

.019

280

276

899

.899

022

021

917

-817

-479

376

375

436

433

485

484

430

428

-1.677

-1.674

-1.361

-1.356

-1.043

-1,040

-1,899

1,895

87

Annal. Math. et Inf. J. Udvaros, N. Forman, D. E. Dobdk

Table 2 (Independent Sample Test) gives an answer to the similarity/difference
of the variances of the two groups and the similarity/difference of the responses of
the two groups.

Based on this, since Sig > 5% for all questions, the standard deviation of the
responses of the two groups can be considered to be the same for all questions, so the
first row should be looked at for all questions when testing similarity /dissimilarity.
Since the Sig (2-tailed) > 5% for all questions, the hypothesis HO is accepted,
which states that there is no significant difference between the responses of the two
groups.

In addition, we have also considered the case where we do not examine the two
groups separately for each question, but on the basis of the sum score (SUM value).

Table 3. The averages of the total response value (SUM) between
the two groups.

Group Statistics

Std. Error
ROUND N Mean Std. Deviation Mean
SUM ORIGINAL il ¢lile v5l 5,081 1.109
CONTROLL 20 15,20 3,397 760

Table 3 shows, similar to the first study (when we looked at each question),
the control group performed better on average in terms of the total response value

(SUM).

Table 4. Independent Sample Test of total response value (SUM).

Independent Samples Test

Levene's Test for Equality of
Variances test for Equality of Means
95% Confidence Interval of the

Mean Std. Error Difierence

F Sig t df Sig. (2-tailed) Difference Difference Lower Upper

SUM Equal variances 2,091 156 -1,832 39 075 -2,486 1,357 -5,230 259
assumed

Equal variances not -1,850 35,050 073 -2,486 1,344 -5,214 242
assumed

Table 4 shows the responses of both groups (original and controll) which not
show significant differences here either (because Sig (2-tailed) > 5%).

These would have been the results if the responses had followed a normal devi-
ation.

However, since the normality condition is not met, it was necessary to continue
the tests in a non-parametric direction with a Mann-Whitney test, which does not
require a normal deviation of samples.

The main difference between non-parametric and parametric tests (Independent
Samples Test) is that they are tested on a median basis instead of a mean basis.

88

Annal. Math. et Inf. Application and impact of electronic solutions . ..

Table 5. Hypothesis Test Summary.

Null Hypothesis Test Sig. Decision
Independent- ‘
The distribution of Q1 is the same ~ Samples Refect the
1 : Mann- 006 nu
across categories of ROUND. Whitney U hypothesis
Test
Independent-)
2 The distribution of Q2 is the same [\Sﬂa;r;wﬁ_les 351 Efltlam the
across categories of ROUND. Whitney U . hypothesis
Test
Independent-)
The distribution of Q3 is the same ~ 2mPes Retan s
3 ; Mann- 1,000 null
across categories of ROUND. Whitney U hypothesis
Test
Independent- :
The distribution of Q4 is the same ~ SamPles Reject the
4 . Mann- 016 nu
across categories of ROUND. Whitney U hypothesis
Test
Independent-
N — : Samples Retain the
The distribution of SUM is the same
3 across categories of ROUND. %%?{:"ey U =8 E;gothesis
Test ‘

Asymptotic significances are displayed. The significance level is ,05.

Based on results of Table 5, the only significant difference between the two
groups’ responses is for the first and fourth questions. For the other questions and
SUM value, no significant difference is found at the 5% significance level.

4. Conclusion

Most of the devices around us are based on electronic solutions. The results of our
research show that students on average achieve better results when using visual
tools (microcontrollers, TinkerCAD) to learn programming. It can be seen that
there were not significant results for all tasks, but they also support our claims
Electronic tools can be used effectively to raise the standard of secondary and
university programming education. It has a major impact on the development of
technical and computer thinking, without which it will be difficult for students
to succeed in today’s job market. The market trends that are determining the
electronics industry today point in the direction of a sharp increase in the use of
IoT devices. With the help of electronics and technical IT methods, the following
skills can be effectively developed: algorithmic thinking, technical and computer

89

Annal. Math. et Inf. J. Udvaros, N. Forman, D. E. Dobdk

thinking, problem solving, project team thinking. We can further increase efficiency
with visual programming. TinkerCad online application is very suitable for visual
programming.

References

[1]

2]

3]

[4]

[6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

F. AMIEL, D. ABBOUD, M. TROCAN: A Project Oriented Learning Experience for Teaching
Electronics Fundamentals, Communications Magazine, IEEE 52 (Dec. 2014), pp. 98-100,
DOI: https://doi.org/10.1109/MCOM.2014.6979959.

C. ANGELL: The effects of scaffolded programming scripts on pre-service teachers’ computa-
tional thinking: Developing algorithmic thinking through programming robots, International
Journal of Child-Computer Interaction (June 2021), p. 100329, DOI: https://doi.org/10.1
016/j.ijcci.2021.100329.

N. S. CUBERO: Fun and effective self-learning approach to teaching microcontrollers and mo-
bile robotics, International Journal of Electrical Engineering Education 52.4 (2015), pp. 298—
319.

M. FiLoP, J. UDVAROS, A. GUBAN, A. SANDOR: Development of Computational Thinking
Using Microcontrollers Integrated into OOP (Object-Oriented Programming), Sustainability
(2022), DOI: https://doi.org/10.3390/su14127218.

P. Jacko, M. BERES, I. KOVACOVA, J. MOLNAR, T. VINCE, J. DziAk, B. FEcko, S. GaNs, D.
KoVAC: Remote IoT Education Laboratory for Microcontrollers Based on the STMS32 Chips,
Sensors, MDPI 22.4 (2022), 1SsN: 14248220, DOI: https://doi.org/10.3390/s22041440.

D. LoukAToS, N. ANDROULIDAKIS, K. ARVANITIS, K. PEPPAS, E. CHONDROGIANNIS: Using
Open Tools to Transform Retired Equipment into Powerful engineering Education Instru-
ments: A Smart Agri-IoT Control Example, Electronics, MDPI 11.6 (2022), 1sSN: 20799292,
DOI: https://doi.org/10.3390/electronics11060855.

J. PASTOR, J. M. VILLADANGOS, F. RODRIGUEZ: Project based learning experiences for em-
bedded systems design, in: June 2016, pp. 1-6, DOI: https://doi.org/10.1109/TAEE.2016.7
528370.

R. B. REESE, B. A. JONES: Improving the Effectiveness of Microcontroller Education, IEEE
Xplore, DOI: https://doi.org/10.1109/SECON.2010.5453894.

U. SARI, H. PexTAs, O. SEN, H. CELIK: Algorithmic thinking development through physical
computing activities with Arduino in STEM education, Education and Information Tech-
nologies (Jan. 2022), DOI: https://doi.org/10.1007/s10639-022-10893-0.

J. Upvaros, K. CzAKOOVA: Developing Of Computational Thinking Using Microcontrollers
And Simulations, in: EDULEARN21 Proceedings, 13th International Conference on Educa-
tion and New Learning Technologies, Online Conference: IATED, May 2021, pp. 7945-7951,
ISBN: 978-84-09-31267-2, DOI: https://doi.org/10.21126/edulearn.2021.1619.

J. UpvaRros, K. CzAKOOVA: Using Teaching Methods Based On Visualizing By Tinkercad In
Teaching Programming, in: ICERI2021 Proceedings, 14th annual International Conference of
Education, Research and Innovation, Online Conference: IATED, Aug. 2021, pp. 5913-5917,
ISBN: 978-84-09-34549-6, DOI: https://doi.org/10.21125/iceri.2021.1333.

J. UDVAROS, O. TAKAC: Developing Computational Thinking By Microcontrollers, in: ICERI
2020 Proceedings, 13th annual International Conference of Education, Research and Inno-
vation, Online Conference: IATED, Sept. 2020, pp. 6877-6882, ISBN: 978-84-09-24232-0, DOTI:
https://doi.org/10.21125/iceri.2020.1474.

J. UpvAROS, L. VECH: New Teaching Methods By Using Microcontrollers In Teaching Pro-
gramming, in: eLearning sustainment for never-ending learning, Proceedings of the 16th In-
ternational Scientific Conference "eLearning and Software for Education", Bucharest: Editura
Universitara, Apr. 2020, pp. 630-637, DOI: https://doi.org/10.12753/2066-026X-20-082.

90

Annal. Math. et Inf. Application and impact of electronic solutions . ..

[14] J. Upvaros, L. VEGH: Possibilities of Creating Interactive 2D Animations for Education
Using HTML5 Canvas JavaScript Libraries, in: Proceedings of the 16th International Sci-
entific Conference "eLearning and Software for Education", Bucharest: Editura Universitara,
Apr. 2020, pp. 269-274, DOI: https://doi.org/10.12753/2066-026X-20-119.

[15] J. UDVAROS: Mikrokontrollerek programozdsdnak oktatdsa TinkerCAD segitségével, Logiszti-
ka — Informatika — Menedzsment 2021 (2021), pp. 22-22.

91

Annales Mathematicae et Informaticae

57 (2023) pp. 92-106

DOI: https://doi.org/10.33039/ami.2022.11.001
URL: https://ami.uni-eszterhazy.hu

Solving Hungarian natural language
processing tasks with multilingual
generative models

Zijian Gy6z6 Yang, Laszl6é Janos Laki

Hungarian Research Centre for Linguistics
{yang.zijian.gyozo,laki.laszlo }@nytud.hu
MTA-PPKE Hungarian Language Technology Research Group
Pazmany Péter Catholic University,

Faculty of Information Technology and Bionics
{yang.zijian.gyozo,laki.laszlo }@itk.ppke.hu

Abstract. Generative ability is a crucial need for artificial intelligence appli-
cations, such as chatbots, virtual assistants, machine translation systems etc.
In recent years, the transformer-based neural architectures gave a huge boost
to generate human-like English texts. In our research we did experiments
to create pre-trained generative transformer models for Hungarian language
and fine-tune them for multiple types of natural language processing tasks.

In our focus, multilingual models were trained. We have pre-trained a
multilingual BART, then fine-tuned it to various NLP tasks, such as text
classification, abstractive summarization. In our experiments, we focused
on transfer learning techniques to increase the performance. Furthermore,
a M2M100 multilingual model was fine-tuned for a 12-lingual Hungarian-
Centric machine translation. Last but not least, a Marian NMT based
machine translation system was also built from scratch for the 12-lingual
Hungarian-Centric machine translation task.

In our results, using the cross-lingual transfer method we could achieve
higher performance in all of our tasks. In our machine translation experi-
ment, using our fine-tuned M2M100 model we could outperform the Google
Translate, Microsoft Translator and eTranslation.

Keywords: natural language processing, multilingual model, sentiment analy-
sis, abstractive summarization, machine translation, Marian NMT, M2M100

AMS Subject Classification: 68T07, 68T09, 68T50

Submitted: May 24, 2022
Accepted: November 2, 2022
Published online: November 9, 2022

Annal. Math. et Inf. Solving Hungarian natural language processing tasks . ..

1. Background

Several efforts have been made to analyze the tremendous amount of data that is
currently available with the long-term goal to understand and analyze patterns.
A highly promising approach towards that direction is the creation of generative
models, that can generate new data instances similar to the original dataset. Recent
advancements in artificial intelligence promote the development of systems with
generative ability.

One aim of this research is to facilitate the work of administrators by processing
human language. The members of the consortium that established the Infocom-
munication and Information Technology National Laboratory (ICT & IT National
Laboratory) (the National Security Service and IdomSoft Zrt.) have set a dual
goal: to support the safe introduction and use of emerging infocommunication and
information technologies and the digital transformation of public administration.

One of IdomSoft LLC’s' key objectives is to research and apply the potential
of Artificial Intelligence (AI) based technologies for public administration applica-
tions, enabling customers to be exempted from the provision of all data already
available in public administrations. The developments will save customers from all
the organisational and administrative tasks that can be solved by internal admin-
istrative organisation between public administrations. The aim is also to create a
secure and seamless contactless, fully digitised and automated administration.

This strategic innovation includes, among other things, the feasibility of public
administration services that can handle the specificities of the Hungarian language
at a high level of proficiency and meet the expectations of the 21st century. In order
to achieve these objectives, IdomSoft LLC. cooperates with Hungarian universities
to apply their products, which have been implemented in the R&D process, in
practice in connection with the public administration I'T solutions it develops.

Neural Machine Translation (NMT) is an important task in the area of Natural
Language Processing (NLP), which is clearly highlighted by the fact that there is
an increasing demand from the side of both academic and industrial stakeholders to
push the limits of model performance and to come up with new, resource-efficient
solutions. It is getting increasingly important to establish multilingual models that
are able to handle dozens or even more than hundred languages simultaneously.
The implementation of these multilingual models in certain directions and their
application to NLP tasks in novel settings can promote the progress of machine
translation in medium- or low-resourced languages.

Transfer learning represents a key strategy in enhancing model performance.
It offers a solution to exploit the capabilities of a model that is trained for a
certain task in order to use this knowledge to tackle other related problems. For
example, cross-lingual knowledge transfer can substantially increase abstractive
summmarization quality.

Our major research focus is to train multilingual models to NLP tasks followed
by fine-tuning to specific tasks like text classification and abstractive summariza-

Thttps://idomsoft.hu

93

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

tion. We apply cross-lingual knowledge transfer to investigate how it can enhance
model performance in our experimental settings.

Here we report that we could achieve highly superior performance with the
models when cross-lingual knowledge transfer was applied. This further confirms
that the application of transfer learning principles in NLP tasks can represent an
outstanding opportunity to boost model performance and to establish competitive
new approaches in the field of multilingual natural language processing.

2. Related work

The BART [16] is a transformer model developed by Fairseq (Facebook AI Re-
search Sequence-to-Sequence Toolkit). The architecture of BART is based on two
types of Transformers: the bidirectional encoder and the auto-regressive decoder.
BART can be seen as a hybrid of a BERT- [8] and a GPT-type model [24]. The
combination of the different features makes BART especially powerful and offers
a unique opportunity to apply it for various purposes. For example, BERT mod-
els achieve impressive results in word- and sentence-level classification, while GPT
models are well-suited for text generation tasks, such as summarization. BART
can be applied with high success in machine translation, since it brings together
the advantageous properties of both BERT-based and auto-regressive models.
The mBART (multilingual BART) is based on the seq2seq concept and it is
a denoising autoencoder model pre-trained on corpora in multiple languages [20].
The application of mBART can significantly enhance the performance of both su-
pervised and unsupervised machine translation, which can be especially promising
in the case of translation of low- or medium-resourced languages. The mBART
follows a sequence-to-sequence Transformer architecture [33] with 12 encoder and
12 decoder layers completed with an additional normalization layer. The con-
ceptual framework of mBART is based on multilingual pre-training followed by
fine-tuning to given language pairs. To pre-train the model, the CC25 corpus
was applied [7] [15], which is a dataset consisting of 25 languages from different
families. The texts were extracted from the CommonCrawl database and went
through tokenization as a pre-processing step. The application of mBART could
significantly improve the quality of both sentence-level and document-level machine
translation, for example, in the case of low resource language pairs like English-
Vietnamese or English-Turkish, more than 12 BLEU gains could be reached. On
the contrary, for high resource language pairs, this performance gain was not ob-
servable or even resulted in a slightly worse performance. The results acquired by
seq2seq-based approaches represent a significant improvement in the area of ma-
chine translation in comparison to previous efforts [20] [17]. The mBART was later
expanded to mBARTS50 by incorporating additional 25 languages in the pipeline
(doubling the number of the included languages), which resulted in remarkable
BLEU improvements (up to 15 BLEU improvement in the case of some low re-
source languages) [30]. Taken together, the performance enhancement observed
using mBART models suggests that there is transfer learning potential from the

94

Annal. Math. et Inf. Solving Hungarian natural language processing tasks . ..

representations acquired during multilingual pre-training. The mBART does not
contains Hungarian language knowledge, thus we have pre-trained own English-
Hungarian bilingual BART models.

Cross-lingual knowledge transfer can significantly improve model performance.
For instance, Kahla et al. pre-trained a multilingual BERT model on a Hungar-
ian corpus, then fine-tuned for abstractive summarization in Arabic. Similarly,
the learned representations from pre-training on English corpus were transferred
to Arabic in an attempt to improve the quality of summarization. The results
indicate that it is possible to significantly elevate the quality of abstractive sum-
marization by applying multilingual models pre-trained on a given language and
transfer the acquired knowledge to another language [14]. The work by Artetxe
et al. revealed important insights into the generalization ability of multilingual
models and found that these models could achieve outstanding results on cross-
lingual transfer benchmarks [2]. Additionally, cross-lingual knowledge transfer has
been applied successfully in a variety of different areas, such as temporal expression
extraction [6], name entity recognition [11], and utterance interpretation [26].

In machine translation research, there are only a few examples of multilingual
models that can translate from any languages to Hungarian and vice versa. For re-
search purposes, M2M100 [10] contains many languages including Hungarian, but
it is an English-Centric model and it cannot translate from different languages to
Hungarian. Among the industrial solutions, there are some multilingual transla-
tion systems, for instance Google Translate, Microsoft Translator or eTranslation,
which use multilingual or bilingual models to translate from different languages to
Hungarian.

The M2M100 project aimed at developing a translation tool comprising 103
different languages and 204 translation directions. A key proposition of the project
was to initiate a paradigm shift in machine translation from English-Centric ap-
proaches towards multilingual model-based solutions [1]. Machine translation from
multiple languages to multiple languages requires large datasets. This gave rise
to a series of improvements in the generation of repositories with large data vol-
ume, including data mining [3] and reverse translation [28]. Hungarian translation
capability is covered in M2M100, therefore it can be exploited in our projects as
well.

The Marian NMT framework [13] is written in C++ language, which is an easy
to install and well-annotated machine translation tool. Furthermore, its efficiency
regarding memory usage and resource requirements makes it especially competent.
Additionally, its minimal dependency on other technical solutions facilitates its
application on a wider scale [12]. Due to its highly advantageous characteristics,
Marian NMT is the most commonly used machine translation tool by academic
users and developers [4]. Marian NMT operates using an attention model sup-
ported by an encoder-decoder architecture. Marian NMT is based on a neural
machine translation model and it can reach the fastest runtime learning without
the use of pre-training. In our experiment, a Marian large model was trained with
the following specifications: 6 encoder layers and 6 decoder layers; 16 heads of at-

95

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

tention; words embedding dimension: 1024; input length: 1024 token; pre-attached
mesh size: 4096.

The Google Translate [35] was launched in 2003. During the first phase, its
operating principle was restricted to statistical machine translation, which was su-
perseded by neural network-based machine translation in 2016. The quality of
the translation has been significantly improved with the introduction of the neural
network-based approach. This largely affected the performance in terms of infer-
ences on a broader context and consequently more authentic translations. The
Google Translate provides a record of results with several types of different trans-
lated versions, for example in the case of languages with gender distinction (e.g.
French or Spanish), the feminine version is listed first followed by the masculine
version [25]. Google Translate has the ability to handle 109 different languages
with the add-on feature of translating spoken texts since 2020.

The Bing Translator is a machine translation solution developed by Microsoft
Cognitive Services. It is capable of translating texts in more than 100 different lan-
guages and it even provides a solution for translating entire documents. Initially,
it applied statistical machine translation, which was replaced by a neural network-
based approach in 2018. Xu Tan et al. have developed a tool [29] to overcome the
difference in the accuracy between multilingual and monolingual models, which is
based on the knowledge distillation principle [5]. The core principle behind knowl-
edge distillation is to increase efficiency and model performance by designating a
‘student model’, that can achieve the performance of a ‘teacher model’ or a set
of models. The way this concept is implemented to machine translation means
that there are language pair-specific teacher models that are used to train the stu-
dent model that acquire the capability of handling all the languages by the teacher
models. The effectiveness of this methodology is represented by its advanced per-
formance in translation of TED talk transcripts from 44 languages to English,
during which a BLEU-score improvement of 1 or even higher was achieved [29].

eTranslation? is an automated translation solution that can be applied to trans-
late texts or entire documents written in any of the official languages of the Member
States of the European Union, as well as Icelandic, Norwegian, Russian and simpli-
fied Chinese. The aim of the European Commission with the launch of eTranslation
was to support small and medium-sized companies in the European Union, more-
over to facilitate the interaction between public service providers, administrative
officials and SMEs. The eTranslation tool can be especially useful, when translation
capability is required during administrative and bureaucratic tasks. It is important
to highlight that it can be easily integrated with other supporting digital solutions.
To further support the machine translation procedure, several processing steps and
text filtering options are also available under the CEF eTranslation Building Block
project. A good example of that is the built-in option, which first divides long
sentences into smaller parts before translation, which are later reconstructed to a
coherent text. The eTranslation system has been trained on texts with subject-

2https://ec.europa.eu/info/resources-partners/machine-translation-public-adminis
trations-etranslation_en

96

Annal. Math. et Inf. Solving Hungarian natural language processing tasks . ..

specific content, such as tenders, legal and medical texts, etc. The model has been
trained in 24 different languages on more than 1 billion sentences.

3. Corpora

In order to train our bilingual BART models, two different corpora were used:
Hungarian and English Wikipedia. In Table 1, you can see the characteristics of
the two corpora.

Table 1. Characteristics of the pre-training corpora for BART.

Paragraph | Paragraph
Segment Token Type | sentence # | token #
(median) (median)
English
WikiText-103 707,391 | 96,534,563 596,820 5 125
Hungarian 1,098,156 | 90,349.849 | 3,137,980 4 69
Wikipedia

For fine-tuning our BART models to sentiment analysis task, we used the Hun-
garian Twitter Sentiment Corpus® that is created by Precognox®*. According to the
international benchmarks [34] we created two subcorpora from this corpus:

o 2-class (HT'S2): binary classification subcorpus. We have converted the scores
1 and 2 to 0 as negative, scores 4 and 5 to 1 as positive. Score 3 was ignored
to avoid the ambiguities. Training corpus: 2,468 segments. Test corpus: 269
segments.

o 5-class (HTS5): original five-point likert scaled corpus. 1: very negative, 2:
negative, 3: neutral, 4: positive, 5: very positive. Training corpus: 3,600
segments. Test corpus: 400 segments.

For the zeroshot and transfer sentiment analysis experiments, we used the SST2
and SST5 corpora from GLUE [34] benchmark.

For the summarization task, we used the H+I corpus that Yang et al. used in
their research [36], NOL (Népszabadsdg online corpus; nol.hu online articles (art)
and its’ leads from 1999 to 2016) and MARCELL [32] (law documents (doc) and
its’ one line descriptions (desc) from 1991 to 2019) corpora. Table 2 shows the char-
acteristics of the fine-tuning corpora. For the zeroshot and transfer summarization
experiments, we used the CNN/Daily Mail [27] corpora.

In our machine translation task, we built Hungarian-Centric translation models
with 12 languages, which means the source text can be in 12 different languages
and the target language is Hungarian (hu) in all cases. The 12 different source
languages are the following:

Shttp://opendata.hu/dataset/hungarian-twitter-sentiment-corpus
4https://www.precognox.com

97

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

Table 2. Characteristics of the fine-tuning corpora.

Segment Token # Type # | Avg. token #
HTS2 2,737 42,797 13,713 15.62
HTS5 4,000 59,997 18,423 14.99

147,099,485 (art) | 2,949,173 (art) 263.07 (art)
16,699,600 (lead 749,586 (lead 29.87 (lead
153,003,164 (art) | 2,482,398 (art 384.52 (art

H+1 559,162 ; g ;
15,786,166 (lead) | 623,445 (lead) | 39.71 (lead)
)))
)))

NOL 397,343

27,834,358 (doc) | 444,352 (doc) | 1124.82 (doc

MARCELL 24,747 277,732 (desc 29,189 (desc 11.59 (desc

o Bulgarian (bg), Czech (cs), German (de), English (en), Croatian (hr), Polish
(pl), Romanian (ro), Russian (ru), Slovak (sk), Slovene (sl), Serbian (sr),
Ukrainian (uk)

In order to build a machine translation from scratch, a huge amount of data is
required. In contrast, for fine-tuning task, smaller amount of data is enough. Thus,
we created two corpora for our task. First one contains 8 million (8M) segments
per language (except for Ukrainian, due to lack of data it contains only 5,805,144
segments), the second one is a sub-corpus of the 8M corpus that contains 3 million
(3M) segments for each language. The data were collected from OPUS [31] that is
composed of the following sub-corpora:

o Bible, Bible-uedin, Books, CCAligned, CCMatrix, DGT, ECB, ELITR,
ELITR-ECA, ELRC_ 2922, ELRC_ 2923, ELRC_ 3382, EMEA,
EUbookshop, EUconst, Europarl, GNOME, GlobalVoices, JRC,
JRC-Acquis, KDE4, KDEdoc, MultiCCAligned, MultiParaCrawl,
OpenSubtitles, PHP, ParaCrawl, QED, TED2020, Tatoeba, TildeMODEL,
Ubuntu, WMT-News, WikiMatrix, Wikimedia, Wikipedia, XLEnt

The different language pairs contain different composite of the sub-corpora. In
Table 3, you can see the characteristics of the training sub-corpora for the machine
translation task.

4. Experiments

In our pre-training experiment, we have trained two bilingual BART models of
different size:

« BART-base: base size BART model trained on English and Hungarian
Wikipedia. Main hyper-parameters: 6 encoder layers and 6 decoder layers;
12 attention heads; word embedding dimensions: 768; input length: 512; 140
million parameters.

98

Annal. Math. et Inf.

Solving Hungarian natural language processing tasks . ..

Table 3. Characteristics of the machine translation corpora.

Token Type | Avg. token / sent

SM / 3M SM / 3M SM / 3M

bg | 101,701,016 / 38,149,260 998,060 / 586,926 12.71 / 12.72
hu | 93,370,875 / 35,023,413 | 1,843,452 / 1,057,434 11.67 / 11.68
s | 96,854,637 / 36,345,169 | 1,369,081 / 797,557 12.11 / 12.12
hu | 96,313,811 / 36,125,748 | 2,008,769 / 1,141,009 12.04 / 12.04
de | 123,826,131 / 46,407,141 | 1,708,615 /957,634 15.48 / 15.47
hu | 113,026,306 / 42,365,265 | 2,215,093 / 1,267,205 14.13 / 14.12
en | 118,503,806 / 44,440,629 | 1,112,914 / 593,035 14.82 / 14.81
hu | 104,287,145 / 39,072,921 | 2,375,910 / 1,331,924 13.04 / 13.02
hr | 78,932,860 / 29,601,047 | 1,075,070 / 631,246 0.87 / 9.87
hu 78,540,254 / 29,445,821 1,685,025 / 961,367 9.82 / 9.82
pl | 97,533,671 / 36,584,480 | 1,350,775 / 793,299 12.19 / 12.20
hu 08,984,434 / 37,126,013 | 2,062,157 / 1,166,764 12.37 / 12.38
ro | 110,276,300 / 41,357,056 952,906 / 555,642 13.79 / 13.79
hu 93,431,714 / 35,058,265 | 1,906,878 / 1,091,748 11.68 / 11.69
ru | 88,227,629 / 33,085,548 | 1,376,699 / 807,518 11.03 / 11.03
hu | 85,205,960 / 31,956,481 | 1,838,741 / 1,049,578 10.65 / 10.65
sk | 122,935,150 / 46,085,577 1,567,148 / 920,586 15.37 / 15.36
hu | 123,016,834 / 46,105,105 | 2,225,916 / 1,278,686 15.38 / 15.37
sl 106,838,393 / 40,042,349 1,195,476 / 703,052 13.36 / 13.35
hu | 106,714,770 / 40,013,573 | 1,973,244 / 1,138,362 13.34 / 13.34
ST 72,647,210 / 27,237,077 1,185,523 / 710,495 9.08 / 9.08
hu 71,058,803 / 26,642,218 1,446,568 / 832,887 8.88 / 8.88
uk | 70,816,656 / 36,581,363 | 1,306,774 / 927,544 12.20 / 12.19
hu | 69,564,268 / 35,933,267 | 1,556,554 / 1,088,340 11.98 / 11.98

« BART-large: large size BART model that trained on English and Hungarian
Wikipedia. Main hyper-parameters: 12 encoder layers and 12 decoder layers;
16 attention heads; word embedding dimensions: 1024; input length: 1024;

400 million parameters.

In our fine-tuning experiments, we performed three different tasks:

1. Sequence classification: Using our pre-trained bilingual BART models and
two multilingual BERT-based models (mBERT [9] and XLM-RoBERTa [19]),
we carried out three different experiments in sentence-level sentiment analy-
sis:

on HTS2 and HTS5.

99

e baseline: We fine-tuned and tested the four models on HTS2 and HTS5.
o zeroshot: We fine-tuned the four models on SST2 and SST5, then tested

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

o transfer: We fine-tuned the four models on SST2 and SST5, then further
fine-tuned on HTS2 and HTS5, finally tested on HT'S2 and HTS5.

2. Text summarization: We fine-tuned the BART base model on three dif-
ferent corpora: H4+I, NOL and MARCELL. Because of hardware limits, we
could not fine-tuned our BART large model on summarization task. We
carried out two different experiments in text summarization task:

o baseline: We fine-tuned and tested our model on the three corpora.

o transfer (if): We fine-tuned our model on CNN /Daily Mail, then further
fine-tuned and tested on the three Hungarian corpora.

3. Machine translation: We fine-tuned the M2M100 large model (facebook/
m2m10071.2B5) on the 3M sub-corpus for machine translation. The source
text can be in 12 different languages, the target text is Hungarian. In this
experiment, we fine-tuned our model with only 1 epoch.

e From scratch: In the case of machine translation, we also trained a
multilingual translation model from scratch. For this task, we used the
Marian NMT [13] framework. For training Marian NMT model, we used
the 8M corpus for machine translation. Similar to the M2M100 exper-
iment, the source text can be in 12 different languages, the target text
is Hungarian. To help the translation model, we inserted the language
code at the beginning of the source segments in the following format
(lang is the ISO language code): _ lang . A Marian large model was
trained with 66 epoch.

5. Results

In order to evaluate our experiments, the following metrics were used:
e Accuracy: In the case of sentiment analysis tasks, accuracy metrics were used.

o ROUGE [18] : For summarization tasks, we used the ROUGE metrics in the
following format: ROUGE-1/ROUGE-2/ROUGE-L.

o BLEU [21], chrF [22]: For word-level and character-level evaluation of ma-
chine translation, SacreBLEU [23] and chrF-6 metrics were used in the fol-
lowing format: BLEU /chrF-6.

In Table 4, you can see the results of the sentiment analysis experiments. For
transfer and zeroshot tasks, first, we fine-tuned the models on the English SST
corpora. Under the double line, you can see the results of the SST fine-tuning.
Above the double line, you can see the results of our experiments. In all cases,
the transfer task could increase the result of the models. It can prove that adding
relevant data to model could increase performance, even if it is in another language.

Shttps://huggingface.co/facebook/m2m100_1.2B

100

Annal. Math. et Inf. Solving Hungarian natural language processing tasks . ..

Table 4. Sentiment analysis results.

HTS2 | HTS5
BART-base (baseline) 74.44 | 56.75
BART-base (zeroshot) 42.96 | 28.75
BART-base (transfer) | 74.81 | 57.25
BART-large (baseline) 74.07 | 56.00
BART-large (zeroshot) 44.81 | 23.50
BART-large (transfer) | 74.59 | 56.74
mBERT (baseline) 78.51 | 57.74
mBERT (zeroshot) 4741 | 30.50
mBERT (transfer) 80.37 | 57.99
XLM (baseline) 83.33 | 63.49
XLM (zeroshot) 68.88 | 40.99
XLM (transfer) 84.81 | 79.79

SST2 | SST5
BART-base 79.01 | 36.72
BART-large 80.27 | 36.36
mBERT 90.59 | 49.57
XLM 93.34 | 50.43

In Table 5, you can see the results of the summarization task. Similar to the
classification task, under the double line, you can see the result of the fine-tuning
on the English CNN/Daily Mail corpora. Above the double line, you can see our
experiment. As you can see in the Table 5, transfer method in this case could also
increase the performance.

Table 5. Abstractive summarization results.

H+I NOL MARCELL
BART-base (baseline) 31.4/14.3/23.5 42.7/27.6/35.4 71.5/63.0/69.9
BART-base-tf 31.8/14.5/23.5 | 45.1/30.5/37.6 | 77.1/70.6/76.0
CNN/Daily Mail
BART-base 40.1/17.6/27.4
BART en original 44.2/21.3/40.9

In Table 6, you can see the results of the machine translation experiments. We
have compared our Marian and M2M100 models with Google Translate, Microsoft
Translator and eTranslation (the eTranslation cannot translate serbian, thus this
results is missing).

The M2M100 fine-tuning results in significantly higher scores then any other
tools included in our experimental analysis. Compared to Marian, M2M100 uses
only 3 million segments for each language, and only 1 epoch for fine-tuning. It
means, the model could transfer significant amount of knowledge from the pre-

101

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

Table 6. Comparision of performance of different machine trans-
lation models.

Marian M2M100 Google Microsoft eTranslation
bg | 21.3/43.9 26.6/48.0 20.0/43.6 20.8/44.2 22.3/45.6
cs 22.5/46.0 28.9/50.3 22.6/45.3 23.1/45.9 24.7/47.4
de |21.9/46.2 28.3/51.4 22.7/48.0 22.8/47.8 24.0/48.8
en | 27.7/49.6 34.4/54.7 25.3/49.1 26.3/50.3 28.3/51.3
hr | 19.2/42.7 26.2/47.3 19.6/42.5 20.1/43.1 20.9/43.7
pl 21.2/45.2 28.3/50.2 21.4/45.4 22.2/45.7 23.9/47.2
ro 19.5/43.8 26.4/48.7 21.0/44.9 21.8/45.7 23.6/46.9
ru | 19.7/43.9 25.1/48.1 19.8/44.5 21.0/45.6 20.3/44.8
sk | 23.1/48.9 30.9/53.9 22.6/47.7 23.1/48.5 26.4/50.8
sl 22.7/45.8 27.7/50.5 14.4/344 21.5/45.0 26.0/48.4
ST 18.0/40.5 23.4/44.7 18.0/40.7 19.2/41.5 -
uk | 24.2/49.8 32.6/55.2 21.8/47.0 23.3/48.2 22.9/48.5
avg | 21.8/45.5 28.2/50.3 20.8/44.4 22.1/46.0 23.9/47.6

trained 100 language. Thus, less amount data and training steps are enough to
achieve higher results. Our Marian experiment used 2.5x larger corpora and 66x
more epoch and still gained lower performance than our fine-tuned M2M100 model,
but still better than the Google Translate, for instance. Our Marian model could
not outperformed the eTranslation, which is not surprising, because the eTrans-
lation uses different bilingual models to translate, and a bilingual model is more
accurate than a 12-lingual model. Therefore, our M2M100 model is an outstand-
ing result, because it uses only one model that can gain better results than the
bilingual models.

6. Conclusion

In our research, we pre-trained and fine-tuned different transformer-based multilin-
gual generative models for Hungarian natural language processing tasks. We have
carried out four different experiments. For pre-training language model, encoder-
decoder autoregressive BART models were applied. As classification task, we fine-
tuned four different models for sentiment analysis. For summarization task, our
pre-trained BART base model was fine-tuned on three different corpora. We also
did experiments in zero-shot and cross-lingual transfer learning settings. Last but
not least, we built the first (two at once) 12-lingual Hungarian-Centric machine
translation model, which uses only one model to translate from 12 languages to
Hungarian. In this task, we trained a model from scratch and the M2M100 model
was fine-tuned. Our fine-tuned M2M100 used much less data and training steps
and yet, it could outperform the Google Translate, the Microsoft Translator and
the eTranslation.

102

Annal. Math. et Inf. Solving Hungarian natural language processing tasks . ..

Acknowledgements. The research reported in the current publication was car-
ried out by affiliated members of the Pazmany Péter Catholic University and the
IdomSoft Ltd, and it was supported by the Ministry of Innovation and Technology
and the National Research, Development and Innovation Office within the frame-
work of the National Laboratory of Infocommunication and Information Technol-

ogy.

References

[1]

2]

[4]

[5]

[6]

[9]

R. AHARONI, M. JOHNSON, O. FIRAT: Massively Multilingual Neural Machine Translation,
in: Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), Minneapolis, Minnesota: Association for Computational Linguistics, June 2019,
pp. 3874-3884, DOI: https://doi.org/10.18653/v1/N19-1388.

M. ARTETXE, S. RUDER, D. YOGATAMA: On the Cross-lingual Transferability of Monolingual
Representations, in: Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, Association for Computational Linguistics, 2020, DOI: https://doi.or
g/10.18653/v1/2020.acl-main.421.

M. ARTETXE, H. SCHWENK: Massively Multilingual Sentence Embeddings for Zero-Shot
Cross-Lingual Transfer and Beyond, Transactions of the Association for Computational Lin-
guistics 7 (2019), pp. 597-610, DOI: https://doi.org/10.1162/tacl_a_00288.

L. BARRAULT, O. BoJAR, M. R. CosTA-JUSSA, C. FEDERMANN, M. FISHEL, Y. GRAHAM, B.
Happow, M. Huck, P. KOEHN, S. MaLMAsI, C. MoNz, M. MAZLLER, S. PAL, M. PosT,
M. ZAMPIERL: Findings of the 2019 Conference on Machine Translation (WMT19), in: Pro-
ceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers,
Day 1), Florence, Italy: Association for Computational Linguistics, 2019, pp. 1-61.

C. BuciLa, R. CARUANA, A. NICULESCU-MIzIL: Model Compression, in: Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 06, Philadelphia, PA, USA: Association for Computing Machinery, 2006, pp. 535-541,
ISBN: 1595933395.

Y. Cao, W. GROVES, T. K. SAHA, J. R. TETREAULT, A. JAIMES, H. PENG, P. S. Yu: XLTime:
A Cross-Lingual Knowledge Transfer Framework for Temporal Expression Eztraction, in:
arXiv, 2022, DOI: https://doi.org/10.48550/ARXIV.2205.01757.

P.-J. CHEN, J. SHEN, M. LE, V. CHAUDHARY, A. EL-Kisuky, G. WENzZEK, M. OTT, M.
RANZATO: Facebook AI’'s WAT19 Myanmar-English Translation Task Submission, 2019, DOI:
https://doi.org/10.48550/ARXIV.1910.06848.

J. DEvLIN, M.-W. CHANG, K. LEE, K. TouTaANOVA: BERT': Pre-training of Deep Bidirec-
tional Transformers for Language Understanding, in: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota: Asso-
ciation for Computational Linguistics, June 2019, pp. 4171-4186, DOIL: https://doi.org/10
.18653/v1/N19-1423.

J. DEVLIN, M.-W. CuANG, K. LEE, K. ToUuTANOVA: BERT': Pre-training of Deep Bidirec-
tional Transformers for Language Understanding, in: Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota: Association
for Computational Linguistics, June 2019, pp. 4171-4186.

103

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

[22]

A. FAN, S. BHOSALE, H. SCHWENK, Z. Ma, A. EL-KISHKY, S. GOYAL, M. BAINES, O. CELEBI,
G. WENZEK, V. CHAUDHARY, N. GOYAL, T. BIRCH, V. LIPTCHINSKY, S. EDUNOV, E. GRAVE,
M. AuLrli, A. JoUuLIN: Beyond English-Centric Multilingual Machine Translation, ArXiv
abs/2010.11125 (2020).

X. FENG, X. FENG, B. QIN, Z. FENG, T. Liu: Improving Low Resource Named Entity Recog-
nition using Cross-lingual Knowledge Transfer, in: July 2018, pp. 4071-4077, DOI: https:
//doi.org/10.24963/ijcai.2018/566.

M. Junczys-DowMUNT, R. GRUNDKIEWICZ, T. DwoJAK, H. HOANG, K. HEAFIELD, T. NECK-
ERMANN, F. SEIDE, U. GERMANN, A. F. AJ1, N. BocgoycHEV, A. F. T. MARTINS, A. BIRCH:
Marian: Fast Neural Machine Translation in C++, in: Proceedings of ACL 2018, Sys-
tem Demonstrations, Melbourne, Australia: Association for Computational Linguistics, July
2018, pp. 116-121, DOI: https://doi.org/10.18653/v1/P18-4020, URL: https://aclanthol
ogy.org/P18-4020.

M. Junczys-DoOwMUNT, R. GRUNDKIEWICZ, T. DwoJAK, H. HOANG, K. HEAFIELD, T. NECK-
ERMANN, F. SEIDE, U. GERMANN, A. FIKrI AJi, N. BoGoYCHEV, A. F. T. MARTINS, A.
BIRCH: Marian: Fast Neural Machine Translation in C++, in: Proceedings of ACL 2018,
System Demonstrations, Melbourne, Australia: Association for Computational Linguistics,
2018, pp. 116-121.

M. KAHLA, Z. G. YANG, A. NovAK: Cross-lingual Fine-tuning for Abstractive Arabic Text
Summarization, in: Proceedings of the International Conference on Recent Advances in Nat-
ural Language Processing (RANLP 2021), Held Online: INCOMA Ltd., Sept. 2021, pp. 655—
663.

G. LAMPLE, A. CONNEAU: Cross-lingual Language Model Pretraining, 2019, DOI: https://d
oi.org/10.48550/ARXIV.1901.07291.

M. Lewis, Y. Liu, N. GovyAL, M. GHAZVININEJAD, A. MOHAMED, O. LEVY, V. STOYANOV, L.
ZETTLEMOYER: BART: Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension, in: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, Online: Association for Computational
Linguistics, July 2020, pp. 7871-7880, DOI: https://doi.org/10.18653/v1/2020.acl-main
.703.

X. L1, G. L1, L. Liu, M. MENG, S. SHI: On the Word Alignment from Neural Machine
Translation, in: Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics, Florence, Italy: Association for Computational Linguistics, July 2019,
pp. 1293-1303, DOI: https://doi.org/10.18653/v1/P19-1124.

C.-Y. LIN: ROUGE: A Package for Automatic Evaluation of Summaries, in: Text Summa-
rization Branches Out, Barcelona, Spain: Association for Computational Linguistics, July
2004, pp. 74-81.

Y. Liu, M. OrT, N. GOYAL, J. Du, M. JosHi, D. CHEN, O. LEvy, M. LEwIis, L. ZETTLE-
MOYER, V. STOYANOV: RoBERTa: A Robustly Optimized BERT Pretraining Approach, CoRR
(2019).

L. MicuLicicH, D. RAM, N. PAppAS, J. HENDERSON: Document-Level Neural Machine Trans-
lation with Hierarchical Attention Networks, in: Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing, Brussels, Belgium: Association for Com-
putational Linguistics, 2018, pp. 2947-2954, DOI: https://doi.org/10.18653/v1/D18-1325.

K. PAPINENI, S. Roukos, T. WARD, W.-J. ZHU: Bleu: a Method for Automatic Evaluation
of Machine Translation, in: Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, Philadelphia, Pennsylvania, USA: Association for Computational
Linguistics, July 2002, pp. 311-318, DOI: https://doi.org/10.3115/1073083.1073135.

M. PoproviC: chrF': character n-gram F-score for automatic MT evaluation, in: Proceedings
of the Tenth Workshop on Statistical Machine Translation, Lisbon, Portugal: Association for
Computational Linguistics, Sept. 2015, pp. 392-395, DOI: https://doi.org/10.18653/v1/W1
5-3049.

104

Annal. Math. et Inf. Solving Hungarian natural language processing tasks . ..

23]

[24]

[25]

[26]

27]

(28]

29]

(30]

(31]

(32]

(33]

(34]

M. Post: A Call for Clarity in Reporting BLEU Scores, in: Proceedings of the Third Confer-
ence on Machine Translation: Research Papers, Brussels, Belgium: Association for Compu-
tational Linguistics, Oct. 2018, pp. 186-191, DOI: https://doi.org/10.18653/v1/W18-6319.

A. RADFORD, K. NARASIMHAN: Improving Language Understanding by Generative Pre-
Training, in: 2018.

A. A. REscIGNO, J. MONTI, A. WAY, E. VANMASSENHOVE: A Case Study of Natural Gender
Phenomena in Translation: A Comparison of Google Translate, Bing Microsoft Translator
and DeepL for English to Italian, French and Spanish, in: Workshop on the Impact of
Machine Translation (iMpacT 2020), Virtual: Association for Machine Translation in the
Americas, Oct. 2020, pp. 62-90.

S. SCHUSTER, S. GUPTA, R. SHAH, M. LEwis: Cross-lingual Transfer Learning for Multilin-
gual Task Oriented Dialog, in: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), Minneapolis, Minnesota: Association for Computational
Linguistics, June 2019, pp. 3795-3805, DOI: https://doi.org/10.18653/v1/N19-1380.

A. SEg, P. J. Liu, C. D. MANNING: Get To The Point: Summarization with Pointer-
Generator Networks, in: Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Vancouver, Canada: Association for
Computational Linguistics, July 2017, pp. 1073-1083, DOI: https://doi.org/10.18653/v1
/P17-1099.

R. SENNRICH, B. HADDOW, A. BIRCH: Neural Machine Translation of Rare Words with Sub-
word Units, in: Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Berlin, Germany: Association for Computational Lin-
guistics, Aug. 2016, pp. 1715-1725, DOI: https://doi.org/10.18653/v1/P16-1162, URL:
https://aclanthology.org/P16-1162.

X. TaN, Y. REN, D. Hg, T. QIN, T.-Y. Liu: Multilingual Neural Machine Translation with
Knowledge Distillation, in: International Conference on Learning Representations, 2019.

Y. Tang, C. TraN, X. L1, P.-J. CHEN, N. GoYyAaL, V. CHAUDHARY, J. GU, A. FAN: Mul-
tilingual Translation with Extensible Multilingual Pretraining and Finetuning, 2020, DOI:
https://doi.org/10.48550/ARXIV.2008.00401.

J. TIEDEMANN: Parallel Data, Tools and Interfaces in OPUS, in: Proceedings of the Eight
International Conference on Language Resources and Evaluation (LREC’12), ed. by N. C. (
CHAIR), K. CHOUKRI, T. DECLERCK, M. U. DOGAN, B. MAEGAARD, J. MARIANI, J. ODUIK,
S. PIPERIDIS, Istanbul, Turkey: European Language Resources Association (ELRA), 2012,
ISBN: 978-2-9517408-7-7.

T. VARADI, S. KoEva, M. YamaLov, M. Tapi¢, B. Sass, B. NiToN, M. OGRODNICZUK,
P. PEzIK, V. BARBU MITITELU, R. IoN, E. IRIMIA, M. MITROFAN, V. PA1s, D. TuUFIS, R.
GARABIK, S. KREK, A. REPAR, M. RIHTAR, J. BRANK: The MARCELL Legislative Corpus,
English, in: Proceedings of the 12th Language Resources and Evaluation Conference, Mar-
seille, France: European Language Resources Association, May 2020, pp. 3761-3768, ISBN:
979-10-95546-34-4.

A. VASWANI, N. SHAZEER, N. PARMAR, J. USZKOREIT, L. JONES, A. N. GOMEZ, L.. KAISER,
I. POLOSUKHIN: Attention is All you Need, in: Advances in Neural Information Processing
Systems 30, ed. by I. Guyon, U. V. LUXBURG, S. BENGIO, H. WALLACH, R. FERGUS, S.
VISHWANATHAN, R. GARNETT, Curran Associates, Inc., 2017, pp. 5998—6008.

A. WaNG, A. SINGH, J. MICHAEL, F. HiLL, O. LEvy, S. BOWMAN: GLUE: A Multi-Task
Benchmark and Analysis Platform for Natural Language Understanding, in: Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, Brussels, Belgium: Association for Computational Linguistics, Nov. 2018, pp. 353-355,
DOI: https://doi.org/10.18653/v1/W18-5446.

105

Annal. Math. et Inf. Z. Gy. Yang, L. J. Laki

[35] Y. Wu, M. SCHUSTER, Z. CHEN, Q. V. LE, M. Norouzl, W. MACHEREY, M. KRIKUN, Y.
Ca0, Q. Gao, K. MACHEREY, J. KLINGNER, A. SHAH, M. JOHNSON, X. Liu, L. KAISER, S.
Gouws, Y. Kato, T. Kupo, H. Kazawa, K. STEVENS, G. KURIAN, N. PaTiL, W. WANG,
C. Young, J. SMmiTH, J. RiEsA, A. RubpNick, O. ViNvyaLs, G. CORRADO, M. HUGHES, J.
DEAN: Google’s Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation, CoRR abs/1609.08144 (2016).

[36] Z. G. YaNG, A. Acées, G. KUSPER, T. VARADI: Abstractive text summarization for Hun-
garian, Annales Mathematicae et Informaticae 53 (2021), pp. 299-316.

106

Annales Mathematicae et Informaticae

57 (2023) pp. 107-123

DOI: https://doi.org/10.33039/ami.2023.03.001
URL: https://ami.uni-eszterhazy.hu

Building machine reading comprehension
model from scratch

Zijian Gyo6z6 Yang, Noémi Ligeti-Nagy

Hungarian Research Centre for Linguistics
{yang.zijian.gyozo,ligeti-nagy.noemi}@nytud.hu

Abstract. In this paper, we introduce a machine reading comprehension
model and how we built this model from scratch. Reading comprehension
is a crucial requisite for artificial intelligence applications, such as Question-
Answering systems, chatbots, virtual assistants etc. Reading comprehension
task requires the highest complexity of natural language processing meth-
ods. In recent years, the transformer neural architecture could achieve the
ability to solve high complexity tasks. To make these applications available
in Hungarian as well it is inevitable to design a Hungarian corpus of read-
ing comprehension so that the pretrained models can be fine-tuned on this
dataset.

In our research, we have created the HuRC (Hungarian Reading Com-
prehension) corpus, which is the first dataset in Hungarian aiming to train,
test and evaluate language models on a reading comprehension task. We
built such a dataset based on the English ReCoRD corpus. This is a dataset
of 120,000 examples consisting of news articles containing a passage and a
close-style query, where a named entity is masked and the reference answer
has to be found in a list.

Using the evaluated dataset and transformers’ question-answering library,
we have built the first neural machine reading comprehension models in com-
monsense reasoning task for Hungarian.

1. Introduction

Machine (Reading) Comprehension is the field of NLP where we teach machines
to understand and answer questions using unstructured text. Reading comprehen-
sion (RC)—in contrast to information retrieval—requires integrating information
and reasoning about events, entities, and their relations across a full document.
Question answering is conventionally used to assess RC ability.

Submitted: April 8, 2022
Accepted: March 2, 2023
Published online: March 10, 2023

Annal. Math. et Inf. Z. Gy. Yang, N. Ligeti-Nagy

For English, there are many reading comprehension datasets, many of them
included in benchmark collections (ReCoRD and MultiRC in SuperGLUE, for ex-
ample, [24]) or used as a standalone benchmark dataset (SQuAD, [20]). Models
trained on these datasets approximate, or sometimes even surpass human perfor-
mance.

With a slight delay, but the pre-training of the transformer-based architectures
on Hungarian data has begun [5, 14]. Some multilingual models, such as XLM-
RoBERTa [2] and mT5 [25] also contain Hungarian data. In the future, it is
expected that more models will be taught in Hungarian, and it will be necessary
to measure and compare the comprehension of these models as well.

On the other hand, we still lack Hungarian datasets to train and test these
models. Recently, a Hungarian benchmark kit has been developed [12] containing
4 datasets at the time of submitting this paper. Here we present one of those
datasets, HuRC, which is a large-scale, partly automatically, but partly manually
annotated dataset aiming to test machine reading comprehension. We trained three
different models on the dataset and evaluated their performance on many ways to
illustrate the difficulty of this task in Hungarian. Furthermore, using ensemble
method, we could combine the advantages of our models to achieve the highest
performance.

2. Related work

Current English datasets often frame the task of question answering as reading
comprehension: the question is about a paragraph or a document and the answer
is a span in the document.

Dzendzik et al. [4] provides a deep summary of English machine reading com-
prehension (MRC) datasets. Based on the answer type, they differentiate cloze
answer (the question is a sentence with a missing word which has to be inserted,
e.g. ReCoRD [28]), selective or multiple choice (a number of options is given, and
the correct one(s) should be selected, e.g. MultiRC [9]), boolean (a yes/no answer
is expected, e.g. BoolQ [1]) extractive or span extractive (the answer is a substring
of the passage, e.g. SQuAD [20]) and generative or free form answer (the answer
has to be generated, e.g. NarrativeQA [10]).

The DeepMind Q&A datasets [7] consist of documents from news articles from
CNN and Daily Mail, 90k and 197k documents with 380k and 879k questions,
respectively. News portals have begun to add summary points with each news
piece in recent years, apparently to accommodate online readers’ short attention
spans. These summary points are not simply text extractions from the article, but
rather summary points that can be used to automatically create inquiries that may
require comprehension of the news story to answer. The query is built by removing
an entity from the statement and asking the reader to fill in the most relevant entity
from the text. In pre-processing, entities are detected and coreferenced, and the
text is completely masked. This is done to avoid the model relying on external
knowledge about the entities when deciding on an answer, instead relying only on

108

Annal. Math. et Inf. Building machine reading comprehension model from scratch

its understanding of the context.

A collection of children’s books was assembled from the Project Gutenberg
archives for the Children’s Book Test at Facebook [8]. Each question is made up
of 20 consecutive sentences from the book text, with the 21st sentence serving as
the query statement. A word from the query is selected and masked. The reader
has to decide which word from the text (of the chosen kind) should be used to fill
the placeholder in the query. Here not merely entities are masked: named entities,
common nouns, verbs and prepositions may be placeholders.

StanfordNLP created the SQuAD (Stanford Question Answering Dataset) in
2016 [20], which included over 100,000 question-answer pairs derived from Wikipe-
dia articles. The task was to build a machine learning model to answer questions
using a contextual document as input. The model would return the subset of
the text most likely to answer the query when given a contextual document (free
form text) and a question. The answers do not have to be entities, and no sets of
candidate answers are offered. SQuAD is the first large-scale QA dataset in which
answers are text spans that must be identified without any extra information.
Human annotators achieved an exact match score of 82.304% and a Fl-score of
91.221%. No model has been able to surpass the human results on SQuAD for 2
years. In 2018, BERT was introduced [3], and the original BERT model achieved
an exact match score of 85.083% and a Fl-score of 91.835%.

MultiRC (Multi-Sentence Reading Comprehension) [9] is a dataset of short
paragraphs and multi-sentence questions, which are questions that may be solved
by combining information from numerous paragraph phrases. The dataset was cre-
ated with three main objectives in mind: i) for each question, the number of right
response possibilities is not pre-determined. This eliminates the model’s reliance
on answer possibilities and forces them to judge the validity of each answer inde-
pendently of the others; ii) It is not necessary for the correct answer(s) to be a span
in the text; iii) The texts come from a variety of sources, including news, fiction,
and historical documents, thus ensuring diversity across domains.

BoolQ contains 15942 examples with naturally occurring questions [1]. Each
example consists of a question, a passage and an answer. The authors sampled
questions from a distribution of information-seeking queries. They assume this
method results in significantly more challenging examples compared to existing
datasets where the text pairs (the questions or the answers) were constructed by
annotators.

Kocisky et al. [10] states that existing RC datasets do not test the essential
integrative aspect of reading comprehension as their questions can be solved re-
lying upon superficial information, such as local context similarity or global term
frequency. They present a novel dataset to tackle this problem. In these tasks the
reader must answer questions about stories by reading entire books or movie scripts.
A successful answer requires understanding the underlying narrative. There are two
tasks proposed in the paper: “summaries only” and “stories only”, depending on
whether the human-generated summary or the full story text is used to answer
the question. NarrativeQA still proves to be challenging for language models: the

109

Annal. Math. et Inf. Z. Gy. Yang, N. Ligeti-Nagy

SOTA result is that of Masque [15]: a Rouge score of 59.87.

Zhang et al. [28] extracted their examples (more than 120 000 entries) from the
CNN /Daily Mail! corpus to create the Reading Comprehension with Commonsense
Reasoning (ReCoRD) dataset. These news articles were divided into multiple units:
passage, cloze-style query (containing the masked entity) and the reference answer.
The last paragraph must contain the reference answer, a proper noun which can
be found in the passage. As a reading comprehension task, this named entity is
masked and the model must predict the masked entity from a list of possible entities
in the provided passage, where the same entity may be expressed with multiple
different surface forms, which are all correct. ReCoRD is part of the SuperGLUE
benchmark [24]. The results are evaluated with max (over all mentions) token-level
F1 and accuracy. The best result so far on the ReCoRD dataset is an F-score of
96.4% and an accuracy of 95.9% of the Turing NLR v5 model submitted in 2021.

Most recently, ESTER was introduced [6], which is an MRC dataset for Event
Semantic Relation Reasoning. The dataset contains natural language queries to
reason about the five most common event semantic relations. The current SOTA
systems achieve 22.1%, 63.3%, and 83.5% for token-based exact-match, F1, and
event-based HIT@1 scores, which are all significantly below human performances
(36.0%, 79.6%, 100% respectively).

Natural language processing has seen spectacular progress with the application
of neural network technology, in particular, the Transformer model [23]. Tasks
like machine reading comprehension, can be solved with high performance, if a
pre-trained language model is fine-tuned. The first breakthrough model based
on transformer architecture was the BERT (abbreviation of Bidirectional Encoder
Representations from Transformer) model [3]. The BERT model is pre-trained on
two language modeling tasks: word masking and next sentence prediction. The
first native BERT model in Hungarian was published by Nemeskey [14], named as
huBERT, which is the state of the art neural language model for Hungarian.

Cross-Language Understanding (XLU) is key challenge and serves as an ac-
celerator to the development of multilingual models. In 2020, the Facebook AI
team published an article presenting XLM-RoBERTa (abbreviated as XLM-R, as
well) [2], which is a transformer-based multilingual masked language model. XLM-
R outperforms mBERT (multilingual BERT) on cross-lingual classification in the
case of languages with moderate resources available. XLM-R contains Hungarian
language knowledge.

T5 (Text-To-Text Transfer Transformer) [19] is a model and framework devel-
oped by the Google research team, which offers a new perspective to solve natural
language processing tasks. The T5 project applies transfer learning principles in
the context of the sequence-to-sequence approach. The initial idea was that all
language processing tasks (translation, question answering, classification) should
be considered as a text-to-text issue, therefore the input is a text and the output
will be another text. mT5 [25] extends the T5 to several languages that including
Hungarian. In our research, huBERT, XLM-R and mT5 models were fine-tuned

Thttps://github.com/abisee/cnn-dailymail

110

Annal. Math. et Inf. Building machine reading comprehension model from scratch

for the RC task.

Generative Pre-Training (GPT) designates the concept of pre-training a lan-
guage model on large datasets. The application of the GPT paradigm can foster
significant advancements in natural language processing, especially in the area of
classification, question-answering and investigation of semantic similarity. GPT
models use a Transformer Decoder architecture. A key question behind GPT ex-
perimentation is how training on large datasets can improve the performance of
language models. GPT-2 achieved significant performance in several tasks already
in a zero-shot setting [18]. For Hungarian, Yang trained the first GPT-2 language
models [26].

Tajti proved that using ensemble approach could achieve higher system per-
formance [22]. He defined new voting function variants for ensemble learner com-
mittee machine algorithms which can be used as competitors of the well-known
voting functions. In our research, we used the GPT-2 model as language model to
combine our different fine-tuned RC models to gain higher system performance.

3. Building the HuRC Corpus

Passage Passage

(CNN) -- A lawsuit has been filed claiming that the "1968 lehetett, amikor eldszdr talalkoztunk.
iconic Led Zeppelin song "Stairway to Heaven" was far gyakorlatilag valtottuk egymast az Omega egyiittesben.
from original. The suit, filed on May 31 in the United Tamas akkor indult el az artista palyan, mikozben
States District Court Eastern District of Pennsylvania, zenélt is. Az Omegaban csak néhanyszor jatszottunk
was brought by the estate of the late musician Randy, egyiitt, miutan én beléptem, 6 éveket Gltort killfoldon
California against the surviving members of Led artistaként, aztan osszefutottunk az LGT-ben, ennek
Zeppelin and their record label. The copyright mar 43 éve" - idézte fel Presser Gabor.

infringement case alleges that the Zeppelin song was Mint kifejtette, Somloé Tamas szinpadi jelenléte
taken from the single "Taurus" by the 1960s band Spirit, nagy hizoerét jelentett a zenekar szamara és zenészi
for whom California served as lead guitarist. "Late in képességeit mutatta az is, hogy amikor Frenreisz
1968, a then new band named Led Zeppelin began Karoly helyett belépett az LGT-be, néhany het alatt
touring in the United States, opening for Spirit," the suit megtanult basszusgitarozni.

states. "It was during this time that Jimmy Page, Led A Locomotiv GT utoljara 2013 augusztusaban
Zeppelin's guitarist, grew familiar with 'Taurus' and the lépett szinpadra, az alsodrsi LGT-fesztivalon.

rest of Spirit's catalog. Page stated in interviews that he (Lead) Somlé Tamds nagyszerii egyénisége.
found Spirit to be 'very good' and that the band's énekhangja és éneklési stilusa egészen egyediilallo volt
performances struck him 'on an emotional level.' " - fogalmazott Presser Gabor, az LGT vezetOje a zenész

« Suit claims similarities between two songs haldla kapesan.
* Randy California was guitarist for the group Spirit

+ Jimmy Page has called the accusation "ridiculous" (Cloze-style) Query

Nem ismerek olyan embert. aki Tamésra haragudott

(Cloze-style) Query volna. Eletét tigy fejezte be, ahogyan élt: utolso
According to claims in the suit, "Parts of 'Stairway to fellépésére, amely talan egy honappal ezelott lehetett,
Heaven, instantly recognizable to the music fans across mar nagyon nehezen tudott csak elmenni. de nem
the world, sound almost identical to significant portions mondta le, mert Pécsett egy jotékonysagi koncerten
of ‘X."” Jjatszott beteg gverekeknek - mondta [MASK].
Reference Answers Reference Answers

Thurus PER: Presser Gabor

Figure 1. A ReCoRD [28] and a HuRC sample.

We created HuRC based on ReCoRD. To create the Hungarian counterpart of

111

Annal. Math. et Inf. Z. Gy. Yang, N. Ligeti-Nagy

ReCoRD, we used the daily news articles from Népszabadsidg Online? that had
titles and summaries as well, in addition to the main text (396 886 articles). If a
component was missing from an article, it was discarded. We then selected articles
consisting of 3-6 paragraphs. An important criterion was that both the main text
and the query (the last paragraph) contained a proper noun.

We trained a NER model using huBERT [14] for detecting proper nouns. For
training NER models, the largest Hungarian NER corpus, the NYTK-NerKor
(NerKor) corpus [21] was used. NerKor contains 67,524 segments, 1,028,114 to-
kens and 128,168 type. To fine-tune the models, we used the code provided by
huggingface transformers token classification library®. The following modified pa-
rameters were used: learning rate = le-4, batch size: 4, max sequence length: 128.
As for the evaluation, the IOB-based seqeval [13] method and F-score were used.
In our experiments, we trained the models with 5 epoch number. At each epoch,
we have saved a checkpoint and evaluated it. Our model (the checkpoint at epoch
1) achieved an F-score of 90.18 on the test set.

As a final step, we looked for proper names which are present both in the main
article and the summary. Several pairs of proper names could occur in one article.
In our example (see the example on the right in Figure 1), Presser Gdbor and
Tamds are present in both the question and the main text. In such cases, a given
article is included in the database several times, with different proper name pairs.
Thus, a total of 49 782 articles of different types were selected, of which a total of
88 655 instances constitute our dataset due to the phenomenon of multiple proper
name pairs. Table 1 summarizes the quantitative properties of our corpus.

Table 1. Characteristics of the corpora.

nol.hu Silver Gold
Segments 396,886 88,655 80,614
Segment type - 49,782 47,199
Token 146,816,535 | 27,703,631 | 25,218,760
Type 4,361,301 | 1,115,260 | 1,078,467
Passage avg. length (word) | (article) 330.09 249.42 215.53
Query avg. length (word) - 63.07 63.28

Our NER model did not handle some cases as expected: Table 2 shows the phe-
nomena we corrected. Hungarian is an agglutinative language, where the majority
of syntactic relations is expressed with suffixes. Most of the incorrect cases of NER
were due to the fact that the model separated the suffixes from the proper name.
These had to be re-attached to the proper name afterwards. In many cases, the
word had a punctuation mark attached to it, but these had to be separated from
the named entity. In this sense, 6 different groups of errors were distinguished. The

2http://nol.hu
Shttps://github.com/huggingface/transformers/tree/master/examples/pytorch/token-c
lassification

112

Annal. Math. et Inf. Building machine reading comprehension model from scratch

first group was called “all”, where there was no punctuation mark on the proper
noun, and the tokens in question had to be combined into one. The other cases
are where some punctuation mark was either before the word (“front”) or after
the word (“back”). There could be more than one of these punctuation marks
(1,2). In addition to problems with punctuation, there were also cases, such as
NAME-[MASK] in Table 2, where hyphenated proper nouns were split into several
parts.

Table 2. Some examples for the errors of the NER corrected man-
ually afterwards.

examples for NER errors Modified
[MASK]-ak
“all” [MASK]dban — [MASK]
Eszak-[MASK]
»IMASK]tel »[IMASK]
front-1 (IMASK]mal — ([MASK]
+[MASK]nak +[MASK]
[MASK]-vel, [MASK],
back-1 [MASK]ban) — [MASK])
[MASK]4rl: [MASK]:
[MASK]4hoz.) [MASK].
back-2 [MASK]ban!” — [MASK]!”
[MASK]anak), [MASK])),
(IMASK]ban) (MASK])
front-1 back-1 SIMASK]t, — [MASK],
»IMASK]ban” »IMASK]”
front-1 back-2 (MASK]éban), — ([MASK]),

In general, the main issue was caused by the feature of our NER model; namely
that it marks strictly the lemma of the named entities, however, the suffixes are
also integral parts of the words in Hungarian. Furthermore, in the surface form
of the words, punctuation marks may be attached to the words as well. In this
task, we needed the entire named entity with suffixes, but without the punctuation
marks. Thus, we had to include the suffixes in the masked words, and to detach
the punctuation marks from them. We could separate the following cases:

e 1o punctuation mark on the word (all),
 one punctuation mark before the word (front-1),
« one punctuation mark after the word (back-1),

o two punctuation marks after the word (back-2),

113

Annal. Math. et Inf. Z. Gy. Yang, N. Ligeti-Nagy

e one punctuation mark before the word and one punctuation mark after the
word (front-1 back-1),

e one punctuation mark before the word and two punctuation marks after the
word (front-1 back-2).

We then made a few small improvements to the corpus we created. The resulting
corrected dataset was checked by one annotator per 100 units. For the annotation
process, we provided a self-made demo interface. The automatic masking had to
be validated against the following criteria: i) whether the named entity recogni-
tion and masking was correct (i.e. Pope Francis was masked and not just Francis,
and Gadollére 'Godolls.SUB’ was masked as [MASK] instead of [MASK]re), and
ii) whether the masked proper name was also present in the previous parts of the
article. As a result of the validation, 80 614 automatically generated, manually
validated text units are in the database. The dataset is already splitted into train-
ing, validation and test sets (64 614, 8 000 and 8 000 instances, respectively).?

3.1. The test set

Many studies reported that a small flaw in the test set may result in very biased
models and may ruin the evaluation easily (see for example [16]). As HuRC was
created mainly automatically, the chance of erroneous labels or masking is certainly
high. We aimed to provide a test set as clean and accurate as possible, therefore the
8 000 instances of the test set were manually validated again against the following
criteria: i) whether the named entity recognition and masking was correct,® ii)
whether each and every named entity in the passage is listed in the list of named
entities found by the NER model. This manual validation required >100 work
hours of an annotator.”

4. Training models and experiments

There are two approaches to train reading comprehension models: extractive and
abstractive. In the case of extractive reading comprehension task, the model iden-
tifies the answer to a given question from a document context by ‘extracting’ the
corresponding correct answer. This approach can only produce answers which oc-
cur in the given document. But in our task, the masked phrase could be different
from the found answer in grammatical form. Thus, this method, in certain cases
could only give an approximate answer and may not produce the appropriate ac-
curate answer that fit the masked token. The second approach, the abstractive

4A total of 12 annotators worked on the corpus.

Shttps://github.com/nytud/HuRC, https://huggingface.co/datasets/NYTK/HuRC

6This is only a double-check of the first annotation process. Two erroneous masking were
found in the 8 000 instances of the test set.

"By the time this article is submitted, 50% of the test set has been validated.

114

Annal. Math. et Inf. Building machine reading comprehension model from scratch

method, can solve this problem. The abstractive model, based on the given doc-
ument context, can generate answer from scratch, which could fit exactly to the
masked token.

The extractive model learns the start and the end indices of the answers. It
calculates the probability of word ¢ being the start/end of the answer span as a
dot product between ith input token and start/end vector followed by a softmax
over all of the words in the paragraph. The training objective is the log-likelihood
of the correct start and end position. For this task an encoder-only transformer
architecture is enough to solve the problem. It is important that the model has
to be equipped with Hungarian language knowledge. Thus, in our experiment, we
used the state of the art Hungarian huBERT and the XLM-RoBERTa multilingual
models.

The abstractive model needs text generation feature, hence an encoder-decoder
transformer architecture should be applied. The task can be solved as a text-to-text
task, where the input text is the concatenation of document context and question
with masked token, the output text is the answer with the correct grammatical
form. Since there is no Hungarian fully pre-trained encoder-decoder model, in our
experiment, we used the mT5 [25] multilingual model that contains Hungarian
knowledge.

To fine-tune our models, first, we have converted our collected data into format
SQuAD [20], then, for training models, we used the Question answering libraries®
that were provided by Hugging Face.

For the extractive experiments, we used 4 x GeForce GTX 1080Ti GPU (11 GB)
cards and for the abstractive experiments, we used 4 x NVIDIA A100 GPU (80 GB)
cards.

We have trained three different transformer models for the neural reading com-
prehension (NRC) task, with the following modified hyperparameters:

o Extractive Models:

— huBERT (fine-tuned huBERT model): max_seq_length=512;
doc_ stride=5; max_answer_ length=16; learning rate=2e-5;
epoch=10; batch_ size=10;

— XLM-R (Fine-tuned XLM-RoBERTa base model):
max_ seq_length=>512; doc_ stride=5; max_ answer_ length=16;
learning_rate=2e-5; epoch=10; batch_ size=4;

o Abstractive Model:
— mT5 (Fine-tuned mT5 base model): max_seq length=1024;

doc_ stride=2; max_answer_ length=16; learning rate=2e-5;
epoch=10; batch_ size=4;

8https://github.com/huggingface/transformers/tree/master/examples/pytorch/questio
n-answering

115

Annal. Math. et Inf. Z. Gy. Yang, N. Ligeti-Nagy

e Ensemble Model: Using the two extractive and the abstractive models, we
combined them to achieve higher output results. In this experiment, in the
query, we replaced the [MASK] with the predicted answers that were gener-
ated by our NRC models, then using a Hungarian GPT-2 model, we counted
the perplexity values of the different queries. The final output is the query
which has the lowest perplexity. For this task we used the NYTK/text-
generation-news-gpt2-small-hungarian [27] model.

5. Results and evaluation

To evaluate our models, we used different kinds of approach. First, we used the
official SQuAD evaluation metrics [20], exact match (Match) and (macro-averaged)
F1 score (F1) respectively. Secondly, we have used the chrF-3 and chrf-6 that are
commonly used in machine translation experiments [17]. In the case of Hungarian
RC task, the answer could be different only in the suffices of the word, thus a
character based evaluation metric could present the more accurate performance of
the models.

Table 3. Results.

Match | F1 | chrF-3/chrF-6
Extractive

huBERT | 64.50 | 69.03 | 73.12/72.43

XLM-R | 5898 | 63.59 | 67.19/66.04

Abstractive

mT5 69.51 | 76.26 | 82.96/83.28

cnsemble | 74.04 | 77.57 | 80.54/79.97

In Table 3, you can see the results of the models. As expected, mT5 could gain
higher performance than the extractive method, because the abstractive method
can formulate an answer in the appropriate grammatical form as opposed to the
extractive. Furthermore, using the ensemble method, we could achieve the highest
exact match and Fl-score results by exploiting the advantages of all models. As
for the chrF values the mT5 gained the highest performance, it may be because
the abstractive method can generate longer answers, resulting in higher matches at
the character level, but lower efficiency at the word level. The ensemble approach
could keep control this “over-generation” feature of the abstractive method.

In the case of the test set of 8000 instances, 46.35% of the results were predicted
correctly (exact match) by all models at the same time and 17.34% were predicted
falsely. In the remaining cases at least one model could predict correctly. In
Hungarian the masked entity may differ in grammatical form from the reference
names entity in the context, thus for instance, in the case of the extractive method
we could not expect that the model gives an exact matched answer. Therefore a

116

Annal. Math. et Inf. Building machine reading comprehension model from scratch

deeper evaluation method and error analysis is needed for the erroneously predicted
answers.

5.1. Special evaluation method

To understand the complexity of this task for Hungarian, first we have to under-
stand ReCoRD’s original evaluation method (as it is applied in SuperGLUE, [24]).
As can be seen in Figure 2, multiple reference answers are provided for one masked
named entity: these are the named entities that were found in the passage and refer
to the same entity. For example, if Manchester United, United and Manchester are
found in the text of the passage, and United is the masked entity in the query, all
the appearances of the three named entities are listed as answers.? In SuperGLUE,
models’ performance is evaluated with max (over all mentions) token-level F1 and
exact match (EM).

ReCoRD
t: version: (string) the version of ReCoRD.
data: (list) ReCoRD examples.
Each example has the following structure.
id: (string) the example ID.
source: (string) the original news source of this example.
passage: (dict) the passage of this example.
text: (string) the passage text.
entities: (list) the named entities in the passage.
Each named entity has the following structure.
start: (int) the start char index of the entity.
end: (int) the end char index (inclusive) of the entity.
gas: (list) queries for the corresponding passage
Each query has the following structure.
id: (string) the query ID.
query: (string) the query text (the missing text span is indicated by "@placeholder").
answers: (list) the reference answers.
Each answer has the following structure.
start: (int) the start char index of the answer in the passage.
end: (int) the end char index (inclusive) of the answer in the passage.
text: (string) the answer text

Figure 2. Format of the ReCoRD dataset.

But if we try to adapt this to Hungarian data, we face a serious problem: the
masked named entity may appear earlier in the text referring to the same entity of
the word, but it is very likely to have a different surface form depending on the given
syntactic function it bears in the query’s sentence. Staying with the previous exam-
ple, Manchester United may appear in the passage in multiple various forms, such
as Manchester Unitedet ’Manchester United.Acc’, Manchester Unitedrél "Manch-
ester United-DEL’ etc, and the same goes for United (Unitednek "United.DAT’, for
example) and Manchester as well. On top of that, in the query, United may appear
in a form that was not present in the passage, Unitedban "United.INE’, for example.
If we expect the models to give back a list of entities derived from the list of named
entities in the passage, the list would look like Manchester Unitedet "Manchester

90nly if they refer to the football club in the given context: if Manchester is present in the
text as the city itself, that occurrence will not be listed among the answers.

117

Annal. Math. et Inf. Z. Gy. Yang, N. Ligeti-Nagy

United.Acc’, Unitednek *United.DAT’ etc., which means word forms that definitely
do not fit into the sentence in the place of the masked entity.

On the other hand, it may be quite difficult for a language model that is not
inherently a generative one to pick the correct lemmas and conjugate correctly at
the same time. To overcome this difficulty raised by the grammatical complexity
of Hungarian, we decided to insert two lists into the instances. The first one is
similar to the answer list of the ReCoRD dataset: it contains the surface forms of
the named entities of the passage that refer to the same entity as the masked one in
the query. However, they are only listed once: if a given surface form appears more
than once in the passage, it still gets into the list once. The second list contains
all the lemmas of these surface forms the suffix of the masked entity applied to
them: they all fit into the sentence correctly, but are not necessarily present in the
passage in their current form. We call the first list “MATCH?”, and the second one
“MATCH__SUFFIX”. We evaluate the models on both lists with F-score: this way
we reward correct answers and punish incorrect ones, but a non-generative model
may also have a chance to perform well on this task (on the MATCH list).

To experiment further with the evaluation options and the capabilities of the
models, we have also compiled a merged list of the two lists mentioned above. By
the time this paper is submitted, 25% of the test set (2000 instances) is supplied
with these lists. The evaluation presented below is based on this test set of 2000
instances.

6. Discussion

As can be seen in Table 4, “MATCH” list, where the reference answers are all word
forms appearing in the passage, seems to be easier for ruBERT and XLM-Roberta,
while mT5 and the ensemble model perform better on the more advanced list,
where the word forms have to fit into the masked place perfectly (thus have to be
conjugated). The best overall result is that of the ensemble model, 79.58% F-score
on the “MATCH_SUFFIX?” list. huBERT has the best result on the MATCH list,
76.59% F-score, which is not significantly better than the ensemble model’s result
on this list (76.19%).

If we look at the merged list, which is really permissive, each model’s perfor-
mance is better than its performance on the other two lists. The ensemble model
is again better than the other 3, with an F-score of 81.82%. However, huBERT
beats the abstractive mT5 on this merged list (78.09%).

For half of the instances of the test set each model could predict the correct
answer. These seem to be “easy” questions for them. In these cases the surface
form of the masked entity is almost always suffixless (it is the nominative form
of the lemma, without any case suffix on it), and if not, the given surface form
appears in the passage as well.

On the other hand, in 19.2% of the cases, none of the models could predict a
correct answer (on the MATCH list — this rate is 15.15% for the MATCH__ SUFFIX

118

Annal. Math. et Inf.

Building machine reading comprehension model from scratch

Table 4. Results of the special evaluation.

MATCH | MATCH SUFFIX | MERGED
huBERT (F1) 76.59 71.88 78.09
XLM-R (F1) 69.99 65.82 71.46
mT5 (F1) 71.08 76.29 77.34
ensemble (F1) 76.19 79.58 81.82
each model 49.30% 49.70% 51.05%
none of the models 19.2% 15.15% 12.75%
only huBERT 5.90% 5.55% -
only XLM-R 2.75% 2.15% -
only mT5 4.85% 10.35% -

list and 12.75% for the merged list). Table 5 shows some examples with the refer-
ence answers (of the merged list) and the answers of the models.

Table 5. Some examples for wrong prediction.

Reference huBERT XLM-R mT5H
Kissen "Kiss.SUP’,
Kiss-sel 'Kiss.INS’, Alekszandrovna Alekszandrovna Aleks

Kiss

Balogh Levente

Varga Zoltan

Varga Zoltan

Varggh Levente

Neuer Thiago Dante Ribeer
MVM MFB MFB MFB
Juhészék Tuhisy kérés Lizér Jénos ma
Juhdsz. FAMPL’ Fuhasz keres LAZAT JANOS e Tudszsék "Tudszs. FAMPL1
, ’Juhész question’ "Lazar Janos already’
Juhész
Washington Washl?lgtonnak Washlflgtonnak Washlégtonban
"Washington.DAT’ "Washington.DAT’ "Washington.INE’
Indexnek ’Index.DAT’ | Index Eximbank Index
Torokorszag,
Térskorszienak
orokorszagna Torokorszag kozotti | Torokorszag kozotti - L
"Turkey.DAT’, . . . To6rokorszagba
. L, "Turkey in.between’ | 'Turkey in.between’
Torokorszagbol
"Turkey.ELA’

In the first half of the table examples (see Table 5) show cases when models
have erroneously predicted a named entity regardless of the suffixes. These cases
can be seen as complete mistakes. The second half of the table shows some mixed
cases: the models often hallucinate, either by adding extra (common) nouns to the

10 Tudszs is not a valid Hungarian proper name.

119

Annal. Math. et Inf. Z. Gy. Yang, N. Ligeti-Nagy

proper name, or adding some adverbs or other function words, or by generating
non-existing lemmas.

As mentioned earlier, the dataset may contain an article more than once with
different named entities masked in the query. We examined the articles in the test
set that appear multiple times. Models are able to predict the correct answer in
the different appearances of an article. Table 6 shows cases where the article has
3 different instances in the test set with different masked named entities, and the
majority of the models happen to predict the correct one in all of the cases. It
is quite interesting that in the case of the last example, in two instances Pence /
Mike Pence is the masked entity, and in one case the models predict it well (except
for XLM-RoBERTa, which happens to insist on Putyin). In the other case, mT5
also hallucinates an answer (Put Pence). For some reasons, in one case, the models
rely on the surname of the politician (Pence), and in the other, they all use the
first name of him as well (Mike, and Put can be seen as a hallucinated first name
in the case of mT5).

Table 6. Some examples for the results on articles appearing three
times in the test set with different masked named entities in their

query.

reference

XLM-R

huBERT

mTH

ensemble

Napi Gazdasig
Fidesz

Magyar Nemzet
Magyar Nemzet

Napi Gazdasig
Fidesz

Magyar Gazdasag
Fidesz

Napi Gazdasig
Fidesz

Fidesz Magyar Nemzet | Fidesz Fidesz Fidesz
Trump Trump Trump Donald Trump
Pence, Mike Pence | Putyin Mike Pence Put Pence Mike Pence
Pence, Mike Pence | Putyin Pence Pence Pence

As for the important role of cloze questions in NLP, one has to mention the
research of Lewis et al. [11]. Their paper is a nice and clear presentation of how
cloze-stlye query databases may be exploited for a broader range of studies. First
they trained a model to create cloze questions from sample documents. Afterwards,
they trained a standard extractive QA model on their generated data. Their results
demonstrate that self-supervised extractive QA is achievable with highly competi-
tive results. As their training data is automatically generated, the method makes
the creation of extractive QA models possible for other languages and more do-
mains as well.

7. Conclusion

In this paper we presented the first neural machine reading comprehension models
in commonsense reasoning task for Hungarian. We trained the multilingual models
XLM-R and mT5, and the Hungarian model huBERT on a reading comprehension
dataset (HuRC) designed based on the ReCoRD dataset. We tested to extractive

120

Annal. Math. et Inf. Building machine reading comprehension model from scratch

(hubERT and XLM-R) and an abstractive (mT5) model to be able to compare
their performance with regard to their different architectures as well. We also
implemented an ensemble method by using a Hungarian GPT-2 model to count
the perplexity values of the different queries built up by the predictions of the
three models. We applied a complex and thorough evaluation methodology. Our
result show that the reading comprehension task in Hungarian is still challenging
for the different models. Extractive models seemed to be perform better in giving
back already seen surface forms of the masked named entities, but the abstractive
model, mt5 beats them in conjugating the words correctly. The ensemble model
reached promising results in all evaluation configurations. We hope that our results
will advance neural models trained for reading comprehension task for Hungarian.

References

[1] C. CLarkK, K. LEE, M.-W. CHANG, T. KWIATKOWSKI, M. COLLINS, K. TOUTANOVA: BoolQ:
Exploring the Surprising Difficulty of Natural Yes/No Questions, in: NAACL, 2019.

[2] A. ConNEAU, K. KHANDELWAL, N. GOYAL, V. CHAUDHARY, G. WENZEK, F. GUzMAN, E.
GRAVE, M. OTT, L. ZETTLEMOYER, V. STOYANOV: Unsupervised Cross-lingual Representa-
tion Learning at Scale, CoORR abs/1911.02116 (2019), arXiv: 1911.02116, URL: http://arx
iv.org/abs/1911.02116.

(3] J. DEVLIN, M.-W. CHANG, K. LEE, K. TOUTANOVA: BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding, in: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota: Asso-
ciation for Computational Linguistics, June 2019, pp. 4171-4186, DOI: https://doi.org/10
.18653/v1/N19-1423, URL: https://aclanthology.org/N19-1423.

[4] D. DzEnDzIK, C. VOGEL, J. FOSTER: English Machine Reading Comprehension Datasets: A
Survey, in: EMNLP, 2021.

(5] A. FELDMANN, R. HaJpu, B. INDIG, B. SAass, M. MAKRAIL I. MITTELHOLCZ, D. HALASzZ, Z. G.
YaNG, T. VARADL: HILBERT, magyar nyelvti BERT-large modell tanitdsa felhd kornyezetben,
in: XVII. Magyar Szamitégépes Nyelvészeti Konferencia, Szeged, Magyarorszag: Szegedi Tu-
domdényegyetem, Informatikai Intézet, 2021, pp. 29-36.

[6] R. HaN, I.-H. Hsu, J. SuN, J. BAYLON, Q. NING, D. RoTH, N. PENG: ESTER: A Machine
Reading Comprehension Dataset for Event Semantic Relation Reasoning, 2021, DOI: https
://doi.org/10.48550/ARXIV.2104.08350, URL: https://arxiv.org/abs/2104.08350.

[7] K. M. HERMANN, T. KOCIskY, E. GREFENSTETTE, L. ESPEHOLT, W. KAY, M. SULEYMAN, P.
BrunsoMm: Teaching Machines to Read and Comprehend, in: Advances in Neural Information
Processing Systems (NIPS), 2015, URL: http://arxiv.org/abs/1506.03340.

[8] F. HiLL, A. BORDES, S. CHOPRA, J. WESTON: The Goldilocks Principle: Reading Children’s
Books with Ezplicit Memory Representations, CoORR abs/1511.02301 (2016).

[9] D. KHASHABI, S. CHATURVEDI, M. ROTH, S. UPADHYAY, D. ROTH: Looking Beyond the Sur-
face: A Challenge Set for Reading Comprehension over Multiple Sentences, in: Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans,
Louisiana: Association for Computational Linguistics, June 2018, pp. 252-262, DOI: https:
//doi.org/10.18653/v1/N18-1023, URL: https://aclanthology.org/N18-1023.

[10] T. KocCiskY, J. SCHWARzZ, P. BLUNSoM, C. DYER, K. M. HERMANN, G. MELIS, E. GREFEN-
STETTE: The NarrativeQA Reading Comprehension Challenge, Transactions of the Associa-
tion for Computational Linguistics TBD (2018), TBD, URL: https://TBD.

121

Annal. Math. et Inf. Z. Gy. Yang, N. Ligeti-Nagy

(11]

(12]

(13]

14]

[15]
[16]

(17]

(18]

(19]

20]

21]

[22]

23]

[24]

[25]

P. LEwis, L. DENOYER, S. RIEDEL: Unsupervised Question Answering by Cloze Translation,
in: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
Florence, Italy: Association for Computational Linguistics, July 2019, pp. 4896-4910, DoOI:
https://doi.org/10.18653/v1/P19-1484, URL: https://aclanthology.org/P19-1484.

N. LiceTI-NAGY, G. FErRENczl, E. HEJA, K. JELENCSIK-MATYUS, L. J. LAKI, N. VADASZ,
Z. G. YANG, T. VARADI: HuLU: magyar nyelvii benchmark adatbdzis kiépitése a meurdlis
nyelvmodellek kiértékelése céljabdl, in: XVIII. Magyar Szamitégépes Nyelvészeti Konferencia,
Szeged: JATEPress, 2022, pp. 431-446.

H. NAKAYAMA: seqeval: A Python framework for sequence labeling evaluation, Software avail-
able from https://github.com/chakki-works/seqeval, 2018, URL: https://github.com/chakk
i-works/seqeval.

D. M. NEMESKEY: Introducing huBERT, in: XVII. Magyar Szamitégépes Nyelvészeti Konfer-
encia, Szeged, Magyarorszag: Szegedi Tudomanyegyetem, Informatikai Intézet, 2021, pp. 3—
14.

K. NisHIDA, I. SarTo, K. NisHIDA, K. SHINODA, A. OTSUKA, H. AsaNo, J. ToMITA: Multi-
style Generative Reading Comprehension, 2019, arXiv: 1901.02262 [cs.CL].

C. G. NORTHCUTT, A. ATHALYE, J. MUELLER: Pervasive Label Errors in Test Sets Destabilize
Machine Learning Benchmarks, ArXiv abs/2103.14749 (2021).

M. Poprovi¢: chrF': character n-gram F-score for automatic MT evaluation, in: Proceedings
of the Tenth Workshop on Statistical Machine Translation, Lisbon, Portugal: Association for
Computational Linguistics, Sept. 2015, pp. 392-395, DOI: https://doi.org/10.18653/v1/W1
5-3049, URL: https://aclanthology.org/W15-3049.

A. RADFORD, J. Wu, R. CHILD, D. LUAN, D. AMODEI, I. SUTSKEVER: Language Models are
Unsupervised Multitask Learners (2019).

C. RAFFEL, N. SHAZEER, A. ROBERTS, K. LEE, S. NARANG, M. MATENA, Y. Zuou, W. LI,
P. J. Liu: Ezploring the Limits of Transfer Learning with a Unified Text-to-Text Trans-
former, Journal of Machine Learning Research 21.140 (2020), pp. 1-67.

P. RAJPURKAR, J. ZHANG, K. LOPYREV, P. LIANG: SQuAD: 100,000+ Questions for Machine
Comprehension of Text, in: Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, Austin, Texas: Association for Computational Linguistics,
Nov. 2016, pp. 2383-2392, DOI: https://doi.org/10.18653/v1/D16-1264, URL: https://ac
lanthology.org/D16-1264.

E. SiMON, N. VADAsz: Introducing NYTK-NerKor, A Gold Standard Hungarian Named
Entity Annotated Corpus, in: Text, Speech, and Dialogue - 24th International Conference,
TSD 2021, Olomouc, Czech Republic, September 6-9, 2021, Proceedings, ed. by K. EKSTEIN,
F. PARTL, M. KONOP{K, vol. 12848, Lecture Notes in Computer Science, Springer, 2021,
pp. 222-234.

T. G. TAJTI: New voting functions for neural network algorithms, Annales Mathematicae et
Informaticae 52 (2020), pp. 229-242.

A. VASWANI, N. SHAZEER, N. PARMAR, J. USZKOREIT, L. JONES, A. N. GOMEZ, k.. KAISER,
I. POLOSUKHIN: Attention is All you Need, in: Advances in Neural Information Processing
Systems 30, ed. by I. Guyon, U. V. LUXBURG, S. BENGIO, H. WALLACH, R. FERGUS, S.
VISHWANATHAN, R. GARNETT, Curran Associates, Inc., 2017, pp. 5998—6008.

A. WANG, Y. PRUKSACHATKUN, N. NANGIA, A. SINGH, J. MICHAEL, F. HiLL, O. LEVY, S. R.
BowMAN: SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding
Systems, 2020, arXiv: 1905.00537 [cs.CL].

L. XUE, N. CoNSTANT, A. ROBERTS, M. KALE, R. AL-RFou, A. SIDDHANT, A. BARUA, C.
RAFFEL: mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer, in: Proceed-
ings of the 2021 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Online: Association for Computational
Linguistics, June 2021, pp. 483-498, DOIL: https://doi.org/10.18653/v1/2021.naacl-main
.41, URL: https://aclanthology.org/2021.naacl-main.41.

122

Annal. Math. et Inf. Building machine reading comprehension model from scratch

[26] Z. G. YANG: "Az invaziv medvék nem tolerdljik a suzukis agressziét" - Magyar GPT-2 kisér-
leti modell, in: XVIII. Magyar Szamitégépes Nyelvészeti Konferencia, Szeged, Magyarorszag:
Szegedi Tudomanyegyetem, Informatikai Intézet, 2022, pp. 463-476.

[27] YANG ZuiAN GYOz6: "Az invaziv medvék nem tolerdljdk a suzukis agressziét" - Magyar
GPT-2 kisérleti modell, in: XVIII. Magyar Szamitégépes Nyelvészeti Konferencia, Szeged,
Magyarorszag: Szegedi Tudoményegyetem, Informatikai Intézet, 2022, pp. 463-476.

[28] S. Zuang, X. L, J. Liu, J. Gao, K. DuH, B. V. DURME: ReCoRD: Bridging the Gap
between Human and Machine Commonsense Reading Comprehension, 2018, arXiv: 1810.1
2885 [cs.CL].

123

