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Abstract
This paper shows that the equation in the title does not have positive
integer solutions when n is divisible by 4. This gives a partial answer to a
question by Melvyn Knight. The proof is a mixture of elementary p-adic
analysis and elliptic curve theory.
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1. Introduction

According to Bremner, Guy, and Nowakowski [1], Melvyn Knight asked what inte-
gers n can be represented in the form

n—(:eryan)(lJr1+1)7 (1.1)
T Yy z

where x,y, z are integers. In the same paper [1], the authors made an extension
study of (1.1) in integers when n is in the range |n| < 1000. Integer solutions are
found except for 99 values of n. The question becomes more interesting if we ask
for positive integer solutions, which was also briefly discussed in [1, Section 2|. In
this paper, we will prove the following theorem:
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Theorem 1.1. Let n be a positive integer. Then equation
1 1 1
(r+ty+2)|{-+-+=-]=n
x Yy z
does not have positive integer solutions if 4 | n.

This theorem gives the first parametric family when (1.1) does not have positive
integer solutions. The proof technique is a nice combination of p-adic analysis and
elliptic curve theory, which was successfully applied to prove the insolubility of the

equation

1 1 1 1
(+tyt+zt+w)|(-+-+-+—|=n
r Yy zZ w

for the families n = 4m?, 4m? +4, m € Z and m # 2 (mod 4), see [2].

2. The Hilbert symbol

Let p be a prime number, and let a, b € Q,. The Hilbert symbol (a,b), is defined
as
1,  if the equation aX? + bY? = Z? has a solution

(a,b), = (X,Y.Z) # (0,0,0) in Q3,
—1, otherwise.

The symbol (a,b)s is defined similarly but Q, is replaced by R. The following
properties of the Hilbert symbol are true, see Serre [3, Chapter III|:

(i) For all @, b, and ¢ in Qj, then

(ii) For all a and b in Qj, then

(@) [ (ab)p=1.

p prime

(iii) Let p be a prime number, and let a and b in Q5. Write a = p*u and b = PP,
where o = vp(a) and 8 = v,(b). Then

(a,b)y = (—1) (“)ﬁ (p) ifp £ 2,

p

(u=D(=1) , a(®’=1)  Bu-1)
1 T8t 3 ifp=2,

(a,b)p = (=1)

where (u) denotes the Legendre symbol.

p
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3. A main theorem

Theorem 3.1. Let n be a positive integer divisible by 4. Let uw and v be nonzero
rational numbers such that

v? = u(u? + (n? — 6n — 3)u + 16n).

Then
u > 0.

Let A=n?—-6n—3, B=16nand D =n — 1. Then
A? 4B =(n—-9)(n— 1)

Now
v? = u(u® + Au + B). (3.1)

The proof of Theorem 3.1 is achieved by means of the following three lemmas.
Lemma 3.2. If p is an odd prime number, then
(u,—D), = 1.

Proof. Let 7 = vp(u). Then u = p"s, where s € Z,, and p 1 s.
Case 1: 7 < 0. Then from (3.1), we have

,02 — p3r8(82 +p77‘A + Bp72r).
Therefore 2v,(v) = 3r, hence 2 | r. Now
(p~*/?0)* = s(s*> +p "A+ Bp~*). (3:2)

Note that p t s. Taking (3.2) modulo p gives s is a square modulo p. Hence s € ZZQ,.
We also have 2 | r, so u = 2"s € Q2. Therefore (u, —D), = 1.

Case 2: r = 0.

If pt D, then both w and —D are units in Z,. Therefore (u,—D), = 1.

If p| D, then n = 1 (mod p). Hence A = n? —6n —3 = —8 (mod p) and
B =16n =16 (mod p). Thus

v? = u(u? — 8u+16) (mod p)

=u(u—4)? (mod p). (3:3)

If w =4 (mod p), then u € Zf,. Hence (u,—D), = 1. If u # 4 (mod p), then

from (3.3), we have
2
u= (ui4) (mod p).

Therefore u € Zf). Hence (u,—D), = 1.
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Case 3: 7 > 0. Then (3.1) becomes
2 _ .7 2r 2 r
v* =p"s(p"s” + Ap"s + B). (3.4)

If p | B, then p | n. Therefore —D =1 —n =1 (mod p). Hence —D € Z2. Thus
(u,—D), =1L
If p1 B, then from (3.4) we have r = 2v,(v). Thus 2 | 7.

If p{ D, then both s and —D are units in Z,. Therefore (s,—D), = 1. Hence

(U, _D)p = (prs’ _D)p = (Sa _D)p =1.

If p| D, then n =1 (mod p). Therefore A =n? —6n —3 = —8 (mod p) and

B =16n = 16 (mod p). Let w = p"2 v. Because r = 2v,(v), we have p { w. From
(3.4) we have
w? = 5(p*s® — 8p"s 4+ 16) = 165 (mod p),
so that
s=(w/4)? (mod p).
Thus s € Z2. Hence (s,—D),=1. Note that 2 | r, therefore

(u’ 7D)P = (prs’ 7D)P = (5’ 7D>P =1 O

Lemma 3.3. We have
(U, _D)Q =1.

Proof. Let n = 4k, where k € Z7T.

If 2 | k, then —D = 1 —4k = 1(mod 8). Therefore —D € Z3. Hence (u, — D)y =
1. So we only need to consider the case 2t k. Let r = vy(u). Then u = 2"s, where
21 s.

Case 1: 2| r. Then

(U, —D>2 = (QTS, 1-— 4]€)2
= (S, 1-— 4]€)2

(s—1)(1—4k—1)
D
1.

Case 2: 2 {r. We show that this case is not possible.
If r < 0, then from (3.1), we have

v? =2%5(s% + 27" As + 272" B).

Therefore 3r = 2vy(v). Hence 2 | 7, a contradiction.
If r > 0, then (3.1) becomes

v? = 2"5(2%"s% 4 27 (16k* — 24k — 3)s + 25k). (3.5)
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If » > 7, then
v? = 27T05(22105% 1 (16k% — 24k — 3)2" Cs + k).

Therefore r + 6 = 2v5(v). Hence 2 | r, a contradiction.
If r <7, then r < 5. Let ¢ = 5. Then from (3.5), we have

$? = 5(2"s + (16k2 — 24k — 3)s + 267 "k). (3.6)

If » = 5, then taking (3.6) modulo 8 gives ¢? = s(—3s + 2k) (mod 8). Hence
2sk = ¢ + 352 = 4 (mod 8), which is not possible because 2 { sk.

If r = 3, then taking (3.6) modulo 8 gives ¢> = —3s? (mod 8). Hence 0 =
#? + 352 =4 (mod 8), a contradiction.

If r = 1, then taking (3.6) modulo 8 gives ¢? = s(2 — 3s) (mod 8). So 2s
352 + ¢? =4 (mod 8), which is not possible because 21 s.

i

Lemma 3.4.
(u,—D)oo = 1.

Proof. From the product formula for the Hilbert symbol, we have

(w,-D)os  [] (w.-D)p=1 (3.7)

p prime, p < oo
By Lemma 3.2, Lemma 3.3, and (3.7), we have (u, —D)s = 1. O
To complete the proof of Theorem 3.1, we see that Lemma 3.4 shows that the

equation uX? + (1 —n)Y? = Z2 has a solution (X,Y,Z) # (0,0,0) in R®. Because
1 —n <0, we have u > 0. Hence Theorem 3.1 is proved.

4. A proof of Theorem 1.1

We follow [1, Section 2]. Write (1.1) as

22 (y+2) +x(y? + (3 —n)yz + 2%) +yz = 0. (4.1)
Hence
PP+ (n—-3)yz— 22 £ A
B 2(y + 2) ’
where A satisfies
A? =yt —2(n — Dyz(y? + 2%) + (n® — 6n — 3)y?2% + 2*. (4.2)

Then (4.2) is birationally equivalent to the elliptic curve

v? = u(u® + (n? — 6n — 3)u + 16n), (4.3)
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and we can write out the maps between (4.1) and (4.3):

—4 2(u — 4
u = (ny +2yZ * Z-T), v = 7(11 n)y — (n — 1)’(1/,
z z

and
r,y Fv—(n—1u

Tz 2M4n—u)

Then the following is true.

Proposition 4.1. The necessary and sufficient conditions for (4.1) to have positive
integer solutions (x,y,z) are n >0 and u < 0.

Proof. See Bremner, Guy, and Nowakowski [1, Section 2]. O

Now, let n = 4k, where k € ZT. Assume there exists a positive integer solution
(x,y,2) to (1.1). Then Proposition 4.1 shows that u < 0. If v = 0, then (4.3) implies
u?+(n?—6n—3)u+16n = 0. Therefore (n—9)(n—1)% = (n?2 —6n—3)2 -4 x 16n is
a perfect square. Hence (n —9)(n — 1) is a perfect square. Let (n—9)(n—1) = m2.
Then (n —5)? — 16 = m?. The equation X2 — 16 = Y2 only has integer solutions
(X,Y) = (£5,£3). Thus n—5 = £5, giving no solutions n = 4k. Therefore v # 0.
Hence u, v # 0. From Theorem 3.1, we have u > 0, contradicting Proposition 4.1.
Hence (1.1) does not have solutions in positive integers.
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