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Abstract

We investigate when two four-term arithmetic progressions have an equal
product of their terms. This is equivalent to studying the (arithmetic) ge-
ometry of a non-singular quartic surface. It turns out that there are many
polynomial parametrizations of such progressions, and it is likely that there
exist polynomial parametrizations of every positive degree. We find all such
parametrizations for degrees 1 to 4, and give examples of parametrizations
for degrees 5 to 10.

1. Introduction

The problem considered in this paper was first drawn to my attention by Richard
Guy and Alex Fink, who asked which n-term arithmetic progressions can have
equal product of their terms. For example, when n = 5, Fink observed that the
two progressions

(4+1°,3+2t5, 24 3t°,1 + 415 5t5),  (t + 41,2t + 3¢5, 3t + 25 4t + 15, 5¢)

have equal product. There is some literature on the subject. Gabovich [5] gives
infinitely many examples of two such 4-term progressions. For general n, the only
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known example of two arithmetic progressions with equal product of terms is given
by
m+1)(n+2)...2n)=2-6-10-... - (4n — 2);

in fact, Saradha, Shorey and Tijdeman [9, 10] show that other than this example,
solutions in positive integers = > y, n > 2, to

z(x+dr)...(x+ (n—1)d1) =y(ly + da)...(y + (n — 1)da),

for fixed integers 0 < d; < da, are finite in number, and can be effectively deter-
mined. Choudhry [2-4] gives several results, including the construction for a fixed
positive integer n of two arithmetic progressions of length n with equal product of
terms. Further, he describes infinitely many pairs of 5-term progressions with equal
product, and also constructs five 4-term progressions, all having equal product of
terms.

Here, we investigate the case n = 4. The defining equation is that of a quartic
surface, and we study the geometry of this surface. By computing the Néron-Severi
group of the surface over C, we can determine infinitely many parametrizations for
the problem, and in particular, can determine all parametrizations of a given degree
that correspond to curves lying on the surface of arithmetic genus 0. The number
of such parametrized curves increases rapidly, with attendant computational dif-
ficulties. Here, we simply give all such parametrizations of degrees 1,2,3,4, and
examples of parametrizations for degrees 5, ..., 10.

2. A quartic surface

Consider two four-term arithmetic progressions with equal products, which by
homogeneity we may take in the form {a — 3d, a — d, a + d, a + 3d} and
{b—3¢c, b—c, b+ ¢, b+ 3c}. Then

Vi (a? —9d%)(a® — d?) = (b* — 9¢%) (b — ).

This equation defines a non-singular quartic surface V. Symmetries of V' occur
with sign changes of the coordinates, under the mapping (a,b,c,d) — (b,a,d,c),
and under the mapping (a,b,c,d) — (3d, 3¢, b,a), generating a symmetry group
of order 32. The surface contains the twenty Q-rational straight lines shown in
Table 1.

Accordingly, there is a rich geometry of V' over the rationals. Denote by
NS(V(K)) the Neéron-Severi group of the surface V' over the field K; then we
expect NS(V(Q)) to be a sizeable subgroup of NS(V(C)). For reference, the action
of the symmetries on the Q-rational straight lines is given in the Appendix.

There are four real lines defined over Q(v/3) (see Table 2) and eight imaginary
lines (see Table 3).

It is straightforward by considering linear parametrizations to see that this is
the full list of lines on the surface V. The intersection matrix {(l; - {;)} of the 32
lines has rank 19.
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li: a=3d la: a=3d l3: a=3d ly: a=3d
b=3c b=c b=—c b= -3¢

l52 a=d 16: a=d l72 a=d lg: a=d

lg: a=—d lloi a=—d l112 a=—d 1122 a=—d

l131 a=—3d l142 a=—-3d l152 a=—-3d l162 a=—-3d

b=3c b=c b=—c b= —-3c
l172 a=b llgi a=b l192 a=—-b l202 a=—-b
c=d c=—d c=d c= —d

Table 1: Twenty Q-rational straight lines on V

1212 a = \/gc l222 a = \/§C l232 a = —\/§C l242 a = —\/gc
b=+/3d b= —/3d b=+/3d b= —/3d

Table 2: Four real straight lines on V'

1255 a=1b l265 a=1b l275 a = —1ib lggl a= —1ib
c=1d c= —id c=1id c=—id

lag:  a=1v3c | ls0: a=iV3c | ls31: a=—iv3c | l3: a=—iv3¢
b=1iv3d b= —iv3d b=1iv3d b= —i\V3d

Table 3: Eight imaginary straight lines on V

Various conics arise as the residual intersection of V' with a plane passing
through two of the straight lines. Denote by II a hyperplane section of the surface
V, so that IT has genus 3, and 112 = 2- genus(IT) — 2 = 4. Then the effective divisor
II — I; — ; has self-intersection (IL —I; —1;)*> = —4 + 2(l; - I;), so consequently has
genus 0 if and only if ({; - ;) = 1.

If IT - I; — I; is irreducible, then its intersection pairing with /; is non-negative,
so ((I; +1;) - l) < 1. Conversely, if II — I; — I, is reducible, then necessarily it is
linearly equivalent to l,,, + I,, for lines [,,, [,,, and now its intersection pairing with
l,, equals (I, -1,) —2 < —1, that is, ((l; +1;)-l,,) > 2. Hence IT—1; —; is irreducible
if and only if ((l; +1;).lx) < 1 for all lines Ij.

If one of the component lines is Q-rational, then by symmetry we can assume
l; is one of Iy, lg, l;7. Only Il — I, — 15, for j = 17,20, 26,27, are acceptable under
the above criteria. Only II — [y — [, for j = 21,24, 30, 31, are acceptable. Only
II— 7 =1, for j =1,6,11,16,18,19, 21, 24, 29, 32, are acceptable.

If no component line is Q-rational, then we have only IT — I; — I, for (4,j) =
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(21,22), (21,23), (21,25), (21,28), (25,26), (25,27), (25,29), (25,32), (29,30),
(29, 31).
It follows that there are precisely two equivalence classes of such Q-rational
COIliCS7 typiﬁed by II — ll — l17 (N II - 16 — 120), and IT — l17 — llg.
The plane a + b = ¢ + d cuts the surface in the two lines lg, log, and the residual
conic
4a% + Tab + 2b* — 1lac — The + 9¢% = 0,

with parametrization
a:bicid = 35°+s5+2: —s2=35—-8: s -35-2: s°+s—4. (2.1)

This conic lies in an equivalence class under symmetry of order 16.
The plane ¢ = d cuts V in li7, l19, and the conic

a4+ b? =102,
with parametrization
a:bic:d = 35 —2s—3 : s +6s—1:s°+1: s +1, (2.2)

lying in an equivalence class of order 4. In this manner we recognise twenty Q-
rational conics on V, the residual intersections of the following planes:

Qq: at+b=c+d Qs: at+b=c—d
Q3: a+b=—-c+d Qu: at+b=—-c—d
Qs: a—b=c+d Qs: a—b=c—d
Q7: a—b=—-c+d Qs: a—b=—-c—d
Qo: a—-b=3(c—d) | Quo: a—b=3(c+d)
Qll: a—b= *3(C+d) ngi afb:?)(chrd)
Q13Z a+b=3(c—d) Q14Z a+b:3(c+d)
Q150 a+b=-3(c+d) | Qie: a+b=3(—c+d)
Q17: a=>b ngi a=—b
Q19: c=d Q20: c=—d

Table 4: Twenty Q-rational conics on V

A plane intersection does not of course necessarily contain a straight line, but may
give rise to two conics. A straightforward (machine) computation shows that plane
intersections delivering two conics arise precisely for the planes (writing ¢ = V-1,
r=1/3):

a—(1—i)c+rd=0, and a+2(1—1i)c—ird=0,

together with symmetries and conjugates. The first plane intersection here com-
prises the two conics

Qo: a—(1—i)c+rd=0, b*+ (2r —5)c + (2i + 2)cd — 2rid* = 0;
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Qh: a—(1—-ic+rd=0, b+ (=2r —5)c? + (=2i — 2)cd + 2rid* = 0;
and )y has parametrization
(a,b,¢c,d) = ((=1 +7)(3u? — (34 r)uv — v?), (1 +4)(ru® + (=4 + 2r)uv + v?),
(1 44)(ru® —v?), (=1 + ) (u* + (1 + r)uv — v?)).

Further, the surface V is fibred by curves of genus 1. Consider the intersection of
V' with the family of planes
a—d=tb-c). (2.3)

The intersection contains the line lg : {a = d, b = ¢}, together with residual cubic
curve

V(14 9t*) + b2c(—1 — 27t*) + 9bc? (1 + 3t*) +
9c3(1 — t*) — 36a(b — ¢)*t® 4 440> (b — ¢)t* — 16a3t = 0.
This cubic contains points such as O.(a,b,c,d) = (t,1,—1,—t), the point where

(2.3) meets the skew line {a + d = 0 = b+ ¢}, and so is an elliptic curve over Q(¢).
The locus of O, as t varies is the line l17. A cubic model of the above curve is

E; :V? = U3 + 672U + 1440t U + 36t2(1 + 277t* + %), (2.4)
with mappings
(U, V) = (—4t(—2a + 7ot — Tat* 4 2bt°) /(b + ¢ — 2at® + bt* — ct*), (2.5)
2t(t* — 1)(—b? — 10bc — 9¢* — 406>t + 82abt® — 82act® — 42b*t* + 82bct*
+20a*t® — 28abt” + 28act” + 9b*t® — 18bct® 4+ 9c*t%) /(b + ¢ — 2at® + bt* — ct*)?)

and
a:b:c:d=—36t2(1+t*)(7+ 2t*) — 2(4 4 59tHU — 5t2U% + 2t(7 + 2t1)V -
—36t(1 4 t1)(2 4 7th) — 263(59 + 4" U — 5tU? + 2(2 + 1tHV :
4t(2 + 509t — 43t%) + 2t3(101 — 41U + 5tU% + 2(=2 4+ 3tV :
A% (—43 4 509t* + 2t%) + 2(—4 + 101" U + 5t2U? + 2t(3 — 2t V. (2.6)

We note that the torsion subgroup of E(C(t)) is trivial. The curve E; at (2.4) is
singular at ¢ = 0,00, %1, i, and at the eight roots of 243t% + 1711¢* 4 243 = 0.
The discriminant of (2.4) is

—144(t — 1) (¢t + 1)2 (1% + 1)%(243¢% + 1711¢* + 243),

and we have the following Kodaira classification types, with the corresponding
decomposition of the intersection (see Table 5) together with type I; nodal cubics
at each root of 243t% +1711¢* + 243 = 0. Shioda’s fundamental formula [11] results
in

20 > rank NS(V(C)) = rank E:(C(¢)) +2+2(3—-1)+4(2—-1)+8(1 - 1),
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whence rank E(C(t)) < 10.

t =10 IV |l +
t = o0 A% lg +
t =11 I
t = | -1 I
t =\ 1 I
t =\ = I

lr
lio
li7
l20
l26
la7

A+ttt

lg
lia
Q7
Q1

conic
conic

Table 5: Singular decompositions of F;

Theorem 2.1. NS(V(C)) is a Z-module of rank 19, with basis the divisor classes
of the 18 lines v, la, I3, la, l5, Iz, ls, lio, L1, e, l17, lis, l2o, l21, loa, las, log, log,

and the conic Qq.

We prove Theorem 2.1 in several steps. It is known that NS(V(C)) is generated
over Z by (i) a fibre of Ey, the zero section, the fibre components that do not meet
the zero section; and (ii) sections that form a basis of E;(C(t)). For (i), we have
the ten generators la, 5, l7, ls, li0, l11, l17, l20, l26, l27. For (ii), we shall show
E.(C(t)) has rank 9, so that indeed rank NS(V(C)) = 19. It will then remain to

determine an explicit basis.

The straight lines and conic Q¢ provide us with the following 9 independent

points in E;(C(t)):

pullback | point on E}(C(t))

I J1 = (—15t2, 6t° 4 6t);

Iy Jo = (—18t2, 6t° — 6t);

lig J3 = (=30t2, —6t° — 6t);

l1s Jy = (47 — 1083 — 10¢% — 10t + 4,

—8t% + 30t% — 58t* + 60t> — 58t% + 30t — 8);

lo1 Js = (2rt3 — 1842 + 2rt, 61° + 2rt* + 1263 + 2rt% + 61);

lao Jo = (4rt3 — 18t2 — drt, —6t°> — 167t* + 12t3 + 160t> — 6t);

los Jr = (—4t* + 1043 — 10t2 — 10it — 4,

8it® + 30t° — 58it* — 60t3 + 58it? + 30t — 8i);

l2g Js = (—4rit® — 18¢% — 4rit, —6t° — 167rit* — 12¢3 — 16rit? — 6t);

Qo Jo = ((r+3)(i + 1)t* — 2(r +10)t* + (3r + 5)(i — 1)t + 4(r + 2)i,

6t° + (5r +9)(i — 1)t* + 2(5r + 11)it3 — 7(r + 1)(i + 1)¢?
—6(4r + 7)t + 4(3r +5)(i — 1))

Table 6: Points on E:(C(t))

That the points J;, ¢ = 1,...,9, are linearly independent on E; follows from

the height-pairing matrix
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8 4 2 4 4 4

5 03 2 35 3 23 3
0200 0000 1

4 8 4 2 2 2

3 03 2 3 3 235 3

2 023 1121 3

_ 2 4 5 1 1 1
M=135 03 1 3 3 1 35 —5
4 2 1 5 2 1

3 03 1 33 1 35 3§
2022 1131 1

4 2 1 2 5 7

3 03 1 3 35 1 3 3

4 1 2 3 _1 1 1 1 7

3 3 3 2 6 6 2 6 3

of determinant 3. It follows that rank E;(C(t)) > 9.
We now have that the divisor classes of the following 19 curves are independent
in the Néron-Severi group NS(V, C):

li,l2, U3, la, 15, U7, Us, 1oy lins i, iy Liss D20, D21 Loz, Dos, log, Lag, Qo- (2.7)
(Note: the conic ac = bd cuts V' in the divisor
h+ls+hnthetlhirtlootlostlor~2l~ i+l +i3+ 1+ 15+ 16+ 17+ s,
which allows us up to linear equivalence to replace lo7 by I3.)

Lemma 2.2. NS(V(C)) has rank 19.

Proof. We follow closely the exposition of Kloosterman [6] to which the reader is
referred for full details.

Let Y be a smooth projective surface defined over Q, with Néron-Severi group
NS(Y). Suppose that p is a prime of good reduction, and denote by Y the reduction
of Y modulo p. It is known that NS(Y") modulo torsion together with the intersec-
tion pairing on NS(Y) forms a lattice. Denote by A(NS(Yx)) the discriminant of a
Gram matrix of the Néron-Severi lattice NS(Yx) of Y over K with respect to the
pairing. Proposition 4.2 of Kloosterman tells us that A(NS(Yg)) and A(NS(Y@))
differ by a square.

The idea therefore (originally suggested by van Luijk) is to find two distinct
primes p1,p2 of good reduction for which the rank of the Néron-Severi lattices is
the same, but for which the discriminants of the lattices differ by a non-square. It
will follow that the rank of NS(Yg) is at least one less than the rank of NS(?H).

We quote two further results from Kloosterman. Here, ¢ is a prime power, and
[ a prime with (I,q) = 1.

Conjecture 4.3 (Tate Conjecture).

Let Y/F, be a smooth surface with Néron-Severi rank p(Y'). Let Fj be the auto-
morphism of HZ(Y,Q;)) induced by the Frobenius automorphism of F,. Let Q(t)
be det(I — tF,|HZ(Y,Q;)). Then p(Y) equals the number of reciprocal zeroes of
Q(t) of the form ¢, with ¢ a root of unity.
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Conjecture 4.6 (Artin-Tate Conjecture).

Let Y/F, be a smooth surface with Néron-Severi rank p(Y'). Let F; be the auto-
morphism of HZ (Y, Q;)) induced by the Frobenius automorphism of F,. Let Q,(t)
be det(I — tF,|HZ,(Y,Q;)). Then

b Qala™) (D)7 Br(YV) A(NS(Ys,))
s=1 (1 —gl=s)P'(Y) qa(Y)(#NS(qu)wr)z ’

where a(Y) = x(Y,0y) — 1 + dim Pic’(Y), Br(Y) is the Brauer group of Y,
NS(Yg, ) is the subgroup of N S(YE) generated by Fy-rational divisors, and p/(Y') =
rank NS(YE).

These Conjectures are known to be true when (¢,6) = 1 and Y/F, is an elliptic
K3 surface, as in the case we are considering.

Again from Kloosterman, Proposition 4.7, the order of Br(Y) is a square, and
with the hypothesis that p(Y) = p/(Y'), then the Artin-Tate Conjecture gives the
following:

F W — e (V)1 a(Y) 1 Qq(q7°) 2
ANS(Yg,)) = (1) g™’ lim A= g™ mod Q*~.

In our case, at the primes of good reduction p = 37,61, the known 19 independent
divisor classes are defined over F,. By counting the points on V' over F,, and F»
we compute

Qs7(z) = (1-372)2° (14382 +13692%), Qe1(x) = (1—612)*°(1+1182+372122).
We have p(Y) = p/(Y) = 20. We thus get

Qp(p™?)

A(NS(Yr)) = —p) lim e mod Q2.
Hence
38
ANS(Yg;;) = —37°(M) (1 + 37 +1)=-7-37Y "1 mod Q*2;
118

A(NS(Yg)) = =61 (1+ — +1) = =3-5-61*") "  mod Q"2

61

Consequently, the two discriminants do not differ by a perfect square, and it follows
that the rank of NS(Yg) is at least one less than the rank of NS(Yg-), so must
equal 19. 0

Corollary 2.3. The group E(C(t)) has rank nine, and the points Jy,...,Jo listed
in Table 6 form a basis.

Proof. The previous computation implies the rank is 9. That the {J;} form a basis
follows from Lemma 2.5 of Kuwata [7]. The first criterion in the Lemma implies
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that the index of the subgroup in E;(C(t)) generated by the J; can be divisible
only by 2 or 3. It is a straightforward computation to determine that for ¢; = 0,1,
not all zero, none of the points Z?:l €;J; can lie in 2F(C(t)); and for ¢, = 0, £1,
not all zero, none of the points Z?:l €;J; can lie in 3E;(C(t)). O

It remains to determine a Z-basis for NS(V, C).

The divisors at (2.7) form a basis over Q. Let D ~ ¢q1ly + cola + + -+ + coglog +
caglag + coQp, which notationally we abbreviate to (c1,ca, ..., g, C29, o), lie in
NS(V,C) for ¢; € Q. Demanding integer intersection with each of the 32 straight
lines and Qg gives a system of equations for the coefficients ¢; that implies D is a
Z-linear combination of the following divisors:

llv 127137 l4,l57 l7,l10,ll7> Z187 l207 1217 1227 1253 1263 1293 QO) (28)

and
Dy ~ %(0,0, 1,-1,0,-1,1,0,0,0,0,—2,0,0,2,2,0,—-2,0),
Dy ~ %(1, -3,2,0,-1,1,0,—-1,1,0,2,0,0,0,—2,0,—2,2,0),
D3 ~ é((), 1,1,3,3,-5,-1,2,—-1,1,-2,0,—-2,—-4,4,—-4,4,0,0).

The divisor A ~ aD; 4+ bDy + ¢D3 for a,b, c € Z satisfies

2 _ 41,2 e g2 e o 922
A® = —4qa + 2ab 2b + 2(lC+ 2bC 3 c,

which, being equal to 2-genus(A)—2, lies in 2Z. Thus ¢ is even, and D is a Z-linear
combination of the divisors at (2.8) and of (dy,ds,ds) = (D1, Da,2D3 + lg — l2g).
Now

ddy ~ =2l + 2113 + 2115 + 2116 + 2119 + 2l22 + l25 — lag — blag — 332,

Ady ~ —2y + Aly — 6lg + dl1s + dl1s + dl1g — 1o — 8lag — Alog + 2o
+ la5 + 3lag + 2l2g + 5l30 + 3l31 — 2132 — 4Qo,

4ds ~ —2l3 + 1014 — 8lg + 8113 + 6115 + 14116 + 3loo — log + 4log + 4log
— 9lyg — 10130 — 10151 — s,

linear equivalences which express the divisors 4d; of degree 0 in terms of divisors
which meet E;. Each induces a divisor of points (4d;.E;) on F; of degree 0, and
we can compute the image of these divisors under the Jacobian mapping jac from
the group of divisors on F; of degree 0, to F;.

We first identify the following intersections on FE;.
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l (I.Ey) l (I.Ey)

I J1 la1 Js

l3 —Jo+ J3 loo Js

Iy J2 l23 J1—Js

lg Jo+ J3 log J3—Js

I @ l2s J7

li2 J1—J2 log J1+J3—J7

li3 —J2 lag Jg

l15 J1+ Jo l30 —J1—Jo—Jy+Js+ Jsg+ Jr — Jg + 2J
l16 J3 Il31 | Ji+Jo+Jd3+ Jy—J5— Jg— J7 + Jg — 2Jg
l1g Jy l32 J1 —Jg

lig | J1+J3—Js || Qo Jg

Table 7: Intersections on E}

Using the above table,

jac(4d1.Et) = —2Jo+ J3 —2J4+2Js + 2J7 — 23,
jac(4d2.Et) =J; —2Jo+2J35 —2Jg + 2Js,
jac(dds.Ey) = 2(Jo + Js — 205 + 205 — 2J7). (2.9)

The assumption that ady + bds + cds, a,b,c € 7Z, exists as divisor implies that
jac((a4dy + b4ds + c4ds).Ey) = 4jac((ady + bda + cd3).Ey) € 4E,(C(t)), that is

bJ1 —2(a+b—c)Jo + (a+ 20+ 2¢)J5 — 2ady — 4eds +2(a — b+ 2¢)Jg
+2(a—2¢)J7 — 2(a — b)Jg € 4E(C(t)).

The deduction is that a,b = 0 mod 4, ¢ = 0 mod 2. A set of Z-generators is now
the divisors at (2.8) and 4d;, 4ds, 2d3; equivalently, the divisors

Ui, 0o, 13,14, s, U7, 18, Lo, Lty iz, Lus, Do, D21,y o2, Los, Log s Dog, Qo,

and
1
dy = 2d3 ~ 5(0,5, 1,3,3,-5,-1,2,—1,1,-2,0,—2,—4,4,—4,0,0,0).

Assume that dy exists as a divisor in NS(V, C). From (2.9), we have jac(2d4.E;) =
jac(4ds.Ey) = 2(Ja + J3 — 2J5 4+ 2Jg — 2J7), so that the divisor d5 = dy —lg + 191 —
log + l25 of degree 0 satisfies jac(2d5.E;) = 0. Since E has trivial torsion, it follows
that jac(ds.E:) = 0. Hence from properties of the Jacobian mapping, ds.F; ~ 0 on
FE;. Thus there exists a function f; on E; having divisor ds.FE;, and induced by a
function f on V. Then (f) — ds is a divisor not meeting F;, which therefore is a
sum of the singular components of F;; equivalently, a sum of the singular straight
line components of E;. We deduce

ds ~ caly + csls + c7lr + csls + c10l10 + c14l14 + 1717 + c20l20 + co6lag + corlor.



On two four term arithmetic progressions with equal product

However 1 = ds.l;7 = —2c17, impossible. Thus ds cannot exist as divisor, and

NS(V,C) has Z-basis as required. This completes the proof of Theorem 2.1.

In the Appendix, we give a matrix expressing the divisor classes of the 32 lines

as linear combinations of this generating set.

3. Rational parametrizations

That part of the Néron-Severi Group defined over Q is seen to be generated by the

divisor classes of

lla 127 l3a 147 l5; 177 lS; llo,lll,llfia l177 l187 1207

which set we denote by {C;},i=1,...,13, with

loy + I ~ I3 4 1y + 17 + Ig — Ly7 — lao,

log + 159 ~ Iy + 1y — U5 — Iy — 2g + Lo + 11 + 7 + lao,

Ios + 152 ~ 1y — Iy — lig + lis + li7 + 2o,

log + 150N ~ g+ I3 + 1y + Is + Iz + Is — i1 — lig — 17 — lao,

conj

l2g +lag
I3 + 150™ ~ —lp — Is + Ly + lig + li7 + lao.

The associated intersection matrix is

~lp 20+ 13+ 1y — Iy + 11g — l1g — l17 — l20,

b lp I3 1y Is Iz lg lio i lie lir lis Iy
i 1-2 1 1 1 1 0 O 0 0 0 1 0 1
Iy 1 -2 1 1 0O 0 O 1 0 0 0 0 0
l3 1 1 -2 1 0 1 0 0 1 0 0 0 0
4 1 1 1 -2 0 0 1 0 0 1 0 1 0
ls 1 0 0 0 -2 1 1 0 0 0 0 0 0
7 0 0 1 0 1 -2 1 0 1 0 0 1 0
lg 0 0 0 1 1 1 -2 0 0 1 0 0 0
lip | O 1 o o o o0 0 -2 1 0 0 1 0
l11 1 0 0 1 0 O 1 0 1 -2 0 1 0 1
lg | 0O 0 O 1 0 O 1 0 0 -2 1 0 1
iy |1 0 0 O O 0 O 0 1 1 -2 1 0
lig | O 0 0 1 0 1 0 1 0 0 1 -2 1
lo| 1 0 0O O O 0 O 0 1 1 0 1 -2

Putting I' ~ 21Cy + 22C5 + ... + 13C13, we have

deg(I")? — 4(T.T) = deg(I")? — 8(genus(I") — 1) =

2
(x1 — 22 — 23+ x4 — x5 + T — 7 + T3 + Tg + T10 — T11 — T12 — T13)

2
+2(x1 — x4 — 26 — T8 + Tg + T10 — T11 + T12 — T13)
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+2(x1 — x4 + 26 + T8 — Tg + T10)>

+2(x1 — 9 — 5 — L9 — 210)* + 2(x1 — X3 + T7 + T9 — T10)?
+2(xg — x4 — 5 + 26 — 28)% + 2(x3 — 24 — T6 + T7 + 28)2

+2(x11 — T19 + 213) + 4211 — 213)% + 4(w5 — 27)? + 4(20 — 23)? + 42,
which is in a machine computable form if we wish to determine (via the coefficients
x;) the curves I" of genus 0 and given degree deg(I"). Putting

m; =21 — T2 — T3+ 24 —T5 +Te — Ty +Tg+ Tg+ Tio — T11 — T12 — T13,
Mo = T1 — T2 — Ty — L9 — T10,

mz =22 — Ty — T5 + Te — T8,

mg =21 — T3 + T7 + T9 — T10,

ms = 23 — T4 — T + 27 + Ts,

me = 21 — T4 + T + Ty — T9 + T10,

my =21 — T4 — Tg — g+ Tg + T10 — T11 + T12 — 13,
mg = 211 — T12 + Z13,

mg = T2 — I3,

mip = Ts — X7,

mi1 = T11 — X13,

mi2 = X112,

mq3 = deg(T),

we have to tabulate the finitely many solutions to the equation

8 12
mi+2Y m?+4> m}=deg(l)’ - 4('T) (3.1)
=2 =9
and then determine (z1,...,213) = x from (m1,...,m13) = m by means of
o 2 0 0 0 o0 1 o0 1 1 0 -2 1
o 1 1 -1 1 -1 0 -1 3 1 0 -2 1
o 1 1 -1 1 -1 0 -1 -1 1 0 -2 1
o 1 -1 -1 -1 -1 0 -1 1 -1 0 -2 1
-1 -1 -1 1 -1 1 0 -1 -1 1 0 =2 0
) 0 -1 1 1 -1 1 -1 -1 -2 0 0 00
x=-[ -1 -1 -1 1 -1 1 0 -1 -1 -3 0 -2 0 |[m'
11 0 0 0 2 0 -1 0 1 1 0 20
1 -1 1 1 1 -1 0 1 -1 1 0 20
0 -1 -1 -1 -1 1 1 1 0 -2 0 00
o 0 0 0 0 0 0 2 0 0 2 20
O 0 0 0 0 0 0 0 0 0 0 40
o0 0 0 0 0O 0 2 0 0 -2 20
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This imposes congruence conditions on the m; at (3.1), namely:

m1 + mq3 = 0 mod 2,

me + ms + mg = 0 mod 2,

my + ms + mg = 0 mod 2,

me + m7 +mg = 0 mod 2,

mg + mi1 + mi2 = 0 mod 2,

my + ms + myg + mg = 0 mod 2,
my 4+ my + mg +mqip = 0 mod 2,

and

my + 2mg + m13 = 0 mod 4,
mi1 — mo + mg + my +ms — mg + mg — mg + m1g + 2mi12 = 0 mod 4,

mo — mg — my +ms — mg + my + mg + 2mg = 0 mod 4.

For Q-rational curves of degree 1, we find (as expected) exactly the 20 known
Q-rational lines, falling into three equivalence classes under symmetry, with repre-
sentatives [ (8 symmetries), lo (8 symmetries), and l17 (4 symmetries).

For Q-rational curves of degree 2 we find the known conics, falling into the two
equivalence classes IT — Iy — l37 (16 symmetries) and II — 17 — l15 (4 symmetries).
Their parametrizations are given at (2.1) and (2.2).

There are 24 Q-rational irreducible cubics, in three equivalence classes up to
symmetry, with representatives 2I1 — I5 — l10 — l19 —l30 — l31, 21T — 111 — l16 — l17 —
l1g — lag, and 21T — I3 — I31 — l17 — l1g — lap (8 symmetries each).

Equivalence class Parametrization (a: b: c: d)
2IT — 5 — 119 — l19 — l3g — I3 —5+ 215
5+ 3s2
—T7s + 1583
54 1583
21T — 141 — lig — li7 — lig — 2o 44 s+ 75>+ 653

64 7s+ s2+4s3
—24 354752 + 483
44754352 — 253
2H—l1—l11—117—l18—12() 3+7S+782+83
1+ 7s+7s% + 3s°
14+ s+3s%+s°
143s+s%+s°

Table 8: Rational cubics on V

There are 176 Q-rational quartics in eight equivalence classes:
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Equivalence class Parametrization (a:b:c:d)
{0,0,0,-1,0,1,—-1,1,2,—1,1,1,1} 6 —5s —11s% — 755 — 57
—12 — 21s — 158% — 553 — s*

4+45—3s? —3s% — st
6+ 11s + 1152 + 553 + s*

{0,0,0,1,1,1,2,—1,0,1,0,—1,0} 3—Ts— 252 —20s° + 857
—3+3s— 2452 + 165 — 8s*
—1+47s—8s*

3 — 55+ 252 4+ 453 — 8s*
{1,0,1,1,-1,0,0,0,0,0,0,1,1} 12 + 27s + 4252 + 2353 + 257
18 4+ 37s + 1852 + 9s% + 45*
6+ 7s — 7s° — 4s*
4—-95—125% — 783 — 25*
{0,-1,0,1,0,0,1,0,0,1,0,1,1} —3 — 185 — 652 — 45% — 57
9 —4s — 652 — 653 — s*
—3 425+ 1252 + 4s% + s*
1—12s+ 283 + s*
{0,0,-1,1,0,0,1,0,0,1,0,1,1} 12 4 27s — 215 — 149s% — 6557
6 + 41s + 2752 + 3353 + 6554
6 + 255 + 8152 + 4153 — 13s*
—4 — 155 — 952 — 5953 — 13s*
{1,0,1,0,-1,0,-2,1,1,0,1,1,1} —1+11s + 3s% 4+ 495> + 10s*
3 — s+ 9s% 4 2153 + 40s*
1 — s+ 1352 —27s% — 10s*
—1 455+ 5% — 5% 4+ 20s*

Table 9: Rational quartics on V'

The divisor{0,-1,0,0,0,1,1,0,0, 1,0, 1, 1} represents a Q-rational quartic curve
defined over Q, but possessing no rational (indeed real) points; its parametrization
may be given as

a:b:c:d=1iV3(1+sH)(1—s—s):
iV3(1+ ) (1+s—s2):
1—s+4s* + 53+ s
1+s+4s2 — 3+ 5%
Similarly, the divisor {2,3,2,2,0,—1,—1,0,0,—1,—1,—1,0} is represented by
a:b:c:d=3+Ts—8s>—7s>+3s*:
3—7s—8s2+7s° +3st:
7/3(1+ 5 — %) (1 + 5%) :
7/3(1 — s — %) (1 + s%).
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The number of rationally parametrizable curves increases rapidly, and it seems
likely that there are such curves of every positive degree. We content ourselves
with listing just one rational parametrization for degrees 5 to 10.

(a,b,c,d) = (3s° + bs, 5s* +3, s* — 1, s° — s);

(a,b,c,d) = (2755 +275° + 195 + 175 + 6,
27s% + 4555 4+ 365 — 1853 — 39s% — 235 — 4,
95% — 355 + 125 + 3053 + 3552 + 175 + 4,
9s% — 95° — 365" — 485> — 315 — 115 — 2);

(a,b,c,d) = (s" 4+ 16s° + 565° + 855 + 445® + 5% — 115 — 3,
357 4+ 1155 — % — 445" — 8553 — 5652 — 165 — 1,
57 + 555 +95° + 20s? 4 2553 + 1657 + 45 + 1,
57+ 4% +165° + 255 + 205 + 95% 4 55 + 1);

(a,b,c,d) = (5% — 58" +265° — 765° + 137s* — 1155° + 1652 + 645 — 24,
s8 — 35" — 255 + 465° — 153s% 4 277s% — 28257 4 1565 — 24,
s — 55T +10s% — 655 — 17s* + 355> — 30s% + 45 — 8,
§8 — 757 +265% — 60s° + 1055 — 13753 + 1365% — 80s + 24);

(a,b,c,d) = (s° — 33s° — 184s, s® +47s* + 96, 3s% + 21s* — 32, 57 + 7s° + 56s);

(a,b,¢,d) =

(4519 =255 41235% — 35557 +6535° —6105° +565* + 7205 —9765% +6405 — 192,
6510 —315” +615%— 155" —23355 +5385% —7285* + 760> — 86452 + 5445 —64,
2519 — 557 1958 +1555" —4815°4+9305° —1208s* + 10805 — 60852 +160s — 64,
4519 3157 4+119s% — 28557 +5335° —7625° + 8085 —5605° + 30452 — 2565+ 64).

4. Appendix

For reference, we give here (in terms of subscript) the action of the sign-change
symmetries on the Q-rational lines, together with the action of the further two

symmetries:
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(abed) |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(a,bcd) |13 14 15 16 9 10 11 12 5 6 7 8 1 2 3 4 18 17 20 19
(abcd) |4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13 18 17 20 19
(a,b,cd) [16 15 14 13 12 11 10 9 8 6 5 4 3 2 1 17 18 19 20
(@ bcd |4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13 19 20 17 18
(a,bcd) |16 15 14 13 12 11 10 9 8 7 6 b5 4 3 2 1 20 19 18 17
(a,b-cd |1 2 3 4 5 6 7 8 O 10 11 12 13 14 15 16 20 19 18 17
(-a,bc,d) |18 14 15 16 9 10 11 12 5 6 7 8 1 2 3 4 19 20 17 18
(badc) |1 5 9O 13 2 6 10 14 3 7 11 15 4 8 12 16 17 18 19 20
(3d,3cba)| 6 5 8 7 2 1 4 3 14 13 16 15 10 9 12 11 17 19 18 20

Table 10: Action of the symmetries on the Q-rational straight lines

The following matrix expresses the linear equivalence classes of the 32 straight
lines on V' in terms of the set of Z-generators of Theorem 2.1.
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Table 11:

Linear

equivalence classes of the lines in terms of the
Z-generators of Theorem 2.1
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