ON A PROBLEM CONCERNING PERFECT POWERS IN LINEAR RECURRENCES

Péter Kiss (EKTF, Hungary)

Abstract: For a linear recurrence sequence $\{G_n\}_{n=0}^{\infty}$ of rational integers of order $k \geq 2$ satisfying some conditions, we show that the equation $sG_x^r = w^q$, where w > 1 and r are positive integers and s contains only given primes as its prime factors, implies the inequality $q < q_0$, where q_0 is an effective computable constant depending on the sequence, the prime factors of s and r.

Let $G = \{G_n\}_{n=0}^{\infty}$ be a linear recurrence sequence of order $k \ge 2$ defined by

$$G_n = A_1 G_{n-1} + A_2 G_{n-2} + \dots + A_k G_{n-k} \quad (n \ge k),$$

where A_1, \ldots, A_k are given rational integers with $A_k \neq 0$ and the initial values $G_0, G_1, \ldots, G_{k-1}$ are not all zero integers. We denote by $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_s$ the distinct roots of the polynomial

$$g(x) = x^{k} - A_{1}x^{k-1} - A_{2}x^{k-2} - \dots - A_{k},$$

furthermore we suppose that $|\alpha| > |\alpha_i|$ for $2 \le i \le s$, and the roots $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_s$ have multiplicity $m_1 = 1, m_2, \ldots, m_s$. In this case $|\alpha| > 1$ and, as it is well known, the terms of G can be written in the form

(1)
$$G_n = a\alpha^n + g_2(n)\alpha_2^n + \dots + g_s(n)\alpha_s^n \quad (n \ge 0),$$

where g_i $(2 \le i \le s)$ is a polynomial of degree $m_i - 1$, furthermore a and the coefficients of g_i are elements of the algebraic number field $\mathbb{Q}(\alpha_1, \ldots, \alpha_s)$.

Several authors investigated the perfect powers in the recurrences G. Among others T. N. Shorey and C. L. Stewart [6] proved that for a given integer $d(\neq 0)$ the equation

$$G_x = dw^q$$

with positive integers x, w(> 1) and q implies the inequality q < N, where N is an effectively computable constant depending only on d and G. In [4] we gave an improvement of this result substituting d by integers containing only fixed prime factors. For second order recurrences (k = 2) A. Pethő obtained more strict

Research was supported by Hungarian OTKA foundation, No. T 020295 and 29330.

results (e.g. see [5]). In [2] B. Brindza, K. Liptai and L. Szalay proved, under some conditions, that for recurrences G and H the equation

$$G_x H_y = w^q$$

can be satisfied only if q is bounded above. We proved [3] that for a sequence G and fixed positive integer n from

$$G_n^r G_x^{q-r} = w^q,$$

with $0 < r \leq q/2$, it follows that q is bounded above.

In this note we prove the following theorems.

Theorem 1. For given primes p_1, \ldots, p_t let S be a set of integers defined by

$$S = \{n : n \in \mathbb{N}, \ n = \prod_{i=1}^{t} p_i^{\beta_i}, \ \beta_i \ge 0\}.$$

Let $r \ge 1$ be an integer and let G be a linear recurrence defined in (1) satisfying the conditions $a \ne 0$ and $G_n \ne a\alpha^n$ for $n \ge n_0$. Then the equation

(2)
$$sG_x^r = w^q$$

with positive integers $s \in S$, w > 1 and $x > x_0$ (x_0 depends on G and r) implies that $q < q_0$, where q_0 is an effectively computable constant depending on n_0, r , the sequence G and the primes p_1, \ldots, p_t .

Theorem 2. Let G be a linear recurrence defined by (1) satisfying the conditions $a \neq 0$ and $G_n \neq a\alpha^n$ for $n \geq n_0$. If

$$G_y^{q-r}G_x^r = w^q$$

for positive integers x, y, q and r with the conditions (q, r) = 1 and $y < n_1$, then $q < q_1$, where q_1 is a constant depending on G, n_0 and n_1 , but does not depend on r.

In the proofs we need some lemmas.

Lemma 1. Let $\omega_1, \omega_2, \ldots, \omega_v$ ($\omega_i \neq 0$ or 1) be algebraic numbers and let $\gamma_1, \gamma_2, \ldots, \gamma_v$ be not all zero rational integers. Suppose that $\omega_1, \ldots, \omega_v$ have heights $M_1, \ldots, M_v (\geq 4)$, furthermore $|\gamma_i| \leq B$ ($B \geq 4$) for $i = 1, 2, \ldots v - 1$ and $|\gamma_v| \leq B'$. Further let

$$\Lambda = \gamma_1 \log \omega_1 + \gamma_2 \log \omega_2 + \dots + \gamma_v \log \omega_v,$$

where the logarithms mean their principal values. If $\Lambda \neq 0$, then there exists an effectively computable constant c > 0, depending only on v, M_1, \ldots, M_{v-1} and the degree of the field $\mathbb{Q}(\omega_1, \ldots, \omega_v)$, such that for any δ with $0 < \delta < 1/2$ we have

$$|\Lambda| > (\delta/B')^{c \log M_v} e^{-\delta B}$$

(see A. Baker [1]).

Lemma 2. Let a, b, c, q and r be positive integers with 0 < r < q and (q, r) = 1. If

(3)
$$a^{q-r}b^r = c^q,$$

then for any integer r_1 with $0 < r_1 < q$ there is a positive integer d, such that

$$a^{q-r_1}b^{r_1} = d^q.$$

Proof of Lemma 2. From (3)

$$\left(\frac{b}{a}\right)^r = \left(\frac{c}{a}\right)^q$$

follows. Let x and y be integers for which $rx + qy = r_1$. Then

$$\left(\frac{b}{a}\right)^{rx} = \left(\frac{c}{a}\right)^{qx}$$

and

$$\left(\frac{b}{a}\right)^{rx} \left(\frac{b}{a}\right)^{qy} = \left(\frac{b}{a}\right)^{r_1} = \left(\frac{c}{a}\right)^{qx} \left(\frac{b}{a}\right)^{qy}$$

from which

$$\left(\frac{b}{a}\right)^{r_1}a^q = a^{q-r_1}b^{r_1} = \left(\frac{c^x b^y a}{a^{x+y}}\right)^q = d^q$$

follows, where d is an integer since $a^{q-r_1}b^{r_1}$ is integer.

Proof of Theorem 1. In the proof we denote by c_1, c_2, \ldots effectively computable positive constants, which depend only on n_0, r , the sequence G and the primes p_1, \ldots, p_t . Suppose that equation (2) holds with the conditions given in the theorem. We can suppose that

(4)
$$s = p_1^{u_1} \cdots p_t^{u_t}$$
, where $0 \le u_i < q$ for $1 \le i \le t$.

Namely if

$$s = \prod_{i=1}^{t} p_i^{u_i + qv_i} = \prod_{i=1}^{t} p_i^{u_i} \left(\prod_{i=1}^{t} p_i^{v_i}\right)^q,$$

then $w/\prod_{i=1}^{t} p_i^{v_i}$ is also an integer and greater than 1.

By (1), equation (2) can be written in the form

(5)
$$\lambda = \frac{w^q}{sa^r \alpha^{xr}} = \left(1 + \frac{g_2(x)}{a} \left(\frac{\alpha_2}{\alpha}\right)^x + \cdots\right)^r,$$

where $|\lambda| \neq 1$ if $x > n_0$. Using the properties of the exponential and logarithm functions, by (5) and $|\alpha| > |\alpha_i|$ (i = 2, ..., s)

$$\left|\lambda\right| < \left|1 + e^{-c_1 x}\right|^r$$

and

(

$$(6) \qquad \qquad |\log|\lambda|| < re^{-c_2x} = e^{\log r - c_2x}$$

follows. On the other hand, by (5)

(7)
$$|\log |\lambda|| = \left| q \log w - r \log |a| - xr \log |\alpha| - \sum_{i=1}^{t} u_i \log p_i \right|.$$

By (2) and (4) it follows that

$$G_x^r > \left(\frac{w}{\prod\limits_{i=1}^t p_i}\right)^q,$$

where $w/\prod_{i=1}^{t} p_i > 1$ is an integer since any prime factor of s divides w. From this inequality, using (1),

$$\log\left(|a|^r|\alpha|^{rx}\right) > c_3q\log w\left(1 - \frac{\log\left(\prod_{i=1}^t p_i\right)}{q\log w}\right)$$

follows and so, if q is large enough,

$$q < c_4 r x \text{ and } x > c_5 q \log w$$

Since $u_i < q < c_4 r x$, using Lemma 1 with $v \leq t + 3$, $\omega_v = w$, $M_v = 2w (\geq 4)$, B' = q and $B = c_4 x r$, from (7) we obtain the inequality

(9)
$$|\log |\lambda|| > (\delta/q)^{c_6 \log 2w} e^{-\delta c_4 r x} = e^{-(\log q - \log \delta)c_6 \log 2w - \delta c_4 r x}$$

for any $0 < \delta < 1/2$. By (6) and (9) we obtain that

$$(\log q - \log \delta)c_6 \log 2w + \delta c_4 r x > -\log r + c_2 x$$

and

(10)
$$c_7 \log q \log w > c_8 x,$$

if we choose x_0 and δ such that

$$c_2 - \delta c_4 r - \frac{\log r}{x} > 0,$$

i.e.

$$\delta < \frac{c_2 - \frac{\log r}{x}}{c_4 r}.$$

But by (10) and (8)

$$\log q \log w > c_9 q \log w$$

which implies that q is bounded above.

Proof of Theorem 2. Using Lemma 2 with $a = G_y$, $b = G_x$ and $r_1 = 1$, the equation of the theorem can be transformed into the form

$$G_y^{q-1}G_x = d^q,$$

where d is an integer. From this, by Theorem 1, our assertion follows if we choose the set S such that $G_i \in S$ for any $0 < i < n_1$.

References

- A. BAKER, A sharpening of the bounds for linear forms in logarithms II, Acta Arithm. 24 (1973), 33–36.
- [2] B. BRINDZA, K. LIPTAI AND L. SZALAY, On products of the terms of linear recurrences, In: Number Theory, Eds.: Győry–Pethő–Sós, Walter de Gruyter, Berlin-New York, (1998), 101–106.
- [3] J. P. JONES AND P. KISS, Pure powers in linear recursive sequences (Hungarian, English summary), Acta Acad. Paed. Agriensis, 22 (1994), 55–60.

- [4] P. KISS, Differences of the terms of linear recurrences, Studia Sci. Math. Hungar., 20 (1985), 285–293.
- [5] A. PETHŐ, Perfect powers in second order linear recurrences, J. Number Theory, 15 (1982), 5–13.
- [6] T. N. SHOREY AND C. L. STEWART, On the Diophantine equation $ax^{2t} + bx^ty + cy^2 = d$ and pure powers in recurrence sequences, *Math. Scand.*, **52** (1982), 24–36.

Péter Kiss

Institute of Mathematics and Informatics Károly Eszterházy Teachers' Training College Leányka str. 4–6. H-3301 Eger, Hungary