ON A PROBLEM CONCERNING PERFECT POWERS IN LINEAR RECURRENCES

Péter Kiss (EKTF, Hungary)

Abstract

For a linear recurrence sequence $\left\{G_{n}\right\}_{n=0}^{\infty}$ of rational integers of order $k \geq 2$ satisfying some conditions, we show that the equation $s G_{x}^{r}=w^{q}$, where $w>1$ and r are positive integers and s contains only given primes as its prime factors, implies the inequality $q<q_{0}$, where q_{0} is an effective computable constant depending on the sequence, the prime factors of s and r.

Let $G=\left\{G_{n}\right\}_{n=0}^{\infty}$ be a linear recurrence sequence of order $k \geq 2$ defined by

$$
G_{n}=A_{1} G_{n-1}+A_{2} G_{n-2}+\cdots+A_{k} G_{n-k} \quad(n \geq k)
$$

where A_{1}, \ldots, A_{k} are given rational integers with $A_{k} \neq 0$ and the initial values $G_{0}, G_{1}, \ldots, G_{k-1}$ are not all zero integers. We denote by $\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$ the distinct roots of the polynomial

$$
g(x)=x^{k}-A_{1} x^{k-1}-A_{2} x^{k-2}-\cdots-A_{k},
$$

furthermore we suppose that $|\alpha|>\left|\alpha_{i}\right|$ for $2 \leq i \leq s$, and the roots $\alpha=$ $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$ have multiplicity $m_{1}=1, m_{2}, \ldots, m_{s}$. In this case $|\alpha|>1$ and, as it is well known, the terms of G can be writen in the form

$$
\begin{equation*}
G_{n}=a \alpha^{n}+g_{2}(n) \alpha_{2}^{n}+\cdots+g_{s}(n) \alpha_{s}^{n} \quad(n \geq 0) \tag{1}
\end{equation*}
$$

where $g_{i}(2 \leq i \leq s)$ is a polynomial of degree $m_{i}-1$, furthermore a and the coefficients of g_{i} are elements of the algebraic number field $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{s}\right)$.

Several authors investigated the perfect powers in the recurrences G. Among others T. N. Shorey and C. L. Stewart [6] proved that for a given integer $d(\neq 0)$ the equation

$$
G_{x}=d w^{q}
$$

with positive integers $x, w(>1)$ and q implies the inequality $q<N$, where N is an effectively computable constant depending only on d and G. In [4] we gave an improvement of this result substituting d by integers containing only fixed prime factors. For second order recurrences $(k=2)$ A. Pethő obtained more strict

[^0]results (e.g. see [5]). In [2] B. Brindza, K. Liptai and L. Szalay proved, under some conditions, that for recurrences G and H the equation
$$
G_{x} H_{y}=w^{q}
$$
can be satisfied only if q is bounded above. We proved [3] that for a sequence G and fixed positive integer n from
$$
G_{n}^{r} G_{x}^{q-r}=w^{q}
$$
with $0<r \leq q / 2$, it follows that q is bounded above.
In this note we prove the following theorems.

Theorem 1. For given primes p_{1}, \ldots, p_{t} let S be a set of integers defined by

$$
S=\left\{n: n \in \mathbb{N}, n=\prod_{i=1}^{t} p_{i}^{\beta_{i}}, \beta_{i} \geq 0\right\}
$$

Let $r \geq 1$ be an integer and let G be a linear recurrence defined in (1) satisfying the conditions $a \neq 0$ and $G_{n} \neq a \alpha^{n}$ for $n \geq n_{0}$. Then the equation

$$
\begin{equation*}
s G_{x}^{r}=w^{q} \tag{2}
\end{equation*}
$$

with positive integers $s \in S, w>1$ and $x>x_{0}$ (x_{0} depends on G and r) implies that $q<q_{0}$, where q_{0} is an effectively computable constant depending on n_{0}, r, the sequence G and the primes p_{1}, \ldots, p_{t}.

Theorem 2. Let G be a linear recurrence defined by (1) satisfying the conditions $a \neq 0$ and $G_{n} \neq a \alpha^{n}$ for $n \geq n_{0}$. If

$$
G_{y}^{q-r} G_{x}^{r}=w^{q}
$$

for positive integers x, y, q and r with the conditions $(q, r)=1$ and $y<n_{1}$, then $q<q_{1}$, where q_{1} is a constant depending on G, n_{0} and n_{1}, but does not depend on r.

In the proofs we need some lemmas.
Lemma 1. Let $\omega_{1}, \omega_{2}, \ldots, \omega_{v}\left(\omega_{i} \neq 0\right.$ or 1$)$ be algebraic numbers and let $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{v}$ be not all zero rational integers. Suppose that $\omega_{1}, \ldots, \omega_{v}$ have heights $M_{1}, \ldots, M_{v}(\geq 4)$, furthermore $\left|\gamma_{i}\right| \leq B(B \geq 4)$ for $i=1,2, \ldots v-1$ and $\left|\gamma_{v}\right| \leq B^{\prime}$. Further let

$$
\Lambda=\gamma_{1} \log \omega_{1}+\gamma_{2} \log \omega_{2}+\cdots+\gamma_{v} \log \omega_{v}
$$

where the logarithms mean their principal values. If $\Lambda \neq 0$, then there exists an effectively computable constant $c>0$, depending only on $v, M_{1}, \ldots, M_{v-1}$ and the degree of the field $\mathbb{Q}\left(\omega_{1}, \ldots, \omega_{v}\right)$, such that for any δ with $0<\delta<1 / 2$ we have

$$
|\Lambda|>\left(\delta / B^{\prime}\right)^{c \log M_{v}} e^{-\delta B} .
$$

(see A. Baker [1]).

Lemma 2. Let a, b, c, q and r be positive integers with $0<r<q$ and $(q, r)=1$. If

$$
\begin{equation*}
a^{q-r} b^{r}=c^{q} \tag{3}
\end{equation*}
$$

then for any integer r_{1} with $0<r_{1}<q$ there is a positive integer d, such that

$$
a^{q-r_{1}} b^{r_{1}}=d^{q} .
$$

Proof of Lemma 2. From (3)

$$
\left(\frac{b}{a}\right)^{r}=\left(\frac{c}{a}\right)^{q}
$$

follows. Let x and y be integers for which $r x+q y=r_{1}$. Then

$$
\left(\frac{b}{a}\right)^{r x}=\left(\frac{c}{a}\right)^{q x}
$$

and

$$
\left(\frac{b}{a}\right)^{r x}\left(\frac{b}{a}\right)^{q y}=\left(\frac{b}{a}\right)^{r_{1}}=\left(\frac{c}{a}\right)^{q x}\left(\frac{b}{a}\right)^{q y}
$$

from which

$$
\left(\frac{b}{a}\right)^{r_{1}} a^{q}=a^{q-r_{1}} b^{r_{1}}=\left(\frac{c^{x} b^{y} a}{a^{x+y}}\right)^{q}=d^{q}
$$

follows, where d is an integer since $a^{q-r_{1}} b^{r_{1}}$ is integer.

Proof of Theorem 1. In the proof we denote by c_{1}, c_{2}, \ldots effectively computable positive constants, which depend only on n_{0}, r, the sequence G and the primes p_{1}, \ldots, p_{t}. Suppose that equation (2) holds with the conditions given in the theorem. We can suppose that

$$
\begin{equation*}
s=p_{1}^{u_{1}} \cdots p_{t}^{u_{t}}, \text { where } 0 \leq u_{i}<q \text { for } 1 \leq i \leq t \tag{4}
\end{equation*}
$$

Namely if

$$
s=\prod_{i=1}^{t} p_{i}^{u_{i}+q v_{i}}=\prod_{i=1}^{t} p_{i}^{u_{i}}\left(\prod_{i=1}^{t} p_{i}^{v_{i}}\right)^{q}
$$

then $w / \prod_{i=1}^{t} p_{i}^{v_{i}}$ is also an integer and greater than 1.
By (1), equation (2) can be written in the form

$$
\begin{equation*}
\lambda=\frac{w^{q}}{s a^{r} \alpha^{x r}}=\left(1+\frac{g_{2}(x)}{a}\left(\frac{\alpha_{2}}{\alpha}\right)^{x}+\cdots\right)^{r} \tag{5}
\end{equation*}
$$

where $|\lambda| \neq 1$ if $x>n_{0}$. Using the properties of the exponential and logarithm functions, by (5) and $|\alpha|>\left|\alpha_{i}\right|(i=2, \ldots, s)$

$$
|\lambda|<\left|1+e^{-c_{1} x}\right|^{r}
$$

and

$$
\begin{equation*}
|\log | \lambda\left|\mid<r e^{-c_{2} x}=e^{\log r-c_{2} x}\right. \tag{6}
\end{equation*}
$$

follows. On the other hand, by (5)

$$
\begin{equation*}
|\log | \lambda||=|q \log w-r \log | a|-x r \log | \alpha\left|-\sum_{i=1}^{t} u_{i} \log p_{i}\right| . \tag{7}
\end{equation*}
$$

By (2) and (4) it follows that

$$
G_{x}^{r}>\left(\frac{w}{\prod_{i=1}^{t} p_{i}}\right)^{q}
$$

where $w / \prod_{i=1}^{t} p_{i}>1$ is an integer since any prime factor of s divides w. From this inequality, using (1),

$$
\log \left(|a|^{r}|\alpha|^{r x}\right)>c_{3} q \log w\left(1-\frac{\log \left(\prod_{i=1}^{t} p_{i}\right)}{q \log w}\right)
$$

follows and so, if q is large enough,

$$
\begin{equation*}
q<c_{4} r x \text { and } x>c_{5} q \log w . \tag{8}
\end{equation*}
$$

Since $u_{i}<q<c_{4} r x$, using Lemma 1 with $v \leq t+3, \omega_{v}=w, M_{v}=2 w(\geq 4)$, $B^{\prime}=q$ and $B=c_{4} x r$, from (7) we obtain the inequality

$$
\begin{equation*}
|\log | \lambda\left|\mid>(\delta / q)^{c_{6} \log 2 w} e^{-\delta c_{4} r x}=e^{-(\log q-\log \delta) c_{6} \log 2 w-\delta c_{4} r x}\right. \tag{9}
\end{equation*}
$$

for any $0<\delta<1 / 2$. By (6) and (9) we obtain that

$$
(\log q-\log \delta) c_{6} \log 2 w+\delta c_{4} r x>-\log r+c_{2} x
$$

and

$$
\begin{equation*}
c_{7} \log q \log w>c_{8} x \tag{10}
\end{equation*}
$$

if we choose x_{0} and δ such that

$$
c_{2}-\delta c_{4} r-\frac{\log r}{x}>0
$$

i.e.

$$
\delta<\frac{c_{2}-\frac{\log r}{x}}{c_{4} r}
$$

But by (10) and (8)

$$
\log q \log w>c_{9} q \log w
$$

which implies that q is bounded above.
Proof of Theorem 2. Using Lemma 2 with $a=G_{y}, b=G_{x}$ and $r_{1}=1$, the equation of the theorem can be transformed into the form

$$
G_{y}^{q-1} G_{x}=d^{q}
$$

where d is an integer. From this, by Theorem 1, our assertion follows if we choose the set S such that $G_{i} \in S$ for any $0<i<n_{1}$.

References

[1] A. Baker, A sharpening of the bounds for linear forms in logarithms II, Acta Arithm. 24 (1973), 33-36.
[2] B. Brindza, K. Liptai and L. Szalay, On products of the terms of linear recurrences, In: Number Theory, Eds.: Győry-Pethő-Sós, Walter de Gruyter, Berlin-New York, (1998), 101-106.
[3] J. P. Jones and P. Kiss, Pure powers in linear recursive sequences (Hungarian, English summary), Acta Acad. Paed. Agriensis, 22 (1994), 55-60.
[4] P. Kiss, Differences of the terms of linear recurrences, Studia Sci. Math. Hungar., 20 (1985), 285-293.
[5] A. Pethô, Perfect powers in second order linear recurrences, J. Number Theory, 15 (1982), 5-13.
[6] T. N. Shorey and C. L. Stewart, On the Diophantine equation $a x^{2 t}+$ $b x^{t} y+c y^{2}=d$ and pure powers in recurrence sequences, Math. Scand., 52 (1982), 24-36.

Péter Kiss

Institute of Mathematics and Informatics
Károly Eszterházy Teachers' Training College
Leányka str. 4-6.
H-3301 Eger, Hungary

[^0]: Research was supported by Hungarian OTKA foundation, No. T 020295 and 29330.

