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Abstract

“A picture is worth a thousand words.” This idiom is true for research
studies as well: illustrations in a paper helps the reader to better understand
the findings of the authors. There are already several possibilities for visual-
izing data. But there always exist cases when the currently available diagram
types are not useful enough. We also ran into such a situation, and created
two new diagram types: Cumulative Characteristic Diagram and Quantile
Difference Diagram for illustrating data sets of numeric types.

The Cumulative Characteristic Diagram is a curve, which is based on the
non-ascending order of the values. It makes it easy to read many character-
istics of the input data, and it is suitable to find similarities and differences
between several data sets quickly.

Quantile Difference Diagram draws the differences of two ascending sets
of data on the same quantiles. This diagram is suitable to illustrate in which
subset the data are higher, and it also reveals some important details, which
would remain hidden using statistic tests only.

We found them very useful both in explaining our actual results, and
gaining ideas for further development directions. In this article we show
the usefulness of these diagrams illustrating the results of Contingency Chi-
Squared tests, Wilcoxon rank tests and variance tests.

Keywords: univariate data, data visualization, maintainability, Cumulative
Characteristic Diagram, Quantile Difference Diagram
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1. Introduction

1.1. Overview

In research data arise. Visualization of this is very important, as a diagram may
reveal important characteristics. Furthermore, illustrating the statistic tests with
proper diagrams might help understanding the results.

A great number of diagram types exist, but sometimes none of them are really
adequate for visualization. In this study we present 2 diagram types invented
and implemented by us. One of them we call Cumulative Characteristic Diagram,
and abbreviate CCD. The other one we call Quantile Difference Diagram, and
abbreviate QDD.

These diagrams helped us in further research, and we found them useful in
illustrating the results of Contingency Chi-Squared test, the Wilcoxon test and
variance test.

1.2. Motivation

The motivating examples come from our research in finding the impact of various
developer interactions on software quality. In this section we explain the idea using
a very high level of abstraction, concentrating on the data only.

We collected sets of numbers, and divided them according to some rules to
disjoint subsets. Using some statistical tests we found that there are differences
among the data in the disjoint subsets, and we revealed similar patters among
several executions. However, by visualizing the data with the plain old box plots or
other traditional diagram types, the statistical results could not be really supported.
The box plots, which we found not to be useful in our special case are shown in
Figure 1. Note that this version does not contain the outliers; the diagrams with
outliers were even worse. On the diagram the leftmost box plot illustrates all the
data, and the rest four represents the data falling into disjoint subsets. The data
division was performed on four input data sets.

Based on this example we framed the Cumulative Characteristic Diagram,
which proved to be suitable for illustrating the results. Furthermore, this diagram
type helped us to identify additional connections not discovered earlier. The anal-
ysis of these earlier unrevealed findings leads us to framing the Quantile Difference
Diagrams.

2. Related work

Several diagram types exists for illustrating univariate, bivariate and multivariate
data. One of the fundamental works in this topic is the book Graphical Methods
for Data Analysis (Chambers et al. [1]). For statistical package R a recommended
reading is the R Graphics (Murrel [2]).
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Figure 1: Illustrating case: Plots with limited usefulness

The article Variations of Box Plots by McGill et al. [3] suggests two extensions
of the base box plots. Those times the computers were expensive and slow, and the
diagrams were mostly drawn by hand. The study Opening the Bozx of a Boxplot
by Benjamini [4] exploits the capability of the computer. The article Some Im-
plementations of the Boxplot by Frigge et al. [5] deals mainly with the problem of
outliers. The study Methods for Presenting Statistical Information: The Box Plot
by Potter et al. [6] provides a summary of the variations of box plots.

Probably the most important problem with box plot is that it hides the local
densities. The mentioned studies mostly deal with this problem. To overcome this
shortcoming, in R the density plot could be a good choice in several cases (using
density() function from stat, like follows: plot(density(x))). Other popular
diagram types handling this issue are violin plots (R function vioplot() in pack-
age vioplot (see paper Violin Plots: a Box Plot-density Trace Synergism by Hintze
and Nelson [7])) and bean plots (R function beanplot () in package beanplot, as
described in paper Beanplot: A Boxplot Alternative for Visual Comparison of Dis-
tributions by Kampstra [8]).

The problem of illustrating bivariate data is also very common. An early pro-
posal of a bivariate extension of boxplots is presented in article Bivariate Extensions
of the Boxplot by Goldberg and Iglewicz [9]. An interesting two dimensional exten-
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sion of the box plots is the bag plot, suggested by article The Bagplot: a Bivariate
Bozxplot by Rousseeuw et al. [10]; R function bagplot () in package aplpack.

Visualizing multivariate data is even harder. Article The strucplot Framework:
Visualizing Multi-way Contingency Tables with ved by Hornik et al. [11] suggests
a framework for visualizing multi-way contingency tables.

The presented R functions are mainly based on base package graphics. An-
other basic visualization related package in R is grid. The lattice package
is based on grid, see work Lattice: Multivariate Data Visualization with R by
Sarkar [12] for details.

3. Diagrams

3.1. Cumulative Characteristic Diagram (CCD)

The input of the base diagram is a set of numbers. In the first step, these numbers
are sorted non-ascending. Then cumulatives are calculated for every element: the
series starts with 0, the next element will be the value of the first element of the
sorted array, the second element will be the sum of the first 2 elements, and so
on. In the diagrams the x coordinate represents the number of elements, and the
y coordinate represents the calculated cumulatives. Instead of drawing each point
one by one, these points are connected with straight lines. If the number of elements
is high enough, the result will look like a continuous line without bends.

The diagram type is mostly suitable for data of normal distribution with the
mean close to 0. The diagram is applicable for quick comparison of several data
sets: to illustrate the similarities and differences. It can be used to illustrate quickly
two or more — seemingly similar — data sets if they are really similar or not. A CCD
which contains two or more characteristics on the same diagram we call Composite
Cumulative Characteristic Diagram.

Examples are shown later in this chapter in Figure 2.

3.2. Quantile Difference Diagram (QDD)

The idea behind the Quantile Difference Diagrams is to compare the same quantiles
of two sets of numbers. This means the first element of the first set should be
compared to the first element of the second one, similarly the 10% to the 10%, the
median to the medial, the 90% to the 90%, highest to the highest and so on.

Therefore the input of the QDD is always two sets of numbers. Every centile is
determined in both subsets, i.e. the 0% (which is the lowest one), the 1% (e.g. if
the set contains 1000 elements, this is the 10") etc. This results 101 values in every
case, either by omitting values, or taking the same values several times. Then the
differences are calculated at every centile. On the the diagram these differences
are displayed as a line. Examples for QDD can be found later in this chapter in
Figure 3.
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3.3. The vudc R package

Both diagram types have been implemented as an R package [13]|, named vudc,
which stand for Visualization of Univariate Data for Comparison. This can be
installed directly from the R statistical software as any other package, either directly
from the R GUI, or by downloading from CRAN (http://cran.r-project.org/
web/packages/vudc/index.html). After installation it should be loaded as a usual
R package, as follows:

library(vudc)

The package contains two functions: ccdplot() and gddplot (); furthermore,
data used in our research: projectdata. General information can be obtained
using R help command:

?vudc

ccdplot ()

This function creates a Cumulative Characteristic Diagram. Figure 2 illustrates
some examples.
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Figure 2: ccdplot() examples
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The upper left graphics draws the Cumulative Characteristic Diagram of 100
random real numbers of standard normal distribution. This can be drawn with the
following R function:

ccdplot (rnorm(100))

The upper right figure illustrates the Composite Cumulative Characteristic Dia-
gram. This diagram contains characteristic diagram of two or more sets of numbers
on the same scale, along with (the optional) the CCD of the union of the numbers.
The illustration contains numbers of normal distribution, with different size, dif-
ferent expected values and different variances. This can be created with help of R
command

ccdplot (list (rnorm(400, 0.1, 1), rnorm(200, -0.1, 3)))

The differences in width, height and the right end are spectacular.

The lower left diagram illustrates that this diagram is sensible on the outliers.
A mechanism is built in to remove the outliers automatically, either by providing
an absolute threshold, or a percentage; the later one is applied on both ends. To
reproduce a similar the diagram, use command

ccdplot (c(rnorm(100), -100))

Finally, the lower right diagram illustrates that the function integrates into the
standard R diagram functions, the standard parameters can be passed. The line is
thick, which can be achieved with the following command:

ccdplot (rnorm(100), 1lwd=5)

Detailed information about all the possible parameters and further examples
can be obtained using the R help command:

?ccdplot

qddplot ()

This function creates Quantile Difference Diagrams. Figure 3 illustrates some
examples.

The upper left diagram illustrates the comparison of two sets of random numbers
of normal distribution, with different number of elements (100 vs. 200), different
means (30 vs. 10) and different standard deviation. Despite the fact that the
number of elements in the second subset is twice as much as in the first one, the
illustration was possible. The diagram illustrates that the numbers in the first
subset are higher than those in the second: the territory above the abscissa (i.e.
the x-coordinate) is higher than below it. On the other hand, it also illustrates
that among the lowest elements the numbers in the second subset are higher than
those in the first one. The diagram can be created using the following command:
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Figure 3: qddplot() examples

qddplot (rnorm(100, 30, 50), rnorm(200, 10, 10))

The upper right diagram illustrates that the diagram is biased at both ends.
This diagram is illustrated with numbers of the same distribution as above. By
default, the diagram does not display the lower and the upper 5%. This can be
fine-tuned using parameters. In this example the remove ratio is set to 0:

qddplot (rnorm(100, 30, 50), rnorm(200, 10, 10), remove.ratio=0.0)

The primary usage of this diagram is intended to illustrate the comparison of
two sets of numbers of the same distribution and similar variance, but different
expected value. The first set contains 41 numbers, close to all the integers from -20
up to +20, and the second one similar numbers from -15 to +25. The difference is
about 5, which is illustrated in the lower left diagram. The usage is intended to be
converse: we have 2 sets of numbers, and the diagram reveals this property. The
diagram was made using command

qddplot (seq(-20, 20) + rnorm(41), seq(-15, 25) + rnorm(41),
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main = "Different median, similar variance",
sub = "-20...20 vs. -15...25")

The second most important usage of the diagram is intended to be the variance
comparison. In this example the first set of numbers contain similar elements as
above, and the second one contains 81 elements, around the integers from -40 up
to +40. The comparison statistic tests, which compare the mean or median of the
numbers would not show relevant deflection, however, the diagram, as shown in
the lower right, indicates that there is a difference in variance. The medians are
more or less the same (the difference is around 0 at the median), but in the ends
the line is far from 0. Therefore such an illustration would indicate it is worth to
compare the variances. The diagrams was created using the following command:

qddplot (seq(-20, 20) + rnorm(41), seq(-40, 40) + rnorm(81),
main = "Similar median, different variance",
sub = "-20...20 vs. -40...40")

Detailed information about all the possible parameters and further examples
can be obtained using the R help command:

7qddplot

projectdata

The package contains information about the following software systems: the
well-known open source Ant, Struts 2 and Tomcat, and about an industrial
software with name Gremon, which is a greenhouse monitoring system. In order
to access the data first we need to issue the following command:

data(projectdata)

For each project a data frame is provided, containing information of every
available commit. The rows of the data frame represent commits, and there are
the following columns:

e A: number of added files

U: number of updated files

D: number of deleted files

e MaintainabilityDiff: maintainability difference caused by the commit

The number of added, updated and deleted files are non negative integers,
containing information about Java files (non Java files were removed). Commits
not containing Java files were removed.

The MaintainabilityDiff is the difference of maintainability values of 2 sub-
sequent revisions. The maintainability of every revision was calculated with the
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help of Columbus Quality Model [14]. These maintainability values were normal-
ized and the difference was calculated as described in paper by Farago et al. [15].
The final result is a real number.

This is an example excerpt of the data (information about the first 10 commits
of project Ant):

> projectdata$Ant[1:10,]
A U D MaintainabilityDiff
0 0.00000
-14.55057
0.00000
-524.46238
-19.55645
-184.04878
-15.25897
-56.05360
16.39003
-71.82581

I
S

© 00 N O d WN -~
ONNF WWFKLNFE OO
DO O OO K OO

O O O OO+ O OO

—
o

Detailed information can be obtained using the help page of the project data,
using R command

?projectdata

4. Illustrating the statistic tests

In this section we provide some examples about the usage of the defined diagrams,
illustrating various statistic tests.

For the illustration, first we generate sets of numbers. Both sets are of normal
distribution, containing 101 elements each. The first subset’s (x in the example)
mean is 1, and the standard deviation is also 1, and the second subset’s (y in the
example) mean is -1, and the standard deviation is 3. For the data generation first
we set the radom seed in order to be able to reproduce the results.

set.seed(1)
x <- rnorm(101, 1, 1)
y <- rnorm(101, -1, 3)

In this example we act as we just received these sets of numbers, and we do
not know anything about them. First we generate the Cumulative Characteristic
Diagram and the Quantile Difference Diagram, and then begin with the analysis.
The diagram generation is performed with the following commands:

ccdplot (list(x, y))
gqddplot(x, y)

The results are displayed in Figure 4.
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Figure 4: Examples for statistic test demonstrations

4.1. Wilcoxon rank correlation tests and CCD

First let us check the Cumulative Characteristic Diagram (the left diagram of Fig-
ure 4). Based on the difference of the altitude of the right end of the characteristic
lines (the first one is far above 0, and the second one is far below 0) it indicates that
it is likely that the elements in the first subset are significantly higher than those
in the second. To check this, we perform a one tailed Wilcoxon rank correlation
test (also known as Mann-Whitney U test). This test compares each elements of
the first subset with each in the second one. The advantage of this test over the
t-test (which performs the comparison on the averages) is that while t-test is very
sensitive to outliers the Wilcoxon test does not.
This is the result of the Wilcoxon test:

> wilcox.test(x, y, alternative="greater")
Wilcoxon rank sum test with continuity correction

data: x and y
W = 7843, p-value = 2.046e-11
alternative hypothesis: true location shift is greater than 0

The preliminary assumption based on the CCD turned to be correct: the p-value is
very low. Conversely, having a good result of Wilcoxon test, we can illustrate it with
CCD.

4.2. Wilcoxon rank correlation tests and QDD

The results so far indicates that the numbers in the first subset are greater than those in
the second one. But can we tell more about them? To answer the question, consider the
QDD (the right diagram of Figure 4).

The result of the Wilcoxon test on this diagram means the following: the signed
territory between the line and the x coordinate is positive. However, on the right side
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the line is below 0, meaning that just considering the highest values, those in the second
data set are higher than in the first one. In concrete cases this worth further analysis.
Without QDD, this attribute could have been bypassed.

What does it mean in practice? Let the numbers denote the knowledge of students in
mathematics in different countries. It can be higher in country A compared to country
B in general, but the best students in country B might be better than in country A. On
the Mathematics Olympics country B is likely to gain better results over country A. On
the contrary: having a better results on the Olympics does not necessarily mean that the
education is on the good way.

4.3. Variance tests and CCD

Considering the CCD again (the left diagram of Figure 4) there is another spectacular
difference between the left and the right curve to note: their width are the same, but the
vertical lengths of the lines are different: the right hand side is much longer than the left
hand side. This indicates differences in variance. Let us perform the variance test!

> var.test(x, y, alternative="less")
F test to compare two variances

data: x and y
F = 0.095434, num df = 100, denom df = 100, p-value < 2.2e-16
alternative hypothesis: true ratio of variances is less than 1
95 percent confidence interval:
0.0000000 0.1328177
sample estimates:
ratio of variances
0.09543427

It turned out that the difference (indeed: the ratio) between the variance of the two
subsets are really significant with extremely low p-value (meaning: it is very unlikely that
this happened by chance).

It was not a big surprise for us as we generated the values to have different variances;
however if we act we do not know anything about the nature of the input data, this could
be helpful. In our study such a diagram helped us to perform analysis in this direction,
and we presented the result in article [16].

4.4. Variance tests and QDD

How does the difference in variance look like on the QDD?

If the line on the QDD is more or less horizontal, it indicates that there is no real
difference in variance. On the other hand, if it has a slope, it is a sign of difference in
variance. Considering the right diagram of Figure 4, we conclude that the line has a slope,
indicating the probable significant difference of variances.
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4.5. Contingency Chi-Squared tests and CCD

In the basic case of Chi-Squared tests we have a null hypothesis about the number of
elements of some subsets, and real observations. For example, consider the genres of
students in a university. The null hypothesis is that 50% are male and 50% are female.
In the fictive example of a Technical University there are 257 students, among them 243
boys and 14 girls. With the Chi-Squared test we can check if the difference is casual, or
we should reject the null hypothesis, and state an alternative one, that in the technical
universities there are more males then females.

In a more general case we have a matrix of any dimension. Every observation belongs
to exactly one cell in the matrix. The null hypothesis is that the observations are dis-
tributed evenly in the matrix. It does not exactly mean that the number of elements are
the same in each cell, but it is calculated based on the row and the column sums.

In our example we consider a matrix of dimensions 2x2, containing the number of
positive and negative elements in both subsets. The following listing contains how it was
created, and then the values are displayed. Then the Chi-Squared test is performed, and
the expected values, the global result of the test and the standard residuals on each cells
are displayed. The meaning of the standard residual of a cell in nutshell is the following:
what was the difference between the expected and the actual value if it was a number of
standard normal distribution. Based on this value, p-values can be calculated for each
cell.

> sign <- matrix(c(length(x[x>0]), length(x[x<0]),
length(y[y>0]), length(yl[y<01)),
2, 2, dimnames=list(c("positive", "negative"), c("x", "y")))
> sign
Xy
positive 90 34
negative 11 67
> chisq.test.result <- chisq.test(sign)
> chisq.test.result$expected
Xy
positive 62 62
negative 39 39
> chisq.test.result

Pearson’s Chi-squared test with Yates’ continuity correction

data: sign
X-squared = 63.177, df = 1, p-value = 1.889e-15

> chisq.test.result$stdres

X y
positive 8.092926 -8.092926
negative -8.092926 8.092926
>

The result of the Chi Squared test indicates that the number of positive and negative
elements in sets x and y is significant. This is indeed not surprising for us, as we know
the nature of numbers in the sets. But in general this is not known.
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The connection between the result of the Chi-Squared test and CCD is the following:
if the shapes of the curves does not resemble to each other, with proper division it is likely
that Chi-Squared test will show significant deflection from the null hypothesis (which in
terms of CCD it means the shapes of the curves are similar).

In practice the Chi-Squared test is suggested to be executed specially in the following
case: consider several observations (e.g. technical universities of different cities), and the
curves on the CCD diagrams are different, but the CCD diagrams themselves are similar.

4.6. CCDs of the motivating examples

Figure 5 illustrates the CCD version of the motivating example (see 1 in Chapter 1.2).
The curves within diagrams are obviously different, and there are similarities between the
diagrams. Therefore we found it more useful, compared to the boxplot version.
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Figure 5: Composite Cumulative Characteristic Diagrams about
maintainability
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5. Conclusions

In our earlier studies, we faced several problems in illustrating our achieved results visually.
However, visualization is very important as without it, using just text and tables, it is
harder to explain and understand what we want to express. Furthermore, having just
a bunch of numbers and p-values of test results it is hard to reveal patterns within the
underlying data. For these reasons we introduced two new diagram types which are
suitable for illustrating some of our results so far. Furthermore, we found it useful to
forebode other significant connections not realized before.

In this paper we described these new diagram types, which we call Cumulative Char-
acteristic Diagram (CCD), and Quantile Difference Diagram (QDD). In general, both are
suitable to visualize a numeric set of data. The Cumulative Characteristic Diagram itself
is a curve that is based on the non-ascending order of the values, which are accumulated
and plotted. The Quantile Difference Diagram illustrates the difference of two data sets
on the same quantiles.

After an introduction and giving our motivations, we defined the diagram types and
illustrated some possibilities for their application. We presented how they can be used for
visualizing the results of Wilcoxon rank tests, variance tests and the CCD for contingency
Chi-squared tests.

We implemented the diagram in the R statistic program in package vudc, and we
also provided technical details about the usage of the implemented ccdplot and gddplot
R function, along with the data projectdata added to this package. We described the
parameters of these function in detail and provided examples of their use in practice.

Finally, we presented how these diagrams type helped us in illustrating the results of
our research for revealing the effect of developer interactions on software maintainability.
With the help of these diagrams we were able to reveal some non-standard commits and
outliers; finding and handling them properly helped us to achieve more meaningful results.
We demonstrated how these diagrams were suitable to illustrate the result of a concrete
Chi-squared contingency test, then we provided some examples for visualizing the results
of a Wilcoxon test and variance test.
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