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Abstract

In this paper we study sequences of the form (an + b)∞n=1, where a, b ∈ N.
We prove many interesting results connection with sequences with infinitely
many prime divisors.

Keywords: prime divisors, Dirichlet’s theorem

MSC: 11N13

1. Introduction

There are many mathematical problems when we investigate the divisibility of
sequences by a prime. We usually find this kind of interesting examples in national
mathematical competitions and in the International Math Olympiad. In this paper
we study sequences of the form (an + b)∞n=1, where a, b ∈ N. We prove some
results concerning with sequences with infinitely many prime divisors. Moreover we
characterize these sequences. Some of our theorems assert that there are infinitely
many prime divisors of a sequence. These statements come from easily from the
theory of S-units, but in this paper we use only elementary methods to get our
results. We mention that our results help to generalize problems which can be
found in some exercise books for students.
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Let A = {a1 < a2 < · · · < an < · · · } ⊆ N be a given set and let us denote
by A(x) the number of the elements of A not exceeding x. Let us suppose for any
natural number k there is a positive real number xk such that for all x > xk the
inequality A(x) > (log x)k holds. In this case there are infinitely many different
prime divisors of the elements of A (see [3], p. 102).

Further we shall study the sequences of positive integers where the previous
condition is not true. Let a, b be natural numbers with a > 1 and (a, b) = 1.
Obviously the sequences

(an + b)∞n=1 (1.1)

do not fulfill the above condition, since

A(x) =

[

log(x − b)

log a

]

if x > b + 1.

In what follows we show that sequences (1.1) have infinitely many different
prime divisors. In the special case, when a = 10 and b = 3 we proved (in [6])
that the sequence (10n + 3)∞n=1 has infinitely many prime divisors, moreover for
infinitely many primes p there are infinitely many n ∈ N such that p | 10n + 3.

2. Results

First we prove that there are subsequences of sequences (1.1) which have infi-
nitely many prime divisors.

Theorem 2.1. Let a, b, c, d be natural numbers, (a, b) = 1 and a > 1. Then there
are infinitely many prime divisors of the sequences

(ac+(n−1)d + b)∞n=1. (2.1)

Proof. First we suppose that sequence (2.1) has only finitely many prime divisors.
Let us denote these primes by q1 < q2 < · · · < qk. Let us denote by q1 < q2 <

· · · < ql the prime divisors of sequence (2.1) which are divisors of ac + b as well and
ql+1 < ql+2 < · · · < qk which are not divisors of ac + b. Let us denote by αs for all
1 6 s 6 l and s ∈ N the least natural number such that

qαs
s > ac + b.

Let

M = qα1
1 qα2

2 · · · qαl

l ql+1ql+2 · · · qk

be a product of prime powers. In this case (a,M) = 1 since (a, b) = 1. By the
theorem of Euler we have

M | anϕ(M) − 1 (2.2)

for all n ∈ N.
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Now we investigate the sequence

(ac+mϕ(M)d + b)∞m=1 (2.3)

which is obviously a subsequence of sequence (2.1).
Let q be a prime divisor of sequence (2.3) that is

amϕ(M)d+c + b ≡ 0 (mod q) (2.4)

for some m ∈ N. It follows from (2.2) that

amϕ(M)d − 1 ≡ 0 (mod q). (2.5)

Using (2.4) and (2.5) we have

amϕ(M)d+c + b = amϕ(M)d(ac − 1) + amϕ(M)d − 1 + b + 1 ≡ ac + b (mod q).

It is clear that q | ac + b, it follows that q ∈ {q1, q2, . . . , ql}, that is

amϕ(M)d+c + b = q
βm1
1 q

βm2
2 · · · q

βml

l

where βmj
> 0 for all m ∈ N and 1 6 j 6 l.

We show that for all m ∈ N and 1 6 j 6 l we have βmj
< αj . Let 1 6 j 6 l, m

be arbitrary natural numbers and βmj
> αj then

q
αj

j | amϕ(M)d+c + b,

that is

amϕ(M)d+c + b ≡ 0 (mod q
αj

j ).

Since q
αj

j | M , it follows from (2.2) that amϕ(M)d − 1 ≡ 0 (mod q
αj

j ) and

amϕ(M)d+c + b = amϕ(M)d(ac − 1) + amϕ(M)d − 1 + b + 1 ≡ ac + b (mod q
αj

j ),

that is q
αj

j | ac + b, which is contradiction since q
αj

j > ac + b. It follows that for all
terms of (2.3) we have

amϕ(M)d+c + b < qα1
1 qα2

2 · · · qαl

l 6 M .

In this way we obtained a contradiction since sequence (2.3) is not bounded. �

In the sequel we prove an interesting property of the prime divisors of sequence
(2.1).

Theorem 2.2. If m ∈ N is a divisor of a term of sequence (2.1) then m divides
infinitely many terms of sequence (2.1).
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Proof. Let m ∈ N be a divisor of a term of sequence (2.1). Let us denote by n0

the least non-negative number which

m | ac+n0d + b . (2.6)

Since (a,m) = 1, there exists a power hm of a (mod m). The number m divides
an − 1 if and only if hm | n.

Let us consider the sequence

(ankd+c + b)∞n=1 (2.7)

where

nk = (k − 1)
hm

(hm, d)
+ n0 .

Obviously sequence (2.7) is a subsequence of sequence (2.1).
We show that m divides only those terms of sequence (2.1) which are the terms

of (2.7) as well.
a) First we prove that m divides all terms of sequence (2.7). Obviously we have

ankd+c + b = ankd+c + b − an0d+c + an0d+c =

= an0d+c(a(nk−n0)d − 1) + ank0+c + b =

= an0d+c
(

a
(k−1) hmd

(hm,d) − 1
)

+ an0d+c + b.

(2.8)

Using that d
(hm,d) is an integer number and the definition of hm we have

a
(k−1) d

(hm,d)
hm − 1 ≡ 0 (mod m).

It follows that
ankd+c + b ≡ an0d+c + b (mod m),

that is m divides all terms of (2.7).

b) Secondly we prove that if m divides a term of sequence (2.1) then this term
is a term of sequence (2.7).

Let us choose n ∈ N such that m | and+c1 + b. Obviously n > n0. Then we have

m | and+c1 + b −
(

an0d+c1 + b
)

= an0d+c1
(

ad(n−n0) − 1
)

.

Since (a,m) = 1, therefore m | ad(n−n0) − 1. Using the definition of hm we have
hm | d(n − n0), and

n = (k − 1)
hm

d
+ n0 (2.9)

for some k ∈ N. From equation (2.9) we deduce

n =

(

(k − 1)

hm

(hm,d)

d
(hm,d)

)

+ n0 .
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Using that
(

hm

(hm,d) ,
d

(hm,d)

)

= 1, we have that n is an integer if and only if the

fraction k−1
d

(hm,d)

is also an integer. Consequently

k − 1 = (l − 1)
d

(hm, d)
,

and

n = (l − 1)
hm

(hm, d)
+ n0.

Now the theorem is proved. �

In the previous theorems we investigated such subsequences of sequences (1.1)
where the powers formed arithmetic progressions. It is known that the asymptotic
density of sets of terms of arithmetic progressions are greater than zero, more
exactly it equals the reciprocal of the difference. This means that sequence (2.1)
is such a subsequence of (1.1) which contains relatively “many” terms of sequence
(1.1). In what follows we are looking for subsequences of (1.1) where the density of
the set of powers is zero, but they have infinitely many prime divisors. We give two
sequences possessing the above conditions. In one of them the powers run through
the set of primes and in the other the powers equal the values of Euler’s function
ϕ. It is known fact that the asymptotic density of the set of primes and the set of
values of Euler’s function are zero.

Theorem 2.3. Let a, b be natural numbers with (a, b) = 1 and a > 1. Let us
denote by pn the n-th prime number. Then the sequence

(apn + b)∞n=1 (2.10)

has infinitely many prime divisors.

Proof. Let us suppose that sequence (2.10) has only finitely many prime divisors,
namely q1, q2, . . . , qk. We discuss two cases.

We consider first that there are prime divisors of the terms of sequence (2.10)
which divide a + b. Let us denote by q1 < · · · < ql the divisors of a + b and
ql+1 < · · · < qk which are not divisors of a + b. Let us denote by αs for all
1 6 s 6 l the least natural number which

qαs
s > a + b .

Put

M = qα1
1 qα2

2 · · · qαl

l ql+1 · · · qk.

In this case (a,M) = 1 since (a, b) = 1. It follows from Euler’s theorem that

anϕ(M) − 1 ≡ 0 (mod M) (2.11)
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for all n ∈ N. Using the theorem of Dirichlet we get that there are infinitely many
prime numbers in the sequence (nϕ(M)+1)∞n=1. Let us denote these prime numbers
by p′1 < p′2 < · · · p′n < · · · . Obviously the sequence

(ap′

n + b)∞n=1 (2.12)

is a subsequence of sequence of (2.10). Let q be a prime divisor of sequence of
(2.12). Obviously q ∈ {q1, q2, . . . , qk}, moreover

ap′

i + b ≡ 0 (mod q) (2.13)

for some i ∈ N. It follows from (2.11) and (2.13) that

0 ≡ ap′

i + b ≡ ap′

i−1(a − 1) + ap′

i−1 + b ≡ a + b (mod q).

Thus q | a + b and q ∈ {q1, q2, . . . , ql}. In other words ap′

i + b can be written in the
form

ap′

i + b = q
βi,1

1 q
βi,2

2 · · · q
βi,l

l

where βi,j > 0 for all 1 6 j 6 l natural numbers.
Now we show that βi,j < αj for all 1 6 j 6 l. If βi,j > αj for some 1 6 j 6 l

then
ap′

i + b ≡ 0 (mod q
αj

j )

moreover using (2.11) and q
αj

j | M we have

ap′

i−1 ≡ 1 (mod q
αj

j ).

It follows from the previous congruence that

0 ≡ ap′

i + b ≡ ap′

i−1(a − 1) + ap′

i−1 + b ≡ a + b (mod q
αj

j )

which contradicts the fact that q
αj

j > a + b. In this way we get

ap′

i + b < qα1
1 qα2

2 · · · qαl

l 6 M

for all i ∈ N. Here we have obtained a contradiction since sequence (2.12) is not
bounded.

In the second case we study when the terms of sequence (2.10) do not have such
prime divisors which divide a + b. Put

L = q1q2 · · · qk.

Since (a, L) = 1, therefore

anϕ(L) − 1 ≡ 0 (mod L) (2.14)

for all n ∈ N. Let
Q = lϕ(L) + 1
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be a prime and q be a prime divisor of aQ + b.

It follows from the definition of Q and from (2.14) that

aQ−1 ≡ 1 (mod q)

where q ∈ {q1, q2, . . . , qk}. Obviously

0 ≡ aQ + b ≡ aQ−1(a − 1) + aQ−1 + b ≡ a + b (mod q),

which contradicts the fact that q is not a divisor of a + b. �

It is worth investigating that if a term of sequence (2.10) is divisible by a prime
then this prime is a divisor of infinitely many terms of the sequence. The answer
is not as obvious as before. First of all we prove a Lemma which help us in this
case and other similar cases, too.

Lemma 2.4. Let a, b be natural numbers with (a, b) = 1 and a > 1. If q is a prime
divisor of sequence (1.1) then

1. There exists an exponent hq of a with respect to q.

2. If q is a divisor of ak + b then q is a divisor of those terms of sequence (1.1)
which can be given of the form

ak+zhp + b

where z ∈ Z and k + zhp > 0.

Proof. 1. The first statement is trivial. If (a, b) = 1 and q is a divisor of a term
of sequence (1.1) then (a, q) = 1.

2. Let q is a prime divisor of ak + b. Let us denote by hq an exponent of a with
respect to q. Let us consider a term in the form am + b of sequence (1.1). In this
case q is a divisor of am + b if and only if

(ak + b) − (am + b) ≡ 0 (mod q). (2.15)

Using elementary conversions we have

(ak + b) − (am + b) = amin{k,m}
(

a|m−k| − 1
)

.

Since (a, q) = 1 and hq is an exponent of a we get that congruence (2.15) is valid if
and only if hq is a divisor of |m−k|. This statement is equivalent to our statement.
�

Conclusion 2.5. If a prime q is a divisor of two different terms of sequence (2.10)
then it is a divisor of infinitely many terms of the sequence.
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Proof. Let q be a prime divisor of at least two different terms of sequence (2.10).
Let us denote these terms by ap1 + b and ap2 + b where p1 < p2. It follows from
Lemma 1 that

p2 = p1 + nhq

for some natural number n. Since p1 and p2 are primes therefore (p1, hq) = 1.
Using Dirichlet’s theorem we have that there is a subsequence (p′n)∞n=1 with prime
terms of the sequence (p1 + nhq)

∞
n=1. It follows from Lemma 1 that q is a divisor

of all terms of the sequence
(ap′

n + b)∞n=1.

�

Further we study a subsequence of (1.1) where the powers are the values of
Euler’s function ϕ. Similarly to the previous sequence the asymptotic density of
the set of values of Euler’s function ϕ equals zero. First we prove that there are
infinitely many prime divisors of this sequence.

Theorem 2.6. Let a, b be natural numbers where (a, b) = 1 and a > 1. Then there
are infinitely prime divisors of the sequence

(aϕ(n) + b)∞n=1. (2.16)

Proof. Let us suppose that there are only finitely many prime divisors of sequence
(2.16) namely q1, q2, . . . , qk. We distinguish two cases.

In the first case we suppose that among the prime divisors of sequence (2.16)
there are divisors which divide b + 1. Let us denote these divisors by q1 < · · · < ql

and the others by ql+1 < · · · < qk.
Let us denote by αs for all s (1 6 s 6 l) the least natural number which

qαs
s > b + 1 .

Put
M = qα1

1 qα2
2 · · · qαl

l ql+1 · · · qk.

Obviously (a,M) = 1. It follows from Euler’s theorem that

anϕ(M) ≡ 1 (mod M) (2.17)

for all natural numbers n. Let us consider an increasing sequence of prime numbers
(pi)

∞
i=1 where (pi,M) = 1 for all i ∈ N. Since the Euler’s function is multiplicative

we have that the sequence
(aϕ(pi)ϕ(M) + b)∞i=1 (2.18)

is a subsequence of sequence (2.16).
It is obvious that the prime divisors of sequence (2.18) belong to the set

{q1, q2, . . . , qk}.
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We choose one of them and let us denote it by q. It follows from (2.17) that

0 ≡ aϕ(pi)ϕ(M) + b ≡ b + 1 (mod q),

that is q is a divisor of b + 1 and q ∈ {q1, q2, . . . , ql}. Thus we have

aϕ(pi)ϕ(M) + b = q
βi,1

1 q
βi,2

2 · · · q
βi,l

l

where βi,j > 0 for all 1 6 j 6 l and i ∈ N.
Henceforth we show that βi,j < αj for all 1 6 j 6 l and i ∈ N. If βi,j > αj for

any 1 6 j 6 l and for i ∈ N , then we have

aϕ(pi)ϕ(M) + b ≡ 0 (mod q
αj

j ) and aϕ(pi)ϕ(M) − 1 ≡ 0 (mod q
αj

j ).

It follows from the previous congruences that q
αj

j is a divisor of b+1, this contradicts

the fact that q
αj

j > b + 1. Hence

aϕ(pi)ϕ(M) + b < q
αi,1

1 q
αi,2

2 · · · q
αi,l

l 6 M ,

which is a contradiction since sequence (2.18) is not bounded.

In the second case we suppose that the divisors of sequence (2.16) are not
divisors of b + 1. Put

L = q1q2 · · · qk.

Since (a, L) = 1, it follows from the Euler’s theorem that

aϕ(L) − 1 ≡ 0 (mod L). (2.19)

Obviously aϕ(L) + b is a term of sequence (2.16). Let q be a prime divisor of
sequence (2.16). In this case

0 ≡ aϕ(L) + b ≡ aϕ(L) − 1 + b + 1 ≡ b + 1 (mod q),

that is q is a divisor of b + 1 which is contradiction. �

Further we investigate when a prime divisor of sequence (2.16) divides infinitely
many terms of sequence (2.16). This problem is more difficult than in case (2.10).
We give two sufficient conditions.

Theorem 2.7. If q is a prime divisor of sequence (2.16) and b + 1 ≡ 0 (mod q),
then q is a divisor of infinitely many terms of sequence (2.16).

Proof. Let q be an odd prime divisor of sequence (2.16) with the condition b+1 ≡ 0
(mod q). Since (a, q) = 1, it follows from the Euler’s theorem that aϕ(q) ≡ 1
(mod q). Obviously we have

aϕ(q) + b ≡ aϕ(q) − 1 + b + 1 ≡ 0 (mod q).
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Let (pn)∞n=1 be an arbitrary increasing sequence of prime numbers, where q is not
a term of this sequence.

We show that q is a divisor of all terms of the sequence

(aϕ(qpn) + b)∞n=1.

Since ϕ is a multiplicative function and (q, pn) = 1 we have that

aϕ(qpn) + b ≡ aϕ(q)ϕ(pn) + b ≡ (aϕ(q))ϕ(pn) − 1 + b + 1 ≡ 0 (mod q)

for all natural numbers n. �

Theorem 2.8. Let q be a prime divisor of sequence (2.16) and the power of a is
an odd number (mod q). Then q is a divisor of infinitely many terms of sequence
(2.16).

Proof. Let q be such a prime divisor of sequence (2.16) that the power of a is
odd (mod q). Let us denote by n0 the least natural number where q is a divisor
of aϕ(n0) + b. Since the power hq of a is odd (mod q) from the Dirichlet’s theorem
follows that the sequence

(khq + 2)∞k=1 (2.20)

contains infinitely many prime numbers. Let us choose a subsequence

(p′n)∞n=1

of sequence (2.20) which terms are primes and not divisors of the number n0. Since
ϕ multiplicative we have that

aϕ(n0p′

n) + b = aϕ(n0)ϕ(p′

n) + b = aϕ(n0)(p
′

n−1) + b =

= aϕ(n0)(khq+1) + b = aϕ(n0)+ϕ(n0)khq + b

for all n ∈ N. Using Lemma 1 we have that q is a divisor of all terms of the sequence

(aϕ(n0p′

n) + b)∞n=1.

�

Finally we show that there are infinitely many primes which do not divide any
term of sequence (2.16). First we prove a more general theorem.

Theorem 2.9. Let a > 1 and b > 1 be natural numbers where b is odd and (a, b) =
1. Then there are infinitely many primes p which do not divide any term of sequence

(a2n + b)∞n=1 (2.21)
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Proof. Let p be an arbitrary prime. Then p is not a divisor of any term of sequence
(2.21) if and only if there is no solution of the quadratic congruence x2 ≡ −b

(mod p). Using the Jacobi’s symbol we have

(−b

p

)

= −1.

Let p be an odd prime number where (b, p) = 1. Applying the law of quadratic
reciprocity of Gauss we have

(−b

p

)

=
(−1

p

)(p

p

)

= (−1)
p−1
2

(p

b

)

(−1)
p−1
2

b−1
2 =

(p

b

)

(−1)
p−1
2

b+1
2 . (2.22)

We distinguish two cases.
First we suppose that b = 4l + 1 where l is a natural number. Let us consider

primes of the form
p = 4bk + 2b + 1, where k ∈ N.

It follows from the Dirichlet’s theorem that there are infinitely many primes of the
form as above since (4b, 2b + 1) = 1.

In this case
(

p
b

)

=
(

1
b

)

= 1 and p−1
2

b+1
2 is odd natural number. Using (2.22)

we have
(−b

p

)

= −1.

That is p doesn’t divide any term of sequence (2.21).
In the second case we suppose that b = 4l + 3 where l natural number.

Let us consider primes of the form

p = 2bk + 2b − 1.

Using the previous method we get that there are infinitely many primes of this
form. Obviously b+1

2 is even. Moreover

(p

b

)

=
(−1

b

)

= (−1)
b−1
2 = −1.

Using (2.22) we have equation

(−b

p

)

= −1.

That is p doesn’t divide any term of sequence a (2.21). �

Conclusion 2.10. There are infinitely many primes which do not divide any term
of sequence (2.16).

Proof. Using the previous theorem we get this statement since the Euler’s function
ϕ is even except those cases when ϕ(1) = ϕ(2) = 1. �
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