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Abstract

In this paper we show how to use computers to discover appearence of
cyclic quadrangles in geometric configurations based on a fixed square ABCD

and a variable point P in the plane. The idea is to consider various central
points (like the orthocenters) of the four triangles ABP , BCP , CDP and
DAP or their orthogonal projections to the lines AP , BP , CP and DP .
This is done in Maple V by describing basic functions for the analytic plane
geometry and applying them to these configurations. The figures are realized
in The Geometer’s Sketchpad, Mathematica, and Maple V.
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1. Introduction

Consider in the plane a positively oriented (in the counterclockwise sense)
square ABCD with the center O and a point P which is not on any of the four
lines AB, BC, CD and DA. Let Ha, Hb, Hc and Hd be the orthocenters (i.e., the
intersections of altitudes) of the triangles ABP , BCP , CDP and DAP , respec-
tively. Let Ja, Jb, Jc and Jd denote the orthogonal projections of Ha, Hb, Hc and
Hd onto the lines AP , BP , CP and DP , respectively. (See Figures 1 and 2.)

In this paper we want to show how one can use computers to explore properties
of the quadrangles HaHbHcHd and JaJbJcJd. The first property of the quadrangle
HaHbHcHd that its diagonalsHaHc andHbHd are perpendicular is obvious because
points Ha and Hc are on the perpendicular through P onto lines AB and CD while
Hb and Hd are on the perpendicular through P onto lines BC and DA.
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Figure 1: The quadrangle HaHbHcHd from orthocenters.

The second property is more difficult to establish. We shall do this later using
analytic geometry. Ever since Decartes this is the most simple and the most effec-
tive method to transfer geometric problems into algebraic setting. The reduction
usually leads to equations whose solutions give answers. Since the software for
symbolic computation (like Derive, Maple V and Mathematica) excels in solving
equations, in this way we get the possibility to use computers in our explorations.

Property 2. The points O, P , Ja, Jb, Jc and Jd lie on a circle. In particular,
the quadrangle JaJbJcJd is cyclic.

We can say more about the circle m which appears in the Property 2. It is the
circumcircle of the negatively oriented square PONM built on the segment PO.

Hence, if |PO| = δ, then the radius of the circle m is δ
√

2
2 (see Figure 2).

The third property describes the following surprising connection of the quad-
rangles HaHbHcHd and JaJbJcJd (see Figure 3).

Property 3. The lines HaJa, HbJb, HcJc and HdJd intersect in the point N
and go through the points B, C, D and A, respectively.

Now one can wonder when is the quadrangle HaHbHcHd cyclic and when will
the quadrangle JaJbJcJd have perpendicular diagonals JaJc and JbJd. The answers
give the following two theorems.
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Figure 2: The cyclic quadrangle JaJbJcJd.

Theorem 1.1. The quadrangle HaHbHcHd is cyclic if and only if the point P
is either on the line AC, on the line BD or on the circumcircle k of the square
ABCD.

Theorem 1.2. In the quadrangle JaJbJcJd the lines JaJc and JbJd are perpendic-
ular if and only if the point P is either on the line AC, on the line BD or on the
circumcircle k of the square ABCD.

More precisely, Ha = Hc and/or Hb = Hd if and only if P is either on the line
AC or on the line BD. Hence, the first two parts of the locus from Theorems 1.1
and 1.2 correspond to the case when the quadrangle HaHbHcHd degenerates to
a segment or a point and either Ja = Jc or Jb = Jd. The role of the third part
(the circumcircle k) is explained better by the following statement: If P is on the
circumcircle k, then

(a) HaHbHcHd is a square of side equal to the diagonals of ABCD with P as
the center whose diagonals HaHc and HbHd are parallel to the lines BC and AB,

(b) JaJbJcJd is also a square of side equal to the half of the diagonals of ABCD,

(c) JaJbJcJd and HaHbHcHd are related by the homothety h(N, 2) where N
is the vertex of the square on the segment PO (see Figure 4).
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Figure 3: The lines HaJa, HbJb, HcJc and HdJd concur in the point N .

An interesting path is to explore how the areas of the quadrangles HaHbHcHd

and JaJbJcJd compare to the area Ω of the square ABCD. We define the area
|WXY Z| of the quadrangle WXY Z as the sum |WXY | + |WY Z| of (oriented)
areas of the triangles WXY and WY Z.

For every real number m let Pm and Qm denote the loci of all points P such
that |HaHbHcHd| = mΩ and |JaJbJcJd| = mΩ, respectively.

Theorem 1.3. For m < 0, m = 0, 0 < m < 2, m = 2 and m > 2 the set Pm is
the union of two hyperbolas, the union of lines AC and BD, the empty set, the
circumcircle k of the square ABCD, and the union of two ellipsis, respectively. If
the axes of one conic are ϕ and ψ then the axes of the other are ψ and ϕ.

The Figures 5 and 6 show the sets Pm for m = −1 and m = 3 and the set Q 1

2

together with the square ABCD. Notice that Q 1

2

is the union of the circumcircle
k of the square ABCD and a symmetric curve of order six that touches k in the
vertices of the square.

Let us conclude this description of our results with some comments on what
else one can do with this approach. Instead of orthocenters we can consider other
central points of the triangle (like the centroid, the circumcenter, the center of the
nine-point circle – see the references [3] and [4] for the list of more than thou-
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Figure 4: The squares HaHbHcHd and JaJbJcJd when the point P is on the cir-
cumcircle of ABCD.

sand such points). For example, we have the following analogue of Property 2 for
circumcenters.

Let Oa, Ob, Oc and Od be the circumcenters of the triangles ABP , BCP , CDP
and DAP , respectively. Let Na, Nb, Nc and Nd denote the orthogonal projections
of Oa, Ob, Oc and Od onto the lines AP , BP , CP and DP , respectively.

Property 4. The points Na, Nb, Nc and Nd are vertices of the square which
is related to the square ABCD by the homothety h(P, 1

2 ).

A computer search reveals that the Steiner point gives the following result also
similar to the Property 2.

Recall that the Steiner point is denoted as X(99) in [3] and on page 120 of
[1] it is noted that the Steiner point of a triangle is the center of mass of the
system obtained by suspending at each vertex a mass equal to the magnitude of
the exterior angle at that vertex. It is also the intersection of the circumcircle with
the Steiner ellipse and the point of concurrency of parallels through the vertices to
the corresponding sides of its first Brocard triangle (see [2]).

Let Sa, Sb, Sc and Sd be the Steiner points of the triangles ABP , BCP , CDP
and DAP , respectively.

Property 5. The points P , Sa, Sb, Sc and Sd lie on a circle whose center is
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Figure 5: The loci P−1 (hyperbolas) and P3 (ellipses).

on the line PO. In particular, the quadrangle SaSbScSd is cyclic.

In this article we took the square ABCD as the underlying figure. Of course,
it is possible to take instead any quadrangle or any triangle and perform similar
constructions. The possibilities are numerous here but it remains to explore which
of these choices give interesting results.

2. Primer on analytic plane geometry in Maple V

The key idea of the analytic geometry is to associate algebraic entities with
geometric objects and then investigate them using algebraic methods.

The input of points on the plane in Maple V is quite simple because they are
just ordered pairs of real numbers (their rectangular coordinates). For example,
the input

tA:=[2, 3]: tB:=[5, 7]: tC:=[-2, 0]: tT:=[x, y]:

defines four points on the plane A(2, 3), B(5, 7), C(−2, 0), T (x, y).

We shall now list definitions of basic functions in Maple V for analytic geometry
in the plane in rectangular coordinates. The first group of these functions are FS
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Figure 6: The locus Q 1

2

.

(shortcut for composition of commands simplify and factor), dis (the distance
of two points), mid (the midpoint of two points), rat (the point which divides two
given points in given ratio k 6= −1), rat2 (the point which divides two given points
in given ratio m

n
where m+ n 6= 0).

FS:=a->factor(simplify(a)):

dis:=(a,b)->FS(sqrt((a[1]-b[1])ˆ2+(a[2]-b[2])ˆ2)):

mid:=(a,b)->FS([(a[1]+b[1])/2,(a[2]+b[2])/2]):

rat:=(a,b,k)->FS([(a[1]+k*b[1])/(1+k),

(a[2]+k*b[2])/(1+k)]):

rat2:=(a,b,m,n)->FS([(n*a[1]+m*b[1])/(m+n),

(n*a[2]+m*b[2])/(m+n)]):

The lines in the program Maple V are represented as ordered triples [a, b, c] of
coefficients of their linear equations. For example, the input
pX:=[1, 0, 0]: pY:=[0, 1, 0]: pD:=[1, -1, 0]: pG:=[-1, 2, 2]:

define the y-axis, the x-axis, the bisector of the first and the third quadrant and
the line −x+ 2 y + 2 = 0.

We continue with functions li1 (for a line through a given point with a given
slope), li2 (for a line through two given different points), olQ (to test if a point is
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on a line), clQ (to test if three given points are collinear), and ins (the intersection
of two lines or the information that they are parallel).
li1:=(a,k)->FS([k,-1,a[2]-k*a[1]]):

li2:=(a,b)->FS([a[2]-b[2],b[1]-a[1],a[1]*b[2]-b[1]*a[2]]):

olQ:=(t,p)->FS(t[1]*p[1]+t[2]*p[2]+p[3]):

clQ:=(a,b,c)->FS(a[1]*b[2]-a[1]*c[2]-b[1]*a[2]+

b[1]*c[2]+c[1]*a[2]-c[1]*b[2]):

ins:=(p,q)->FS([(q[3]*p[2]-q[2]*p[3])/(q[2]*p[1]-q[1]*p[2]),

(q[1]*p[3]-q[3]*p[1])/(q[2]*p[1]-q[1]*p[2])]):

Functions par and per for the parallel and the perpendicular through a point to
a line and tests paQ and peQ if two lines are parallel or perpendicular and the test
ccQ for concurrency of three lines (i.e., whether they are parallel or intersect in a
point) are next.

par:=(t,p)->FS([p[1],p[2],-t[1]*p[1]-t[2]*p[2]]):

per:=(t,p)->FS([p[2],-p[1],t[2]*p[1]-t[1]*p[2]]):

paQ:=(p,q)->FS(q[1]*p[2]-p[1]*q[2]):

peQ:=(p,q)->FS(p[1]*q[1]+p[2]*q[2]):

ccQ:=(a,b,c)->FS(a[1]*b[2]*c[3]-a[1]*b[3]*c[2]-b[1]*a[2]*

c[3]+b[1]*a[3]*c[2]+c[1]*a[2]*b[3]-c[1]*a[3]*b[2]):

We conclude with the functions pro and ar for the orthogonal projection of a point
onto a line and for the oriented area of a triangle on three given points.

pro:=(a,p)->FS([

(p[2]*(a[1]*p[2]-a[2]*p[1])+p[1]*p[3])/(p[1]ˆ2+p[2]ˆ2),

(p[1]*(a[2]*p[1]-a[1]*p[2])-p[2]*p[3])/(p[1]ˆ2+p[2]ˆ2)]):

ar:=(a,b,c)->FS((a[2]*c[1]-b[1]*a[2]-a[1]*c[2]+

a[1]*b[2]+b[1]*c[2]-c[1]*b[2])/2):

3. Central points functions

In this continuation of the previous section we shall describe functions for the
central points that are mentioned in the introduction: the circumcenter, the ortho-
center, and the Steiner point. On the way to define the Steiner point we also need
functions for the symmedian point and the vertices of the first Brocard triangle.

First define the functions for the perpendicular bisector of a segment and the
triangle circumcenter and orthocenter.

bis:=(a,b)->per(mid(a,b),li2(a,b)):

O_:=(a,b,c)->ins(bis(a,b),bis(a,c)):

H_:=(a,b,c)->ins(per(a,li2(b,c)),per(b,li2(c,a))):
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The following function for the symmedian point is using the fact (see [1, p. 60g])
that symmedians bisect sides of the triangle from the projections Ah, Bh, Ch of
vertices on opposite sidelines.

Ah_:=(a,b,c)->pro(a,li2(b,c)):

K_:=(a,b,c)->ins(li2(a,mid(Ah_(b,c,a),Ah_(c,a,b))),

li2(b,mid(Ah_(c,a,b),Ah_(a,b,c)))):

The vertices Ab, Bb, Cb of the first Brocard triangle are the orthogonal projections
of the symmedian point onto the perpendicular bisectors of sides (see [1, p. 110]
and Figure 7).

Ab_:=(a,b,c)->pro(K_(a,b,c),bis(b,c)):

Hence, the Steiner point is defined as follows (see Figure 8):

S_:=(a,b,c)->ins(par(a,li2(Ab_(b,c,a),Ab_(c,a,b))),

par(b,li2(Ab_(c,a,b),Ab_(a,b,c)))):
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S

Ab

Bb

Cb

Figure 7: The Steiner point S is the intersection of parallels through vertices to
sides of the first Brocard triangle AbBbCb.

4. Verification of results

We shall now show how to prove most of the claims from the introduction with
the help of computers in Maple V.
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We first define the points A, B, C, D, O and P . They will be denoted with
small letters because D is reserved in Maple V.

a:=[-1,-1]:b:=[1,-1]:c:=[1,1]:d:=[-1,1]:o:=[0,0]:p:=[x,y]:

Then we give the points Ut for U = H, J, O, N, S and t = a, b, c, d (all points
mentioned in the introduction).

Ha:=H_(a,b,p):Hb:=H_(b,c,p):Hc:=H_(c,d,p):Hd:=H_(d,a,p):

Ja:=pro(Ha,li2(a,p)):Jb:=pro(Hb,li2(b,p)):

Jc:=pro(Hc,li2(c,p)):Jd:=pro(Hd,li2(d,p)):

Oa:=O_(a,b,p):Ob:=O_(b,c,p):Oc:=O_(c,d,p):Od:=O_(d,a,p):

Na:=pro(Oa,li2(a,p)):Nb:=pro(Ob,li2(b,p)):

Nc:=pro(Oc,li2(c,p)):Nd:=pro(Od,li2(d,p)):

Sa:=S_(a,b,p):Sb:=S_(b,c,p):Sc:=S_(c,d,p):Sd:=S_(d,a,p):

The proof of the Property 2 is accomplished with the following input.

s:=O_(o,p,Ja):FS(dis(s,o)-dis(s,Jb));

FS(dis(s,o)-dis(s,Jc));FS(dis(s,o)-dis(s,Jc));

Since the output is three times number 0 (zero), we conclude that the points O, P ,
Ja, Jb, Jc and Jd are on a circle. Its center S gives for the input

peQ(li2(o,s),li2(p,s));

the output 0, so that S is the center of the negatively oriented square PONM .
Notice that the points N and M are n:=rat(p,s,-2): and m:=rat(o,s,-2):.

The proof of the Property 3 requires to see that we get zero as the output of
each of the following eight commands.

clQ(n,Ha,Ja); clQ(n,Hb,Jb); clQ(n,Hc,Jc); clQ(n,Hd,Jd);

clQ(b,Ha,Ja); clQ(c,Hb,Jb); clQ(d,Hc,Jc); clQ(a,Hd,Jd);

Proof of Theorem 1.1. The quadrangle HaHbHcHd is cyclic if and only if the
distance between the circumcenters of the triangles HaHbHc and HaHbHd is equal
to zero.

dis(O_(Ha,Hb,Hc), O_(Ha,Hb,Hd))ˆ2;

This square of distance is equal to

T (x− y)
2
(x+ y)

2 (

x2 + y2 − 2
)2 (

x2 + y2 + 2
)2

4 (x2 − 2x+ y2)
2
(y − 1)

2
(y + 1)

2
(x− 1)

2
(x+ 1)

2
(x2 + 2 y + y2)

2 ,

where T is the polynomial

x6 + 3x4y2 + 3x2y4 + y6 − 2x5 + 6x4y − 8x3y2 + 8x2y3 − 6xy4 + 2 y5 + 2x4

− 16x3y+ 12x2y2 − 16xy3 + 2 y4 − 4x3 + 12x2y− 12xy2 + 4 y3 + 4x2 + 4 y2.
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Since x2 + y2 + 2 > 0 for all real numbers x and y and x− y = 0, x+ y = 0
and x2 + y2 − 2 = 0 are equations of the lines AC and BD and of the circumcir-
cle k of the square ABCD, the claim of Theorem 1.1 follows provided we prove
that the polynomial T is equal to zero only for P from the subset of the union
W = AC ∪BD ∪ k.

Let x = r cos θ and y = r sin θ for r > 0 and 0 6 θ < 2π. Let u and v de-
note 3(sin θ − cos θ) + sin 3θ + cos 3θ and 3 − 8 sin 2θ − cos 4θ. Then T = r2 U with
U = r4 + u r3 + v r2 + 2u r + 4. Hence, it remains to show that the real roots of
the equation (*) U = 0 give points from the set W .

Note that u2 − 4v + 16 = 4(1 + sin 2θ)(4 − (sin 2θ − 1)2) is always positive ex-
cept for θ = 3π

4 ,
7π
4 when it is equal to zero. Let w denote

√
u2 − 4v + 16.

Applying the basic command solve to (*) we see that its roots are

r1,2 =
−u+ w ±

√
H

4
, r3,4 =

−u− w ±
√
K

4
,

where H = L− 2uw and K = L+ 2uw with L = u2 + w2 − 32. Note that L can be

written as 16
(

2 (cos θ)
2 − 1

)2

(sin θ cos θ − 1). Hence, L is always negative except

for θ = π
4 ,

3π
4 ,

5π
4 ,

7π
4 when it is equal to zero and (*) has roots ±

√
2.

Since L2 − (2uw)2 = 64(2(cos θ)2 − 1)4 is always positive except for the values
θ = π

4 ,
3π
4 ,

5π
4 ,

7π
4 and L is there always negative it follows that both H and K are

negative so that the four roots above are not real unless they are ±
√

2. �

Proof of Theorem 1.2. The output of the command

peQ(li2(Ja,Jc),li2(Jb,Jd));

is
8(x−y)(x2+y2+2)(x+y)(x2+y2

−2)(x2+y2)
(2+2 y+y2+2 x+x2)(2−2 y+y2

−2 x+x2)(2+2 y+y2
−2 x+x2)(2−2 y+y2+2 x+x2) . This is equal

to zero (i.e., the quadrangle JaJbJcJd has perpendicular diagonals) if and only if
the point P is in the set W . �

Proof of Theorem 1.3. The area Ω of the square ABCD is 4. The output of
FS(ar(Ha,Hb,Hc)+ar(Ha,Hc,Hd)-4*m); is −2 T

(1+y)(1−x)(1−y)(1+x) , where T denotes

the polynomial

2 (1 + y) (1 − x) (1 − y) (1 + x)m+ (x+ y)
2
(x− y)

2
.

For m 6= 0, let α = − 1
2 + 1

2

√

1 − 2
m

and β = 1
2 + 1

2

√

1 − 2
m

. Then

T = −2m(αx2 − β y2 + 1)(β x2 − α y2 − 1).

For m < 0, α > 0 and β > 1 so that Pm is the union of two hyperbolas. For
m = 0, T = (x− y)2(x+ y)2 and Pm is the union of the lines AC and BD. For

0 < m < 2, the discriminant 4m (y − 1)
2
(y + 1)

2
(m− 2) of T considered as a

quadratic trinomial in x2 is negative so that T > 0 and Pm is empty. For m = 2,

T =
(

x2 + y2 − 2
)2

and Pm is the circumcircle k. Finally, for m > 2, α < 0 and
β > 0 so that Pm is the union of two ellipsis. �
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Verification of Property 4. It suffices to note that the output for each of the
commands

dis(Na,rat(p,a,1)); dis(Nb,rat(p,b,1));

dis(Nc,rat(p,c,1)); dis(Nd,rat(p,d,1));

is equal to zero. �

Verification of Property 5. It suffices to note that the output for the last three
commands

t:=O_(Sa,Sb,Sc): FS(dis(t,Sa)-dis(t,p));

FS(dis(t,Sa)-dis(t,Sd)); clQ(o,p,t);

is equal to zero. �
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