
Submitted: October 27, 2022
Accepted: December 3, 2022
Published online: December 28, 2022

Annales Mathematicae et Informaticae
56 (2022) pp. 95–108
DOI: https://doi.org/10.33039/ami.2022.12.003
URL: https://ami.uni-eszterhazy.hu

Generalized Middle-Square Method∗

Viktória Padányi, Tamás Herendi

Department of Computer Science, Faculty of Informatics, University of Debrecen
padanyi.viktoria@inf.unideb.hu
herendi.tamas@inf.unideb.hu
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1. Introduction
Pseudorandom number generators (PRNG) are often used in solving different the-
oretical and practical problems. The particular applications expect appropriate
properties. The most important properties are the distribution of elements pro-
duced by the generators, the low correlation between the consecutive elements, and
the large period length. In terms of usage, the speed, the resource requirements,
and the qualities of the generators are interesting issues. A general approach for
constructing pseudorandom number sequences is the following: the elements of the
sequence are computed from the previous elements recursively. Recursion can be
resolved by the use of a seed. The next seed is computed iteratively from the
preceding seeds, and the random values are extracted from them.

John von Neumann’s Middle Square Method is an interesting way to construct
uniformly distributed PRNG since this was the first practical random number gen-
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erator. In 1946 John von Neumann introduced the method (first published in
[11]). It was simple and fast to execute with ENIAC. He used a recursive def-
inition, where the initial value 𝑥0 is some 2𝑘-digit decimal number. For 𝑛 > 0
he defined 𝑥𝑛 = ⌊𝑥2

𝑛−1/10𝑘⌋ (mod 102𝑘). The period length of the constructed
sequence depends on the initial value. In general, the longest period has length
at most 82𝑘, but very often, it is much shorter. Practically, it is a rather weak
generator. If the seed became 0, it is 0 for all consecutive members. N. Metropolis
[9] investigated the MSM in binary number systems. He showed that in the case
of 20-bit numbers, there are only 13 different cycles. The longest period amongst
the 13 cases is 142, which is rather short. It is not obvious to recognize this short
period because of the long preperiod.

A more detailed description of PRNGs can be found in [4] and [12].
In this paper, we also deal with canonical number systems. It has long been

well-known that positive integers can be represented in a digital way. One of the
generalizations of this was studied in [4, p. 189] by D. E. Knuth. He defined a
number system for the Gaussian integers similar to the rational integers, where the
number system had base −1+ 𝑖. This was later further generalized by I. Kátai and
J. Szabó [3], where the existence of other number system bases was proved but still
in the Gaussian integers. Later, I. Kátai and B. Kovács in [2], B. Kovács in [6] and
B. Kovács and A. Pethő in [7], and [8] even further generalized the definition of
the CNS for the ring of algebraic integers. They also proved their existence. In [6],
a simple condition is given for the construction of CNSs, but in general, it is not
obvious to find them. For the sake of simplicity, we will focus on binary CNSs. A.
Kovács [5] presented a complete description of binary canonical number systems
of degrees not greater than 8. Later, P. Burcsi and A. Kovács [1] extended the
results for CNSs of degrees 9, 10 and 11. The arithmetic in these number systems
is similar to the rational integers with the classical digit representation. However,
the calculation of the next digit requires a more difficult reduction operation. Our
discussion will focus on binary CNSs.

For instance, let 𝛼 be a root of the polynomial 𝑥2 +𝑥+2, e.g., − 1
2 + 𝑖 1

2
√

7. One
can prove that in the ring of algebraic integers Z[𝛼], every number can be written
in the canonical form 𝛾 =

∑︀ℎ
𝑖=0 𝑐𝑖𝛼

𝑖, where 𝑐𝑖 ∈ {0, 1}.

Example 1. Addition in a binary number system

1 1 0 1 0 1
+ 1 0 1 1 1 1

2 1 1 2 1 2
- 1 1 2

2 1 1 1 0 0
- 1 1 2

-1 -1 0 1 1 1 0 0
+ 1 1 2

1 0 1 0 1 1 1 0 0
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Let 𝛾1 = 110101 and 𝛾2 = 101111 be 6-bit long binary numbers in the above
representation. Then 𝛾 = 𝛾1 + 𝛾2 can be calculated according to Example 1. Here
we used the fact that 1 1 2 represents 0.

In the following sections, we define the generalized version of the MSM in binary
CNS and analyze some properties of these generators.

2. Definitions and preliminary results
In this chapter, we define some necessary notions and state important results.

Definition 2.1. Let 𝐴 be a finite set, and 𝑢 be a sequence over 𝐴. We say that
𝑢 ∈ 𝐴∞ is periodic with period length 𝜚 ∈ N, if there exists 𝜚0 ∈ N, such that

𝑢𝑛+𝜚 = 𝑢𝑛 for all 𝑛 ≥ 𝜚0 .

The smallest 𝜚0 and 𝜚 with the previous property will be called the preperiod
and minimal period length of 𝑢, respectively.

If 𝑛 ≥ 𝜚0, then the subsequence 𝑢𝑛, . . . , 𝑢𝑛+𝜚−1 is called a period of the se-
quence.

Remark 2.2. Let 𝐴 be a finite set, 𝑢 ∈ 𝐴∞, 0 < 𝑘 ∈ N and 𝐹 : 𝐴𝑘 → 𝐴. If the
sequence satisfies the recurrence defined by 𝑢𝑛 = 𝐹 (𝑢𝑛−1, . . . , 𝑢𝑛−𝑘) for all 𝑛 ≥ 𝑘,
then 𝑢 is periodic with period length 𝜚 ≤ |𝐴|𝑘.

The following definition is the generalization of number systems for complex
numbers given by I. Kátai and J. Szabó in [3].

Definition 2.3. Let 𝑅 be an integral domain, 𝛼 ∈ 𝑅 and 𝑁 = {𝑛1, . . . , 𝑛𝑚} ⊆
Z. The pair (𝛼, 𝑁) is called a number system in 𝑅, if any 𝛾 ∈ 𝑅 has a unique
representation in the form 𝛾 =

∑︀ℎ
𝑖=0 𝑐𝑖𝛼

𝑖, where 𝑐𝑖 ∈ 𝑁 for all 0 ≤ 𝑖 ≤ ℎ and
𝑐ℎ ̸= 0, if ℎ ̸= 0. The number system is called canonical, if 𝑁 = {0, 1, . . . , 𝑚 − 1}.

We will use the notation 𝐿(𝛾, 𝛼, 𝑁) = ℎ+1, i.e. the length of the representation
of 𝛾 in the number system (𝛼, 𝑁).

Theorem 2.4. Let 𝑝 ∈ Z[𝑥] be an irreducible polynomial with deg(𝑝) = 𝑛, and
𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + · · · + 𝑎0 such that 1 = 𝑎𝑛 ≤ 𝑎𝑛−1 ≤ . . . 𝑎0 and 2 ≤ 𝑎0. Furthermore,
let 𝛼 be a root of 𝑝 and 𝑁 = {0, 1, . . . , 𝑎0 − 1}. Then (𝛼, 𝑁) is a canonical number
system in Z[𝛼].

Proof. The theorem is proven in a more general setting in [6].

Let 𝛽 be an algebraic number of degree 𝑛 ≧ 1. Then 𝛽(𝑖) denotes the 𝑖th

conjugates of 𝛽 for all 𝑖 = 1, . . . , 𝑛.
Let 𝛼, 𝛾 ∈ Q[𝛽]. For the sake of simplicity, we use the notation

|log|𝛼𝛾 = max
1≤𝑖≤𝑛

log
⃒⃒
𝛾(𝑖)

⃒⃒
log |𝛼(𝑖)|

.
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Theorem 2.5. Let 𝛽 be an algebraic integer of degree 𝑛 ≧ 1, and let (𝛼, 𝑁)
be a number system in Z[𝛽]. Then there exist effectively computable constants
𝐶1 = 𝐶1(𝛼, 𝑁) and 𝐶2 = 𝐶2(𝛼, 𝑁) depending only on 𝛼 and 𝑁 , such that

|log|𝛼𝛾 + 𝐶1 ≦ 𝐿(𝛾, 𝛼, 𝑁) ≦ |log|𝛼𝛾 + 𝐶2 (2.1)

holds for every 0 ̸= 𝛾 ∈ Z[𝛽].

Proof. The theorem is proven in [8].

Remark 2.6. John von Neumann’s MSM uses squaring as the only arithmetic
operation. We observe how the length of the numbers changes after squaring.

We fix 𝛼 and the corresponding CNS, and we use the notation 𝐶1 = 𝐶1(𝛼, 𝑁),
𝐶2 = 𝐶2(𝛼, 𝑁) and 𝐿(𝛾) = 𝐿(𝛾, 𝛼, 𝑁).

For example in the usual binary representation 𝛼 = 2. The length of the binary
representation of an integer 𝑛 can be expressed by

𝐿(𝑛, 2) = ⌊log2(𝑛)⌋ + 1 =
⌊︂

log 𝑛

log 2

⌋︂
+ 1 ,

which means that 𝐶1 = 0 and 𝐶2 = 1.
With our simplified notation, equation (2.1) is simplified to

|log|𝛼𝛾 + 𝐶1 ≤ 𝐿(𝛾) ≤ |log|𝛼𝛾 + 𝐶2 . (2.2)

Let 𝛾 ∈ Z[𝛽] be an algebraic integer with length 𝐿(𝛾). By (2.2),

|log|𝛼𝛾 ≤ 𝐿(𝛾) − 𝐶1 , (2.3)

and
𝐿(𝛾) − 𝐶2 ≤ |log|𝛼𝛾 . (2.4)

Applying (2.2), (2.3) and (2.4) to the length of 𝛾2, we obtain

𝐿(𝛾2) ≥ |log|𝛼𝛾2 + 𝐶1 = 2|log|𝛼𝛾 + 𝐶1

≥ 2(𝐿(𝛾) − 𝐶2) + 𝐶1 = 2𝐿(𝛾) − 2𝐶2 + 𝐶1

and

𝐿(𝛾2) ≤ |log|𝛼𝛾2 + 𝐶2 = 2|log|𝛼𝛾 + 𝐶2

≤ 2(𝐿(𝛾) − 𝐶1) + 𝐶2 = 2𝐿(𝛾) − 2𝐶1 + 𝐶2 .

With the notations 𝐶3 = 𝐶1 − 2𝐶2 and 𝐶4 = 𝐶2 − 2𝐶1, we have

2𝐿(𝛾) + 𝐶3 ≤ 𝐿(𝛾2) ≤ 2𝐿(𝛾) + 𝐶4 . (2.5)

We should remark that 𝐶1 and 𝐶3 may have negative values. In Section 4, we
show some estimates on the values of 𝐶3 and 𝐶4 for different 𝛼’s.

Since 𝐿(𝛾) and 𝐿(𝛾2) are integers, thus 𝐶3 and 𝐶4 can be chosen to be integers
without losing precision.
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B. Kovács and A. Pethő in [8] prove not only the existence of the constants but
also provide a way how to determine them. Their formula is explicit for 𝐶1 but
implicit for 𝐶2. Based on the described method, we calculated the values of 𝐶1,
𝐶2, 𝐶3, and 𝐶4 for some polynomials.

By the proof of the Thoerem of [8]

𝐶1 = min
1≤𝑖≤𝑛

log
(︀⃒⃒

𝛼(𝑖)
⃒⃒
− 1

)︀
− log(𝑎0 − 1)

log
⃒⃒
𝛼(𝑖)

⃒⃒ .

For the determination of 𝐶2, one has to compute first some intermediate bounds

𝐶2,𝑖 = 𝑎0 − 1⃒⃒
𝛼(𝑖)

⃒⃒
− 1

.

Now, let
Γ =

{︁
𝛿 | 𝛿 ∈ Z[𝛼],

⃒⃒⃒
𝛿(𝑖)

⃒⃒⃒
≤ 𝐶2,𝑖

}︁
,

and
𝐶2 = max

𝛿∈Γ
𝐿(𝛿, 𝛼) .

In the following, we show the values of the constants for some binary number
systems. The structures are defined by Z[𝛼], where 𝛼’s are given by their defining
polynomials 𝑝(𝑥). In these computations, the symbol i denotes the imaginary unit
(everywhere else in the paper, 𝑖 is an integer).

𝑝(𝑥) = 𝑥2 + 𝑥 + 2 :

𝛼1, 2 = −1
2 ± i1

2
√

7 |𝛼1| = |𝛼2| =
√

2

𝐶2,1 = 𝐶2,2 ≈ 2.41
𝐶1 ≈ −2.54 𝐶2 = 6
𝐶3 = −12 𝐶4 = 10

𝑝(𝑥) = 𝑥2 + 2𝑥 + 2 (the case of Gaussian integers, considered by Knuth in [4,
p. 189]):

𝛼1, 2 = −1 ± i |𝛼1| = |𝛼2| =
√

2
𝐶2,1 = 𝐶2,2 ≈ 2.41

𝐶1 ≈ −2.54 𝐶2 = 8
𝐶3 = −16 𝐶4 = 12

𝑝(𝑥) = 𝑥3 + 𝑥2 + 𝑥 + 2 :

𝛼1 ≈ −1.35 𝛼2, 3 ≈ 0.18 ± i · 1.20
𝐶2,1 ≈ 2.83 𝐶2,2 = 𝐶2,3 ≈ 4.64

𝐶1 ≈ −7.85 𝐶2 = 13
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𝐶3 = −31 𝐶4 = 27

𝑝(𝑥) = 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 2 :

𝐶2,1 = 𝐶2,2 ≈ 3.97 𝐶2,3 = 𝐶2,4 ≈ 7.72
𝐶1 ≈ −16.77 𝐶2 = 21

𝐶3 = −46 𝐶4 = 32

In the last two cases, we detailed only some significant steps of the above-
mentioned computation.

Related to the previously computed constants, we did some experiments. In
Table 2, we collected the results of how the sizes of the squares changed after
squaring in the considered canonical number systems. The set of four CNSs is
extended by the two rational binary number systems with bases 2 and −2.

We consider all the numbers of 20 to 30 digits. For a given length ℎ, the table
contains the distances of the minimal and maximal lengths of the squares from
the expected 2ℎ. Additionally, the average lengths of the squares are presented.
The last column displays the theoretical bounds for the corresponding values of
distances.

Studying the results, one may conjecture that the minimal and maximal lengths
of the squares are considerably closer to the expected value of 2ℎ than the analytical
computations show. Another suspicion is that the average length of squares is close
to 2ℎ, but increasing the degree of the base 𝛼 increases the averages.

3. Arithmetic in canonical number systems
Let (𝛼, 𝑁) be a CNS and 𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + · · · + 𝑎0 be the defining polynomial of 𝛼
according to Theorem 2.4. The usual arithmetic of integers can be generalized to
(𝛼, 𝑁). The modified carry computation can be derived from 𝑝, described below.

Let 𝛽 ∈ Z[𝛼] be the result of some arithmetical operation, and 𝛽 =
∑︀ℎ

𝑖=0 𝑏𝑖𝛼
𝑖

is the representation without reduction. If for all 0 ≤ 𝑖 ≤ ℎ, 𝑏𝑖 ∈ {0, . . . , 𝑎0 − 1}
then 𝛽 is represented in (𝛼, 𝑁). Assume now that there exists 0 ≤ 𝑖 ≤ ℎ such that
𝑏𝑖 /∈ {0, . . . , 𝑎0 − 1} and let 𝑗 be the smallest such integer. Let 𝑐 ∈ Z be such that
𝑏𝑗 = 𝑐 · 𝑎0 + 𝑏′

𝑗 with 0 ≤ 𝑏′
𝑗 < 𝑎0. Since

0 = 𝑎𝑛𝛼𝑛 + 𝑎𝑛−1𝛼𝑛−1 + · · · + 𝑎0 ,

thus

𝛽 =
ℎ∑︁

𝑖=0
𝑏𝑖𝛼

𝑖 + 𝑐𝛼𝑗 · (𝑎𝑛𝛼𝑛 + 𝑎𝑛−1𝛼𝑛−1 + · · · + 𝑎0)

=
ℎ′∑︁

𝑖=0
𝑏′

𝑖𝛼
𝑖 ,

100



Annal. Math. et Inf. Generalized Middle-Square Method

where 𝑏𝑖 = 𝑏′
𝑖 if 0 ≤ 𝑖 < 𝑗, and 𝑏′

𝑗 ∈ {0, . . . , 𝑎0 − 1}.
In this new representation of 𝛽, either all coefficients are in {0, . . . , 𝑎0 − 1} or

the smallest 𝑘 such that 𝑏𝑘 /∈ {0, . . . , 𝑎0 − 1} satisfies 𝑗 < 𝑘. It is proven in [7],
that this iteration will terminate in finitely many steps, providing the unique, valid
digit expansion of 𝛽 in (𝛼, 𝑁).

Based on the above observation, one can create an algorithm for the arithmetic
operations in (𝛼, 𝑁), similar to the usual carry computation used for rational in-
tegers.

By Theorem 2.4, the results of arithmetic operations have finite representation,
whence the carry algorithm will always terminate.

Table 2. Lengths of squares

Length of base numbers
Digits 20 21 22 23 24 25 26 27 28 29 30 T

Defining polynomial: 𝑥 − 2
Decrease 1 1 1 1 1 1 1 1 1 1 1 1
Increase 0 0 0 0 0 0 0 0 0 0 0 0
Average 39.6 41.6 43.6 45.6 47.6 49.6 51.6 53.6 55.6 57.6 59.6

Defining polynomial: 𝑥 + 2
Decrease 3 3 3 3 3 3 3 3 3 3 3 4
Increase 1 1 1 1 1 1 1 1 1 1 1 2
Average 38.9 40.9 42.9 44.9 46.9 48.9 50.9 52.9 54.9 56.9 58.9

Defining polynomial: 𝑥2 + 𝑥 + 2
Decrease 8 8 8 8 8 8 8 8 8 8 8 12
Increase 5 5 5 5 5 5 5 5 5 5 5 10
Average 39.6 41.6 43.6 45.6 47.6 49.6 51.6 53.6 55.6 57.6 59.6

Defining polynomial: 𝑥2 + 2𝑥 + 2
Decrease 12 12 12 12 12 12 12 12 12 12 12 16
Increase 9 9 9 9 9 9 9 9 9 9 9 12
Average 40.6 42.6 44.6 46.6 48.6 50.6 52.6 54.6 56.6 58.6 60.6

Defining polynomial: 𝑥3 + 𝑥2 + 𝑥 + 2
Decrease 11 14 14 14 14 14 14 14 14 14 14 31
Increase 12 12 12 12 12 12 12 12 12 12 12 27
Average 41.6 43.5 45.5 47.5 49.5 51.5 53.5 55.5 57.5 59.5 61.5

Defining polynomial: 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 2
Decrease 17 18 18 18 18 18 20 20 20 20 20 46
Increase 21 21 21 21 21 21 21 21 21 21 21 32
Average 43.8 45.6 47.6 49.7 51.9 53.9 55.7 57.7 59.7 61.8 63.8
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4. Generalized Middle-Square Method
Using binary CNSs, we may generalize John von Neumann’s MSM.

Let 𝑝(𝑥) ∈ Z[𝑥] be an irreducible polynomial of degree 𝑛, and with coefficients
1 = 𝑎𝑛 ≤ 𝑎𝑛−1 ≤ · · · ≤ 𝑎0 = 2. The corresponding CNS has only 2 digits: 0 and 1.
For the sake of simplicity, we will call the digits bits and the digit representation
of algebraic integers in Z[𝛼] as a binary representation.

In the design of the generator, we use a seed of 𝑚 ∈ N bits. Similarly, as it
is done in the original construction, let 𝑢 be a sequence over Z[𝛼] defined by the
following:

𝑢0 ∈ is a random 𝑚-bit number;

if 𝑘 > 0, let

𝑢2
𝑘−1 =

ℎ∑︁
𝑖=0

𝑏𝑖𝛼
𝑖 , with 𝑏ℎ ̸= 0 , 𝑡 =

⌊︂
ℎ − 𝑚

2

⌋︂
and

𝑢𝑘 =
𝑚−1∑︁
𝑖=0

𝑏𝑖+𝑡+1𝛼𝑖 .

The value of 𝑚 should be chosen to be large enough, in particular such that
2𝑚 + 𝐶3 > 𝑚, i.e. 𝑚 > −𝐶3, where 𝐶3 is as defined in section 2.

Another approach is if 𝑡 = ⌊ 𝑚
2 ⌋, but then 𝑚

2 > −𝐶3 should hold.

5. Experimental results
This section provides some experimental results related to the Generalized Middle-
Square Method (GMSM). We observe the periodicity properties for several base
polynomials, particularly those studied in the previous sections.

Furthermore, some statistical tests – the distributions of moving averages, zero-
crossing gaps, and frequency classes – are presented for the GMSM generators,
where the arithmetics are derived from the polynomials 𝑥2 + 𝑥 + 2 and 𝑥4 + 𝑥3 +
𝑥2 + 𝑥 + 2. Comparison of the data – both optically and numerically – shows that
increasing the degree of the polynomials improves the properties of the generated
sequences.

Figure 1 displays the distributions of the moving average of the sequences.
We have initialized the sequences with randomly chosen integers. The sizes of

the samples are 108. The seeds are 63-bit words, and the pseudorandom values
are obtained by a reduction to the 14-bit prefixes (the least significant 49 bits are
eliminated). The length of the window for the summation is 100.

We have used the following simple formula to compute the sequence of moving
averages:

𝑎𝑘 = 1
100

𝑘+100∑︁
𝑖=𝑘

𝑢𝑖 ,
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Figure 1. Moving average distribution

where (𝑢𝑖) is the sequence generated by the GMSM.
Next, we observed the generators’ behavior under the random walk test.

Figure 2. Random walk
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The generated sequences are balanced around 0 by a shift with the mean value:
𝑣𝑘 = 𝑢𝑘 − 𝐸(𝑢). Using the new samples, we have computed the cumulative sums:

𝑐𝑘 =
𝑘∑︁

𝑖=0
𝑣𝑖 ,

The test calculates the frequency of the lengths of the gaps between consecutive
zero crossings of 𝑐. The results are presented in Figure 2.

Finally, we have investigated to the distribution of the frequency classes. The
values of the sequences are arranged into 214 intervals of equal lengths (again, we
reduce the random samples to the 14 most significant bits):

U𝑖 =
{︁

𝑢𝑘 | 𝑖 =
⌊︁ 𝑢𝑘

249

⌋︁}︁
, where 𝑖 ∈

{︀
0, . . . , 214 − 1

}︀
.

Our objective is to describe the probability of the event when the same (reduced)
random value appears exactly 𝑡 times for a given 𝑡.

For normalization reasons, the minimum and maximum of the cardinalities are
computed:

min = min
{︀

|U𝑖| | 𝑖 = 0..214 − 1
}︀

and
max = max

{︀
|U𝑖| | 𝑖 = 0..214 − 1

}︀
.

Figure 3 displays the distributions of the relative frequencies of the cardinalities
of 𝑈𝑘.

The horizontal axis is normalized, and the plotted values are calculated accord-
ing to the following formulas:

𝑥𝑡 = 𝑡 − min
max − min ,

𝑦𝑡 =
⃒⃒{︀

𝑖 | |U𝑖| = 𝑡, 0 ≤ 𝑖 < 214}︀⃒⃒
108 .

Although the above-presented graphs show good properties of the regarded
generators, the investigation of a detailed statistical test provides a more accurate
description of the behavior of the sequences. We have tested two of our generators
with the NIST Statistical Test Suite (c.f. [10]). The results are summarized in
Tables 4 and 5. These two are the MSMs corresponding to the polynomials 𝑥2+𝑥+2
and 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 2. We denote them by GMSM1 and GMSM2 in the tables,
respectively. In both sequences, we have used a 63-bit seed. The bit sequences for
the tests are produced by simply writing the blocks of seeds bit by bit consecutively.

We compared the results with two of the NIST’s built-in generators, the LCG
and SHA1. The comparison shows that the properties of GMSM sequences are
between the two built-in ones.

We used the default parameter adjustments in Table 3.
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Figure 3. Frequency distribution

Table 3. NIST default settings

Test name Block length
Block frequency 128
Non-overlapping template 9
Overlapping template 9
Approximate entropy 10
Serial 16
Linear Complexity 500

Both tests have the same arguments: the lengths of the sample sequences are
1000000, and the numbers of independent bitstreams are 1000. The level of accep-
tance is left to the default 0.01. In Table 4, one can see that both generators have
an acceptable uniformity level on average.

Table 5 shows the ratio of the 1000 bitstreams accepted by the tests. Referring
to the final report of the NIST test suite, "the minimum pass rate for each statistical
test with the exception of the random excursion (variant) test is approximately
0.981819", while "the minimum pass rate for the random excursion (variant) test
is approximately 0.979456". Based on this recommendation, we may say that both
generators have passed all tests.

Last but not least, in Table 6, we have collected the periodicity properties of
the same GMSM sequences as in Table 2.

Again, one block corresponds to the CNS given by the defining polynomial of
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its base. The entries are:
- the number of disjoint cycles;
- the maximal length of the cycles;
- the number of the length-1 cycles

for the different seed sizes. The trivial 0-cycle is excluded from the table.

Table 4. NIST test results: 𝑝-values

𝑝-value
GMSM1 GMSM2

Frequency 0.574903 0.142872
Block Frequency 0.936823 0.516113
Cumulative Sums 0.225069 0.484351
Runs 0.818343 0.761719
Longest Run 0.015707 0.674543
Rank 0.807412 0.552383
FFT 0.145326 0.368587
Non-Overlapping Template 0.511596 0.501944
Overlapping Template 0.248014 0.825505
Universal 0.152044 0.655854
Approximate Entropy 0.769527 0.353733
Random Excursions 0.292500 0.341976
Random Excursions Variant 0.480915 0.385875
Serial 0.145441 0.236631
Linear Complexity 0.492436 0.347257

Table 5. NIST test results: proportions

Proportion
GMSM1 GMSM2

Frequency 0.9870 0.9890
Block Frequency 0.9890 0.9950
Cumulative Sums 0.9855 0.9890
Runs 0.9880 0.9890
Longest Run 0.9870 0.9900
Rank 0.9870 0.9860
FFT 0.9930 0.9870
Non-Overlapping Template 0.9905 0.9895
Overlapping Template 0.9860 0.9910
Universal 0.9920 0.9920
Approximate Entropy 0.9880 0.9850
Random Excursions 0.9853 0.9930
Random Excursions Variant 0.9866 0.9912
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Table 6. All cycles in GMSM sequences

Nontrivial cycles
Digits (seed) 10 11 12 13 14 15 16 17 18 19 20

Defining polynomial: 𝑥 − 2
Cycles 4 4 6 4 9 12 12 10 11 6 12
Max period length 5 5 10 2 56 70 111 203 197 2 142
Stability points 2 3 3 3 3 3 4 4 6 5 6

Defining polynomial: 𝑥 + 2
Cycles 2 6 7 7 11 12 16 11 13 18 18
Max period length 3 3 2 34 10 27 51 30 2 39 4
Stability points 1 3 4 3 5 4 6 5 8 9 8

Defining polynomial: 𝑥2 + 𝑥 + 2
Cycles 3 4 4 2 4 6 3 3 4 9 7
Max period length 2 2 10 19 10 13 34 21 13 256 476
Stability points 2 3 1 1 1 1 1 1 2 2 2

Defining polynomial: 𝑥2 + 2𝑥 + 2
Cycles 2 4 6 5 5 7 5 4 7 12 13
Max period length 1 2 2 5 5 11 20 2 7 24 117
Stability points 2 3 4 2 2 2 2 3 5 9 8

Defining polynomial: 𝑥3 + 𝑥2 + 𝑥 + 2
Cycles 10 13 6 6 3 1 5 6 7 11 5
Max period length 5 5 9 5 1 1 7 67 20 165 57
Stability points 8 10 4 5 3 1 3 3 3 3 1

Defining polynomial: 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 2
Cycles 5 8 6 5 5 7 10 11 6 6 8
Max period length 13 19 4 12 83 22 57 54 270 125 258
Stability points 2 1 3 3 3 3 6 7 2 2 3

The first block contains test results in the CNS with base 2, i.e., the simple
binary representation of non-negative rational integers.

In the second block, the number system is the extension of the previous to the
whole set of integers with base −2.

One must remark that even if they have small period lengths, the sequences
can be used for pseudorandom number generators because of the long preperiod.
Increasing the size of the seed increases the period length and the length of the
longest period, but not in a monotonous way.
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