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Abstract. We consider two-class retrial queueing system with constant re-
trial rate fed by Poisson input and apply regenerative confidence estimation
for mean number of customers in the stable orbit, while the other orbit in-
timately grows. The simulation results illustrate that partially stable case
providing accurate confidence estimation, even the stability conditions, re-
lated for the whole system, are violated.
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1. Introduction

The paper deals with a single server retrial rate queuing system under constant
retrial rate policy. The model admits two classes of customers, arrivals join the
system according to Poisson input. The service times are independent and iden-
tically distributed among the corresponding class. If the server is busy at arrival
instant, the new customer joins the orbit associated with its class and then try
to occupy the server after class-dependent exponentially distributed retrial time
according to FIFO discipline.

Retrial systems have a huge sphere of modern applications. For instance, such
models successfully describe various call centers [16, 19] or the work of computer
networks and internet protocols [7, 8]. The applications of retrial models to wireless
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technologies are presented in [9, 15]. Retrial queuing systems are widely studied in
literature, it is worth mentioning the basic books and surveys [1, 2, 10, 18].

We consider two class retrial system in partially stable mode: the first class orbit
is stochastically bounded and the second class orbit infinitely grows in probability.
To define partially stability conditions we rely on the preliminary results obtained
in [6] and developed in [5]. The basic goal of the paper is to construct confidence
interval for mean number of customers in the first orbit in case of partially stable
mode. We apply regenerative method of confidence estimation. Generally, the
regenerative method is applicable if the system under consideration is stable. The
novelty of the present research is the following: we use regenerative approach to
obtain confidence interval in case the only orbit is stochastically bounded while
stability conditions for the whole system are violated.

The paper is organized as follow. Section 2 contains the detailed description of
the system under consideration. Section 3 presents the concept of partial stability
and known conditions for the partially stable mode. Next in Section 4 we briefly
discuss the regenerative method of confidence estimation. Section 5 containes simu-
lation results for partially stable model. We compare obtained confidence intervals
with the results for corresponding single orbit retrial system in a stable mode.
Section 6 concludes the paper.

2. Description of the model
We consider a single-server bufferless retrial system under constant retrial rate
policy denoted by system Σ. The model admits two classes of customers. Namely
arrivals form the superposition of two Poisson inputs with corresponding rates 𝜆𝑖,
where 𝑖 = 1, 2 defines the class number. Thus the total input rate is the following:
𝜆 = 𝜆1 + 𝜆2. We define the sequence of arrival instants by {𝑡𝑛, 𝑛 ≥ 1}. Note that
interarrival times 𝜏𝑛 = 𝑡𝑛+1 − 𝑡𝑛 are independent and exponentially distributed
with a rate 𝜆. Let 𝜏 define the generic interarrival time, thus E𝜏 = 1/𝜆.

Next we assume that class-𝑖 service times are independent, generally distributed
and stochastically equivalent to 𝑆(𝑖) with corresponding mean 1/𝜇𝑖. Define the
marginal load coefficient by

𝜌𝑖 = 𝜆𝑖/𝜇𝑖.

Thus the total load coefficient is obtained as

𝜌 = 𝜌1 + 𝜌2.

If the class-𝑖 arrival, that meets the server busy, joins the corresponding infinite-
capacity virtual orbit and then tries to occupy the server after an exponential time
with a rate 𝛼𝑖. We define the auxiliary load coefficient associated with class-𝑖 orbit
customers by

𝜌𝑖 = 𝛼𝑖/𝜇𝑖.

The total orbits load coefficient is the following

𝜌 = 𝜌1 + 𝜌2.
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Consider 𝑁 (𝑖)(𝑡) – the number of customers at orbit 𝑖 at time instant 𝑡. The
total number of customers in the system Σ is defined by the following process

𝑋(𝑡) = 𝜈(𝑡) + 𝑁 (1)(𝑡) + 𝑁 (2)(𝑡), 𝑡 ≥ 0, (2.1)

where 𝜈(𝑡) ∈ {0, 1} represents the number of customers on service. Thus the only
reason for unstable behavior of the system is the infinite growth of orbits size.
(Note that the term “size” actually means the number of customers on the orbit,
while the configuration of the system admits the infinite number of waiting places
for orbit calls).

Constant retrial rate policy implies that the orbit rates 𝛼𝑖 are fixed and do
not depend on the processes 𝑁 (𝑖)(𝑡). Unlike the classical retrial models, where the
intensity of orbit customers increases proportionally to its number. Thus in classical
multi-orbit case, the behavior of one (at instance, class-𝑖0) orbit affects to other
orbit(s). Namely when the load of class-𝑖0 customers increases, the corresponding
orbit size grows, and the server attack in more intensive. This implies more load
to the other orbits and the growth of their sizes. Thus in classical retrial models
instability of one orbit leads to the instability of other orbits. Such a property does
not hold for constant retrial rate model, considered in present paper: the orbit size
does not affect the intensity of orbit customers, and one orbit can infinitely grow,
while the other is stable. In such a case the phenomenon of partial stability arises.

3. Partial stability: preliminary results
In this section we refer to the known results related to the conditions of partially
stable regime in two-class retrial model with constant retrial rate. First we briefly
discuss the stability concept. Note that all considered continuous-time processes
are assumed to be defined at instant 𝑡−. Each instant 𝑡𝑛 when the new arrival joins
into totally empty system (𝑋(𝑡𝑛) = 0) the model starts over in stochastic sense
or regenerates. From this point of view the process 𝑋(𝑡) is called a regenerative
process. The regenerative process is called positive recurrent if regeneration period
has finite mean. In zero-delayed case positive recurrence implies that the system
possesses have stationary regime [3]. Actually the positive recurrence of the process
𝑋 means that starting from the arbitrary instant 𝑡 the system becomes empty in
a finite time. In this case we define that the system is stable. From this point of
view the stability is equivalent to the positive recurrence. Detailed description of
the regeneration approach to the stability analysis could be found in [12–14, 17].

By partial stability (of class-1 orbit) we define the case when class-1 orbit size
process stays tight while class-2 orbit increases unlimited in probability. Note the
process 𝑁 (1) is tight [17] if for any 𝛿 > 0 exists a finite constant 𝐶 ≥ 0 such that

inf
𝑡

P
(︀
N(1)(t) ≤ C

)︀
≥ 1 − 𝛿. (3.1)

Namely we obtain that only the first orbit is stochastically bounded. (Obviously
that the symmetric case for partial stability of class-2 orbit is defined in analogical
terms.)
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Consider the absolutely continuous distribution function 𝐹 with density 𝑓 , de-
fined for all 𝑥 such that 1 − 𝐹 (𝑥) > 0. Next define the failure rate by 𝑟(𝑥) :=
𝑓(𝑥)/

(︀
1 − 𝐹 (𝑥)

)︀
. We say that the distribution 𝐹 belongs to a special sub-class 𝒟

if inf𝑥≥0 𝑟(𝑥) > 0.
The conditions of partially stable regime were firstly formulated in [6] for the

multi-class retrial model, where service time distributions belongs The partial sta-
bility conditions for the model Σ considered in present paper (when class-1 orbit
is tight) was obtained in [5] via load coefficients as follows:

𝜌1 > 𝜌1(𝜌 + 𝜌), (3.2)
𝜌 > 𝜌2/(𝜌2 + 𝜌2). (3.3)

Note that to obtained the conditions (3.2), (3.3) the authors in [5] had analyzed
two-dimensional Markov Chain

Y =
{︀

𝑌
(1)

𝑘 , 𝑌
(2)

𝑘

}︀
, 𝑘 ≥ 1,

associated with corresponding numbers of customers in the first and in the second
orbit just after the departure instants (𝑘 defines the actual number of departures
from the system after its service completion). The Markov property holds for the
random sequences {𝑌

(𝑖)
𝑘 , 𝑘 ≥ 1}, 𝑖 = 1, 2 because input stream is assumed to be

Poisson.
Relying on the technique presented in [11], it is possible to show that under

conditions (3.2), (3.3) the Markov Chain Y is transient. Such a transient case is
illustrated by the stability of the first orbit dynamics and the infinite growth of
the second one, see [5] for details. Moreover under assumption that service time
distributions belong to the sub-class 𝒟 the conditions (3.2), (3.3) coincide with the
partial stability conditions from [6]. Note that positive recurrence of Y implies the
stability for the model Σ and corresponds to the positive recurrence of the basic
process 𝑋.

Next our goal is to explore the behavior of the model under consideration when
(3.2), (3.3) hold true. In this case we can expect that after some finite instant the
second orbit is not empty and the total load to the server is equivalent to the load
in the single-orbit retrial system, where class-2 customers arrive with a rate 𝜆2 +𝛼2
and are lost in case the server is busy at arrival instants. Then we construct the
auxiliary process in original two-orbit system Σ as follows:

𝑋(1)(𝑡) = 𝜈(𝑡) + 𝑁 (1)(𝑡), 𝑡 ≥ 0

and its discrete analogue 𝑋
(1)
𝑛 = 𝑋(1)(𝑡−

𝑛 ), 𝑛 ≥ 1. Next consider the sequence

𝛽𝑘 = min
𝑛

{𝑛 > 𝛽𝑘−1 : 𝑋(1)
𝑛 = 0}, 𝑘 ≥ 1, 𝛽0 = 0,

which defines the numbers of arrivals to the system when the server is idle and the
first orbit is empty. Thus {𝛽𝑘} represents the regeneration points of the process
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{𝑋
(1)
𝑛 }. Next we define the sequence of independent and identically distributed

(iid) regeneration cycles length in discrete time (with a generic length 𝐵) by

𝐵𝑘 = 𝛽𝑘 − 𝛽𝑘−1, 𝑛 ≥ 1.

Note that under conditions (3.2), (3.3) the process {𝑋(𝑡)} (and the whole sys-
tem) does not regenerate at instants 𝑡𝛽𝑘

, while the process 𝑋(1) is positive recur-
rent. Partial stability conditions consider solely the tightness of the first orbit size
process (3.1), which allows to show that with a positive probability the process
𝑋(1) reaches the zero value in a finite time, hence EB < ∞.

In case the positive recurrence we can apply regeneration method (RM) for the
system under consideration. RM is a powerful tool in stochastic analysis, in the
next section rely on the regeneration confidence estimation to bound the dynamics
of the first orbit size in partially stable regime.

4. Regenerative estimation

Recall the regenerative process 𝑋
(1)
𝑛 , which is the positive recurrent under condi-

tions (3.2), (3.3). Note that in this case the orbit size process 𝑁
(1)
𝑛 also regenerates

with regeneration points {𝛽𝑘}. In present section we construct the interval estima-
tors for the mean value of the process 𝑁

(1)
𝑛 . Consider iid accumulated numbers of

customers in the first orbit over the 𝑘-th regeneration cycle by

𝑍𝑘 =
(𝛽𝑘)−1∑︁

𝑗=𝛽(𝑘−1)

𝑁
(1)
𝑗 , 𝑘 ≥ 1.

By the results from regeneration theory and in case of positive recurrence, the
following limit exists:

𝑟𝑘 :=
∑︀𝑘

𝑗=1 𝑍𝑗∑︀𝑘
𝑗=1 𝐵𝑗

→ EZ
EB =: 𝑟, 𝑘 → ∞, (4.1)

where 𝑍 is a generic element of a sequence {𝑍𝑘, 𝑘 ≥ 1}.
Note, that 𝑟𝑘 coincides with an average number of customers in the first orbit

within interval [0, 𝑡𝛽𝑘
):

𝑟𝑘 = 1
𝛽𝑘

𝛽𝑘∑︁
𝑗=1

𝑁
(1)
𝑗 .

Actually, the result (4.1) means that with a growth of cycle number, time average
value of regenerative process converges to the ratio of mean cumulative value over
cycle to mean cycle length. Namely, in case of positive recurrence, the behavior of
regenerative process could is described by its cycle characteristics.

By Proposition 4.1 from [4] the estimator 𝑟𝑘 satisfies the following Central Limit
Theorem
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√
𝑘
(︀
𝑟𝑘 − 𝑟

)︀
⇒ N(0, 𝜎2), 𝑛 → ∞, (4.2)

where
𝜎2 = 𝐸[𝑍 − 𝑟𝐵]2(︀

𝐸𝐵
)︀2

and N(0, 𝜎2) is a normal distribution with zero mean. Hence, if limit (4.1) exists,
then weak convergence (4.2) holds and implies the following 100(1−𝛾)% confidence
interval:

𝑟 ∈
[︁
𝑟𝑘 − Δ𝑘, 𝑟𝑘 + Δ𝑘

]︁
, (4.3)

with the accuracy
Δ𝑘 = 𝑧𝛾𝜎𝑘√

𝑘
.

Note, that 𝛾 is a given reliability and

𝜎2
𝑘 = 𝑘2

𝑘 − 1

∑︀𝑘
𝑖=1

(︀
𝑍𝑖 − 𝑟𝑘𝐵𝑖

)︀2(︀ ∑︀𝑘
𝑖=1 𝐵𝑖

)︀2 .

(The value 𝑧𝛾 defines (1 − 𝛾/2)-quantile of the standard normal law.)

4.1. Single-orbit system
The sequence {𝛽𝑘} does not detect regenerations of the whole sequence Σ, and we
analyze the positive recurrent process 𝑋(1) to obtain the confidence interval (4.3).

Next we construct an additional single orbit retrial model denoted by Σ̂ as
follows: the input stream is fed by Poisson process with a total rate 𝜆1 + 𝜆2 + 𝛼2,
the new arrival belongs to class 1 with a probability

𝜆1

𝜆1 + 𝜆2 + 𝛼2
.

Service times are iid, class-dependent and stochastically equivalent to the corre-
sponding service times {𝑆

(𝑖)
𝑛 } previously defined for a model Σ. If class-1 arrival

met the busy server it joins the orbit with a constant retrial rate 𝛼1, while the
second class arrival in this case leaves the system. We can expect that such new
system is not less loaded than original system Σ: in case the second orbit is empty,
the server is attacked by the Poisson input with a rate 𝜆1 + 𝜆2 and the customers
from the orbit 1 (if any). In case 𝑁

(2)
𝑛 > 0 both models Σ and Σ̂ behave equiva-

lently in the sense of server load. The convergence of the first orbit size process in
Σ to the orbit size in Σ̂ is illustrated in [5].

The model Σ̂ strictly regenerates when arrivals join into totally empty system.
Denote the generic regeneration cycle length by �̂�. Stability condition for such a
model is defined as follows, see [6]:

𝜌1 > 𝜌1(𝜌 + 𝜌)
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and coincides with (3.2).
Thus partially stable regime in the original model Σ implies the positive re-

currence of corresponding single orbit system: EB̂ < ∞, and we can apply the
regenerative method of confidence estimation for mean number of orbit customers
in Σ̂. Define by 𝑟 the mean orbit size, by 𝑟𝑘 and Δ̂𝑘 the corresponding estimators
obtained with the regenerative method for the system Σ̂ exactly as in (4.3). (Note
𝑘 defines the number of regeneration cycles in Σ̂).

Next our goal is to validate the accuracy of interval [𝑟𝑘 ± Δ𝑘], comparing it
with [𝑟𝑘 ± Δ̂𝑘] under assumption that conditions (3.2) and (3.3) hold true. Note
that (3.3) does not influence to the stability of Σ̂ and the regenerative estimation
is applicable even if (3.3) is violated, but in this case original model Σ does not
converge to Σ̂ the comparison of obtained intervals have no sense. Note that under
conditions

𝜌1 > 𝜌1(𝜌 + 𝜌),
𝜌 ≤ 𝜌2/(𝜌2 + 𝜌2)

the model Σ is strictly stable, see [5].

5. Simulations

We assume exponential distributions of service times and fix the following values:

𝜆1 = 4, 𝜆2 = 1, 𝜇1 = 8, 𝜇2 = 4,

thus
𝜌1 = 0.5, 𝜌2 = 0.25, 𝜌 = 0.75.

5.1. Partial stability region

We define 𝛼1 = 20, 𝛼2 = 2, which implies

𝜌1 = 3.125, 𝜌2 = 0.500, 𝜌 = 3.625.

Note that initial values of parameters were arbitrary chosen inside the partly stable
region to provide the fulfilness of conditions (3.2) and (3.3). Next we consider
𝑛 = 100 000 arrivals and simulate both systems Σ and Σ̂. All the experiments
were implemented in RStudio development environment. We obtained 𝑘1 = 6083
regenerations in the original system, 𝑘2 = 6020 regeneration in the single orbit
system. Average orbit sizes as follows: 𝑟𝑘1 = 3.66, 𝑟𝑘2 = 3.68. The comparison
of confidence intervals obtained by regeneration method is presented on Figure 1.
The results for both systems almost coincide: Δ𝑘1 ≈ Δ̂𝑘2 = 0.36.
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Figure 1. Mean orbit size in Σ and Σ̂, 𝛼1 = 20, 𝛼2 = 2.

5.2. Orbit-2 stability border
Next we set the value 𝛼2 = 2.8, while 𝛼1 = 20. Thus in comparison with the first
example we decrease the difference between two parts of the inequality (3.3) and
go closer to the border of stability region for the system Σ. Note that in this case
the input stream in Σ̂ is more intensive. We obtain 𝑘1 = 4184, 𝑘2 = 3957, 𝑟𝑘1 =
4.32, 𝑟𝑘2 = 4.79. The accuracy difference is more notable: Δ𝑘1 = 0.38, Δ̂𝑘2 = 0.45.
Confidence intervals for the considered parameters are presented on Figure 2.

With the growth of the second orbit rate the difference between two models
become more significant.

5.3. Instability border
In this example we define 𝛼1 = 11, 𝛼2 = 2. Thus we touch on the condition (3.2)
and move closer to the instability border for the model Σ̂. (Note that in case the
condition (3.2) is violated and (3.3) holds, both orbits in Σ go to infinity, see [5].)

We obtained rare (in comparison with previous cases) regenerations 𝑘1 = 1162,
𝑘2 = 1081. Note that all simulations are based on 𝑛 = 100 000 arrivals. Less
number of regeneration cycles provide less accurate intervals 𝑟𝑘1 = 18.93, Δ𝑘1 =
3.89, 𝑟𝑘2 = 21.91, Δ̂𝑘2 = 3.91.

Remind that in all presented examples the conditions (3.2) and (3.3) hold. We
started from 𝛼1 = 20, 𝛼2 = 2 and then explored the cases 𝛼2 ↑ and 𝛼1 ↓. Namely
in examples B and C we decreased the differences in two parts of inequalities (3.2)
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Figure 2. Mean orbit size in Σ and Σ̂, 𝛼1 = 20, 𝛼2 = 2.8.

Figure 3. Mean orbit size in Σ and Σ̂, 𝛼1 = 11, 𝛼2 = 2.
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and (3.3), respectively. Note that in cases 𝛼2 ↓ and 𝛼1 ↑ the model Σ converges
to Σ̂ and confidence intervals obtained for mean orbit sizes for both system almost
coincide (as on Figure 1).

6. Conclusion
In this paper we study two-class retrial model with constant retrial rates in partially
stable regime. In spite of the model under consideration is not stable, we analyze
the positive recurrent class-1 orbit size process and apply the regenerative method
to construct confidence interval for mean number of class-1 orbit customers. The
simulation results correspond with confidence intervals obtained for strictly stable
single-orbit model. Thus we illustrate that partially stable case allows to provide
accurate confidence estimation.
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