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Abstract. We consider a multiclass retrial system with classical retrials,
and present a new short proof of the sufficient stability (positive recurrence)
condition of the system. The proof is based on the analysis of the departures
from the system and a balance equation between the arrived and departed
work. Moreover, we apply the asymptotic results from the theory of renewal
and regenerative processes. This analysis is then extended to the system with
the outgoing calls. A few numerical examples illustrate theoretical analysis.
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1. Introduction
The importance of the retrial queues to model the modern wireless telecommuni-
cation systems is well-known, for instance, see [2–4, 8], where also a comprehensive
bibliography on research related to retrial queues can be found. In this work we
focus on the stability analysis of a classical retrial queue, and using regenerative
arguments present a new short proof of the known sufficient stability condition of
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such a system. This proof is not only much shorter than that have been used earlier
(see [1, 9]) but also allows easily to cover more general retrial systems with the so-
called ‘outgoing’ calls [11]. Although there are many papers which investigate the
steady-state performance of the retrial queues, still a little attention is devoted to
stability analysis outside the Markovian setting, which is the topic of this research.

In this regard, we first mention a fundamental work [1] in which a detailed
stability analysis of a general 𝐺/𝐺/1-type single-server retrial queue is developed.
The authors study the system with a stationary input process and non-exponential
retrial times, and also investigate the convergence rate to stationarity, but they do
not appeal to the regenerative method. The stability of multiserver retrial systems
is studied in a few papers. For instance, the paper [7] studies such a system with a
finite buffer, batch Markovian arrival process, phase-type service time distribution
and a general retrial rate, and stability analysis is based on the corresponding
embedded Markov chains.

In the present paper, we consider the stability of a multiclass retrial 𝑀/𝐺/1
queue with independent Poisson inputs of primary customers belonging to 𝑁 differ-
ent classes. Then we outline how this analysis is extended to a multiserver system.
If an arriving class-𝑖 primary customer finds server busy, he joins the corresponding
(infinite capacity) orbit 𝑖, and, after exponential time, attempts to capture server
again. These attempts continue until he finds server idle. Service time as well as
the retrial times are assumed to be class-dependent.

We use the regenerative approach [5, 10, 16, 17] to reprove the known stability
condition, and this work thus complements our previous works [9] and [11]. In [9],
the proof is based on the negative drift of the remaining work in the (single) orbit,
while in the paper [11], we utilize the positive drift of the idle time of server. In a
contrast, in the current analysis we observe the system at the departure instants and
evaluate the idle time of servers after each departure. Then, assuming instability,
the idle times decreases, and this effect, in the limit, contradicts a predefined
condition. Then, according to the approach developed in [14, 15], we appeal to a
characterization of the remaining regeneration time of a basic process to deduce
that it is positive recurrent. This approach leads to a radical simplification of the
stability analysis and also is extended to the system in which there are ’outgoing
calls’ during idle periods of the servers. The idea to consider the output process
is not new of course. For instance, the analysis of 𝑀/𝐺/1-type retrial system in
[8] is based on the analysis of an embedded Markov chain representing the orbit
size at the service completion epochs. The main feature of a retrial system from
the point-of-view of stability analysis is that, in such a system, after each service
completion, the server becomes idle for a random time until the beginning of the
next service. This implies a loss of the server capacity after each departure, and
thus the service discipline turns out to be not work-conserving. Fortunately, the
service discipline in the retrial queueing system with classical retrials approaches
the work-conserving discipline in the corresponding buffered system as the orbit
size increases, and by this reason, it is asymptotically work-conserving [9]. This
leads to the coincidence of the stability conditions in the retrial system and in the
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corresponding classical buffered system.
The stability analysis then is extended to the system in which the idle server

initiates an outgoing call [11]. Although these calls are expected to increase the
utilization of the server, while keeping the throughput of the primary external
customers, it is intuitive that the stability condition remains the same in this case
as well, and we show it below.

The main contribution of this paper is to present a new short proof of the
sufficient stability condition of this model, which then allows to study analogously
the system with the outgoing calls (We note that the main result of this paper
has been announced in [12].) Moreover, the approach used in this paper has a
promising potential to analyse stability condition of a multiserver multicalss system
in which the service times are both class- and server-dependent. In particular, it is
demonstrated in a recent paper [13] where the stability analysis of a retrial system
(a modified Erlang system) with two classes of customers and 𝑐 identical servers
has been performed by means of the same approach.

The rest of this paper is organized as follows. Section 2 describes the model
and the regenerative structure of a basic stochastic process. In Section 3, we give
the main balance equation and present the new proof of the stability condition. In
Section 4, the stability analysis is extended to the system with the outgoing calls.
To illustrate the theoretical results, some numerical results based on stochastic
simulation are included in Section 5.

2. Description of the model
We consider a multiclass retrial 𝑀/𝐺/1 queueing system with 𝑁 independent Pois-
son inputs of primary customers, and for each class 𝑖, denote by 𝜏𝑖 a generic (expo-
nential) interarrival time, with rate 𝜆𝑖 = 1/E𝜏𝑖, by {𝑆

(𝑖)
𝑛 } the iid service time (with

generic time 𝑆(𝑖) with rate 𝜇𝑖 = 1/E𝑆(𝑖)), and by 𝛾𝑖 the rate of (exponential) class-𝑖
retrial time, 𝑖 = 1, . . . , 𝑁 . If a class-𝑖 primary customer finds server busy, he joins
the corresponding (infinite capacity) orbit 𝑖 and, after the exponential time with
rate 𝛾𝑖, the customer attempts to capture server. He continues his attempts until
finds the server idle. Denote by 𝛾0 = min 𝛾𝑖. This rule is called ’classical retrial
policy’, and if the orbit size equals 𝑁 , then the retrial rate at this instant is lower
bounded by 𝛾0𝑁 by the memoryless property of the exponential distribution.

To describe the regenerative structure of the system, we denote by 𝑄(𝑡) the total
number of customers in the system at instant 𝑡−, let {𝑡𝑘} be the arrival instants of
the superposed input (Poisson) process and 𝑄(𝑡𝑘) =: 𝑄𝑘. Then the regeneration
instants {𝑇𝑛} of the process {𝑄(𝑡), 𝑡 ≥ 0} are recursively defined as

𝑇𝑛+1 = inf
𝑘

(𝑡𝑘 > 𝑇𝑛 : 𝑄𝑘 = 0), 𝑛 ≥ 0, (2.1)

(𝑇0 := 0), and the regeneration instants of the embedded process {𝑄𝑛} are

𝜃𝑛+1 = inf(𝑘 > 𝜃𝑛 : 𝑄𝑘 = 0), 𝑛 ≥ 0 (𝜃0 := 0). (2.2)
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The generic regeneration period, that is the distance between two arbitrary adjacent
regeneration points, is denoted by 𝑇 (for continuous-time construction (2.1)) and by
𝜃 (for discrete-time construction (2.2)). If the mean E𝑇 < ∞ then the regenerative
process {𝑄(𝑡)} (and the queueing system) is called positive recurrent (stable), and
it implies the existence of the stationary process 𝑄(𝑡) ⇒ 𝑄, 𝑡 → ∞ (⇒ denotes
convergence in distribution). If E𝑇 = ∞ then the system is called null-recurrent
or unstable. By the (stochastic) equality 𝑇 =𝑠𝑡 𝜏1 + · · · + 𝜏𝜃, it follows by the
Wald’s identity that E𝑇 = E𝜃 E𝜏, where both sides of the equality are finite/infinite
simultaneously [6], implying that both processes {𝑄(𝑡)} and {𝑄𝑛} are positive
recurrent/null-recurrent simultaneously.

3. Stability analysis
Denote by

𝜌𝑖 = 𝜆𝑖/𝜇𝑖, 𝜌 =
𝑁∑︁

𝑖=1
𝜌𝑖. (3.1)

Below we present a new and short proof of the following statement.

Theorem 3.1. If 𝜌 < 1 then the (initially idle) system under consideration is
positive recurrent, E𝑇 < ∞.

Proof. Let {𝑑𝑘, 𝑘 ≥ 1} be the departure instances of the served customers leaving
the system. Denote by 𝑉𝑖(𝑡) the total workload which class-𝑖 customers bring in
the system in time interval [0, 𝑡] and let 𝑉 (𝑡) =

∑︀
𝑖 𝑉𝑖(𝑡). Moreover denote by

𝑊 (𝑡) the remaining work in all orbits at instant 𝑡, and let 𝐼(𝑡) be the total idle
time of the server in interval [0, 𝑡]. (All processes we consider are right-continuous
with left-hand limits [15].) Finally, denote by

𝑊 (𝑑𝑛) = 𝑊𝑛, 𝑉 (𝑑𝑛) = 𝑉𝑛, 𝐼(𝑑𝑛) = 𝐼𝑛, 𝑛 ≥ 1.

By assumption, the first customer arrives at instant 𝑡1 = 0 in the empty system (it
is called zero initial state), and we obtain the following balance equation

𝑊𝑛 = 𝑉𝑛 − 𝑑𝑛 + 𝐼𝑛, 𝑛 ≥ 1. (3.2)

We notice that the arrived in the interval [0, 𝑑𝑛] class-𝑖 work can be written as

𝑉𝑖(𝑑𝑛) =
𝐴𝑖(𝑑𝑛)∑︁

𝑘=1
𝑆

(𝑖)
𝑘 ,

where 𝐴𝑖(𝑑𝑛) is the number of class-𝑖 arrivals in [0, 𝑑𝑛], 𝑖 = 1, . . . , 𝑁, 𝑛 ≥ 1. It
is easy to find, using the Strong Law of Large Numbers and the property of the
cumulative processes [17] that with probability 1 (w.p.1)

lim
𝑛→∞

𝑉𝑖(𝑑𝑛)
𝑑𝑛

= 𝜌𝑖,
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regardless of whether the system is stable or not, implying

lim
𝑛→∞

𝑉𝑛

𝑑𝑛
= 𝜌. (3.3)

(Indeed it follows from theory of cumulative processes, that convergence in mean
in (3.3) holds as well.) Now we assume, by a contradiction, that the system is null-
recurrent that is E𝜃 = ∞. (Then E𝑇 = ∞ as well, see [6].) Note that 𝜃 is a generic
number of arrivals and departures within a regeneration period of the system. By
a characterization of the renewal process [15], it then follows from E𝜃 = ∞ that
the remaining regeneration time

𝜃(𝑛) := inf
𝑘

(𝜃𝑘 − 𝑛 : 𝜃𝑘 − 𝑛 > 0), (3.4)

at instant 𝑛 up to the next regeneration instant, increases to infinity in probability,
that is

𝜃(𝑛) ⇒ ∞, 𝑛 → ∞. (3.5)

Denote 𝑄(𝑑𝑛) = 𝑄𝑛. Using a proof by contradiction we can show (see [15]) that
𝑄𝑛 ̸⇒ ∞ implies E𝜃 < ∞. Thus it follows from (3.5) that E𝜃 = ∞, and then we
obtain as well

𝑄𝑛 ⇒ ∞, 𝑛 → ∞. (3.6)

Denote by Δ𝑘 = 𝐼(𝑑𝑘+1) − 𝐼(𝑑𝑘) the idle time of server between the 𝑘th and
(𝑘 + 1)th departures. We note that, provided 𝑄𝑘 ≥ 𝑛, the mean idle time of server
after the 𝑘th departure is upper bounded by the constant

𝐶𝑛 := 1/(𝜆 + 𝑛𝛾0), (3.7)

and 𝐶𝑛 → 0 as 𝑛 → ∞. (Recall that 𝛾0 is the minimal retrial rate.) This shows
that, if 𝑄𝑘 ≥ 𝑛, then EΔ𝑘 ≤ 𝐶𝑛 can be done arbitrarily small for 𝑛 large enough
(𝑛 ≥ 𝑘). Then one can show that for an arbitrary 𝜀 > 0

E𝐼𝑛 ≤ 𝜀𝑛(1 + 1/𝜆) + 𝐿,

where 𝐿 is a constant. (For details see formulas (21)-(25) in the paper [13].) This
implies that, under assumption (3.6),

lim
𝑛→∞

E𝐼𝑛

𝑛
= 0. (3.8)

We assume that if the 𝑛th customer entering server belongs to class 𝑖, then we
assign the service time 𝑆

(𝑖)
𝑛 from the corresponding iid sequence {𝑆

(𝑖)
𝑛 } initially

intended for this class of customers. (In other words, we omit not used elements of
this sequence.) Now we consider the ’minimal’ service times realized by the server,

𝑆(0)
𝑛 = min

1≤𝑖≤𝑁
𝑆(𝑖)

𝑛 , 𝑛 ≥ 1.
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These times constitute an iid sequence {𝑆
(0)
𝑛 } with generic element 𝑆(0). Now we

define a random walk ̂︀𝑑𝑛 =
𝑛∑︁

𝑘=1
𝑆

(0)
𝑘 , 𝑛 ≥ 1. (3.9)

An important observation is that ̂︀𝑑𝑛 ≤ 𝑑𝑛, 𝑛 ≥ 1. Now we can write

𝐼𝑛

𝑑𝑛
≤ 𝐼𝑛̂︀𝑑𝑛

= 𝐼𝑛

𝑛

𝑛̂︀𝑑𝑛

, 𝑛 ≥ 1.

On the other hand, we have, from the renewal theory, that w.p.1,

lim
𝑛→∞

𝑛̂︀𝑑𝑛

= 1
E𝑆(0) . (3.10)

Then it follows from (3.8) that, as 𝑛 → ∞,

𝐼𝑛

𝑛
⇒ 0.

In turn, then there exists a subsequence 𝑛𝑘 → ∞, 𝑘 → ∞, such that

lim
𝑘→∞

𝐼𝑛𝑘

𝑛𝑘
= 0, (3.11)

w.p.1, see [6]. Now we return to the balance equation (3.2) written for the subse-
quence {𝑛𝑘}:

𝑊𝑛𝑘
= 𝑉𝑛𝑘

− 𝑑𝑛𝑘
+ 𝐼𝑛𝑘

, 𝑛 ≥ 1. (3.12)

Note that ̂︀𝑑𝑛𝑘
→ ∞ w.p.1 and, as in (3.10),

lim
𝑘→∞

𝑛𝑘̂︀𝑑𝑛𝑘

= 1
E𝑆(0) .

Thus, w.p.1, as 𝑘 → ∞,

𝐼𝑛𝑘

𝑑𝑛𝑘

= 𝐼𝑛𝑘

𝑛𝑘

𝑛𝑘

𝑑𝑛𝑘

≤ 𝐼𝑛𝑘

𝑛𝑘

𝑛𝑘̂︀𝑑𝑛𝑘

→ 0. (3.13)

Now we divide both sides of (3.12) by 𝑑𝑛𝑘
and let 𝑘 → ∞. Because

lim
𝑘→∞

𝑊𝑛𝑘

𝑑𝑛𝑘

≥ 0 (3.14)

(this limit exists because the r.h.s. limit of (3.12) exists), then we obtain that

𝜌 ≥ 1, (3.15)

implying a contradiction with the assumption 𝜌 < 1. In other words,

𝑄(𝑑𝑛) ̸⇒ ∞, 𝑛 → ∞,
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and there exists a subsequence {𝑧𝑘}, 𝑧𝑘 → ∞ and some 𝜀 > 0 and constant 𝐶 < ∞,
such that

inf
𝑘

P(𝑄(𝑑𝑧𝑘
) ≤ 𝐶) ≥ 𝜀.

We note that a ’regeneration’ condition

min
1≤𝑖≤𝑁

P(𝜏 > 𝑆(𝑖)) > 0

in this system holds automatically because the input process is Poisson, see [15].
Then by a standard method [15] we can show that the remaining regeneration time
(3.4) (measured in the number of the arrivals/departures within a cycle)

𝜃(𝑛𝑘) ̸⇒ ∞, (3.16)

which in turn implies that the mean number of arrivals/departures within a regen-
eration cycle E𝜃 < ∞. Finally,

E𝑇 = E𝜃 E𝜏 < ∞, (3.17)

and the proof of Theorem 3.1 is hereby completed.

Remark 3.2. The prove given above is radically shorter and more intuitive than
that have been obtained in previous works [9, 11, 15]. This also relates to the 2nd
step of the stability analysis describing the so-called ’unloading’ of the system after
the step (3.16).

Remark 3.3. It follows from (3.17) that, under assumption 𝜌 < 1, the continuous-
time processes and the embedded processes (both at the instants {𝑡𝑛} and {𝑑𝑛})
are positive recurrent.

Assume that the system has 𝑚 ≥ 1 identical servers. In this system definition
of the regeneration points remains the same as in (2.1). In this case, in the balance
equation (3.2), 𝑑𝑛 is replaced by 𝑚𝑑𝑛 and the total idle time of all servers in interval
[0, 𝑑𝑛] becomes

𝐼𝑛 =
𝑚∑︁

𝑗=1

𝑛−1∑︁
𝑘=1

Δ(𝑗)
𝑘 ,

where Δ(𝑗)
𝑘 denotes the idle time of server 𝑗 after the 𝑘th departure. The extension

of stability analysis to this case is straightforward, and the proof of the following
Theorem 3.4 follows mainly the same lines as the proof of Theorem 3.1.

Theorem 3.4. If 𝜌 < 𝑚 then the (initially idle) system is positive recurrent,
E𝑇 < ∞.
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4. Extensions to the system with outgoing calls
Now we consider a single-server system with outgoing calls. Keeping the main
notation, we assume that, provided the server is idle, it generates an outgoing
class-𝑖 call with rate 𝜈𝑖, and there are 𝐾 different types of such calls. Denote
the total rate by 𝜈 =

∑︀𝐾
𝑖=1 𝜈𝑖. The service times (durations) of class-𝑖 calls are

iid {𝑍
(𝑖)
𝑛 , 𝑛 ≥ 1} with the mean E𝑍(𝑖) < ∞, 𝑖 = 1, . . . , 𝐾. (We omit serial index

denoting a generic element of an iid sequence.) In this system the balance equation,
again considered at the departure instants {𝑑𝑛}, becomes

𝑉𝑛 + Z𝑛 = 𝑊𝑛 + 𝑑𝑛 − 𝐼𝑛, (4.1)

where Z𝑛 is the workload generated by the outgoing calls in the interval [0, 𝑑𝑛]. It
is assumed that the service of an outgoing call is not interrupted by a newly arrived
external customer. Note that in this case the upper bound 𝐶𝑛 in (3.7) is modified
as follows:

𝐶𝑛 = 1
𝜆 + 𝑛𝛾0 + 𝜈

.

Now we denote

𝑆(0)
𝑛 = min

1≤𝑖≤𝑁
𝑆(𝑖)

𝑛 , 𝑍(0)
𝑛 = min

1≤𝑖≤𝐾
𝑍(𝑖)

𝑛 𝑛 ≥ 1,

and redefine the instants ̂︀𝑑𝑛 (see (3.9)) as

̂︀𝑑𝑛 =
𝑛∑︁

𝑘=1
min{𝑆

(0)
𝑘 , 𝑍

(0)
𝑘 }, 𝑛 ≥ 1.

As above, 𝑑𝑛 ≥ ̂︀𝑑𝑛 → ∞. Assume again that convergence (3.6) holds true. Then,
as in Section 3, there exists a subsequence 𝑑𝑛𝑘

→ ∞, 𝑘 → ∞, satisfying (3.11) (not
necessary the same one). Rewrite the balance equation (4.1) as

𝑉𝑛𝑘
+ Z𝑛𝑘

= 𝑊𝑛𝑘
+ 𝑑𝑛𝑘

− 𝐼𝑛𝑘
,

and show that, as 𝑘 → ∞,

Z𝑛𝑘

𝑑𝑛𝑘

≤ Z𝑛𝑘̂︀𝑑𝑛𝑘

→ 0 w.p.1. (4.2)

Denote by 𝑁𝑛𝑘
the number of events in the Poisson process with rate 𝜈 in time

interval [0, 𝐼𝑛𝑘
]. Then it is easy to see that 𝑁𝑛𝑘

≥𝑠𝑡
̂︀𝑁𝑛𝑘

, where ̂︀𝑁𝑛𝑘
is the number

of actual outgoing calls generated in interval [0, 𝑑𝑛𝑘
]. It is because some calls,

among (maximally possible) number 𝑁𝑛𝑘
, are ’lost’ (if server transmits another

outgoing call), and in result ̂︀𝑁𝑛𝑘
in general turns out to be less than 𝑁𝑛𝑘

. Denote
by 𝑣𝑛 the work which call 𝑛 brings in the system, 𝑛 ≥ 1. Then 𝑣𝑛 is (stochastically)
upper bounded as

𝑣𝑛 ≤𝑠𝑡 𝑍(1)
𝑛 + · · · + 𝑍(𝐾)

𝑛 =: 𝒵𝑛,
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where iid {𝒵𝑛} have generic element 𝒵 with mean E𝒵 =
∑︀𝐾

𝑖=1 E𝑍(𝑖) < ∞. It now
follows from above the following stochastic inequality

Z𝑛𝑘
=

̂︀𝑁𝑛𝑘∑︁
𝑗=1

𝑣𝑗 ≤𝑠𝑡

𝑁𝑛𝑘∑︁
𝑗=1

𝒵𝑗 . (4.3)

We note that, on the event {sup𝑘 𝐼𝑛𝑘
< ∞}, it follows that sup𝑘 Z𝑛𝑘

< ∞ as well
(because the number of the events in any finite interval is finite w.p.1), implying
Z𝑛𝑘

= 𝑜( ̂︀𝑑𝑛𝑘
), 𝑘 → ∞. Otherwise, on the event {lim𝑘→∞ 𝐼𝑛𝑘

= ∞}, we can write,
by (4.3)

Z𝑛𝑘̂︀𝑑𝑛𝑘

≤ 1
𝑁𝑛𝑘

𝑁𝑛𝑘∑︁
𝑗=1

𝒵𝑗
𝑁𝑛𝑘

𝐼𝑛𝑘

𝐼𝑛𝑘̂︀𝑑𝑛𝑘

,

and now (4.2) follows from (3.13) because, by the Strong Law of Large Numbers,

lim
𝑘→∞

1
𝑁𝑛𝑘

𝑁𝑛𝑘∑︁
𝑗=1

𝒵𝑗 = E𝒵 < ∞,

and by the renewal theory,

lim
𝑘→∞

𝑁𝑛𝑘

𝐼𝑛𝑘

= 𝜈 < ∞.

It now follows that (4.2) holds and, as in (3.14) (in notation (3.1)), we arrive to
the contradictory condition (3.15). The above analysis can be summarized as the
following statement.

Theorem 4.1. If 𝜌 < 1 then the initially idle retrial system with the outgoing calls
is positive recurrent.

5. Simulation
The purpose of the numerical result presented below (and based on the stochastic
discrete-event simulation) is to demonstrate the asymptotically work-conserving
property meaning that, as the orbit sizes increase, the dynamics of the service
process becomes similar to that in the classic buffered system [9]. By this reason
we consider the border of the stability region, that is 𝜌 = 1, in which case the
system becomes unstable. (An exception is the experiment shown on Fig. 7.) Also
we analyze stability of the multiserver system (to illustrate Theorem 3.4) and we
demonstrate simulation results for a three-server system. More exactly, we consider
two-class retrial systems with input rates 𝜆1 = 20/3, 𝜆2 = 10/3 and with 1 and 3
servers, respectively.

To keep value 𝜌 = 1, we take service rate 𝜇 = 10 for 1-server system, and
𝜇 = 10/3 for each server in 3-server system. Fig. 1 demonstrates a decreasing of
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the expected idle periods EΔ𝑘, as 𝑘 increases, for exponential (Exp) and Pareto

Figure 1. The expected idle time EΔ𝑘 vs. simulation time: Exp.
service time (grey) and Pareto service time with 𝛼 = 2 (black);

retrial rates 𝛾1 = 𝛾2 = 30.

Figure 2. The expected server idle time in the system with out-
going calls vs. simulation time: Exp. service time (grey), Pareto

service time (black); 𝛾1 = 𝛾2 = 30, 𝜈 = 30.

Figure 3. The workload of the outgoing calls with Weibull service
time vs. modeling time: Exp. service time (grey), Pareto service

time (black); 𝛾1 = 𝛾2 = 30, 𝜈 = 30.
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service time distribution

𝐹 (𝑥) = 1 −
(︁𝑥0

𝑥

)︁𝛼

, 𝑥 ≥ 𝑥0, (5.1)

where parameter 𝑥0 = 0.05 for 1-server system, and 𝑥0 = 0.15 for 3-server system,

Figure 4. The idle server probability P𝐼 in the original system vs.
simulation time: 1 server (grey) and 3 servers (black); 𝛾1 = 𝛾2 = 30.

Figure 5. The idle server probability P𝐼 vs. simulation time in the
system with outgoing calls: 1 server (grey) and 3 servers (black);

𝛾1 = 𝛾2 = 30, 𝜈 = 30.

Figure 6. The orbit size in retrial system (grey) and buffer size in
the buffered system (black), with Pareto service time, vs. simulation

time; 𝛾1 = 𝛾2 = 10.
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Figure 7. The orbit size in the original retrial system (dotted line)
and the buffer size in the buffered system (solid line), with Pareto

service time, vs. traffic intensity 𝜌; 𝛾1 = 𝛾2 = 10.

and parameter 𝛼 = 2 in all cases. Fig. 2 shows a similar result for the system with
one class of the outgoing calls with rate 𝜈 = 30. The service times of the outgoing
calls have Weibull distribution

𝐹 (𝑥) = 1 − exp
{︁

−
(︁𝑥

𝑏

)︁𝑎}︁
, 𝑥 ≥ 0,

with the shape parameter 𝑎 = 0.9, while the scale parameter 𝑏 = 0.1 for 1-server
system and 𝑏 = 0.3 for 3-server system, respectively.

Thus Fig. 1 and Fig. 2 confirm the limit (3.11) and the asymptotic work-conser-
ving property both for the original one -server retrial system and for the correspond-
ing system with the outgoing calls, when 𝜌 = 1. Fig. 3 describes the same effect
expressed as a vanishing fraction of the workload generated by the outgoing calls,
if 𝜌 = 1, confirming the limit (4.2). Similar results given on Fig. 4, Fig. 5 show that
the idle time fraction (’idle time probability’) goes to zero in all considered sys-
tems, but this convergence is faster in the system with outgoing calls. Finally, we
compare the orbit size in the retrial system and the buffer size in the corresponding
buffered system with Pareto service time (5.1) (see Fig. 6, Fig. 7). In particular,
Fig. 6 shows that (for 𝜌 = 1) the orbit size initially increases faster than the buffer
size but then they behave similarly. Fig. 7 also demonstrates the proximity be-
tween the orbit size and buffer size for the different values of the traffic intensity 𝜌
(modeling time is 200 slots). Nevertheless, the orbit size is slightly larger than the
buffer size, and it is an expected result.

6. Conclusion
In this work, we develop a new and short regenerative proof of the stability condi-
tion of a multiclass retrial system with classical retrials. Unlike previous proofs, we
focus on the departures of customers and, provided the number of orbital customers
increases, show a contradiction with a predefined negative drift condition, which
turns out to be a sufficient stability condition. This approach is then extended to
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the system with outgoing calls, and it has a promising potential in the stability
analysis of more general retrial systems. Some numerical examples based on the
simulation are given which illustrate the asymptotically work-conserving property
of the system with classical retrials.
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