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Abstract. A method is presented for generating random numbers with uni-
form distribution using linear recurrence sequences with very large period
lengths. This method requires an irreducible polynomial modulo 2 to define
the sequence. A suitable method for generating an infinite number of such
polynomials is presented. The polynomials generated in this way can have
an arbitrarily large degree, and a large enough order to make them suitable
for practical applications.
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1. Introduction
Pseudorandom number generation (PRNG) is an important component of many
practical applications. Generators with different properties are used in a wide
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range of fields, such as simulations [12], Monte Carlo methods [14]. Morover,
PRNGs recently play an essential role in many areas of cryptography, for exam-
ple, key generation, stream ciphers, asymmetric cryptosystems, and authentication
protocols [11].

The results presented in this paper relate to an algorithm detailed in [8], showing
the construction of uniformly distributed linear recurrence sequences (LRS) modulo
powers of 2, with theoretically arbitrarily large period lengths. A modified version
of this algorithm is given in Section 3, optimizing it to be less computationally
expensive.

2. Theory
The algorithm presented takes an irreducible polynomial over F2 as input.

Irreducible polynomials over finite fields are used in a wide variety of contexts,
not just in pure mathematics and many areas of computer science, but practical
applications as well.

In [8], we see a method of constructing linear recurring sequences with extremely
long periods used for pseudorandom number generation. The sequence requires an
irreducible polynomial to create, the degree of which is directly related to the
resulting period length.

In coding theory, creating error correcting codes that can be used to reliably
transmit information over noisy channels is a key practical application that can
be found in many everyday electronic systems. These codes are almost always
connected to the use of polynomials over finite fields. An in-depth discussion can
be found in [9].

In cryptography, many encryption protocols use finite fields as their domain.
Irreducible polynomials have been used in public key cryptosystems for decades,
such as in [4].

As the previous examples show, irreducible polynomials over the finite field F2
are of special interest.

2.1. Irreducible polynomials
A univariate polynomial over the finite field F2 is

𝑝(𝑥) =
𝑛∑︁

𝑘=0
𝑎𝑘𝑥𝑘, 𝑎0, . . . , 𝑎𝑛 ∈ F2 .

F2[𝑥] is the set of all polynomials over F2. A polynomial 𝑝 ∈ F2[𝑥] of degree 𝑘
is irreducible if it has no nontrivial factors over F2. That is, 𝑝(𝑥) = 𝑝1(𝑥)𝑝2(𝑥)
can not hold if deg(𝑝1), deg(𝑝2) > 0. The natural way to prove a polynomial’s
irreducibility is, therefore, to factor it and show that no such factors can be found.

The first algorithm for factoring a polynomial over a finite field was published
by Berlekamp [2]. It is a deterministic algorithm that requires a square-free poly-
nomial, and is well suited for cases where the cardinality of the finite field is small.
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Later, the Cantor-Zassenhaus algorithm [3] provided a practical solution even for
polynomials over large finite fields. This algorithm is probabilistic in nature. A
detailed description of both methods can be found in [13].

Rabin’s test [16] provides a very simple algorithm. A polynomial over F2 is
irreducible if and only if:

1. 𝑝(𝑥) | 𝑥2𝑘 − 𝑥

2. ∀𝑡𝑖 GCD(𝑥2𝑘/𝑡𝑖
, 𝑝(𝑥)) = 1,

where 𝑡𝑖 are the prime divisors of 𝑘. The test simply computes all 𝑥2𝑘/𝑡𝑖 mod 𝑝(𝑥)
polynomials using repeated squaring, and polynomial modulo operations, then uses
polynomial GCD to check condition 2.

Ben-Or’s test [1] modifies this approach by computing GCD(𝑥2𝑖 mod 𝑝(𝑥), 𝑝(𝑥))
for every 𝑖 ∈ {1, . . . , 𝑛

2 }. In practice, this improves average performance when
testing random polynomials. A randomly selected polynomial is much more likely
to have factors of small degrees than be the product of only large-degree factors.
Since Ben-Or’s test checks for factors of small degrees first, these polynomials are
very quickly eliminated. A comparison between the performance of Rabin’s test
and Ben-Or’s test can be found in [7]. Victor Shoup also published a deterministic
irreducibility test in [19], and a probabilistic algorithm is [18].

3. Algorithm for creating LRS
The following algorithm is for constructing uniformly distributed linear recurrence
sequences modulo 2𝑠, with very large period lengths. It is a modified version of the
algorithm found in [8]. The version presented here is significantly less computa-
tionally expensive than the original, which enables the creation of sequences with
larger period lengths.

The reduced time complexity speeds up the process of finding the desired co-
efficients for the LRS, while the reduced space complexity allows the algorithm to
be carried out with significantly larger input parameters. Once the LRS is con-
structed, using it to generate the pseudorandom number sequence is unchanged
compared to the original version.

1. Choose an integer 𝑘 and find a monic polynomial 𝑞(𝑥) ∈ Z[𝑥] of degree 𝑘,
which reduction modulo 2 is irreducible in F2[𝑥].

2. Calculate the polynomials 𝑝(𝑥) of degree 𝑘 + 2 and 𝑝′(𝑥) of degree 𝑘 + 1 in
the following way:

𝑝(𝑥) ≡ (𝑥2 − 1)𝑞(𝑥) mod 2 and
𝑝′(𝑥) ≡ (𝑥 − 1)𝑞(𝑥) mod 2,

with the coefficients of 𝑝(𝑥) and 𝑝′(𝑥) in {0, −1}, except for the leading coef-
ficients.
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Calculate the four candidate polynomials:

𝑝1(𝑥) = 𝑝(𝑥)
𝑝2(𝑥) = 𝑝(𝑥) − 2
𝑝3(𝑥) = 𝑝(𝑥) − 2𝑥

𝑝4(𝑥) = 𝑝(𝑥) − 2𝑥 − 2

We remark that the coefficients of the constant and linear terms of the can-
didate polynomials can be in {0, −1, −2, −3}.

3. For 𝑖 ∈ {1, 2, 3, 4}, 𝑗 ∈ {0, 1, . . . 𝑘 + 2}, let 𝑎𝑖𝑗 denote the coefficient of
𝑥𝑗 in the polynomial 𝑝𝑖(𝑥). Calculate 𝑆𝑖 =

∑︀𝑘+1
𝑗=0 −𝑎𝑖𝑗 for each candidate

polynomial. Keep the two candidates that satisfy 𝑆𝑖 ≡ 1 mod 4. Denote
these two polynomials with 𝑐1 and 𝑐2.

4. Let 𝜚 = ord(𝑞) be the order of 𝑞(𝑥), i.e., the smallest positive integer such
that 𝑞(𝑥) | 𝑥𝜚 − 1.
We need to find the candidate that satisfies 𝑐𝑖(𝑥) ∤ 𝑥2𝜚 − 1 mod 4. To do
this, calculate

𝑟(𝑥) ≡ 𝑥𝜚 mod (2, 𝑝(𝑥)),

where mod(2, 𝑝(𝑥)) means calculating the polynomial remainder with 𝑝(𝑥)
over F2.
Then, find the candidate that satisfies

1 ̸≡ 𝑟(𝑥)2 mod (4, 𝑐𝑖(𝑥)),

where mod(4, 𝑐𝑖(𝑥)) means calculating the polynomial remainder with 𝑐𝑖(𝑥)
over F4.
Note that all of the computation in this step can be performed over F2, with
the exception of the last step, which is performed over F4.
Denote the candidate that remains by 𝑐(𝑥). This is the characteristic poly-
nomial of the linear recurrence sequence we want to create. Let 𝑏𝑗 , 𝑗 ∈
{0, 1, . . . 𝑘 + 2} be the coefficient of 𝑥𝑗 in 𝑐(𝑥). Then, our final recurrence
relation is

𝑢𝑛+𝑘+2 = −𝑏𝑘+1𝑢𝑛+𝑘+1 − 𝑏𝑘𝑢𝑛+𝑘 . . . − 𝑏0𝑢𝑛

5. Choose initial values for the sequence. Suppose we want 𝑠-bit long pseu-
dorandom numbers. Choose random 𝑢0, 𝑢1, . . . , 𝑢𝑘 ∈ [0, 2𝑠 − 1]. Set these
values as the initial values of the linear recurrence relation with characteris-
tic polynomial 𝑝′(𝑥). Compute the next element of the sequence, 𝑢′

𝑘+1. Find
a random number 𝑢𝑘+1 ∈ [0, 2𝑠 − 1] such that 𝑢′

𝑘+1 ̸≡ 𝑢𝑘+1 mod 2.
Set 𝑢0, 𝑢1, . . . , 𝑢𝑘+1 as the initial values of the sequence.
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The original version of the above algorithm differs in steps 3 and 4. That
algorithm requires computation using the companion matrices of the candidates.
The companion matrix of 𝑝𝑖(𝑥) is

𝑀(𝑖) =

⎛⎜⎜⎜⎜⎜⎝
0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0
0 0 · · · 0 1

−𝑎𝑖0 −𝑎𝑖1 · · · −𝑎𝑖𝑘 −𝑎𝑖𝑘+1

⎞⎟⎟⎟⎟⎟⎠
Step 3 calls for finding the two candidates that satisfy 𝑀(𝑖)1̄ ≡ 1̄ mod 4, where 1̄
is a vector of size 𝑘 + 2 with all coordinates equal to 1. It is simple to see that this
is equivalent to the step 3 of the above algorithm.

In step 4 of the old algorithm, the final candidate is the one for which 𝑀2𝜚
(𝑖) ̸≡ 𝐸

(mod 4) holds, where 𝐸 is the identity matrix of size (𝑘+2)×(𝑘+2). This requires
matrix exponentiation modulo 4, using matrices sized (𝑘 + 2) × (𝑘 + 2). Since we
want 𝑘 to be as large as possible, these matrices quickly become inconvenient, both
to store, and to perform multiplications on. The step 4, presented here, instead
requires mainly polynomial modulo and squaring over F2, and once over F4. This
makes storage more efficient, since the size of a polynomial is a linear function of
its degree. Moreover, even a naive implementation of polynomial squaring over
F2 has time complexity 𝒪(𝑛). For polynomial modulo, a naive approach has time
complexity 𝒪(𝑛2), but faster algorithms are known, such as the result by Schönhage
in [17], which enables polynomial division with remainder in 𝒪(𝑛 log 𝑛 log log 𝑛)
time. This is better than even the fastest current matrix multiplication algorithms,
such as [6], which has a complexity over 𝒪(𝑛2.3).

4. Q-transform
A promising concept for constructing uniformly distributed high order linear re-
curring sequences is the application of the theory of 𝑄-transform. In this section,
we introduce some definitions and results that allow us to formulate infinite series
of irreducible polynomials. Based on the idea described in Section 3, we can use
such polynomials for creating uniformly distributed pseudorandom sequences with
large period lengths.

During the section, 𝑞 is a prime power, F denotes a field, F𝑞 is a finite field
of 𝑞 elements, and K is an algebraic extension field of F or F𝑞, depending on the
context.

Definition 4.1. Let 𝑝 ∈ F[𝑥] be a polynomial of degree 𝑑. We say that the
reciprocal polynomial of 𝑝 is 𝑝*(𝑥) = 𝑥𝑑𝑝(𝑥−1). We call a polynomial 𝑝 self-
reciprocal, if 𝑝 = 𝑝*.

Remark 4.2. a) If 𝑝 ∈ F[𝑥], then 𝑝* ∈ F[𝑥] and (𝑝*)* = 𝑝.
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b) Let 𝑝, 𝑟, 𝑠 ∈ F[𝑥] be such that 𝑠 = 𝑝 · 𝑟. Then 𝑠* = 𝑝* · 𝑟*.

c) For any 𝑝 ∈ F[𝑥], 𝑝 is irreducible if and only if 𝑝* is irreducible.

d) Let 𝑝, 𝑟, 𝑠 ∈ F[𝑥] be such that 𝑠 = 𝑝 · 𝑟. If 𝑝 and 𝑟 are self-reciprocal, then 𝑠
is self-reciprocal, as well.

Proposition 1. Let 𝑝 ∈ F[𝑥], and K be the splitting field of 𝑝. Then the following
statements are equivalent.

a) 𝑝 is self-reciprocal;

b) ∀𝛼 ∈ K ∖ {0}: 𝑝(𝛼) = 0 implies 𝑝
(︀
𝛼−1)︀

= 0.

Corollary 4.3. If 𝑝 ∈ F[𝑥] is self-reciprocal and irreducible of odd degree, then
𝑝(𝑥) = 𝑎𝑥 + 𝑎, with some 𝑎 ∈ F.

Proof. Since deg (𝑝) is odd, Proposition 1 implies that 𝑝 has a root 𝛼 such that
𝛼 = 𝛼−1. This is possible if and only if 𝛼 ∈ {−1, 1}. Then either 𝑥 − 1 or 𝑥 + 1 is
a divisor of 𝑝. However, 𝑝 is irreducible, thus either 𝑝 = 𝑎𝑥 − 𝑎 or 𝑝 = 𝑎𝑥 + 𝑎, but
𝑎𝑥 − 𝑎 is self-reciprocal if and only if 𝑎 = −𝑎.

Corollary 4.4. Let 𝑝 ∈ F[𝑥] be a self reciprocal polynomial, and 𝑝1, . . . , 𝑝𝑘 ∈ F[𝑥]
be distinct irreducible polynomials such that 𝑝 = 𝑝𝑛1

1 · · · · · 𝑝𝑛𝑘

𝑘 . Then for each
1 ≤ 𝑖 ≤ 𝑘 there exists 1 ≤ 𝑗 ≤ 𝑘 such that 𝑝𝑖 = 𝑝*

𝑗 and 𝑛𝑖 = 𝑛𝑗.

Remark 4.5. In the previous corollary, 𝑖 = 𝑗 if and only if 𝑝𝑖 is self-reciprocal.

Definition 4.6. Let 𝑝 ∈ F[𝑥] be a polynomial of degree 𝑑. The 𝑄-transform of 𝑝
is 𝑝(𝑥) = 𝑥𝑑𝑝(𝑥 + 𝑥−1).

Remark 4.7. If 𝑝 ∈ F[𝑥], then 𝑝 ∈ F[𝑥], and deg(𝑝) = 2 deg(𝑝).

Proposition 2. Let 𝑝, 𝑟, 𝑠 ∈ F[𝑥] be such that 𝑠 = 𝑝 · 𝑟. Then 𝑠 = 𝑝 · 𝑟.

Let 𝑝 ∈ F[𝑥], and 𝛼 ∈ 𝐾 ∖ {0}. Then 𝑝(𝛼) = 0 if and only if 𝑝(𝛼−1) = 0. By
Proposition 1, we may state the following.

Proposition 3. If 𝑝 ∈ F[𝑥], then 𝑝 is self-reciprocal.

Proposition 4. The 𝑄-transform is an injection.

Proof. Let 𝑝 ∈ F[𝑥], 𝑑 = deg(𝑝), K be the splitting field of 𝑝, and 𝛼𝑖, 𝛽𝑖 ∈ K
(𝑖 = 1, . . . , 𝑑) with the following properties:

𝑝(𝑥) = 𝑎𝑑

𝑑∏︁
𝑖=1

(𝑥 − 𝛼𝑖), and 𝛽𝑖 = −1
2𝛼𝑖 + 1

2

√︁
𝛼2

𝑖 − 4 .

Then

𝑝(𝑥) = 𝑎𝑑𝑥𝑑
𝑑∏︁

𝑖=1

(︀
𝑥 + 𝑥−1 − 𝛼𝑖

)︀
= 𝑎𝑑

𝑑∏︁
𝑖=1

(︀
𝑥2 + 1 − 𝛼𝑖𝑥

)︀
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= 𝑎𝑑

𝑑∏︁
𝑖=1

(𝑥 − 𝛽𝑖)
𝑑∏︁

𝑖=1

(︀
𝑥 − 𝛽−1

𝑖

)︀
.

This means that there is a one-to-one correspondence between the roots of 𝑝
and the pairs of roots of 𝑝.

Let

𝒫𝑞(𝑑) = {𝑝 | 𝑝 ∈ F𝑞[𝑥], deg(𝑝) = 𝑑},

𝒬𝑞(𝑑) = {𝑝 | 𝑝 ∈ F𝑞[𝑥], deg(𝑝) = 2𝑑, 𝑝 = 𝑝*} .

Since |𝒫𝑞(𝑑)| = |𝒬𝑞(𝑑)|, Proposition 4 implies the following.

Corollary 4.8. Let 𝑝 ∈ F𝑞[𝑥] be a self-reciprocal polynomial. Then there exists a
unique 𝑟 ∈ F𝑞[𝑥] such that 𝑝 = 𝑟.

Notation 1. Let 𝑝 ∈ F[𝑥] and 𝑘 ∈ N. We denote by 𝑝(𝑘) the following iterated
𝑄-transform:

if 𝑘 = 0, then 𝑝(𝑘) = 𝑝;
if 𝑘 > 0, then 𝑝(𝑘) = 𝑟, where 𝑟 = 𝑝(𝑘−1) .

Corollary 4.9. Let 𝑝 ∈ F𝑞[𝑥] be a self-reciprocal polynomial. Then there exists a
unique 𝑟 ∈ F𝑞[𝑥], not a self-reciprocal polynomial, and 𝑘 ∈ N such that 𝑝 = 𝑟(𝑘).

Corollary 4.10. Let 𝑝 ∈ F𝑞[𝑥] be irreducible. Then 𝑝 is either irreducible or there
exist 𝑝1, 𝑝2 ∈ F𝑞[𝑥] irreducible polynomials such that 𝑝 = 𝑝1 · 𝑝2, and 𝑝1 = 𝑝*

2.

Proof. Assume contrary that there exists an 𝑟 ∈ F𝑞[𝑥] self-reciprocal polynomial
with 1 ≤ deg(𝑟) < 2 deg(𝑝), such that 𝑟|𝑝. By Corollary 4.8, there exists 𝑠 ∈ F𝑞[𝑥]
satisfying 𝑠 | 𝑝, deg(𝑠) < deg(𝑝), and 𝑟 = 𝑠, which is a contradiction.

Proposition 5. Let 𝑝 ∈ F2[𝑥] be an irreducible polynomial in the form 𝑝(𝑥) =
𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + · · · + 𝑎1𝑥 + 1. Then 𝑝 is irreducible if and only if 𝑎𝑑−1 = 𝑎1 = 1.
Furthermore, the coefficient of the linear term of 𝑝 is 1.

Proof. The proposition is proven in a more general settings in [10].

Corollary 4.11. Let 𝑝 ∈ F2[𝑥] be an irreducible polynomial, and 𝑝(𝑥) = 𝑥𝑑 +
𝑥𝑑−1 + 𝑎𝑑−2𝑥𝑑−2 + · · · + 𝑎2𝑥2 + 𝑥 + 1. Then 𝑝(𝑘) is irreducible for all 𝑘 ∈ N.

This result implies that any irreducible polynomial in the form as in Proposi-
tion 5 determines an infinite sequence of irreducible 𝑄-iterated polynomials. Every
self-reciprocal polynomial of even degree is contained in exactly one of such se-
quences.

Proposition 6. Let 𝑝 ∈ F𝑞 be an irreducible polynomial, accomplishing deg(𝑝) =
2𝑑. Then 𝑝 is self-reciprocal if and only if ord(𝑝) | 𝑞𝑑 + 1.
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Proof. The proposition is stated e.g. in [5].

For the construction of pseudorandom number sequences with high period
length, we need irreducible polynomials of high order. Actually, the period length
is proportional to the order. Based on our experience, we have the following con-
jecture.

Conjecture 1. Let 𝑝 ∈ F𝑞[𝑥] be an irreducible self-reciprocal polynomial of degree
deg(𝑝) = 4𝑑. Then 𝑞𝑑 + 1 < ord(𝑝).

Furthermore, we have encountered 𝑄-iterated polynomials having maximal or-
der in many cases.

5. Statistical testing
In this section, we describe a test carried out to examine the statistical proper-
ties of the pseudorandom number sequences generated using the previously de-
tailed method. Two irreducible polynomials of large degree were created, one using
a brute force method and one using 𝑄-transformations. The pseudorandom se-
quences generated using these polynomials were tested using the NIST statistical
test suite.

The software and documentation of the NIST test suite are available at [15].
The suite includes 15 tests designed to examine the properties of pseudorandom
bit sequences, such as:

• Frequency test: a simple check to determine the proportion of ones and zeroes
in a binary sequence.

• Runs test: checking the number of runs (uninterrupted sequence of identical
bits) of various lengths to see how closely matches the expected value in a
truly random sequence.

• DFT (Spectral) test: determining the peak heights in the Discrete Fourier
Transform of the sequence, with the purpose of finding periodic features.

• Template matching test: finding occurences of predetermined target strings,
to detect generators producing too many such patterns. Both overlapping
and non-overlapping tests are included.

• Maurer’s “Universal Statistical” test: checking whether or not the sequence
can be significantly compressed without loss of information.

• Linear complexity test: attempting to determine the length of the LRS that
characterizes the sequence.

The first irreducible polynomial tested, denoted by 𝑡1, was generated using
irreducibility testing methods described in previous sections. The implementation
uses the NTL (Number Theory Library) available at [20].
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The degree of 𝑡1 was chosen to be 216091. The reason for this choice is that
2216091 − 1 is a Mersenne prime. Choosing a value this way simplifies Step 4 of
the algorithm described in Section 2. Note that this step requires the computation
of the order of the irreducible polynomial, which is a divisor of 2𝑑 − 1, where 𝑑
is the degree of the polynomial. If 𝑑 is large, this step becomes computationally
impractical, but choosing 2𝑑−1 to be a prime gives a simple solution to the problem.

The second irreducible polynomial tested, denoted 𝑡2, was created using iterated
𝑄-transform, using the following method:

1. Let 𝑞 be a self-reciprocal irreducible monic polynomial, with deg(𝑞) = 𝑑.

2. Run the algorithm described in Section 3, using 𝑞 as input. Let 𝑝 be the
candidate polynomial that remains after Step 4. Determine 𝑠, 𝑟 ∈ Z[𝑥] such
that 𝑝 = 𝑠𝑞 + 𝑟, and deg(𝑟) < deg(𝑞).

3. Compute 𝑡 = 𝑠𝑞(𝑛) + 𝑟, where 𝑞(𝑛) is the iterated 𝑄-transform, described in
Notation 1 of Section 4. Use 𝑡 to construct the linear recurrence sequence.

Based on practical observation, if the sequence produced by 𝑝 has uniform
distribution, then the sequence produced by 𝑡 will also have uniform distribution.
However, the proof of this conjecture is currently an open question.

To create 𝑡2, the following polynomial was used as a starting point:

𝑞2 = 𝑥14 + 𝑥13 + 𝑥12 + 𝑥11 + 𝑥10 + 𝑥9

+ 𝑥7 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 .

As it is stated in Proposition 6, the order of a self-reciprocal irreducible monic
polynomial of degree 𝑑 is at most 2 𝑑

2 + 1. The above polynomial was chosen
because ord(𝑞), ord(𝑞), and ord(𝑞(2)) all reach this maximum value. Theoretically,
it does not guarantee that this maximality property will hold after further 𝑄-
transformations, but practical observations suggest that the order of 𝑞(𝑛) will grow
at a rate that is sufficient for use in the applications described in this paper. We
stated our related experience in Conjecture 1.

Using the above method, 𝑝2 = 𝑠2𝑞2 + 𝑟2 was determined, and the polynomial
to be used was set as 𝑡2 = 𝑠2𝑞2

(14) + 𝑟2. Note that deg(𝑞2
(14)) = 229376, and

deg(𝑡2) = 229378.
Using 𝑡1 and 𝑡2, two LRSs were created to generate the pseudorandom sequences

to be tested, denoted 𝐿1 and 𝐿2 respectively. Both LRSs generate 64-bit words.
Following the recommendations in the documentation of the NIST test suite, 16MB
(221 words) of test data were generated using 𝐿1 and 𝐿2 each.

For each of these two streams, the NIST suite split the data into 100 bitstreams.
The testing software provides a detailed output of the tests, as well as a summary
showing the number of bitstreams that passed each test. The minimum pass rate
for a test is considered to be 96 out of a sample size of 100.

Tables 1 and 2 show some of the result obtained from the tests. The full report
can be found at https://arato.inf.unideb.hu/major.sandor/statistical_r
esults/.

44

https://arato.inf.unideb.hu/major.sandor/statistical_results/
https://arato.inf.unideb.hu/major.sandor/statistical_results/


Annal. Math. et Inf. Using irreducible polynomials for random number generation

Table 1. NIST test results of 𝐿1 generator.

Statistical Test P-value Proportion
Frequency 0.779188 100/100
Runs 0.514124 100/100
FFT 0.924076 99/100
OverlappingTemplate 0.012650 96/100
Universal 0.935716 97/100
LinearComplexity 0.699313 99/100

Table 2. NIST test results of 𝐿2 generator.

Statistical Test P-value Proportion
Frequency 0.955835 100/100
Runs 0.108791 98/100
FFT 0.678686 98/100
OverlappingTemplate 0.035174 97/100
Universal 0.249284 100/100
LinearComplexity 0.719747 100/100

The results show the two generators to have very similar statistical properties,
with 𝐿2 being only slightly weaker in some tests. Since the order of 𝑡2 is significantly
lower than the order of 𝑡1, this result is to be expected. Also of note is that both
generators produced very high quality pseudorandom sequences, passing all relevant
benchmarks set by the test suite.

This shows that using the 𝑄-transformation described above to generate irre-
ducible polynomials of very large degree is completely suitable for use in generating
uniformly distributed pseudorandom linear recurrence sequences.
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