Annales Mathematicae et Informaticae

56 (2022) pp. 1-9

DOI: https://doi.org/10.33039/ami.2022.12.006
URL: https://ami.uni-eszterhazy.hu

Benchmarking Redis and HBase NoSQL
Databases using Yahoo Cloud Service
Benchmarking tool

Mustafa Alzaidi, Aniko Vagner

University of Debrecen-Faculty of Informatics
mustafa.alzaidi@inf.unideb.hu
vagner.aniko@inf.unideb.hu

Abstract. The Not Structured Query Language (NoSQL) databases have
become more relevant to applications developers as the need for scalable
and flexible data storage for online applications has increased. Each NoSQL
database system provides features that fit particular types of applications.
Thus, the developer must carefully select according to the application’s needs.
Redis is a key-value NoSQL database that provides fast data access. On the
other hand, the Apache HBase database is a column-oriented database that
offers scalability and fast data access, is a promising alternative to Redis in
some types of applications. In this research paper, the goal is to use the
Yahoo Cloud Serving Benchmark (YCSB) to compare the performance of
two databases (Redis and HBase). The YCSB platform has been developed
to determine the throughput of both databases against different workloads.
This paper evaluates these NoSQL databases with six workloads and varying
threads.

Keywords: Redis, HBase, YCSB, Benchmarking, NoSQL Databese

1. Introduction

A growing number of NoSQL databases are being developed and used. The promise
of quicker and more efficient throughput compared to older Relational Database
Management Systems (RDBMS) is one of its most compelling features[14]. There
are several advantages to using NoSQL databases for cloud computing, including
the ability to rapidly scale vertically and horizontally as needed and the easiness of
application development[8]. However, big data and online application developers

Submitted: November 27, 2022
Accepted: December 3, 2022
Published online: December 28, 2022

https://doi.org/10.33039/ami.2022.12.006
https://ami.uni-eszterhazy.hu
mailto:mustafa.alzaidi@inf.unideb.hu
mailto:vagner.aniko@inf.unideb.hu

Annal. Math. et Inf. M. Alzaidi, A. Vagner

should be aware that NoSQL databases are not usually equal when it comes to
performance [6]. Because NoSQL systems are not yet mature and evolving at var-
ious paces, database managers must pick carefully between NoSQL and relational
databases based on their demands regarding consistency, security and scalability,
performance, prices, and other factors[15]. Choosing a NoSQL system might be a
challenge for web application developers because of the large variety of open-source
and freely accessible NoSQL systems. In other words, a peer-to-peer compari-
son of NoSQL systems according to the application activity scenarios to identify
the most significant match for different situations would be an appropriate next
step. A benchmark in this context refers to a performance assessment of NoSQL
solutions that have been suggested or have been deployed. Then, compare the
performance of different NoSQL databases; it is necessary to utilize experimen-
tal interactions that simulate comparable behavior or activities, as could be the
case with applications behavior. Selecting a NoSQL system in this manner can be
more appropriate for certain types of user interaction and provide better perfor-
mance and efficiency than a competitor’s systems. key-value, wide column, graph,
and document databases are all examples of NoSQL databases[12, 15]. Key-value
stores are collections of registers identifiable by a unique key [3]. Usually, this
type of NoSQL system is used as a layer that provides cash for the data with
time-consuming access[4]. Some researchers[2] use the key-value store when the
application needs to retrieve the stored object based on one field value. Javascript
and Binary Object-Notations (JSON and BSON) is a kind of document-oriented
data[13]. Document-based databases provide more flexibility in terms of schema
compared to RDBMS. They store the data in objects format in a similar manner
to how programming language logically treats objects. The schema-less model en-
ables the developer to store different types of objects in the same storage entity.
This flexibility gave the ability to rapid application development [7]. Document
store databases can work well on distributed systems that provide cheaper hori-
zontal scaling as the application needs. Databases like MongoDB, CouchDB, and
others fall within this category. The success of Google with BigTable seems to have
sparked the development of column stores [5]. The column store databases stores
the tables records fields separately, such that subsequent values of that property
are saved sequentially [1]. Wide-Column database systems are built on a hybrid
method that makes use of both the descriptive qualities of relational databases
and the structure of different key-value stores [15]. Accumulo, Cassandra, as well
as HBase are fall in this category. Graph databases may be used to store objects
data, as well as all connections between them [15]. In this way, Graph databases
make use of nodes and edges, the two notions from Graph theory. For example,
a foreign or primary keys link between two nodes is an edge in the data domain.
Neo4J and OrientDB are two good examples[11]. In this paper, we did use Yahoo
Cloud Service Benchmarking (YCSB) tool benchmark Redis and HBase databases.
We did the test with six different workload scenarios for each workload, and we
recorded ten results by adding a new thread each time with ten threads till the
last text.

Annal. Math. et Inf. Benchmarking Redis and HBase NoSQL Databases . ..

2. Redis NoSQL database

Redis is an open-source in-memory key-value store database that is very customiz-
able and claims to be extremely quick in terms of performance. VMware initially
maintained it; later, Pivotal Software has taken over as the company that is spon-
soring its development. Typically, the databases in Redis is specified by a numeri-
cal value. The number of databases is set at 16 by default, although this may be
changed as a custom configuration. It is more customizable than a generic key-
value structure in terms of data organization. For example, a value in Redis may
be saved as a string, a list of strings with insertions at the beginning and end of
the list. Furthermore, searching for objects towards the two ends of a huge list
is incredibly quick, but querying for an item in the center of a large list is much
more time-consuming. The collection of strings stored in Redis does not allow
duplication, which implies that adding the same key (string) more than once will
result in just one copy of the collection. The operations of adding and removing
only need a constant amount of time (O(1)). Redis provides other structures like
Hash, Set, and Sorted Set. Hash is referred to by a unique key and can store a
set of unique fields, where each field can have one value. Hash provides high-speed
data access in comparison to other structures. For instance, in comparison to List,
even a colossal Hash can retrieve any key-field value with O(1). Redis also provide
special commands that support synchronized data access. For example, BRPOP
takes keys of List structures (one or more) as parameters and an integer number
to specify the timeout in seconds. The command checks the specified lists in the
same order given to the command and removes and returns the last element on
that list. If all the lists are empty, the command blocks the current connection and
waits for the amount of time specified by the timeout parameter for any other user
connection that may be inserted to one of the lists before it release the connection
and return a value to the client

3. HBase NoSQL database

A distributed, fault-tolerant, and with high scalability column-store NoSQL database
implemented on top of the Apache Hadoop Distributed File System (HDFS), HBase
is an Apache open-source database that provides real-time store and retrieving abil-
ity to massive data is. The data in HBase is arranged logically into named indexed
tables. HBase tables are stored as multidimensional sparsely maps with rows and
columns, where rows include a sorting key and an arbitrary number of columns.
Versioning is used in table cells. When cells are added to HBase, HBase assigns a
timestamp to them that is used to identify the version of that particular cell. For
the same row key, many versions of a specific column might exist for that column.
Column family and column name are assigned to each cell so that software can
always tell what types of data item a particular set of cells contains. The content
of a cell is an unbroken array of bytes that is uniquely recognized by the following
combinations: Table + Row-Key + Column-Family: Column + Timestamp|9, 16].

Annal. Math. et Inf. M. Alzaidi, A. Vagner

A byte array, which also acts as the database’s primary key, is used to sort the
rows of the table

4. Experiments tool setup

4.1. Yahoo Cloud Service Benchmarking tool

We will use the Yahoo Cloud Service Benchmarking (YCSB) as the database per-
formance evaluation tool. YCSB was created in 2010 by the research department
at Yahoo. The task was to develop a tool that provides the ability to test and
compare performance over the service provided by the cloud. Later, this tool be-
comes widely used by application developers to test database systems. In addition,
this test can help during the decisions making to select the system to be used in
the project. Figure 1 shows the tool architecture[6]. YCSB is developed using the

Command-line parameters
+ DB touse

= Target throughput

+ Number of threads

Workload
parameter file
= RIW mix
» Record size
= Data set

YCSB client

Cloud DB

7N

SN[NINSE

!

| Extensible: plug in new clients

Extensible: define new workloads |

Figure 1. Architecture of YCSB.

Java programming language as an open-source project [10]. The code can be com-
piled with Maven and worked as a command line base. The tool support variety
of NoSQL databases. The test is done by specifying the workload to be used. A
workload can determine the number of operations and the types of these opera-
tions (Read, Write, and Update). There is a set of predefined workloads provided
with tools default source code; we will use these workloads in this work, denoting
them as (Load A, Load B, Load C, Load D, Load E, Load F). The test is done in
two steps: the Load command and the Run command. The database connection
information can be provided as a parameter to the tool with the Run and the Load
command.

4.2. Hardware and software specifications

Table 1 below shows the system specification we used for this work.
We conduct the test using six workloads. We recorded the result by changing
the number of threads used in the test. For each test, we build a chart that

Annal. Math. et Inf. Benchmarking Redis and HBase NoSQL Databases . ..

Table 1. Hardware and software specifications.

System
Operating System Window 10 64 bit
Memory (RAM) 8GB
CPU Intel Core i5-1135G7 4 x 2.4 - 4.2 GHz
Software
Yahoo Cloud Service Benchmarking Version ycsb-0.17.0
Redis Version 6.2.6
HBase Version 2.4.9
Maven Version apache-maven-3.8.4z

shows the recorded performance (throughput measured by operation per second)
for both databases while changing the number of used threads. The number of
threads can be determined in practice according to the application. The result for
each workload is shown below:

4.3. Load A

In this workload, the tool divides the total operation into 50% read, and 50% write
operation. Thus this workload can be considered heavy in terms of updates. The
result is shown in Figure 2 below. We notified that the HBase started to give better
performance when we increased the thread from six to seven threads with this load.
However, we got a similar performance gap with more than seven threads. Thus,
this load shows better performance for HBase in comparison to Redis.

Load A

100.50000000
10000000 o .

No of Threads

=8=FRedis =@=HBase

Figure 2. Load A.

4.4. Load B

The read operation takes 95% of the total operations in this workload. Thus we
can denote this workload as reading heavy test. The max recorded throughput for

Annal. Math. et Inf. M. Alzaidi, A. Vagner

Redis and HBase is 99.54 100.33 milliseconds, respectively. The result is shown in
Figure 3. Again, the HBase performs better than Redis with eight or more threads.
Redis has no notifiable change during all the threads experiment.

Load B
i
3
< 99.50000000
2 99.00000000
w0
3 98.50000000
£ 9800000000
97.50000000
2 3 4 o 6 & 0
No of Threads
e Rl is e HBase

Figure 3. Load B.

4.5. Load C

This workload consists only of read operations and can be used to test the database
when the application is critical to data retrieval, and there is no rapid insertion
or update operation that can affect the software. The max recorded throughput
for Redis and HBase is 99.36 and 100.39 milliseconds, respectively. The result is
shown in Figure 4.

Load C
101.00000000
g 100.5 0000
& 10000000000
3 50000000
S 99.00000000
S 9850000000
S 98.00000000
= 97.50000000
97,0000000C
1 2 7 8 9 10
No of Threads
—8—Redis =—mHBase

Figure 4. Load C.

4.6. Load D

This load contains only 5% insert operation with 95% read operations. The read
operations are done on the data that was inserted recently. The max recorded
throughput for Redis and HBase is 99.48 100.61 milliseconds, respectively. Figure 5

Annal. Math. et Inf. Benchmarking Redis and HBase NoSQL Databases . ..

shows the Load D result. HBase shows better performance with increasing the
number of threads.

Load D
9.50000000
9.00000000
2 9850000000
2 98 0000000
£ 97.50000000
= 97.00000000
96.50000000
1 2 4 6 7 8)
No of Threads
=@=Redis =@=HBase

Figure 5. Load D.

4.7. Load E

95% of the time is spent scanning, and just 5% is spent inserting. It is scan
for a short number of records rather than a single one. Figure 6 shows the result
comparison for both databases. The max recorded throughput for Redis and HBase
is 99.48 100.87 milliseconds. Both databases show similar performance till we use
seven threads. However, the performance gap after seven or more threads was
smaller compared to the gap we got with the other tests. Again the HBase was
slightly better than Redis for this test.

Load E
100.50000000
& 100.00000000
@
< 99.50000000
51 99,00000000
S 9850000000
®
5
g
=
96,50000000
3 4 5 6 7 8 9 10
No of Threads
emfodis === HBase

Figure 6. Load E.

4.8. Load F

This load simulates the situation when the application retrieves the data from the
database, updates it, and then stores it back in the database. Figure 7 shows the

Annal. Math. et Inf. M. Alzaidi, A. Vagner

result for load F.

Load F

100.50000000

T 100.00000000 f,«@
9950000000 k\ ey

97.50000000
000000
000000

Throughput{ops,

1 2 3 4 5 6 7 8 9 10
No of Threads

e Redis el HBase

Figure 7. Load F.

5. Conclusion

Applications programmers may choose between SQL and NoSQL databases. Al-
though their antiquity, SQL databases are still popular among programmers and
web designers alike. The NoSQL database systems have become a good alternative
to relational databases in some applications during the last decade. As they provide
better scalability and schema-less structure, what can make software project devel-
opment faster and easier. This advantage and popularity lead to the introduction
of many NoSQL database systems. However, each may provide some features and
miss some others that are provided by another system. Thus, the selection between
the available NoSQL databases becomes more complex and needs a comparison be-
tween the candidate systems. We use the Yahoo Cloud Service Benchmarking tool
to compare two popular NoSQL databases. We used the default workload provided
by the tool, and we re-conducted the test using a different number of threads every
time (1 to 10 threads). The results show that both databases have almost similar
performance when fewer threads are used (less than 7). However, when we in-
crease the number of used threads, the HBase shows higher throughput in compare
to Redis.

References

[1] D. ABADI: Column Stores for Wide and Sparse Data. In: Feb. 2007, pp. 292-297.

[2] A. V.M. ALzaIDI: Trip Planning Algorithm For Gifs Data With Nosql Structure To Improve
The Performance, Journal of Theoretical and Applied Information Technology Vol.99. No
(10 31st May 2021 May 2021), pp. 2290-2300.

[3] E. ANDERSON, X. L1, M. SHAH, J. TUCEK, J. WYLIE: What consistency does your key-value
store actually provide?, HP Laboratories Technical Report (Feb. 2010).

Annal. Math. et Inf. Benchmarking Redis and HBase NoSQL Databases . ..

[4]

[5]
[6]
7]

(8]

(9]
(10]

(11]

(12]

(13]
14]
(15]

(16]

B. ATikoGLU, Y. XU, E. FRACHTENBERG, S. JIANG, M. PALECZNY: Workload analysis of a
large-scale key-value store, Sigmetrics Performance Evaluation Review - SIGMETRICS 40
(Feb. 2012), DOL: https://doi.org/10.1145/2318857.2254766.

R. CATTELL: Scalable SQL and NoSQL data stores, SIGMOD Record 39 (Feb. 2010), pp. 12—
27, DOI: https://doi.org/10.1145/1978915.1978919.

C. CHAKRABORTTIIL: Performance Fvaluation of NoSQL Systems Using Yahoo Cloud Serving
Benchmarking Tool, in: Feb. 2015.

C. CHASSEUR, Y. L1, J. M. PATEL: Enabling JSON Document Stores in Relational Systems.
In.

B. COOPER, A. SILBERSTEIN, E. TAM, R. RAMAKRISHNAN, R. SEARS: Benchmarking cloud
serving systems with YCSB, in: Feb. 2010, pp. 143-154, DOI: https://doi.org/10.1145/18
07128.1807152.

L. GEORGE: HBase: The Definitive Guide: Random Access to Your Planet-Size Data, 1st,
O’Reilly Media, Inc.: Sebastopol, CA, USA, 2011.

HTTPS://GITHUB.COM/BRIANFRANKCOOPER/YCSB.: YCSB, in.

V. KacHOLIA, S. PANDIT, S. CHAKRABARTI, S. SUDARSHAN, R. DEsAI, H. KARAMBELKAR:
Bidirectional Ezxpansion For Keyword Search on Graph Databases. In: vol. 2, Feb. 2005,
pp- 505-516.

H. KHazAEIL, M. FOKAEFS, S. ZAREIAN, N. BEIGI, B. RAMPRASAD, M. SHTERN, P. GAIKWAD,
M. Liroiu: How do I choose the right NoSQL solution? A comprehensive theoretical and
experimental survey, Journal of Big Data and Information Analytics (BDIA) 2 (Oct. 2015),
DOI: https://doi.org/10.3934/bdia.2016004.

K. MaA, A. ABRAHAM: Toward lightweight transparent data middleware in support of docu-
ment stores, in: 2013, pp. 253-257, DOI: https://doi.org/10.1109/WICT.2013.7113144.

T. MADUSHANKA, L. MENDIS, D. LIYANAGE, C. KUMARASINGHE: Performance Comparison of
NoSQL Databases in Pseudo Distributed Mode: Cassandra, MongoDB & Redis (Feb. 2015).

A. Oussous, F.-Z. BENJELLOUN, A. A. LAHCEN, S. BELFKIH: Comparison and Classification
of NoSQL Databases for Big Data, in: Feb. 2015.

M. N. VorA: Hadoop-HBase for large-scale data, Proceedings of 2011 International Confer-
ence on Computer Science and Network Technology 1 (2011), pp. 601-605.

https://doi.org/10.1145/2318857.2254766
https://doi.org/10.1145/1978915.1978919
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.3934/bdia.2016004
https://doi.org/10.1109/WICT.2013.7113144

