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Abstract. The Not Structured Query Language (NoSQL) databases have
become more relevant to applications developers as the need for scalable
and flexible data storage for online applications has increased. Each NoSQL
database system provides features that fit particular types of applications.
Thus, the developer must carefully select according to the application’s needs.
Redis is a key-value NoSQL database that provides fast data access. On the
other hand, the Apache HBase database is a column-oriented database that
offers scalability and fast data access, is a promising alternative to Redis in
some types of applications. In this research paper, the goal is to use the
Yahoo Cloud Serving Benchmark (YCSB) to compare the performance of
two databases (Redis and HBase). The YCSB platform has been developed
to determine the throughput of both databases against different workloads.
This paper evaluates these NoSQL databases with six workloads and varying
threads.

Keywords: Redis, HBase, YCSB, Benchmarking, NoSQL Databese

1. Introduction
A growing number of NoSQL databases are being developed and used. The promise
of quicker and more efficient throughput compared to older Relational Database
Management Systems (RDBMS) is one of its most compelling features[14]. There
are several advantages to using NoSQL databases for cloud computing, including
the ability to rapidly scale vertically and horizontally as needed and the easiness of
application development[8]. However, big data and online application developers
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should be aware that NoSQL databases are not usually equal when it comes to
performance [6]. Because NoSQL systems are not yet mature and evolving at var-
ious paces, database managers must pick carefully between NoSQL and relational
databases based on their demands regarding consistency, security and scalability,
performance, prices, and other factors[15]. Choosing a NoSQL system might be a
challenge for web application developers because of the large variety of open-source
and freely accessible NoSQL systems. In other words, a peer-to-peer compari-
son of NoSQL systems according to the application activity scenarios to identify
the most significant match for different situations would be an appropriate next
step. A benchmark in this context refers to a performance assessment of NoSQL
solutions that have been suggested or have been deployed. Then, compare the
performance of different NoSQL databases; it is necessary to utilize experimen-
tal interactions that simulate comparable behavior or activities, as could be the
case with applications behavior. Selecting a NoSQL system in this manner can be
more appropriate for certain types of user interaction and provide better perfor-
mance and efficiency than a competitor’s systems. key-value, wide column, graph,
and document databases are all examples of NoSQL databases[12, 15]. Key-value
stores are collections of registers identifiable by a unique key [3]. Usually, this
type of NoSQL system is used as a layer that provides cash for the data with
time-consuming access[4]. Some researchers[2] use the key-value store when the
application needs to retrieve the stored object based on one field value. Javascript
and Binary Object-Notations (JSON and BSON) is a kind of document-oriented
data[13]. Document-based databases provide more flexibility in terms of schema
compared to RDBMS. They store the data in objects format in a similar manner
to how programming language logically treats objects. The schema-less model en-
ables the developer to store different types of objects in the same storage entity.
This flexibility gave the ability to rapid application development [7]. Document
store databases can work well on distributed systems that provide cheaper hori-
zontal scaling as the application needs. Databases like MongoDB, CouchDB, and
others fall within this category. The success of Google with BigTable seems to have
sparked the development of column stores [5]. The column store databases stores
the tables records fields separately, such that subsequent values of that property
are saved sequentially [1]. Wide-Column database systems are built on a hybrid
method that makes use of both the descriptive qualities of relational databases
and the structure of different key-value stores [15]. Accumulo, Cassandra, as well
as HBase are fall in this category. Graph databases may be used to store objects
data, as well as all connections between them [15]. In this way, Graph databases
make use of nodes and edges, the two notions from Graph theory. For example,
a foreign or primary keys link between two nodes is an edge in the data domain.
Neo4J and OrientDB are two good examples[11]. In this paper, we did use Yahoo
Cloud Service Benchmarking (YCSB) tool benchmark Redis and HBase databases.
We did the test with six different workload scenarios for each workload, and we
recorded ten results by adding a new thread each time with ten threads till the
last text.
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2. Redis NoSQL database
Redis is an open-source in-memory key-value store database that is very customiz-
able and claims to be extremely quick in terms of performance. VMware initially
maintained it; later, Pivotal Software has taken over as the company that is spon-
soring its development. Typically, the databases in Redis is specified by a numeri-
cal value. The number of databases is set at 16 by default, although this may be
changed as a custom configuration. It is more customizable than a generic key-
value structure in terms of data organization. For example, a value in Redis may
be saved as a string, a list of strings with insertions at the beginning and end of
the list. Furthermore, searching for objects towards the two ends of a huge list
is incredibly quick, but querying for an item in the center of a large list is much
more time-consuming. The collection of strings stored in Redis does not allow
duplication, which implies that adding the same key (string) more than once will
result in just one copy of the collection. The operations of adding and removing
only need a constant amount of time (O(1)). Redis provides other structures like
Hash, Set, and Sorted Set. Hash is referred to by a unique key and can store a
set of unique fields, where each field can have one value. Hash provides high-speed
data access in comparison to other structures. For instance, in comparison to List,
even a colossal Hash can retrieve any key-field value with O(1). Redis also provide
special commands that support synchronized data access. For example, BRPOP
takes keys of List structures (one or more) as parameters and an integer number
to specify the timeout in seconds. The command checks the specified lists in the
same order given to the command and removes and returns the last element on
that list. If all the lists are empty, the command blocks the current connection and
waits for the amount of time specified by the timeout parameter for any other user
connection that may be inserted to one of the lists before it release the connection
and return a value to the client

3. HBase NoSQL database
A distributed, fault-tolerant, and with high scalability column-store NoSQL database
implemented on top of the Apache Hadoop Distributed File System (HDFS), HBase
is an Apache open-source database that provides real-time store and retrieving abil-
ity to massive data is. The data in HBase is arranged logically into named indexed
tables. HBase tables are stored as multidimensional sparsely maps with rows and
columns, where rows include a sorting key and an arbitrary number of columns.
Versioning is used in table cells. When cells are added to HBase, HBase assigns a
timestamp to them that is used to identify the version of that particular cell. For
the same row key, many versions of a specific column might exist for that column.
Column family and column name are assigned to each cell so that software can
always tell what types of data item a particular set of cells contains. The content
of a cell is an unbroken array of bytes that is uniquely recognized by the following
combinations: Table + Row-Key + Column-Family: Column + Timestamp[9, 16].

3
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A byte array, which also acts as the database’s primary key, is used to sort the
rows of the table

4. Experiments tool setup

4.1. Yahoo Cloud Service Benchmarking tool
We will use the Yahoo Cloud Service Benchmarking (YCSB) as the database per-
formance evaluation tool. YCSB was created in 2010 by the research department
at Yahoo. The task was to develop a tool that provides the ability to test and
compare performance over the service provided by the cloud. Later, this tool be-
comes widely used by application developers to test database systems. In addition,
this test can help during the decisions making to select the system to be used in
the project. Figure 1 shows the tool architecture[6]. YCSB is developed using the

Figure 1. Architecture of YCSB.

Java programming language as an open-source project [10]. The code can be com-
piled with Maven and worked as a command line base. The tool support variety
of NoSQL databases. The test is done by specifying the workload to be used. A
workload can determine the number of operations and the types of these opera-
tions (Read, Write, and Update). There is a set of predefined workloads provided
with tools default source code; we will use these workloads in this work, denoting
them as (Load A, Load B, Load C, Load D, Load E, Load F). The test is done in
two steps: the Load command and the Run command. The database connection
information can be provided as a parameter to the tool with the Run and the Load
command.

4.2. Hardware and software specifications
Table 1 below shows the system specification we used for this work.

We conduct the test using six workloads. We recorded the result by changing
the number of threads used in the test. For each test, we build a chart that

4
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Table 1. Hardware and software specifications.

System
Operating System Window 10 64 bit
Memory (RAM) 8GB

CPU Intel Core i5-1135G7 4 x 2.4 - 4.2 GHz
Software

Yahoo Cloud Service Benchmarking Version ycsb-0.17.0
Redis Version 6.2.6
HBase Version 2.4.9
Maven Version apache-maven-3.8.4z

shows the recorded performance (throughput measured by operation per second)
for both databases while changing the number of used threads. The number of
threads can be determined in practice according to the application. The result for
each workload is shown below:

4.3. Load A
In this workload, the tool divides the total operation into 50% read, and 50% write
operation. Thus this workload can be considered heavy in terms of updates. The
result is shown in Figure 2 below. We notified that the HBase started to give better
performance when we increased the thread from six to seven threads with this load.
However, we got a similar performance gap with more than seven threads. Thus,
this load shows better performance for HBase in comparison to Redis.

Figure 2. Load A.

4.4. Load B
The read operation takes 95% of the total operations in this workload. Thus we
can denote this workload as reading heavy test. The max recorded throughput for
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Redis and HBase is 99.54 100.33 milliseconds, respectively. The result is shown in
Figure 3. Again, the HBase performs better than Redis with eight or more threads.
Redis has no notifiable change during all the threads experiment.

Figure 3. Load B.

4.5. Load C
This workload consists only of read operations and can be used to test the database
when the application is critical to data retrieval, and there is no rapid insertion
or update operation that can affect the software. The max recorded throughput
for Redis and HBase is 99.36 and 100.39 milliseconds, respectively. The result is
shown in Figure 4.

Figure 4. Load C.

4.6. Load D
This load contains only 5% insert operation with 95% read operations. The read
operations are done on the data that was inserted recently. The max recorded
throughput for Redis and HBase is 99.48 100.61 milliseconds, respectively. Figure 5
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shows the Load D result. HBase shows better performance with increasing the
number of threads.

Figure 5. Load D.

4.7. Load E
95% of the time is spent scanning, and just 5% is spent inserting. It is scan
for a short number of records rather than a single one. Figure 6 shows the result
comparison for both databases. The max recorded throughput for Redis and HBase
is 99.48 100.87 milliseconds. Both databases show similar performance till we use
seven threads. However, the performance gap after seven or more threads was
smaller compared to the gap we got with the other tests. Again the HBase was
slightly better than Redis for this test.

Figure 6. Load E.

4.8. Load F
This load simulates the situation when the application retrieves the data from the
database, updates it, and then stores it back in the database. Figure 7 shows the

7
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result for load F.

Figure 7. Load F.

5. Conclusion
Applications programmers may choose between SQL and NoSQL databases. Al-
though their antiquity, SQL databases are still popular among programmers and
web designers alike. The NoSQL database systems have become a good alternative
to relational databases in some applications during the last decade. As they provide
better scalability and schema-less structure, what can make software project devel-
opment faster and easier. This advantage and popularity lead to the introduction
of many NoSQL database systems. However, each may provide some features and
miss some others that are provided by another system. Thus, the selection between
the available NoSQL databases becomes more complex and needs a comparison be-
tween the candidate systems. We use the Yahoo Cloud Service Benchmarking tool
to compare two popular NoSQL databases. We used the default workload provided
by the tool, and we re-conducted the test using a different number of threads every
time (1 to 10 threads). The results show that both databases have almost similar
performance when fewer threads are used (less than 7). However, when we in-
crease the number of used threads, the HBase shows higher throughput in compare
to Redis.
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Abstract. Email services have become an integral aspect of modern com-
munication. Emails can be transmitted digitally without the adequate au-
thentication of the sender. As a result, there has been a considerable surge in
security threats coming from email communication, such as phishing, spear
phishing, whaling, and malware deposition through emails where recipients
can be duped into acting. Authorship assertion of the sender can prevent
several security issues, particularly in an organizational setting where an em-
ployee’s trust can be compromised by faking an email from a colleague or
senior without exposing any specific system weakness. A psychometric ap-
proach to determining the authorship of an email in an organization is pro-
posed in this research. Machine learning (ML) models have been developed
using four classification algorithms. The performance of these ML models
has been compared.
Keywords: authorship, personality, machine learning, psychometric features

1. Introduction
The Internet has become an integral part of our life. In modern-day communication,
the predominant mode of communication on the internet is Email. Email service
impales very deep into private networks and intranet of organizations, thereby al-
lowing attackers to deploy the exploits far into organizations’ networks. Hence,
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the security of email service is one of the major tasks in an organization. One
of the prominent attacks on email is the social engineering attack. The knack
of influencing the people to divulge sensitive information of some other action is
known as social engineering and the process of doing it is called the social engi-
neering attack [13]. In some of the modern-day social engineering attacks against
one victim or a small group thereof, the attackers research their targets to design
phishing emails specific for each victim. The emails appear to be coming from a
trusted colleague/party and prompt the recipient to follow the directions inside.
By impersonating trusted email senders through meticulously crafted messages,
attackers trick the receivers to act on that email and launch malware. Such an
attack is mostly used as a platform for injecting malware into interior parts of an
organization such as the Intranet. Attacks involve targeting individuals from or-
ganizations by maneuvering them to promulgate misleading information to varied
interests and valuable and sensitive data that may intrigue cybercriminals without
exploiting a specific vulnerability. As discussed in [1], emails can transmit infor-
mation digitally without authenticating the person who writes the text and could
be used by criminals for malicious intentions. Authorship assertion of such emails
becomes necessary in an organization.

Alhijawi et al. [1] surveyed some of the possible techniques for authorship attri-
bution. They carried out the authorship analysis technique to satisfy the objective.
Authorship Identification, similarity detection, and characterization were its three
main perspectives. Their survey showed the use of stylometric features for author-
ship identification. The features were classified into four categories namely lexical,
character, syntactic and semantic. Lexical features included token-based, vocabu-
lary richness, word frequencies, word n-grams, errors, character features included
character types, character n-grams, etc. Syntactic and semantic features included
the parts of speech and semantic dependencies. Some of the datasets in the re-
search were email datasets, online text data sets, source code data sets, etc. Yet,
it is observed that the features used in this research may not be invariant as the
context of the writing changes.

One of the approaches in this field is the classification of authors’ emails based
on their representation of text to vectors [4]. Here, they used the word2vec to
generate the word embedding and extract the features of the author’s writing style
from their text writing. Multi-layer Perceptron classifier and the back-propagation
learning algorithm were used for classification. They used the PAN12 free fiction
collection data corpus written in English. A cluster-based classification model
for email authorship identification was also used [15]. Stylometric features like
punctuation used at the end of the emails, the tendency of the user to start the
emails with the capitalized letters, punctuation after the greetings and farewells,
etc were used for classification. The dataset used for their analysis was the Enron
email dataset.

One of the other works in this field, carried the authorship identification for
short online messages [5] using Supervised Learning and n-gram analysis. Enron
email dataset was used for their analysis. One of the works used an approach of

11
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Unsupervised Clustering for authorship identification [14] for email forensics where
they classified emails initially using unsupervised clustering and then identified
the stylometric features in the clusters. They used the Hierarchical Clustering
and Multidimensional scaling approach of Unsupervised Clustering for authorship
identification. They also used the Enron email corpus data set for their experimen-
tation.

The motive behind carrying out the work presented in our paper was to develop
classification models of known authors in an organization so that the impersonated
emails claiming to be coming from these authors could be asserted. Hence, this
work emphasized developing models that assert authorship of an email in an orga-
nization using Machine Learning algorithms for known email authors.

The remainder of the paper is organized as follows. Section 2 introduces the
methodology used for authorship assertion. Section 3 presents the details of feature
extraction and training of the ML classifier. Validation of feature extraction models
is discussed in Section 4. An analysis and comparison of performance metrics of
different ML models are discussed in Section 5.

2. Methodology

The proposed approach to email authorship assertion in this paper is based on
the fact that personality is a stable and invariant aspect of an individual [9] and
the most relevant differences/traits are encoded in the language written [3]. Using
these characteristics of the personality and language (extracted from emails), the
problem of authorship assertion is transformed into a classification problem. To
formulate the classifier, the following are needed:

2.1. Evaluation of personality score from the questionnaire

Personality is the characteristic pattern of those sensory, perceptual and cognitive
systems within an individual that determines his unique behavior in his environ-
ment [2]. The Big Five Personality Model is one of the most widely used models of
personality. This model is also known as the five-factor model or the OCEAN model
which is based on five personality dimensions i.e. Openness, Conscientiousness, Ex-
troversion, Agreeableness, and Neuroticism [9]. Volunteering authors undergo a
personality assessment test and personality scores are generated. The scores are
based on the International Personality Item Pool proxy for the NEO Personality
Inventory-Revised (NEO PI-R) questionnaire [6]. NEO PI-R is considered by many
psychologists for measuring the dimensions within the Big Five Personality Model.

Statistics about the personality dimensions evaluated from the questionnaire
have been given in Table 1.

12
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Table 1. Statistics of personality scores of users after NEO PI R
personality questionnaire.

Dimension Mean Standard Deviation
Neuroticism 48.17 30.41
Openness 30.17 23.75
Agreeableness 62.53 22.23
Extroversion 43.74 28.56
Conscientiousness 67.03 21.13

2.2. Extraction of word category lexica from emails

Various word categories are described in the word category lexica of the content-
coded dictionary of the packages provided in [7, 20] available on LIWC [17]. Word
count corresponding to various parts of speech (POS) categories like articles, con-
junctions, etc. using Spacy [10] in the Python programming language is extracted
from the emails. The word count corresponding to each word category like positive,
negative words, sadness, achievements, etc. in the dictionary using the Empath [7]
package in the Python programming language is derived from the emails. The
word count corresponding to each category is appended to a column vector for an
email.

2.3. Feature vector extraction for classifier and authorship
assertion

The feature vector for the classifier consists of a score of personality corresponding
to the personality dimension in the five-factor model. To extract the personality
dimension scores, a regression model may be used. The regression model estimates
the personality score using the correlation of personality score evaluated from the
authors’ questionnaire and their corresponding emails’ column vectors as discussed
in Section 2.2. The classifiers are trained using features of old emails and sub-
sequently used for authorship assertion of new emails they claim to be coming
from.

For implementing regression models to extract personality scores, Linear Re-
gression, Support Vector Regression (SVR), Regression Trees, and Neural Networks
have been used. For the classification of emails in the last stage, Logistic regres-
sion, Support Vector Machine (SVM), Neural Networks, and Naive Bayes have been
used. All the algorithms have been implemented in Python 3 using the modules of
Scikit-learn [16].
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Figure 1. Psychometric feature vector extraction.

Figure 2. Training of classifier using Psychometric Features.

Figure 3. Classification Stage.

3. Implementation
For authorship assertion in the organization, the experiment was conducted on a
limited set of 18 users. These users have volunteered, given consent to use their
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past emails, and answered the questionnaire for personality dimensions [6]. We
tried to develop the author-specific models to analyze if the email had been sent
by him or not. Out of all the authors who volunteered, the classifier analysis of the
5 authors who had the highest number of emails is discussed in this paper.

3.1. Data preparation and pre-processing
The first stage of the implementation was data preparation. In the data prepara-
tion, a data frame was prepared for analysis of the data. The sent emails of the
authors were used. The sent emails of the users had been collected for the past 1
year and only those emails were considered in which the author had started the
conversation. The forwarded and replied emails were not considered in the anal-
ysis. Using the standard python programming language libraries, we pre-process
the data and extract the text corresponding to the email bodies. The email body
content for every email was separated after extracting the message in the email
and the signatures from the emails were stripped off as discussed in [8, 21]. Emails
were appended in a data frame. Now corresponding to every processed email, the
score of personality dimension which had been collected from the questionnaire of
the corresponding user was assigned.

3.2. Feature extraction and training
Regression techniques were used to relate word categories with authors’ personality
scores. As shown in Fig. 1, the scores for each personality dimension of the au-
thor were assigned and the counts corresponding to each lexical category of word
category lexica were extracted from emails as inputs to the regression model as
discussed in Section 2.2. Regression algorithms were used to fit a curve between
independent factors i.e. the lexical categories and the regressand i.e. Extraversion,
Neuroticism, Openness, Agreeableness, and Conscientiousness. The following steps
were involved.

• Features were extracted by obtaining word count corresponding to various
parts of speech and the word count corresponding to every lexical category for
every email in the dataset using respective packages in python programming
language as discussed in Section 2.2.

• Feature scaling was performed as the features varied in terms of what they
represent. Some algorithms are invariant to feature scaling while some are
not.

• Once the features were scaled, the regression models were trained using the
regression algorithms specified in Section 2.3.

• Regression Algorithms like SVR and Neural Networks used various hyper-
parameters while training. Optimum hyperparameters for improving perfor-
mance were chosen by hyperparameter tuning.
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• After the Hyperparameters had been optimized, results and performance of
the machine learning algorithms were compared and the model with the best
performance evaluated using standard metrics[11] in Regression was chosen
for the prediction of the score for every personality dimension.

• To verify whether the regression model correctly prepared data for the clas-
sifier and whether the features used for machine learning were sufficient to
be used for a classifier, clustering analysis using K-means clustering and the
Density-based spatial clustering of applications with noise (DBSCAN) clus-
tering algorithm was performed and the goodness of the cluster was analyzed
using standard metrics[18, 19].

3.3. Email classification for authorship assertion
After the generation of the regression model, a data set of emails was prepared for
every author. In a particular data set, we selected all the emails which belonged
to that author, and we randomly selected an equal number of emails that did not
belong to that author. Then, for every email, we extracted the personality scores
using the regression model generated in the previous step. As shown in Fig. 2,
we extracted the feature vectors and modeled the author-specific classifier. The
following steps were involved in this stage.

• An author and his email data for a year were collected. Then, we randomly
selected the same number of emails as the author from data that did not
belong to the selected author and labeled them correctly.

• The personality scores to each of these emails from the dataset were extracted
using the regression models for each dimension in the previous stage and a
feature vector matrix was derived which was followed by feature scaling.

• Once the features were scaled, the classification models were trained using
the classification algorithms specified in Section 2.3 and the hyperparameters
were optimized.

• After the Hyperparameters were optimized, we compared the results and per-
formance of the machine learning algorithms and chose the algorithm with
the best performance after analyzing using standard metrics for classifica-
tion[11], and saved the model for use in the classification of email whether it
belongs to the specified author.

As shown in Fig. 3, when a new email was received we first extracted the features
using the regression model i.e the personality scores, prepared the feature vector
matrix, and then predicted the class of this vector using the classification model of
the author it claims to be coming from.
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4. Validation of regression models
The performance of regression algorithms is given in Table 2. It is evident from
the results that SVR outperformed any other regression algorithm for this data. It
was also evident in the literature survey that kernelized regression algorithms like
SVR have performed better than other algorithms. 𝑅2 value for SVR was higher
than other regression algorithms. The Mean Absolute Error (MAE) percentage
was also relatively less compared to other regression algorithms. The decision to
use these metrics for selecting the models was based on the facts published in the
literature survey [12]. It is also to be noted that 𝑅2 values mean the percent of
explained variance on the dependant variable. So in our experiments when we tried
to analyze the impact of a certain limited number of variables on the human-related
outcomes, it was very difficult to explain the majority of the variance.

Table 2. Performance of personality score prediction model for
psychometric feature vector extraction.

Neuroticism Openness Agreeableness Extraversion Conscientiousness
Algorithm 𝑅2 % MAE 𝑅2 % MAE 𝑅2 % MAE 𝑅2 % MAE 𝑅2 % MAE
Linear regres-
sion

0.15 34.37 0.15 25.04 0.3 18.34 0.14 18.83 0.15 30.37

Support vector
Regression

0.43 12.65 0.36 13.47 0.41 13.19 0.44 12.32 0.42 15.96

Decision tree
regression

0.29 23.94 0.18 18.63 0.24 23.86 0.31 15.25 0.28 21.43

Neural Network
regression

0.18 27.3 0.16 23.67 0.35 17.28 0.24 16.11 0.19 26.28

Table 3. Performance of clustering algorithms to analyze data
separability.

K-means Clustering DBSCAN Clustering
No. of users 3 users 5 users 3 users 5 users
Estimated clusters - - 4 6
Silhouette Coefficient 0.714 0.69 0.68 0.59
Homogeneity 0.886 0.782 0.77 0.697
Completeness 0.881 0.78 0.774 0.63
V- Measure 0.884 0.781 0.771 0.662

To verify whether the regression model correctly prepared data for the classifier
and whether the features used for machine learning are sufficient to be used for a
classifier we performed clustering analysis using K-means clustering and the DB-
SCAN clustering algorithm. To perform the clustering analysis, 5 volunteers out
of 18 having the highest number of emails were considered. It was evident from
the results shown in Table 3 of the clustering analysis that the SVM regression

17



Annal. Math. et Inf. P. Berde, M. Kumar, C. S. R. C. Murthy, L. Dagre, S. Tejaram

model, has features sufficient to explain the variation in personality and can be
used to derive the features for training the classifier and we can model a supervised
classifier for the analysis of the same.

5. Results and discussion
Metrics like accuracy, f-score, sensitivity, specificity, training time, and prediction
time were evaluated for the choice of the best models. It was desired that emails
that do not appear to be coming from the author should be asserted correctly as
such emails may create havoc if undetected. We chose to decide on the best model
by comparing prediction accuracy, prediction time, and specificity. In this work,
we were able to achieve accuracy which was in the range of 80-95% for authorship
assertion. The features used relied on the personality dimensions of the five-factor
model of personality. It was observed from the performance of classification algo-
rithms shown in Table 4 that the Neural Network classifier and the SVM classifier
have comparable performance considering the accuracy of the model trained us-
ing psychometric features. These two classification algorithms perform better than
Naive Bayesian and the Logistic Regression classification algorithm. From the clus-
tering analysis, we observed that although the data used for training the classifier
was separable, it is not perfectly homogeneous i.e. each cluster did not have data
points belonging to the same class label. The SVM algorithm implemented in the
classifier used in this approach required two hyperparameters, 𝐶 and 𝛾 along with
kernel functions to separate the two classes using a hyperplane. Kernel functions
only calculated the relationship between every pair of points as they are in a higher
dimension. Parameter 𝐶 traded off misclassification of training data points against
decision surface while 𝛾 determined how much influence a single training datapoint
has. Optimum choice of the kernel function, values of 𝐶 and 𝛾 were predicted using
hyperparameter tuning.

The neural network learned the nonlinear function approximator using the sum-
mation of weighted layers of neurons and their transformation at the output of
each neuron using its activation function for two classes using the various hyperpa-
rameters and optimum hyperparameters were obtained by hyperparameter tuning.
Neural networks required a higher training time as the initialization of weights
was done according to standard method i.e. by initializing weights and bias of the
complex neural network by random number generation and were optimized by er-
ror backpropagation using stochastic gradient descent solver after every iteration,
although the prediction time was not much higher as the weights had been tuned
during the training phase. Due to the above reasons, SVM and Neural Networks
were able to fit and perform better than other algorithms on the nonlinear and not
perfectly homogeneous data points used in this analysis.

In the training phase as well as the testing phase, no other classifier was as fast
as the Naive Bayesian classifier (the value of this metric was 2-3 milliseconds) be-
cause training the Naive Bayes classifier required the calculation of the probability
of individual classes and the class conditional probabilities. Also, optimization pro-
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Table 4. Performance of classification algorithms.

user algorithm accuracy f1_score sensitivity specificity training
time (in s)

prediction
time (in ms)

USER 1

Logistic regression classifier 86.86 0.87 0.87 0.9 0.015 0.002
SVM classifier 90.06 0.9 0.9 1 0.345 0.072
Neural Network classifier 89.74 0.9 0.9 0.95 1.749 0.005
Naive Bayes classifier 88.78 0.89 0.89 0.91 0.003 0.003

USER 2

Logistic regression classifier 86.33 0.86 0.86 0.83 0.02 0.003
SVM classifier 89.45 0.89 0.91 0.97 0.362 0.079
Neural Network classifier 94.92 0.95 0.95 0.96 0.869 0.005
Naive Bayes classifier 90.63 0.9 0.89 0.82 0.003 0.003

USER 3

Logistic regression classifier 94.32 0.94 0.94 0.89 0.025 0.002
SVM classifier 95.63 0.96 0.95 0.92 0.127 0.036
Neural Network classifier 94.76 0.95 0.94 0.9 0.605 0.005
Naive Bayes classifier 95.63 0.96 0.95 0.92 0.003 0.003

USER 4

Logistic regression classifier 80.37 0.8 0.81 0.78 0.02 0.003
SVM classifier 90.8 0.9 0.89 1 0.113 0.047
Neural Network classifier 85.28 0.85 0.85 0.86 0.633 0.006
Naive Bayes classifier 85.89 0.86 0.86 0.87 0.002 0.003

USER 5

Logistic regression classifier 84.81 0.85 0.85 0.86 0.02 0.003
SVM classifier 87.97 0.88 0.87 0.99 0.114 0.047
Neural Network classifier 92.41 0.92 0.92 0.99 0.625 0.006
Naive Bayes classifier 82.91 0.83 0.84 0.73 0.002 0.003

cedures did not require the calculation of coefficients. Additionally, the algorithm
assumes all features to be independent, and hence parametric calculations can be
done individually and faster.

The prediction using SVM is comparatively slower because before prediction
SVM transforms the input vector to a higher dimensional feature vector. Addi-
tionally, SVM used kernel trick to reduce the computation time in high dimen-
sional feature space. Prediction time using all the algorithms is comparable in
a few microseconds. Another important aspect that we analyzed was specificity.
Specificity determined the fraction of actual negative cases which got predicted
correctly. In our data, actual negative cases were those emails that do not belong
to that user. We observed that the SVM classifier outperformed other classifiers on
this metric (the value of this metric existed between 0.9 and 1). Hence, the use of
an SVM classifier to train the classification model using the psychometric features
is recommended.

6. Conclusion
The proposed technique is based on the fact that a person’s personality is a constant
and stable quality that is represented in his language. The authorship assertion
problem has been treated as a classification problem using these principles. To de-
velop the classifier, a questionnaire to assess personality traits has been used, then
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the extracted word category lexica from emails are used to develop the personal-
ity score prediction model, followed by feature vector extraction and training of
classifiers. A comparison of models developed using four classification algorithms
was conducted to evaluate and choose the best model for each author based on
parameters like accuracy, specificity, prediction time, and so on. On these metrics,
SVM and Neural Network classifiers outperformed others.

Although these models function commendably, there may be inconsistencies if
the threat actor and the real sender have similar personalities. Another incon-
sistency may develop if the personality scores collected via the personality ques-
tionnaire have not been attempted truthfully, since this may represent misleading
personality behavior in the scores, making the training of the regression model er-
roneous. The work can be improved in the future by defining a more comprehensive
set of features and employing advanced machine learning models. Model boosting
and bagging may also increase performance and the development of models.
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Abstract. In our paper we introduce a bilingual language learning material
developed in the framework of the so-called three dimensional virtual library
model (3DVLM). This model inspired by the history and organization of the
famous ancient Library of Alexandria forms the basis of the virtual library
project which started about eight years ago as part of the Cognitive Infocom-
munications (CogInfoCom) research. The current version of the 3DVLM uses
the excellent 3D features of the MaxWhere Seminar System which makes it
suitable for both individual learning and classroom use. In the following, we
would like to introduce first the basic framework of our development, then
describe in detail the data structure and organization of the developed bilin-
gual language learning material. The basic idea of the material is to present
selected phrases and contexts from classical literary works in English and
from their parallel translations in Hungarian in order to improve both the
language skills and background knowledge of Hungarian language learners at
an advanced level. We found that using web technology was especially useful
for developing the language learning material and the developed hypertext
structure formed a scale-free network of interconnected nodes.
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1. Introduction
In the year 2013 a virtual library project was initiated as part of the cognitive
infocommunications (CogInfoCom) research [2, 3]. From the beginning, we have
laid great stress on the mapping and visualization of the library content in the
virtual 3D space the characteristics of which have been thoroughly investigated
and analyzed by a lot of studies. We found especially useful for our project the
presentation of virtual buildings in the 3D space [19, 27], the use of 3D VR as
an effective virtual learning environment [20, 21], and the psychological aspects of
the 3D environment [5, 6] but the number of such investigations is substantially
increasing [15, 16]. The virtual library project was originally intended to bring
together, arrange and show relevant verbal and multimedia materials in the 3D
virtual space about the Great Library of Alexandria and Greek literary texts in
English (e.g. preprocessed content about the work and life of Callimachus, English
versions of chosen literary texts of remarkable ancient writers and poets etc.) [7, 9,
12], but later we significantly expanded the content of the virtual library in order
that we can meet the requirements of the potential language learners. Though we
think that the 3DVLM can be developed for different applications and purposes,
language learning has seemed to be the most useful application of the virtual li-
brary material [10, 11] because, among others, of the increasing significance of the
advanced English language competence and skills in the so-called information so-
ciety. Moreover, the basic concept of the virtual library project includes to convey
the message of ancient and classical cultures to the present-day culture through
literature and we are convinced that with a carefully elaborated way and method-
ology the eternal values and thoughts of classical literary works can be precisely
and eloquently expressed for the young members of the generations CE [15].

The current implementation of the 3D virtual library model exploits the spec-
tacular 3D features of the MaxWhere Seminar System [26] especially because the
arranged web browsers (called smartboards) fully support web technology and
therefore enable the hypertext-based implementation of the basic concepts of the
3DVLM [8, 13, 15, 17].

In the following section we give an overview on the basic concepts and overall
organization of the 3DVLM as a virtual learning environment where the selected
and carefully preprocessed library content of the knowledge base of the virtual
library will be presented for the potential language learners.

2. A brief overview of the 3DVLM as a virtual
learning environment

As discussed before, the current implementation of the 3DVLM uses the innovative
and spectacular 3D features of the MaxWhere Seminar System. We emphasize pri-
marily the embedded smartboards in a selected ready-made 3D virtual space where
the core content (e.g. texts about Callimachus or the Library of Alexandria, selected
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parts of classical literary works etc.) and various navigation devices (thesaurus, in-
dex, concordance map, reference etc. pages) of the virtual library [13, 15, 17] can
be displayed. A number of excellent and well-designed 3D virtual spaces can be
found on the MaxWhere site [26] and they can be applied to almost every con-
text, although each space shows its distinguished and unique characteristics. In
our previous publications [13, 14, 16, 17] we selected the 3D Castle virtual space
for the presentation and arrangement of the virtual library content. But, owing
to the flexibility of the 3DVLM, we can utilize other 3D spaces as well. Therefore
we chose the 3D Library virtual space for the new implementation of the virtual
library model which provides a lot of smartboards in a virtual two-storey library
building. In the following, we are going to show some screenshots and explanatory
notes so as to illustrate how to have easy access to the preprocessed verbal and
multimedia content in the 3D Library space.

Let us use the navigation page as a starting point [15, 17] (Fig. 1).

Figure 1. The navigation page of the virtual library content placed
on the ground floor in the MaxWhere 3D Library space.

In the foreground of Fig. 1 there are three smartboards which jointly form
an “information desk” of the 3D virtual library. These browser windows provide
“smart” access to the main navigation devices of the virtual library:

• the navigation page is placed at the centre of the image;

• on the left side we can find a small part of the page providing a timeline of
some historical events of the ancient era;

• on the right side a part of the category page [17] can be recognized which
involves explanations of the main classification categories and presents their
hierarchical structure.

In the background of the screenshot shown in Fig. 1 we can see some additional
smartboards. Based on the content they contain we can distinguish two different
types as follows:
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• the smartboards located on the ground floor of the 3D library (the so-called
main cabinets) show the core content of the virtual library including primary
texts about Callimachus, the ancient Library of Alexandria etc. as well as
selected parts of literary texts;

• the smartboards located on the first floor of the 3D library show, among
others, the so-called thesaurus pages of the virtual library. These pages are
intended to present additional linguistic knowledge which has been organized
around certain keywords and collocations selected from the texts of the cab-
inets, and represented by a number of concordances or quotations which
contain at least one of the keywords in the given collocation pattern.

Note that the developed bilingual language learning material can be considered
as a supporting device for the language learners which contains designated keywords
and selected contexts from classical and modern literary works. Therefore its place
in the virtual 3D Library environment can be either on the ground floor (among
literary texts which can directly refer to the material) or on the first floor (among
the thesaurus pages which support e.g. vocabulary building).

The main function of the information desk is to enable the users to access
relevant information, hence we located the content of the navigation pages also on
the wall of the 3D library (see Fig. 2).

Figure 2. Three navigation pages of the virtual library placed on
the wall in the MaxWhere 3D Library space.

The content of some of the main cabinets is organized around selected primary
texts about the life and work of Callimachus (including the Pinakes, the ancient
Library of Alexandria, the works of Callimachus etc. [13, 15–17] which, as we men-
tioned before, can be discovered on the ground floor of the 3D library just behind
the information desk. The primary text about the ancient Library of Alexandria,
and that about Callimachus can be observed in Fig. 3.

From a different view we can see the primary text about the Pinakes as well
(Fig. 4).

For those who would like to see the hypertext representation of the library
content we have mentioned above, the current content of the virtual library project
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Figure 3. Cabinets which include primary texts about the Library
of Alexandria and Callimachus placed on the ground floor in the

MaxWhere 3D Library space.

Figure 4. The cabinet which shows the primary text about the
Pinakes placed on the ground floor in the MaxWhere 3D Library

space.

can be accessed through the internet [23].

3. Introduction of a bilingual learning material for
language learners

In the following, we would like to introduce the latest development of our virtual
library project. We prepared a bilingual language learning material [25] aimed
especially at Hungarian students who have an advanced level of English language
proficiency (and who have great interest in literature as well). The basic idea of
the material is to present carefully selected passages from literary works along with
their parallel translations and organize them with the intention to prepare a more
or less scale-free network of interconnected nodes in order to provide an efficient
learning environment for language learners.
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We’ll have a swashing and a martial outside (I.3.120)
where the adjectives ‘swashing’ and ‘martial’ have several synonyms as well

as rich connotations which we thought were worth elaborating. So we gathered
two separate groups of semantically related words named as Part 1 and Part 2,
respectively. Each of the groups had more than 60 items, e.g.

loud, noisy; hoarse, rough, harsh; . . . ; hectoring, boastful, cocky; swaggering,
swashing, swashbuckling, square-jawed; . . . ; disdainful, contemptuous, scornful
(Part 1)

active, energetic, vigorous, dynamic, alert; . . . ; martial, soldierly, militant,
combative; aggressive, bellicose, belligerent, quarrelsome; . . . ; relentless, implaca-
ble (Part 2)

These words have been considered as keywords and the primary aim of the
developed bilingual learning material is to help language learners to enhance their
vocabulary as well as their language skills by learning these words and their con-
texts.

Although we gave Hungarian translations of the listed English words, we added
selected bilingual phrases and sentences (either alone or with a broader context) to
the material in order that the possible language learners could deepen, interconnect
and then memorize the whole content. Moreover, we organized the content of the
material by devising an inner hyperlink structure where

• the keywords serve as nodes and

• the selected contexts of the keywords contain hypertext links to the keywords
that occurred in the contexts.

Metaphorically speaking, we considered the bilingual learning material
as a hypertext-based model for the long-term memory of the language
learners.

We selected 20 literary works in English (both from the English literature and
from the world literature in English translations) with their parallel Hungarian
translations as sources for the selected contexts that contain at least one of the
keywords to be learned. As for the bilingual phrases, the available dictionaries
proved to be a rich source in addition to the texts of the selected literary works. In
some cases we also provided sentence examples, but this option could be switched
on or off depending on the demands of the users of the learning material.

The literary works include English classics such as William Shakespeare’s As
You Like It, Jane Austen’s Pride and Prejudice, Charlotte Bronte’s Jane Eyre,
Sir Arthur Conan Doyle’s The Adventures of Sherlock Holmes etc. Works from
the world literature in English translations include Victor Hugo’s Les Miserables,
Rafael Sabatini’s Captain Blood, Leo Tolstoy’s War and Peace etc. We would like
to add some present-day literature works, too; so we selected short passages from
J. K. Rowling’s famous Harry Potter series, Stephenie Meyer’s Twilight saga etc.
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4. The data and link structure of the bilingual learn-
ing material

As we mentioned above, we had gathered more than 120 keywords which formed
separate nodes in the hypertext structure. We attached carefully selected bilingual
phrases, sentences and contexts to almost all nodes. (Note that each context estab-
lished an individual node as well). We were aware that in the contexts which came
from literary works there could be unknown, rare or difficult words or phrases,
so we added separate vocabulary entries to each context in a separate section
called ‘Comments’. We also added further vocabulary entries to every keyword
that occurred in a specific context and then, in each vocabulary entry, established
hypertext links from each keyword to the corresponding node. For example, in
Fig. 5 there is a node of the keyword ‘hoarse’, a short passage (in fact, a sentence
in this case) from J. K. Rowling’s Harry Potter and the Chamber of Secrets, and
a short ‘Comments’ section including the vocabulary entry ‘shout oneself hoarse’
which contains a hypertext link (represented by an asterisk) to the same node to
which the context belongs, i.e. to the node of ‘hoarse’. There are two other links
in the attached context (represented by a double arrow in superscript position,
just at the end of the context) which point to the bibliographic description of the
sources of the context (i.e. J. K. Rowling’s corresponding work and its Hungarian
translation) which can be found in the Reference page.

Figure 5. The node of the keyword ‘hoarse’ with a bilingual context
and its ‘Comments’ section.

Apart from the nodes of keywords and the hypertext links in the vocabulary
entries which point to them, we created specific navigation sections within the
learning material each of which contains a dedicated group of hypertext links to
specific parts of the material. In the following we would like to present them one
by one.

First, the ‘Sources’ section lists a characteristic part (e.g. the first few words)
of every context which occurs in the material. We grouped the items by the corre-
sponding works of literature where the contexts occur and added several hypertext
links to the items, which point to
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• the bibliographic description of the corresponding literary work written (or
translated) in English,

• the bibliographic description of the Hungarian translation of the correspond-
ing literary work,

• the corresponding context (in English).

In case there are more than one context from a selected literary work, the ref-
erenced contexts are arranged according to their order of occurrence in the original
work (Fig. 6).

Figure 6. The ‘Sources’ section containing references to the se-
lected literature works and their contexts. Note that after the double
arrows there are links to the two other navigation sections (i.e. Part

1 and Part 2, see below).

Second, we created two other navigation sections which point to the group of
keywords listed above as Part 1 and Part 2 (which are also the name of the sections
themselves). The words are presented in two separate columns of a table where the
second column contains the listed English words and the first one is their Hungarian
equivalents. Moreover, we assigned a hypertext link to those keywords which are
presented as individual nodes in the learning material (Fig. 7).

As we can see in the figure, in both columns of the table certain words are
separated by horizontal lines to form subgroups of synonymous words. Where it
seemed to be useful, we presented the pronunciation of some English words as well
(that is, when pronouncing a word may be difficult for a Hungarian learner).

Third, we listed all the keywords and their Hungarian translations which occur
in the learning material (either in a bilingual phrase or in a specific context) using
a simple JavaScript program. We arranged the English keywords alphabetically
and inserted a hypertext link to the exact place in the learning material where
the presented keyword occurs (represented by an arrow in the third column of the
table in Fig. 8). Note that we omitted from the table the occurrence of keywords
in the sentence examples because their display is optional (as mentioned above).
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Figure 7. The beginning of the table containing English keywords
and their Hungarian equivalents from the group of words named

Part 1.

Figure 8. The beginning of the ‘List of keywords’ section contain-
ing English keywords and their Hungarian translations arranged al-
phabetically. There are also links to the occurrence of each of them.

Currently there are 150 occurrences of the listed keywords in the learning material
(see Fig. 8).

Fourth, we listed all the English keywords which occur as separate nodes in
the learning material (identified by their name after a hash mark like #conceited,
#harsh etc.) using also a simple JavaScript program. We arranged the keywords
by the number of links (called either ‘Number of references’ or ‘Link strength’) that
point to the node of the respective keyword in the learning material, and inserted
a hypertext link to each node represented by a gray dotted line which underlines
each keyword in the first column of the table (Fig. 9). Note that we omitted those
keywords the link strength of which is only 1 because of their number (actually,
there are currently more than 200 such nodes).

Finally, we summarized the basic features of the network of nodes and hypertext
links established in the bilingual language learning material. Using a JavaScript
program we divided all referenced nodes of the learning material into separate
groups according to the number of references which each node has (called ‘Link
strength’) and determined the number of nodes in each group (called ‘Strength
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Figure 9. The beginning of the ‘Link structure’ section containing
the keywords (in the ‘Node #’ column) and the number of hypertext

links that point to them (in the ‘Number of references’ column).

frequency’). In the table shown in Fig. 10 we presented for each group of nodes
the link strength value in the first column, and the number of nodes in the second
column.

5. Evaluation and further use
In the science of networks the degree distribution of the so-called scale-free net-
works can be displayed by a curve that follows the power law and can therefore be
described by the formula

𝑁(𝑘) = 𝑐 * 𝑘−𝛾 (5.1)

where N(k) is the degree or frequency of nodes that have exactly ‘k’ links. In
other words, formula (5.1) describes the number of those nodes the “link strength”
of which is exactly ‘k’ (see the first and second column of the table in Fig. 10). The
parameters denoted by ‘c’ and 𝛾 are fixed parameters that characterize the specific
network.

Note that the empirical value of the parameter 𝛾 (i.e. the degree exponent of
the curve) for a lot of well-known scale-free networks is typically 2<𝛾<3, e.g. 𝛾=2.5
[1].

The JavaScript program we created fits a curve following the power law distri-
bution of the number of nodes having exactly ‘k’ links described in formula (5.1)
according to the series of data points presented in the first and second columns of
the table in Fig. 10. The estimated frequency values that the fitted curve provides
are presented in the third column of the table.

We found that in the current stage of the development of the learning material
the value of the parameter 𝛾 is about 4 and the square root of the residual sum of
squares (which, using the least squares fitting method, characterizes the deviation
of the calculated values from the actual ones) is relatively high (Δ ≊ 5.564; see
Fig. 10).
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Figure 10. The basic features of the network structure of the nodes
of keywords and hypertext links. For example, there are 242 nodes

that have 1 reference, 12 nodes that have 2 references etc.

Figure 11. The distribution of the strength frequency of nodes
having exactly ‘k’ links on a logarithmic scale according to the data
presented in Fig. 10 (first curve), and to the improved data after
two weeks (second curve). The third and fourth curves have been

fitted to the data in Fig. 10 and the improved data, respectively.

However, we experienced in the content development process that during the
elaboration of the language learning material the parameter 𝛾 tends to be gradually
decreasing. For example, after two weeks’ development of the content of the learn-
ing material, we calculated a somewhat lesser value for the parameter 𝛾 compared
to the value presented in Fig. 10 (i.e. 𝛾 ≊ 4.014 instead of 𝛾 ≊ 4.188). So we guess
that further elaboration of the material (for example inserting even more contexts
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etc.) will result in an effect that the value for the exponent will be between the
‘experimental’ boundaries (i.e. between 2 and 3) and the deviation of the actual
values from the calculated ones will be considerably less.

As for the effectiveness of the language learning material we intend to make it
available freely through the internet. Both the usage statistics for a given period of
time and the comments of the users can help us evaluate and improve the learning
material. Note that the bilingual language learning material is also an inherent part
of the 3DVLM which uses the MaxWhere Seminar System. Note that MaxWhere,
on the one hand, is a desktop virtual environment for education and learning [4]
which can provide, among other things, personalized, customizable learning envi-
ronment and paths [22] for the learners, and, on the other hand, MaxWhere can be
considered as a possible candidate for next generation 3D operation systems [24].
Besides, there are two firm pillars on which our work is founded: the 3D virtual
environment might enhance the effective use of our long term memory serving as
a kind of memory palace [18] and, supposing that the organization of the content
elements to be memorized is more or less adequately reflected in the mental image
created in the memory during the learning process, establishing the learning mate-
rial as a scale-free network of content elements might transfer the network’s high
degree of robustness [1] against “memory failures” (e.g. oblivion) to the “network
of knowledge” that the learners had successfully built using our learning material.

As a conclusion of those considerations we can plausibly expect that advanced
(as well as enthusiastic and interested) language learners can use our learning mate-
rial effectively either for self-study or in language classrooms for advanced language
courses.
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Abstract. A method is presented for generating random numbers with uni-
form distribution using linear recurrence sequences with very large period
lengths. This method requires an irreducible polynomial modulo 2 to define
the sequence. A suitable method for generating an infinite number of such
polynomials is presented. The polynomials generated in this way can have
an arbitrarily large degree, and a large enough order to make them suitable
for practical applications.
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1. Introduction
Pseudorandom number generation (PRNG) is an important component of many
practical applications. Generators with different properties are used in a wide
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range of fields, such as simulations [12], Monte Carlo methods [14]. Morover,
PRNGs recently play an essential role in many areas of cryptography, for exam-
ple, key generation, stream ciphers, asymmetric cryptosystems, and authentication
protocols [11].

The results presented in this paper relate to an algorithm detailed in [8], showing
the construction of uniformly distributed linear recurrence sequences (LRS) modulo
powers of 2, with theoretically arbitrarily large period lengths. A modified version
of this algorithm is given in Section 3, optimizing it to be less computationally
expensive.

2. Theory
The algorithm presented takes an irreducible polynomial over F2 as input.

Irreducible polynomials over finite fields are used in a wide variety of contexts,
not just in pure mathematics and many areas of computer science, but practical
applications as well.

In [8], we see a method of constructing linear recurring sequences with extremely
long periods used for pseudorandom number generation. The sequence requires an
irreducible polynomial to create, the degree of which is directly related to the
resulting period length.

In coding theory, creating error correcting codes that can be used to reliably
transmit information over noisy channels is a key practical application that can
be found in many everyday electronic systems. These codes are almost always
connected to the use of polynomials over finite fields. An in-depth discussion can
be found in [9].

In cryptography, many encryption protocols use finite fields as their domain.
Irreducible polynomials have been used in public key cryptosystems for decades,
such as in [4].

As the previous examples show, irreducible polynomials over the finite field F2
are of special interest.

2.1. Irreducible polynomials
A univariate polynomial over the finite field F2 is

𝑝(𝑥) =
𝑛∑︁

𝑘=0
𝑎𝑘𝑥𝑘, 𝑎0, . . . , 𝑎𝑛 ∈ F2 .

F2[𝑥] is the set of all polynomials over F2. A polynomial 𝑝 ∈ F2[𝑥] of degree 𝑘
is irreducible if it has no nontrivial factors over F2. That is, 𝑝(𝑥) = 𝑝1(𝑥)𝑝2(𝑥)
can not hold if deg(𝑝1), deg(𝑝2) > 0. The natural way to prove a polynomial’s
irreducibility is, therefore, to factor it and show that no such factors can be found.

The first algorithm for factoring a polynomial over a finite field was published
by Berlekamp [2]. It is a deterministic algorithm that requires a square-free poly-
nomial, and is well suited for cases where the cardinality of the finite field is small.
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Later, the Cantor-Zassenhaus algorithm [3] provided a practical solution even for
polynomials over large finite fields. This algorithm is probabilistic in nature. A
detailed description of both methods can be found in [13].

Rabin’s test [16] provides a very simple algorithm. A polynomial over F2 is
irreducible if and only if:

1. 𝑝(𝑥) | 𝑥2𝑘 − 𝑥

2. ∀𝑡𝑖 GCD(𝑥2𝑘/𝑡𝑖
, 𝑝(𝑥)) = 1,

where 𝑡𝑖 are the prime divisors of 𝑘. The test simply computes all 𝑥2𝑘/𝑡𝑖 mod 𝑝(𝑥)
polynomials using repeated squaring, and polynomial modulo operations, then uses
polynomial GCD to check condition 2.

Ben-Or’s test [1] modifies this approach by computing GCD(𝑥2𝑖 mod 𝑝(𝑥), 𝑝(𝑥))
for every 𝑖 ∈ {1, . . . , 𝑛

2 }. In practice, this improves average performance when
testing random polynomials. A randomly selected polynomial is much more likely
to have factors of small degrees than be the product of only large-degree factors.
Since Ben-Or’s test checks for factors of small degrees first, these polynomials are
very quickly eliminated. A comparison between the performance of Rabin’s test
and Ben-Or’s test can be found in [7]. Victor Shoup also published a deterministic
irreducibility test in [19], and a probabilistic algorithm is [18].

3. Algorithm for creating LRS
The following algorithm is for constructing uniformly distributed linear recurrence
sequences modulo 2𝑠, with very large period lengths. It is a modified version of the
algorithm found in [8]. The version presented here is significantly less computa-
tionally expensive than the original, which enables the creation of sequences with
larger period lengths.

The reduced time complexity speeds up the process of finding the desired co-
efficients for the LRS, while the reduced space complexity allows the algorithm to
be carried out with significantly larger input parameters. Once the LRS is con-
structed, using it to generate the pseudorandom number sequence is unchanged
compared to the original version.

1. Choose an integer 𝑘 and find a monic polynomial 𝑞(𝑥) ∈ Z[𝑥] of degree 𝑘,
which reduction modulo 2 is irreducible in F2[𝑥].

2. Calculate the polynomials 𝑝(𝑥) of degree 𝑘 + 2 and 𝑝′(𝑥) of degree 𝑘 + 1 in
the following way:

𝑝(𝑥) ≡ (𝑥2 − 1)𝑞(𝑥) mod 2 and
𝑝′(𝑥) ≡ (𝑥 − 1)𝑞(𝑥) mod 2,

with the coefficients of 𝑝(𝑥) and 𝑝′(𝑥) in {0, −1}, except for the leading coef-
ficients.
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Calculate the four candidate polynomials:

𝑝1(𝑥) = 𝑝(𝑥)
𝑝2(𝑥) = 𝑝(𝑥) − 2
𝑝3(𝑥) = 𝑝(𝑥) − 2𝑥

𝑝4(𝑥) = 𝑝(𝑥) − 2𝑥 − 2

We remark that the coefficients of the constant and linear terms of the can-
didate polynomials can be in {0, −1, −2, −3}.

3. For 𝑖 ∈ {1, 2, 3, 4}, 𝑗 ∈ {0, 1, . . . 𝑘 + 2}, let 𝑎𝑖𝑗 denote the coefficient of
𝑥𝑗 in the polynomial 𝑝𝑖(𝑥). Calculate 𝑆𝑖 =

∑︀𝑘+1
𝑗=0 −𝑎𝑖𝑗 for each candidate

polynomial. Keep the two candidates that satisfy 𝑆𝑖 ≡ 1 mod 4. Denote
these two polynomials with 𝑐1 and 𝑐2.

4. Let 𝜚 = ord(𝑞) be the order of 𝑞(𝑥), i.e., the smallest positive integer such
that 𝑞(𝑥) | 𝑥𝜚 − 1.
We need to find the candidate that satisfies 𝑐𝑖(𝑥) ∤ 𝑥2𝜚 − 1 mod 4. To do
this, calculate

𝑟(𝑥) ≡ 𝑥𝜚 mod (2, 𝑝(𝑥)),

where mod(2, 𝑝(𝑥)) means calculating the polynomial remainder with 𝑝(𝑥)
over F2.
Then, find the candidate that satisfies

1 ̸≡ 𝑟(𝑥)2 mod (4, 𝑐𝑖(𝑥)),

where mod(4, 𝑐𝑖(𝑥)) means calculating the polynomial remainder with 𝑐𝑖(𝑥)
over F4.
Note that all of the computation in this step can be performed over F2, with
the exception of the last step, which is performed over F4.
Denote the candidate that remains by 𝑐(𝑥). This is the characteristic poly-
nomial of the linear recurrence sequence we want to create. Let 𝑏𝑗 , 𝑗 ∈
{0, 1, . . . 𝑘 + 2} be the coefficient of 𝑥𝑗 in 𝑐(𝑥). Then, our final recurrence
relation is

𝑢𝑛+𝑘+2 = −𝑏𝑘+1𝑢𝑛+𝑘+1 − 𝑏𝑘𝑢𝑛+𝑘 . . . − 𝑏0𝑢𝑛

5. Choose initial values for the sequence. Suppose we want 𝑠-bit long pseu-
dorandom numbers. Choose random 𝑢0, 𝑢1, . . . , 𝑢𝑘 ∈ [0, 2𝑠 − 1]. Set these
values as the initial values of the linear recurrence relation with characteris-
tic polynomial 𝑝′(𝑥). Compute the next element of the sequence, 𝑢′

𝑘+1. Find
a random number 𝑢𝑘+1 ∈ [0, 2𝑠 − 1] such that 𝑢′

𝑘+1 ̸≡ 𝑢𝑘+1 mod 2.
Set 𝑢0, 𝑢1, . . . , 𝑢𝑘+1 as the initial values of the sequence.
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The original version of the above algorithm differs in steps 3 and 4. That
algorithm requires computation using the companion matrices of the candidates.
The companion matrix of 𝑝𝑖(𝑥) is

𝑀(𝑖) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0
0 0 · · · 0 1

−𝑎𝑖0 −𝑎𝑖1 · · · −𝑎𝑖𝑘 −𝑎𝑖𝑘+1

⎞
⎟⎟⎟⎟⎟⎠

Step 3 calls for finding the two candidates that satisfy 𝑀(𝑖)1̄ ≡ 1̄ mod 4, where 1̄
is a vector of size 𝑘 + 2 with all coordinates equal to 1. It is simple to see that this
is equivalent to the step 3 of the above algorithm.

In step 4 of the old algorithm, the final candidate is the one for which 𝑀2𝜚
(𝑖) ̸≡ 𝐸

(mod 4) holds, where 𝐸 is the identity matrix of size (𝑘+2)×(𝑘+2). This requires
matrix exponentiation modulo 4, using matrices sized (𝑘 + 2) × (𝑘 + 2). Since we
want 𝑘 to be as large as possible, these matrices quickly become inconvenient, both
to store, and to perform multiplications on. The step 4, presented here, instead
requires mainly polynomial modulo and squaring over F2, and once over F4. This
makes storage more efficient, since the size of a polynomial is a linear function of
its degree. Moreover, even a naive implementation of polynomial squaring over
F2 has time complexity 𝒪(𝑛). For polynomial modulo, a naive approach has time
complexity 𝒪(𝑛2), but faster algorithms are known, such as the result by Schönhage
in [17], which enables polynomial division with remainder in 𝒪(𝑛 log 𝑛 log log 𝑛)
time. This is better than even the fastest current matrix multiplication algorithms,
such as [6], which has a complexity over 𝒪(𝑛2.3).

4. Q-transform
A promising concept for constructing uniformly distributed high order linear re-
curring sequences is the application of the theory of 𝑄-transform. In this section,
we introduce some definitions and results that allow us to formulate infinite series
of irreducible polynomials. Based on the idea described in Section 3, we can use
such polynomials for creating uniformly distributed pseudorandom sequences with
large period lengths.

During the section, 𝑞 is a prime power, F denotes a field, F𝑞 is a finite field
of 𝑞 elements, and K is an algebraic extension field of F or F𝑞, depending on the
context.

Definition 4.1. Let 𝑝 ∈ F[𝑥] be a polynomial of degree 𝑑. We say that the
reciprocal polynomial of 𝑝 is 𝑝*(𝑥) = 𝑥𝑑𝑝(𝑥−1). We call a polynomial 𝑝 self-
reciprocal, if 𝑝 = 𝑝*.

Remark 4.2. a) If 𝑝 ∈ F[𝑥], then 𝑝* ∈ F[𝑥] and (𝑝*)* = 𝑝.
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b) Let 𝑝, 𝑟, 𝑠 ∈ F[𝑥] be such that 𝑠 = 𝑝 · 𝑟. Then 𝑠* = 𝑝* · 𝑟*.

c) For any 𝑝 ∈ F[𝑥], 𝑝 is irreducible if and only if 𝑝* is irreducible.

d) Let 𝑝, 𝑟, 𝑠 ∈ F[𝑥] be such that 𝑠 = 𝑝 · 𝑟. If 𝑝 and 𝑟 are self-reciprocal, then 𝑠
is self-reciprocal, as well.

Proposition 1. Let 𝑝 ∈ F[𝑥], and K be the splitting field of 𝑝. Then the following
statements are equivalent.

a) 𝑝 is self-reciprocal;

b) ∀𝛼 ∈ K ∖ {0}: 𝑝(𝛼) = 0 implies 𝑝
(︀
𝛼−1)︀

= 0.

Corollary 4.3. If 𝑝 ∈ F[𝑥] is self-reciprocal and irreducible of odd degree, then
𝑝(𝑥) = 𝑎𝑥 + 𝑎, with some 𝑎 ∈ F.

Proof. Since deg (𝑝) is odd, Proposition 1 implies that 𝑝 has a root 𝛼 such that
𝛼 = 𝛼−1. This is possible if and only if 𝛼 ∈ {−1, 1}. Then either 𝑥 − 1 or 𝑥 + 1 is
a divisor of 𝑝. However, 𝑝 is irreducible, thus either 𝑝 = 𝑎𝑥 − 𝑎 or 𝑝 = 𝑎𝑥 + 𝑎, but
𝑎𝑥 − 𝑎 is self-reciprocal if and only if 𝑎 = −𝑎.

Corollary 4.4. Let 𝑝 ∈ F[𝑥] be a self reciprocal polynomial, and 𝑝1, . . . , 𝑝𝑘 ∈ F[𝑥]
be distinct irreducible polynomials such that 𝑝 = 𝑝𝑛1

1 · · · · · 𝑝𝑛𝑘

𝑘 . Then for each
1 ≤ 𝑖 ≤ 𝑘 there exists 1 ≤ 𝑗 ≤ 𝑘 such that 𝑝𝑖 = 𝑝*

𝑗 and 𝑛𝑖 = 𝑛𝑗.

Remark 4.5. In the previous corollary, 𝑖 = 𝑗 if and only if 𝑝𝑖 is self-reciprocal.

Definition 4.6. Let 𝑝 ∈ F[𝑥] be a polynomial of degree 𝑑. The 𝑄-transform of 𝑝
is 𝑝(𝑥) = 𝑥𝑑𝑝(𝑥 + 𝑥−1).

Remark 4.7. If 𝑝 ∈ F[𝑥], then 𝑝 ∈ F[𝑥], and deg(𝑝) = 2 deg(𝑝).

Proposition 2. Let 𝑝, 𝑟, 𝑠 ∈ F[𝑥] be such that 𝑠 = 𝑝 · 𝑟. Then 𝑠 = 𝑝 · 𝑟.

Let 𝑝 ∈ F[𝑥], and 𝛼 ∈ 𝐾 ∖ {0}. Then 𝑝(𝛼) = 0 if and only if 𝑝(𝛼−1) = 0. By
Proposition 1, we may state the following.

Proposition 3. If 𝑝 ∈ F[𝑥], then 𝑝 is self-reciprocal.

Proposition 4. The 𝑄-transform is an injection.

Proof. Let 𝑝 ∈ F[𝑥], 𝑑 = deg(𝑝), K be the splitting field of 𝑝, and 𝛼𝑖, 𝛽𝑖 ∈ K
(𝑖 = 1, . . . , 𝑑) with the following properties:

𝑝(𝑥) = 𝑎𝑑

𝑑∏︁

𝑖=1
(𝑥 − 𝛼𝑖), and 𝛽𝑖 = −1

2𝛼𝑖 + 1
2

√︁
𝛼2

𝑖 − 4 .

Then

𝑝(𝑥) = 𝑎𝑑𝑥𝑑
𝑑∏︁

𝑖=1

(︀
𝑥 + 𝑥−1 − 𝛼𝑖

)︀
= 𝑎𝑑

𝑑∏︁

𝑖=1

(︀
𝑥2 + 1 − 𝛼𝑖𝑥

)︀
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= 𝑎𝑑

𝑑∏︁

𝑖=1
(𝑥 − 𝛽𝑖)

𝑑∏︁

𝑖=1

(︀
𝑥 − 𝛽−1

𝑖

)︀
.

This means that there is a one-to-one correspondence between the roots of 𝑝
and the pairs of roots of 𝑝.

Let

𝒫𝑞(𝑑) = {𝑝 | 𝑝 ∈ F𝑞[𝑥], deg(𝑝) = 𝑑},

𝒬𝑞(𝑑) = {𝑝 | 𝑝 ∈ F𝑞[𝑥], deg(𝑝) = 2𝑑, 𝑝 = 𝑝*} .

Since |𝒫𝑞(𝑑)| = |𝒬𝑞(𝑑)|, Proposition 4 implies the following.

Corollary 4.8. Let 𝑝 ∈ F𝑞[𝑥] be a self-reciprocal polynomial. Then there exists a
unique 𝑟 ∈ F𝑞[𝑥] such that 𝑝 = 𝑟.

Notation 1. Let 𝑝 ∈ F[𝑥] and 𝑘 ∈ N. We denote by 𝑝(𝑘) the following iterated
𝑄-transform:

if 𝑘 = 0, then 𝑝(𝑘) = 𝑝;
if 𝑘 > 0, then 𝑝(𝑘) = 𝑟, where 𝑟 = 𝑝(𝑘−1) .

Corollary 4.9. Let 𝑝 ∈ F𝑞[𝑥] be a self-reciprocal polynomial. Then there exists a
unique 𝑟 ∈ F𝑞[𝑥], not a self-reciprocal polynomial, and 𝑘 ∈ N such that 𝑝 = 𝑟(𝑘).

Corollary 4.10. Let 𝑝 ∈ F𝑞[𝑥] be irreducible. Then 𝑝 is either irreducible or there
exist 𝑝1, 𝑝2 ∈ F𝑞[𝑥] irreducible polynomials such that 𝑝 = 𝑝1 · 𝑝2, and 𝑝1 = 𝑝*

2.

Proof. Assume contrary that there exists an 𝑟 ∈ F𝑞[𝑥] self-reciprocal polynomial
with 1 ≤ deg(𝑟) < 2 deg(𝑝), such that 𝑟|𝑝. By Corollary 4.8, there exists 𝑠 ∈ F𝑞[𝑥]
satisfying 𝑠 | 𝑝, deg(𝑠) < deg(𝑝), and 𝑟 = 𝑠, which is a contradiction.

Proposition 5. Let 𝑝 ∈ F2[𝑥] be an irreducible polynomial in the form 𝑝(𝑥) =
𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + · · · + 𝑎1𝑥 + 1. Then 𝑝 is irreducible if and only if 𝑎𝑑−1 = 𝑎1 = 1.
Furthermore, the coefficient of the linear term of 𝑝 is 1.

Proof. The proposition is proven in a more general settings in [10].

Corollary 4.11. Let 𝑝 ∈ F2[𝑥] be an irreducible polynomial, and 𝑝(𝑥) = 𝑥𝑑 +
𝑥𝑑−1 + 𝑎𝑑−2𝑥𝑑−2 + · · · + 𝑎2𝑥2 + 𝑥 + 1. Then 𝑝(𝑘) is irreducible for all 𝑘 ∈ N.

This result implies that any irreducible polynomial in the form as in Proposi-
tion 5 determines an infinite sequence of irreducible 𝑄-iterated polynomials. Every
self-reciprocal polynomial of even degree is contained in exactly one of such se-
quences.

Proposition 6. Let 𝑝 ∈ F𝑞 be an irreducible polynomial, accomplishing deg(𝑝) =
2𝑑. Then 𝑝 is self-reciprocal if and only if ord(𝑝) | 𝑞𝑑 + 1.
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Proof. The proposition is stated e.g. in [5].

For the construction of pseudorandom number sequences with high period
length, we need irreducible polynomials of high order. Actually, the period length
is proportional to the order. Based on our experience, we have the following con-
jecture.

Conjecture 1. Let 𝑝 ∈ F𝑞[𝑥] be an irreducible self-reciprocal polynomial of degree
deg(𝑝) = 4𝑑. Then 𝑞𝑑 + 1 < ord(𝑝).

Furthermore, we have encountered 𝑄-iterated polynomials having maximal or-
der in many cases.

5. Statistical testing
In this section, we describe a test carried out to examine the statistical proper-
ties of the pseudorandom number sequences generated using the previously de-
tailed method. Two irreducible polynomials of large degree were created, one using
a brute force method and one using 𝑄-transformations. The pseudorandom se-
quences generated using these polynomials were tested using the NIST statistical
test suite.

The software and documentation of the NIST test suite are available at [15].
The suite includes 15 tests designed to examine the properties of pseudorandom
bit sequences, such as:

• Frequency test: a simple check to determine the proportion of ones and zeroes
in a binary sequence.

• Runs test: checking the number of runs (uninterrupted sequence of identical
bits) of various lengths to see how closely matches the expected value in a
truly random sequence.

• DFT (Spectral) test: determining the peak heights in the Discrete Fourier
Transform of the sequence, with the purpose of finding periodic features.

• Template matching test: finding occurences of predetermined target strings,
to detect generators producing too many such patterns. Both overlapping
and non-overlapping tests are included.

• Maurer’s “Universal Statistical” test: checking whether or not the sequence
can be significantly compressed without loss of information.

• Linear complexity test: attempting to determine the length of the LRS that
characterizes the sequence.

The first irreducible polynomial tested, denoted by 𝑡1, was generated using
irreducibility testing methods described in previous sections. The implementation
uses the NTL (Number Theory Library) available at [20].
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The degree of 𝑡1 was chosen to be 216091. The reason for this choice is that
2216091 − 1 is a Mersenne prime. Choosing a value this way simplifies Step 4 of
the algorithm described in Section 2. Note that this step requires the computation
of the order of the irreducible polynomial, which is a divisor of 2𝑑 − 1, where 𝑑
is the degree of the polynomial. If 𝑑 is large, this step becomes computationally
impractical, but choosing 2𝑑−1 to be a prime gives a simple solution to the problem.

The second irreducible polynomial tested, denoted 𝑡2, was created using iterated
𝑄-transform, using the following method:

1. Let 𝑞 be a self-reciprocal irreducible monic polynomial, with deg(𝑞) = 𝑑.

2. Run the algorithm described in Section 3, using 𝑞 as input. Let 𝑝 be the
candidate polynomial that remains after Step 4. Determine 𝑠, 𝑟 ∈ Z[𝑥] such
that 𝑝 = 𝑠𝑞 + 𝑟, and deg(𝑟) < deg(𝑞).

3. Compute 𝑡 = 𝑠𝑞(𝑛) + 𝑟, where 𝑞(𝑛) is the iterated 𝑄-transform, described in
Notation 1 of Section 4. Use 𝑡 to construct the linear recurrence sequence.

Based on practical observation, if the sequence produced by 𝑝 has uniform
distribution, then the sequence produced by 𝑡 will also have uniform distribution.
However, the proof of this conjecture is currently an open question.

To create 𝑡2, the following polynomial was used as a starting point:

𝑞2 = 𝑥14 + 𝑥13 + 𝑥12 + 𝑥11 + 𝑥10 + 𝑥9

+ 𝑥7 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 .

As it is stated in Proposition 6, the order of a self-reciprocal irreducible monic
polynomial of degree 𝑑 is at most 2 𝑑

2 + 1. The above polynomial was chosen
because ord(𝑞), ord(𝑞), and ord(𝑞(2)) all reach this maximum value. Theoretically,
it does not guarantee that this maximality property will hold after further 𝑄-
transformations, but practical observations suggest that the order of 𝑞(𝑛) will grow
at a rate that is sufficient for use in the applications described in this paper. We
stated our related experience in Conjecture 1.

Using the above method, 𝑝2 = 𝑠2𝑞2 + 𝑟2 was determined, and the polynomial
to be used was set as 𝑡2 = 𝑠2𝑞2

(14) + 𝑟2. Note that deg(𝑞2
(14)) = 229376, and

deg(𝑡2) = 229378.
Using 𝑡1 and 𝑡2, two LRSs were created to generate the pseudorandom sequences

to be tested, denoted 𝐿1 and 𝐿2 respectively. Both LRSs generate 64-bit words.
Following the recommendations in the documentation of the NIST test suite, 16MB
(221 words) of test data were generated using 𝐿1 and 𝐿2 each.

For each of these two streams, the NIST suite split the data into 100 bitstreams.
The testing software provides a detailed output of the tests, as well as a summary
showing the number of bitstreams that passed each test. The minimum pass rate
for a test is considered to be 96 out of a sample size of 100.

Tables 1 and 2 show some of the result obtained from the tests. The full report
can be found at https://arato.inf.unideb.hu/major.sandor/statistical_r
esults/.

44

https://arato.inf.unideb.hu/major.sandor/statistical_results/
https://arato.inf.unideb.hu/major.sandor/statistical_results/


Annal. Math. et Inf. Using irreducible polynomials for random number generation

Table 1. NIST test results of 𝐿1 generator.

Statistical Test P-value Proportion
Frequency 0.779188 100/100
Runs 0.514124 100/100
FFT 0.924076 99/100
OverlappingTemplate 0.012650 96/100
Universal 0.935716 97/100
LinearComplexity 0.699313 99/100

Table 2. NIST test results of 𝐿2 generator.

Statistical Test P-value Proportion
Frequency 0.955835 100/100
Runs 0.108791 98/100
FFT 0.678686 98/100
OverlappingTemplate 0.035174 97/100
Universal 0.249284 100/100
LinearComplexity 0.719747 100/100

The results show the two generators to have very similar statistical properties,
with 𝐿2 being only slightly weaker in some tests. Since the order of 𝑡2 is significantly
lower than the order of 𝑡1, this result is to be expected. Also of note is that both
generators produced very high quality pseudorandom sequences, passing all relevant
benchmarks set by the test suite.

This shows that using the 𝑄-transformation described above to generate irre-
ducible polynomials of very large degree is completely suitable for use in generating
uniformly distributed pseudorandom linear recurrence sequences.
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Abstract. We propose an efficient algorithm to compute k-sided unbound-
ing discrete oriented polytopes (𝑘-UDOPs) in arbitrary dimensions. These
convex polytopes are constructed for a fixed set of directions and a given
center point. The interior of 𝑘-UDOPs does not intersect the scene geometry.
We discuss several types of general geometric queries on these constructs,
such as intersection with rays, and provide an empirical investigation on the
limit of these shapes as the number of sides increases. In the 2D case, we
extend our construction to planar shapes enclosed by arbitrary parametric
boundaries with known derivative bounds.
Keywords: computer graphics, computational geometry, collision avoidance
AMS Subject Classification: 68U05

1. Introduction
Bounding volumes are ubiquitous in various computing venues, such as computer
graphics [6], collision detection [2, 3, 7, 9], and geometric information systems.

A 𝐵 ⊂ R𝐷 volume is a bounding volume of a 𝐺 ⊂ R𝐷 geometry if 𝐺 ⊂ 𝐵
holds. This property facilitates quick filtering of geometries, in other words, we
only execute a query on 𝐺 if it is successful on 𝐵. For example, if a line does not
intersect 𝐵, it cannot intersect 𝐺.

The more efficiently a query is carried out on 𝐵, the more performance may
be gained by using culling based on bounding volumes. However, 𝐵 has to be a
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sufficiently close approximation to the shape of 𝐺 to avoid an excessive amount of
false positives. In practice, bounding volumes are also organized into hierarchies
[6], a construct that only depends on the structure of the initial bounding volumes,
not the geometries they contain.

Typical realization of bounding volumes are axis-aligned bounding boxes
(AABBs) and oriented bounding boxes (OBBs). Geometric queries, for example,
ray-surface intersection and collision detection against other similar volumes, are
trivially resolved on these at the expense of their relatively low capacity for adapt-
ing to the shape and orientation of their enclosed geometries. These properties are
improved by generalizing bounding boxes to the k-sided bounding discrete oriented
polytope (𝑘-DOP). The 𝑘-DOPs are defined as the intersection of 𝑘 half-spaces;
as such, they are convex. As 𝑘 increases, the bounding volume can better adapt
to the source geometry. However, it also incurs additional processing costs upon
filtering geometries, as we must process more faces. In this sense, the choice of 𝑘
is a trade-off between adaptivity and query complexity.

Unbounding volumes are complements to bounding volumes. They enclose
empty spaces such that none of their interior points intersect any geometry. The
most prominent example of such a construct is Hart’s sphere tracing [5] algorithm
that infers unbounding spheres from signed distance values to accelerate ray trac-
ing.

In collision detection and path planning, these unbounding volumes can be used
to reject geometries that cannot intersect a given entity. In this case, an unbounding
geometry with a smaller volume generates fewer candidates in the filtering pass;
thus, it also decreases the number of false positives.

Section 2 describes an efficient algorithm to compute 𝑘-sided unbounding con-
vex oriented polytopes, or 𝑘-UDOPs, for a wide range of geometry types. The
construction runs in Θ(𝑘𝑁) complexity for 𝑁 objects and is generalized to higher
dimensions. Our algorithm relies on the capability to compute the distance of the
discussed geometries to hyperplanes. Section 3 enumerates several simple geomet-
ric representations and how to compute these distances on them. In particular,
Section 3.5 describes a method to infer a conservative 𝑘-UDOP for shapes with
arbitrary parametric boundaries in the plane, given known bounds on their deriva-
tives, and in Section 4, we describe some alogorithms applied on k-UDOPs. In
Section 5, we demonstrate that the 𝑘-UDOP converges to a polygon empirically as
the number of sides increases. Finally, we demonstrate the results of our proposed
algorithm on various plane geometries in Section 5.

2. Unbounding 𝑘-DOP construction

2.1. Representation
A 𝑘-DOP, or a discrete oriented polytope with 𝑘 sides in 2 ≤ 𝐷 ∈ N dimensions, is
defined by a center point 𝑐 ∈ R𝐷, and a sequence of directions 𝑣𝑖 ∈ R𝐷, ‖𝑣𝑖‖2 = 1
and distances 0 ≤ ℎ𝑖 ∈ R, where 𝑖 = 1, . . . , 𝑘 and 𝑘 ≥ 𝐷 + 1. The interior of the
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𝑘-DOP is given by

𝐻𝑐 = {𝑥 ∈ R𝐷 | ∀𝑖 ∈ {1, . . . , 𝑘} : (𝑥− 𝑐)T · 𝑣𝑖 < ℎ𝑖}

For even 𝑘 values, one may arrange the directions such that 𝑣2𝑖 = −𝑣2𝑖+1. This
makes 𝑘-DOP queries more efficient, essentially halving the number of necessary
evaluations. Note that sometimes the literature uses this convention, that is, a
𝑘-DOP refers to a 2𝑘 sided oriented convex polytope. In our constructs, 𝑘 denotes
the number of sides.

In this paper, we consider 𝑘 and the 𝑣𝑖 directions fixed and investigate the
problem of finding the largest unbounding 𝑘-DOP around a point 𝑐 that does not
contain any point from a predefined set of geometries 𝐴 ⊂ R𝐷, that is 𝐴∩𝐻𝑐 = ∅.
Note that 𝐻𝑐 is convex, making intersection tests highly efficient. For example,
Algorithm 2 is an Θ(𝑘) algorithm for computing intersection with a ray.

2.2. Algorithm
We present a generalized method for constructing 𝑘-UDOPs for a fixed center point
and directions. Let us consider a two-dimensional scene 𝑆, consisting of arbitrary
geometric entities with a known evaluation of the distance-to-hyperplane query.
Our method (Algorithm 1) is summarized as follows.

Algorithm 1 Constructing general 𝑘-UDOPs
Input: c center point, 𝑆 set of geometries, v𝑖 directions
Output: ℎ𝑖 distances
ℎ𝑖 ←∞ ◁ 1 ≤ 𝑖 ≤ 𝑘
for all 𝑔 ∈ 𝑆 do

for all v𝑖 do
𝑑𝑖 ← min{(p− c)T · v𝑖 | p ∈ 𝑔} ◁ distance of 𝑔 from line containing c

end for
if ℎ𝑖 > 𝑑𝑖 ∀𝑖 ∈ {𝑗 | 𝑑𝑗 > 0} then ◁ 𝑔 is inside

𝑚← index of max(𝑑1, 𝑑2, . . . , 𝑑𝑘)
ℎ𝑚 ← 𝑑𝑚

end if
end for

For every shape 𝑔 ∈ 𝑆, we need to calculate the signed 𝑑𝑖 distances, that is,
the dot product of the 𝑣𝑖 directions and 𝑝 − 𝑐 vectors, where 𝑝 is the point of 𝑔
with the smallest Euclidean distance from the hyperplane defined by 𝑐 and 𝑣𝑖. The
calculations of these distances are detailed in Section 3. Using these distances, we
can separate the directions for which 𝑔 overlaps the 𝑘-UDOP, and if that is the case
for at least one 𝑣𝑖, we overwrite ℎ𝑚 with the largest distance 𝑑𝑚. After iterating
through every 𝑔 shape, the ℎ1, ℎ2, . . . , ℎ𝑘 distances represent a single 𝑘-UDOP that
does not overlap with any 𝑔. The construction method is visualized in Fig. 1, and
some example scenes are presented in Fig. 2 and Fig. 3.
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Figure 1. Construction of an unbunding 12-DOP polytope about
a point (in green) to a scene containing a point, a line segment,
a circle, and a quadratic Bézier curve. All ℎ𝑖 distances along 𝑣𝑖

directions (thin lines) are initialized to +∞ (top-left). Then at each
iteration, we select a geometry (in red) and adjust the distances
along all directions that have a positive dot product with the vector
from the center point to the closest point of the selected geometry.
The final 𝑘-UDOP have less sides than the number of directions it

have started with (bottom-right).

This algorithm is linear in the number of entities for a fixed 𝑘, so its complexity
is Θ(𝑁𝑘), where |𝑆| = 𝑁 . The algorithm can be applied in higher dimensions,
assuming we can evaluate the necessary signed distances.

3. Distance computations
This section summarizes signed distance computations between a hyperplane and
elementary geometric shapes.

For a fixed 𝑥0 and 𝑣𝑖 direction, let 𝑑(𝑥) denote the signed distance between 𝑥
and the hyperplane passing through 𝑥0 with normal 𝑣𝑖, that is, 𝑑(𝑥) = (𝑥−𝑥0)T·𝑣𝑖,
‖𝑣𝑖‖2 = 1.

Let there be given an 𝑥0 region center and a unit normal 𝑣𝑗 and let 𝐿𝑗 denote
the hyperplane that passes through 𝑥0 with normal 𝑣𝑗 , that is, 𝐿𝑗 = {𝑥 ∈ R𝐷 |
(𝑥− 𝑥0)T · 𝑣𝑗}.

3.1. Points
The distance from a point 𝑥 is computed as (𝑥− 𝑥0)T · 𝑣𝑗 .
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(a) Unbounding 8-DOPs fitted to a text with a TrueType font. The boundary curves
are composed of linear and quadratic polynomial segments.

(b) A stylized floor-plan composed of
line segments, quadratic Bézier curves

and circles.

(c) Fitting unbounding 12-DOPs to
the floorplan of Fig. 2b.

Figure 2. Test scenes used in our deterministic tests. Figures 2a
and 2c illustrate a sparse 3 × 5 and 4 × 4 grid of center points and

the corresponding 15 and 16 𝑘-UDOPs of the respective scenes.

3.2. Line segments and polygons

A line segment between 𝑎, 𝑏 ∈ R𝐷 is parametrized as 𝑝(𝑡) = 𝑎 + 𝑡(𝑏−𝑎), 𝑡 ∈ [0, 1].
The smallest distance between 𝐿𝑗 and 𝑝(𝑡) is then either at their intersection point
at 𝑡 = − (𝑎−𝑥0)T·𝑣𝑗

(𝑏−𝑎)T·𝑣𝑗
, if 𝑎 ̸= 𝑏 and 𝑡 ∈ [0, 1], or the smallest of |𝑑(𝑎)| and |𝑑(𝑏)|.

The distance of an 𝑛-sided polygon is resolved by taking the smallest distance
between 𝐿𝑗 and the polygon edges.

3.3. Bézier curves

Let 𝑏(𝑡) =
∑︀𝑛

𝑖=0 𝑏𝑖𝐵
𝑛
𝑖 (𝑡), 𝑡 ∈ [0, 1] denote a degree 𝑛 Bézier curve, where 𝑏𝑖 ∈ R𝐷,

𝑖 = 1, . . . , 𝑛 are control points and 𝐵𝑛
𝑖 (𝑡) =

(︀
𝑛
𝑖

)︀
𝑡𝑖(1 − 𝑡)𝑛−𝑖 are the Bernstein

polynomials.
The smallest distance is either realized at a 𝑡* ∈ [0, 1] parameter or at one of
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Figure 3. A 3D generalization of Algorithm 1 to a point cloud.

the curve endpoints 𝑏0 or 𝑏𝑛. Since

𝑑(𝑏(𝑡)) = (𝑏(𝑡)− 𝑥)T · 𝑣𝑗

=
(︃

𝑛∑︁

𝑖=0
𝐵𝑛

𝑖 (𝑡)𝑏𝑖 −
𝑛∑︁

𝑖=0
𝐵𝑛

𝑖 (𝑡)𝑥
)︃T

· 𝑣𝑗

=
𝑛∑︁

𝑖=0
𝐵𝑛

𝑖 (𝑡) (𝑏𝑖 − 𝑥)T · 𝑣𝑗⏟  ⏞  
𝑑𝑖

=
𝑛∑︁

𝑖=0
𝐵𝑛

𝑖 (𝑡)𝑑𝑖 ,

the parameters of the closest points on the curve satisfy

𝜕𝑡𝑑(𝑏(𝑡)) = 𝑛

𝑛−1∑︁

𝑖=0
𝐵𝑛−1

𝑖 (𝑡)Δ𝑑𝑖 = 0 ,

using the notation Δ𝑘𝑑𝑖 = Δ𝑘−1𝑑𝑖+1 − Δ𝑘−1𝑑𝑖, 𝑘 ≥ 1, 𝑖 = 0, . . . , 𝑛 − 𝑘 and the
convention Δ0𝑑𝑖 = 𝑑𝑖.

In case of quadratic Bézier curves, the solution is

𝑡 = − Δ𝑑0
Δ2𝑑0

,

as long as Δ2𝑑0 ̸= 0 and 𝑡 is in [0, 1] interval. The closest distance is then realized
either at 𝑏0, 𝑏2, or 𝑏(𝑡) between the line and the Bézier curve.

For cubic Bézier curves, we can use the Bernstein form of the quadratic formula
to obtain the two roots as

𝑡1,2 = −Δ𝑑0 ±
√︀

𝑑2
1 − 𝑑0𝑑2

Δ2𝑑0
.

The minimum distance is then at either one of the roots that lie in [0, 1] or at one
of the endpoints.
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Note that the convex hull property of Bézier curves [4] allows us to approximate
the exact distance to 𝑏(𝑡).

3.4. Spheres

The signed distance between 𝐿𝑗 and a sphere with center 𝑐 ∈ R𝐷 and radius 𝑟 > 0
is (𝑐− 𝑥)T · 𝑣𝑗 − 𝑟.

3.5. Shapes with continuous parametric boundaries

Let us consider the plane only and address the case of shapes that have sufficiently
many times continuously differentiable boundaries, parametrized by some 𝑝(𝑡) :
[𝑎, 𝑏] → R2 mapping. We devise conservative bounds on the distance between the
line 𝐿𝑗 and 𝑝(𝑡) given a bound on the magnitude of the appropriate derivatives of
𝑝(𝑡).

First, we construct a piecewise polynomial approximation to the boundary to
achieve this. Afterward, we compute the distance of 𝐿𝑗 to these polynomial bound-
ary approximations, as shown in Section 3.3. Finally, using the error term of the
particular approximating polynomial, we decrease the computed distance.

Geometrically, the last step uses a distance lower bound to the offset of the
polynomial approximation. The key insight is that we do not explicitly represent
the offset of the parametric boundary; it is sufficient to apply it in distance space
[1].

Let us consider the case of order 𝑘 Hermite interpolation. Let ℎ𝑘(𝑡) denote the
Hermite polynomial that interpolates 𝑝(𝑙)(𝑡𝑘), 𝑙 = 0, . . . , 𝑘 at prescribed knots 𝑡𝑘,
where 𝑝(𝑙)(𝑡) denotes the 𝑙-th derivative at 𝑡. Then

𝑝(𝑡)− ℎ𝑘(𝑡) = 𝑝(𝑘+1)(𝜉)
(𝑘 + 1)! (𝑡− 𝑡𝑘)𝑘+1(𝑡𝑘+1 − 𝑡)𝑘+1

holds for some 𝜉 ∈ (𝑡𝑘, 𝑡𝑘+1). If 𝑀 > 0 is a bound on ‖𝑝(𝑘+1)‖∞, then the right
hand side of

‖𝑝− ℎ𝑘(𝑡)‖∞ ≤
𝑀

(𝑘 + 1)!

⃒⃒
⃒⃒ 𝑡𝑘+1 − 𝑡𝑘

2

⃒⃒
⃒⃒
2𝑘

⏟  ⏞  
𝐸𝑘

provides the maximum deviation between the polynomial approximation and the
original shape. Computing the Hermite interpolation in Bernstein basis is trivial
[4], and subtracting

√
2 · 𝐸𝑘 from the distance between 𝐿𝑗 and the polynomial

approximation gives a conservative bound on the distance between 𝐿𝑗 and the
segment of 𝑝(𝑡) between 𝑡𝑘 and 𝑡𝑘+1.
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4. Queries on 𝑘-UDOPs

4.1. Converting 𝑘-UDOPs to polytope mesh
To compute the vertices of the 𝐷-dimensional polytope, we have to find the inter-
section of all possible combinations of 𝐷 planes. This produces

(︀
𝑘
𝐷

)︀
vertices that

could be part of the polytope, so we have to filter out those that are not.
Given two vectors 𝑎, 𝑏 ∈ R𝐷, we can compute the 𝑣 = 𝛼 ·𝑎 + 𝛽 · 𝑏 ∈ R𝐷 vector

that has perpendicular difference vectors to 𝑎 and 𝑏, with the following deltoid [8]
formula: [︂

𝛼
𝛽

]︂
= 1

𝑎T𝑎 · 𝑏T𝑏− 𝑎T𝑏 · 𝑎T𝑏

[︂
𝑏T𝑏 · (𝑎T𝑎− 𝑎T𝑏)
𝑎T𝑎 · (𝑏T𝑏− 𝑎T𝑏)

]︂
, (4.1)

where the vertex is obtained with 𝑣 = 𝛼 · 𝑎 + 𝛽 · 𝑏.
Equation (4.1) allows the computation of multiple intersections in parallel. Ap-

plying the formula 𝐷−1 times to 𝐷 directions yields a single vertex, which is then
tested against the boundary of the 𝑘-DOP. Thus, in general, the algorithm is slow
𝑂(𝑘𝐷+1). In two dimensions, these steps can be simplified to be 𝑂(𝑘2) because
directions have a circular ordering.

Once the vertices are computed, the connectivity information of the vertices
may be computed by running a 𝐷-dimensional convex hull algorithm.

Algorithm 2 Ray and 𝑘-DOP intersection
Input: c center, v𝑖 directions, ℎ𝑖 distances, 𝑝0 + 𝑡𝑑 ray
Output: 𝑡1, 𝑡2 intersection parameters
𝑡1 ← −∞, 𝑡2 ← +∞
for all v𝑖 do

𝑡← (𝑝0 − 𝑐)T · 𝑣𝑖

𝑑T𝑣𝑖
; ◁ Intersect with each plane

if 𝑑T𝑣𝑖 < 0 then ◁ Is plane back-facing?
𝑡1 ← max(𝑡1, 𝑡) ◁ Keep furthest back-facing

else
𝑡2 ← min(𝑡2, 𝑡) ◁ Keep closest front-facing

end if
end for
If 𝑡1 < 𝑡2 then there is an intersection

4.2. Ray intersection
Intersecting a 𝑘-UDOP with a ray in two dimensions can be reformulated as a ray-
convex polygon intersection problem once the 𝑘-UDOP is converted to a polygon,
as shown in Section 4.1. Even though the subsequent intersection computation
may be carried out in 𝒪(log 𝑘) time, it does not generalize to higher dimensions
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and involves a quadratic time conversion. Pre-computing the polygons mitigates
the latter; however, it may double the storage for each 𝑘-UDOP.

Instead, a linear time ray intersection algorithm may be formulated directly on
our 𝑘-UDOP representation, shown in Algorithm 2.

The main idea is to divide the half planes into two groups: front-facing (𝑑T𝑣𝑖 >
0), and back-facing (𝑑T𝑣𝑖 < 0). We have to find the smallest 𝑡 solution amongst
the front-facing (𝑡2) and the largest 𝑡 solution for the back-facing (𝑡1) planes. If,
and only if, the 𝑘-DOP is intersected, then 𝑡1 < 𝑡2 and hence for any 𝑡 ∈ [𝑡1, 𝑡2],
the segment 𝑥 = 𝑝0 + 𝑡𝑑 is within the 𝑘-DOP.

4.3. Bounding 𝑘-DOP containment test
For collision detection, we would like to also know if a 𝑘-UDOP intersects with
another 𝑘-DOP. For this, let the 𝑘-UDOP be defined by a 𝑐1 ∈ R𝐷 center, 𝑣𝑖 ∈
R𝐷, ‖𝑣𝑖‖2 = 1 directions and ℎ𝑖 > 0 distances, and the 𝑘-DOP be defined by the
same 𝑣𝑖 ∈ R𝐷 directions but with a 𝑐2 ∈ R𝐷 center and 𝑔𝑖 > distances. Then, the
𝑘-DOP is inside the 𝑘-UDOP if the distance vector between the centers (𝑐2 − 𝑐1)
projected onto each 𝑣𝑖 is less than the difference between the 𝑘-DOP distances
(ℎ𝑖 − 𝑔𝑖). Algorithm 3 summarizes the above and allows efficient utilization of
𝑘-UDOP acceleration structures for collision detection tasks in any dimension.

Algorithm 3 Bounding 𝑘-DOP containment test
Input: 𝑐1, 𝑐2 centers, v𝑖 common directions, ℎ𝑖, 𝑔𝑖 distances
Output: True only if first 𝑘-DOP contains the second
for all v𝑖 do

if (𝑐2 − 𝑐1)T · 𝑣𝑖 ≥ ℎ𝑖 − 𝑔𝑖 then
return false

end if
end for
return true

5. Test results
We observed that the 𝑘-DOP does not always utilize all sides, so the generated
polygon often has less than 𝑘 number of edges. To find a reasonable choice of 𝑘, we
generated random points around 𝑐 from different distributions and measured vari-
ous metrics of the resulting 𝑘-DOP. We tested 50 different scenes with 𝑘 increasing
from 3 to 300. The means of the various metrics are shown in Table 1.

We also noticed that as we increase 𝑘, the 𝑘-UDOP shape stabilizes, as if a fixed
point solution was found. To verify this, we have taken the symmetric difference of
the polygons of consecutive pairs of 𝑘-DOPs and measured the average difference of
its area. Generally, the difference converged to zero; however, the area fluctuated
even for large 𝑘 values in a few cases. This seems to have been caused by empty
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Table 1. Average values of different metrics measured from 50
different set of points for every 𝑘 value between 3 and 300.

𝑘 Perimeter Area # of sides # of sides
𝑘

3 3.217 0.911 3.00 100%
4 3.669 1.070 4.00 100%
5 3.896 1.194 4.42 88.4%
6 3.820 1.165 4.84 80.7%
7 4.018 1.242 4.96 70.9%
8 3.952 1.232 5.06 63.3%
9 3.906 1.264 5.14 57.1%
10 3.757 1.149 5.34 53.4%
11 3.875 1.232 5.70 51.8%
12 3.925 1.233 5.72 47.7%
...

...
...

...
...

298 4.033 1.279 15.74 5.28%
299 4.042 1.280 15.92 5.32%
300 4.024 1.266 15.86 5.29%

areas in-between the clusters of generated points, which placed at least one of the
𝑘-DOP sides very far from 𝑐 for certain 𝑘 values but was cut off in other cases.
The results of the different tests are visualized in Fig. 4.

Figure 4. Measured convergence of consecutive polygons for 50
random cases (blue lines) and their average (red). This difference
is measured in the area of the symmetric difference of the polygons

generated from 𝑘 and 𝑘 + 1-DOPs.

The convergence was expected, since if 𝑤𝑗 are directions towards each object’s
closest point to 𝑐, then drawing perpendicular lines through the footpoints to each
𝑤𝑗 , we obtain the convex polygon that the algorithm seems to approach. This is
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because at least one of the directions 𝑣𝑖 will generally get closer to each 𝑤𝑗 direc-
tion, so the algorithm will choose a corresponding line that is almost perpendicular
to 𝑤𝑗 .

6. Conclusions
We presented a simple and efficient algorithm to compute 𝐷-dimensional 𝑘-UDOPs
for a prescribed position and a set of 𝑘 fixed directions.

In the plane, we showed that the resulting convex polygon converges to a fixed
shape empirically, whose number of effective sides stayed within 16, even for 𝑘 =
300. As such, large 𝑘 figures function more to orient the resulting 𝑘-UDOP.

Additionally, we presented conversion algorithms to polytope meshes in arbi-
trary dimensions for both bounding and 𝑘-UDOPs and direct ray intersection and
bounding 𝑘-DOP containment tests.
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Abstract. We show that it is decidable whether the language generated by
a given context-free grammar over a tree alphabet is a tree language. Fur-
thermore, if the answer to this question is “yes”, then we can even effectively
construct a regular tree grammar which generates that tree language.
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1. Introduction
Context-free grammars (for short: cfg) were introduced in [3] in order to describe
the structure of sentences and words in natural languages. Since then, a beautiful
theory of cfg has been evolved, cf. e.g. [6, 7]. In computer science cfg are used
to describe the structure of programming languages and play a crucial role in the
Document Type Definition (DTD) of the Extensible Markup Language (XML) as
well. The language generated by a Γ-cfg 𝐺, i.e., a cfg over some alphabet Γ, is
denoted by L(𝐺) and called a context-free language.

In order to define well-formed terms, we use a special alphabet called a ranked
alphabet and three further special symbols. A ranked alphabet Σ is an alphabet in
which we associate with each symbol a unique rank. The three special symbols are
the opening angle bracket “⟨”, the closing angle bracket “⟩”, and the symbol “#”.
The set of these special symbols is denoted by Ξ and the alphabet ΣΞ containing
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the symbols of Σ and Ξ is called a tree alphabet. Using the three special symbols
as separators, the Σ-terms are defined in the standard way, i.e., each Σ-term is
a string 𝜎⟨𝜉1# . . . #𝜉𝑘⟩ over the tree alphabet ΣΞ, where 𝜎 has rank 𝑘 for some
natural number 𝑘, and 𝜉1, . . . , 𝜉𝑘 are Σ-terms.

Since each Σ-term can be depicted as a tree-like directed labelled graph, we
often refer to Σ-terms as Σ-trees. Moreover, a set of Σ-trees is called a (formal)
Σ-tree language. We denote the set of all Σ-trees by TΣ and we call a ΣΞ-cfg 𝐺
tree generating if L(𝐺) ⊆ TΣ.

To generate Σ-tree languages, among others regular tree grammars (for short:
Σ-rtg) were defined [2, 4, 5]. The Σ-tree language generated by a Σ-rtg 𝒢, denoted
by L(𝒢), is called a regular Σ-tree language. The connection between context-free
languages and regular tree languages has been thoroughly investigated. Among
others, it was shown that, for each language 𝐿, the following statements are equiv-
alent [2, 10]:

(1) 𝐿 is a context-free language,
(2) 𝐿 is the yield of a regular tree language.

Then several authors have exploited this strong connection, cf. e.g., [4, 11, 12].
Furthermore, each Σ-rtg is evidently a tree generating ΣΞ-cfg. However, to the
best of our knowledge, it has not been cleared yet whether there exists a Σ-tree
language, which can be generated by a ΣΞ-cfg but it is not regular. Hence, here
we deal with the following questions and answer them positively:
(Q1) Given a ΣΞ-cfg 𝐺, is it decidable whether 𝐺 is tree generating?
(Q2) Given a ΣΞ-cfg 𝐺 such that 𝐺 is tree generating, is L(𝐺) regular, and if yes,

can we effectively construct a Σ-rtg 𝒢 such that L(𝒢) = L(𝐺)?
To answer the questions, we will consider the class of parenthesis grammars. A
Γ-parenthesis grammar [9] is a Γ-cfg in which each rule has the form 𝐴 → ⟨𝛼⟩,
where 𝐴 is a nonterminal and 𝛼 is a string over Γ ∖ {⟨, ⟩}. A language generated by
a Γ-parenthesis grammar is called a Γ-parenthesis language. Interestingly, we can
give a transduction 𝜙 such that, for each Σ-tree language 𝐿, the language 𝜙(𝐿) is
a ΣΞ-parenthesis language. (We note that there exists a ΣΞ-parenthesis language,
which is not an image of any Σ-tree language under 𝜙.) We prove our results
by exploiting this connection between Σ-rtg and ΣΞ-parenthesis grammars and by
applying Knuth’s results [8]:
(R1) it is decidable, for a given Γ-cfg 𝐺, whether L(𝐺) is a Γ-parenthesis lan-

guage and
(R2) for a given Γ-cfg 𝐺 such that L(𝐺) is a Γ-parenthesis language, we can effec-

tively construct a Γ-parenthesis grammar 𝐺′ such that L(𝐺′) = L(𝐺).
We mention that, for unranked trees, question (Q1) was answered positively

in [1].
Our paper is organized as follows. In Section 2 we recall the necessary notions

and notations. In Section 3 we recall the concept of cfg and of rtg, and results on
parenthesis grammars. In Section 4 we recall the concept of sequential transducer,
which will be useful to prove our results. Finally, in Section 5 we give our results.
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2. Preliminaries

2.1. Basic concepts
We denote the set {0, 1, 2, . . .} of nonnegative integers by N and we let N+ = N∖{0}.
For every 𝑘 ∈ N, we let [𝑘] = {𝑖 ∈ N+ | 𝑖 ≤ 𝑘}. In particular, [0] = ∅. Furthermore,
we denote the set of integers by Z.

Let 𝐴 be a set and 𝑅, 𝑆 ⊆ 𝐴 × 𝐴 binary relations. The composition of 𝑅 and
𝑆, denoted by 𝑅 ∘ 𝑆, is the set

𝑅 ∘ 𝑆 = {(𝑎, 𝑐) ∈ 𝐴 × 𝐴 | (∃𝑏 ∈ 𝐴) : (𝑎, 𝑏) ∈ 𝑅 ∧ (𝑏, 𝑐) ∈ 𝑆} .

We define, for each 𝑛 ∈ N, the 𝑛-fold composition of 𝑅, denoted by 𝑅𝑛, by
𝑅0 = {(𝑎, 𝑎) | 𝑎 ∈ 𝐴} and by 𝑅𝑛 = 𝑅𝑛−1 ∘ 𝑅 for each 𝑛 ∈ N+.

2.2. Strings and trees
We assume that the reader is familiar with the fundamental concepts and results
of the theory formal languages [6, 7], and also of tree languages [4, 5].

An alphabet is a finite set. Let Γ be an alphabet. A string (over Γ) is a
finite sequence 𝑎1 · · · 𝑎𝑘 with 𝑘 ∈ N and 𝑎𝑖 ∈ Γ for each 𝑖 ∈ [𝑘]. The length of
𝑎1 · · · 𝑎𝑘, denoted by len(𝑎1 · · · 𝑎𝑘), is defined in the standard way. We denote by
Γ* the set of all strings over Γ and by 𝜀 the empty string. Each subset 𝐿 ⊆ Γ*

is called a language over Γ. Moreover, for all 𝑣, 𝑤 ∈ Γ*, we denote by 𝑣𝑤 the
concatenation of 𝑣 and 𝑤, and the set of prefixes of 𝑣, denoted by prefix(𝑣), is
defined by prefix(𝑣) = {𝑢 ∈ Γ* | (∃𝑣′ ∈ Γ*) : 𝑣 = 𝑢𝑣′} .

A ranked alphabet is a tuple (Σ, rk), where Σ is an alphabet and rk : Σ → N is
a mapping, called rank mapping, such that rk−1(0) ̸= ∅. For all 𝑘 ∈ N, we let

Σ(𝑘) = {𝜎 ∈ Σ | rk(𝜎) = 𝑘} .

We always abbreviate (Σ, rk) by Σ.
Next we define Σ-trees. In the literature, Σ-trees are defined by using the

opening and the closing parenthesis “(” and “)”, respectively, and the comma “,”
as separators [4, 5]. In this paper, we will focus on these separators in trees
frequently. Since it is easy to confuse these separators with the two parentheses in
other formulas, we intentionally deviate and use the opening and the closing angle
brackets “⟨” and “⟩”, respectively, and the symbol “#” to define Σ-trees.

Let Ξ be the set which consists of “⟨” and “⟩” and “#”. A tree alphabet ΣΞ is
an alphabet consisting of symbols of Σ and Ξ, i.e., ΣΞ = Σ ∪ Ξ.

Let 𝐻 be a set such that 𝐻 ∩ ΣΞ = ∅. The set of Σ-trees over 𝐻, denoted by
TΣ(𝐻), is the smallest set 𝑇 ⊆ (ΣΞ ∪ 𝐻)* such that

(i) 𝐻 ⊆ 𝑇 and
(ii) if 𝑘 ∈ N, 𝜎 ∈ Σ(𝑘), and 𝜉1, . . . , 𝜉𝑘 ∈ 𝑇 , then 𝜎⟨𝜉1# . . . #𝜉𝑘⟩ ∈ 𝑇 .

We abbreviate TΣ(∅) by TΣ. A Σ-tree language (or just: tree language) is a subset
of TΣ.
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From now on, we let Σ be an arbitrary ranked alphabet if not specified
otherwise.

3. Grammar models

3.1. Context-free grammars
Let Γ be an alphabet. A context-free grammar over Γ (for short: Γ-cfg) [6, 7] is a
triple 𝐺 = (𝑁, 𝑆, 𝑅) where 𝑁 is a finite set (nonterminals) with 𝑁 ∩ Γ = ∅, 𝑆 ∈ 𝑁
(start symbol), and 𝑅 is a finite set (rules); each rule has the form 𝐴 → 𝛼 where
𝐴 ∈ 𝑁 and 𝛼 is a string over 𝑁 ∪ Γ, i.e., 𝛼 ∈ (𝑁 ∪ Γ)*. Furthermore, we call each
element 𝑎 ∈ Γ a terminal.

Let 𝐺 = (𝑁, 𝑆, 𝑅) be a Γ-cfg and let 𝑟 = (𝐴 → 𝛼) be a rule. We call 𝐴 and 𝛼
the left-hand side and the right-hand side of 𝑟, respectively. Moreover, we call 𝑟 a
chain rule (an 𝜀-rule) if 𝛼 ∈ 𝑁 (if 𝛼 = 𝜀, respectively). We say that 𝐺 is chain-free
(𝜀-free) if 𝐺 does not have chain rules (𝜀-rules, respectively).

The (leftmost) derivation relation ⇒𝐺 is defined such that, for every 𝑢 ∈ Γ*,
𝛾 ∈ (𝑁 ∪ Γ)*, and rule 𝐴 → 𝛼 in 𝑅, we have 𝑢𝐴𝛾 ⇒𝐺 𝑢𝛼𝛾. If 𝐺 is clear from
the context, then we abbreviate ⇒𝐺 by ⇒. For all 𝛾, 𝜔 ∈ (𝑁 ∪ Γ)*, if 𝛾 ⇒𝑛 𝜔 for
some 𝑛 ∈ N, then we say that this derivation has length 𝑛. As usual, we denote
the reflexive and transitive closure of ⇒ by ⇒*, i.e., ⇒* =

⋃︀
𝑛∈N ⇒𝑛.

The language generated by 𝐺 is the set

L(𝐺) = {𝑤 ∈ Γ* | 𝑆 ⇒* 𝑤} .

For each 𝐿 ⊆ Γ*, we call 𝐿 a context-free language if there exists a Γ-cfg 𝐺 such
that L(𝐺) = 𝐿.

We call a nonterminal 𝐴 ∈ 𝑁 useful (in 𝐺) if there exist 𝑢, 𝑤 ∈ Γ* and 𝛾 ∈
(𝑁 ∪ Γ)* such that 𝑆 ⇒* 𝑢𝐴𝛾 ⇒* 𝑤. Moreover, if every 𝐴 ∈ 𝑁 is useful, then we
call 𝐺 reduced [6, p. 78].

Lemma 3.1. [6, Thm. 3.2.3] If 𝐺 is a Γ-cfg, then we can effectively construct a
reduced Γ-cfg ̂︀𝐺 such that L( ̂︀𝐺) = L(𝐺).

Next we define parenthesis grammars and languages. They are normally defined
by using the opening and the closing parenthesis “(” and “)”. Later, in Section 5, we
will relate Σ-tree languages and parenthesis languages. Therefore, we will consis-
tently deviate from the convention and use the angle brackets “⟨” and “⟩” instead
of the usual “(” and “)”, respectively; however we keep the notions parenthesis
grammar and parenthesis language.

In the rest of this section, we let Γ be an alphabet which contains the
angle brackets “⟨” and “⟩”.

A Γ-parenthesis grammar [8] (or just: parenthesis grammar) is a Γ-cfg 𝐺 =
(𝑁, 𝑆, 𝑅) such that each rule in 𝑅 has the form 𝐴 → ⟨𝜃⟩ with 𝜃 ∈ (𝑁 ∪ Γ ∖ {⟨, ⟩})*.
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Table 1. Illustration of the content and the deficiency mappings,
and the notion balanced.

𝑤 𝑐(𝑤) 𝑑(𝑤) balanced
𝑎⟨𝑏⟨⟩⟩ 0 0 yes

⟨⟩⟩ −1 1 no
⟨𝑎⟨ 2 0 no

⟨𝑎⟩𝑏⟩⟩⟨𝑏⟩ −2 2 no
⟩⟩⟩⟨⟨⟨ 0 3 no

Observation 3.2. If 𝐺 is a Γ-parenthesis grammar, then 𝐺 is chain-free and 𝜀-free.

We call a language 𝐿 ⊆ Γ* a Γ-parenthesis language (or just: parenthesis lan-
guage) if there exists a Γ-parenthesis grammar 𝐺 such that L(𝐺) = 𝐿.

Here we draw attention to the following phenomenon. Let 𝐺 be a Γ-cfg such
that L(𝐺) is a parenthesis language. Then it does not follow that 𝐺 is a parenthesis
grammar. Rather, it follows that there exists a Γ-parenthesis grammar 𝐺′ such that
L(𝐺′) = L(𝐺). We will use this fact later.

The content mapping 𝑐 : Γ* → Z and the deficiency mapping 𝑑 : Γ* → N [8] are
defined, for each 𝑤 ∈ Γ*, as follows:

(i) if 𝑤 = 𝜀, then we let 𝑐(𝜀) = 𝑑(𝜀) = 0,

(ii) if 𝑤 = 𝑎 for some 𝑎 ∈ Γ, then we let

𝑐(𝑎) =

⎧
⎪⎨
⎪⎩

1 if 𝑎 = ⟨
−1 if 𝑎 =⟩
0 otherwise

and 𝑑(𝑎) =
{︃

1 if 𝑎 =⟩
0 otherwise

, and

(iii) if 𝑤 = 𝑣𝑎 with 𝑣 ∈ Γ* and 𝑎 ∈ Γ, then we let 𝑐(𝑣𝑎) = 𝑐(𝑣) + 𝑐(𝑎) and
𝑑(𝑣𝑎) = max{𝑑(𝑣), 𝑑(𝑎) − 𝑐(𝑣)}.

Intuitively, for each string 𝑤 ∈ Γ*, the values 𝑐(𝑤) and 𝑑(𝑤) show us the excess
of left parentheses over right parentheses in 𝑤 and the greatest deficiency of left
parentheses from right parentheses in any prefix of 𝑤, respectively. A string 𝑤 ∈ Γ*

is balanced if 𝑐(𝑤) = 𝑑(𝑤) = 0, and furthermore, a language 𝐿 ⊆ Γ* is balanced if
every 𝑤 ∈ 𝐿 is balanced.

Observe that, for all balanced 𝑢, 𝑣 ∈ Γ*, also 𝑢𝑣 is balanced. Furthermore, each
𝑢 ∈ (Γ ∖ {⟨, ⟩})* is balanced as well.

Example 3.3. Let Γ = {𝑎, 𝑏, ⟨, ⟩}. Table 1 shows, for some 𝑤 ∈ Γ*, the values
of the content and the deficiency mappings, i.e., 𝑐(𝑤) and 𝑑(𝑤), respectively, and
whether 𝑤 is balanced or not.

The next lemma shows an important property of parenthesis grammars and it
will be useful to prove the results in Section 5.
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Lemma 3.4. Let 𝐺 = (𝑁, 𝑆, 𝑅) be a Γ-parenthesis grammar. Furthermore, let
𝐴 ∈ 𝑁 and 𝑤 ∈ Γ*. If 𝐴 ⇒* 𝑤, then 𝑤 = ⟨𝑢⟩ for some 𝑢 ∈ Γ* such that 𝑢 is
balanced.

Proof. We prove our statement by induction on the length of the derivation 𝐴 ⇒*

𝑤. Assume that 𝐴 ⇒ 𝑤. Then, since 𝐺 is a parenthesis grammar, we have 𝑤 = ⟨𝑢⟩
for some 𝑢 ∈ (Γ ∖ {⟨, ⟩})*. Hence 𝑢 is balanced.

Now assume that 𝐴 ⇒𝑛+1 𝑤 for some 𝑛 ∈ N+. Then, since 𝐺 is a parenthesis
grammar, there exist 𝑘 ∈ N+, 𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑘 in (Γ ∖ {⟨, ⟩})*, 𝐴1, 𝐴2, . . . , 𝐴𝑘 ∈ 𝑁 ,
𝑛1, 𝑛2, . . . , 𝑛𝑘 ∈ [𝑛], and 𝑤1, 𝑤2, . . . , 𝑤𝑘 ∈ Γ* such that

• 𝑤 = ⟨𝑣0𝑤1𝑣1𝑤2𝑣2 · · · 𝑤𝑘𝑣𝑘⟩,
• 𝐴 → ⟨𝑣0𝐴1𝑣1𝐴2𝑣2 · · · 𝐴𝑘𝑣𝑘⟩ is in 𝑅,
• for each 𝑖 ∈ [𝑘] we have 𝐴𝑖 ⇒𝑛𝑖 𝑤𝑖,
• 𝑛1 + 𝑛2 + . . . + 𝑛𝑘 = 𝑛, and
• we have

𝐴 ⇒1 ⟨𝑣0𝐴1𝑣1𝐴2𝑣2 · · · 𝐴𝑘𝑣𝑘⟩ ⇒𝑛1 ⟨𝑣0𝑤1𝑣1𝐴2𝑣2 · · · 𝐴𝑘𝑣𝑘⟩ ⇒𝑛2 · · · ⇒𝑛𝑘 𝑤 .

By I.H., for each 𝑖 ∈ [𝑘], we may assume that there exists 𝑢𝑖 ∈ Γ* such that
𝑤𝑖 = ⟨𝑢𝑖⟩ and 𝑢𝑖 is balanced. Thus, for 𝑢 = 𝑣0𝑤1𝑣1𝑤2𝑣2 · · · 𝑤𝑘𝑣𝑘 it holds that
𝑤 = ⟨𝑢⟩ and 𝑢 is balanced. This completes our proof.

Let 𝑤 ∈ Γ*. For every 𝑎, 𝑏 ∈ Γ, the terminals 𝑎, 𝑏 are called associates (in 𝑤)
[8] if 𝑤 = 𝑢𝑎𝑣𝑏𝑣′ for some 𝑢, 𝑣, 𝑣′ ∈ Γ* and 𝑣𝑏 is balanced. A language 𝐿 ⊆ Γ* is
said to have bound associates if there exists a constant 𝐾 ∈ N+ such that for all
𝑤 = 𝑢𝑎𝑣 in 𝐿 with 𝑢, 𝑣 ∈ Γ* and 𝑎 ∈ Γ, the terminal 𝑎 has at most 𝐾 associates
in 𝑤.

Example 3.5. Let Γ = {𝑎, 𝑏, ⟨, ⟩}. We consider the Γ-cfg

𝐺 = ({𝑆}, 𝑆, { 𝑆 → 𝜀 , 𝑆 → 𝑎𝑆𝑏 }) .

Then we have L(𝐺) = {𝑎𝑛𝑏𝑛 | 𝑛 ∈ N}. Moreover, 𝐺 is obviously not a parenthesis
grammar. Now we consider the Γ-cfg

𝐺′ = ({𝑆′}, 𝑆′, { 𝑆′ → ⟨⟩ , 𝑆′ → ⟨𝑎𝑆′𝑏⟩ }) .

Then, for each 𝑛 ∈ N, we have

𝑆′ ⇒𝐺′ ⟨𝑎𝑆′𝑏⟩ ⇒*
𝐺′ ⟨𝑎⟨· · · ⟨𝑎𝑆′𝑏⟩ · · · ⟩𝑏⟩ ⇒𝐺′ ⟨𝑎⟨· · · ⟨𝑎⟨⟩𝑏⟩ · · · ⟩𝑏⟩ ,

where both 𝑎 and 𝑏 occur 𝑛 times. In particular, L(𝐺′) contains the string “⟨⟩”.
Clearly, 𝐺′ is a parenthesis grammar, and L(𝐺′) is balanced and has bounded
associates.

Lemma 3.6. [8, Cor. 4] It is decidable, for arbitrary Γ-cfg 𝐺1 and parenthesis
grammar 𝐺2, whether L(𝐺1) ⊆ L(𝐺2).

Theorem 3.7. cf. [8, Thm. 4] The following statements hold true.
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1. A context-free language is balanced and has bounded associates iff it is a
parenthesis language.

2. For each Γ-cfg 𝐺, if L(𝐺) is a parenthesis language, then we can effectively
construct a Γ-parenthesis grammar 𝐺′ such that L(𝐺′) = L(𝐺).

The next result is an easy consequence of Theorem 3.7(1).

Corollary 3.8. Let 𝐺 be a Γ-parenthesis grammar and 𝐿 ⊆ L(𝐺) a context-free
language. Then 𝐿 is a parenthesis language.

Proof. Since L(𝐺) is a parenthesis language, by Theorem 3.7(1), L(𝐺) is balanced
and has bounded associates. Clearly, also 𝐿 is balanced. Moreover, since L(𝐺) has
bounded associates, there exists a constant 𝐾 ∈ N+ such that for all 𝑤 = 𝑢𝑎𝑣 in
L(𝐺) with 𝑢, 𝑣 ∈ Γ* and 𝑎 ∈ Γ, the terminal 𝑎 has at most 𝐾 associates. Since
𝐿 ⊆ L(𝐺), for all 𝑤 = 𝑢𝑎𝑣 in 𝐿 with 𝑢, 𝑣 ∈ Γ* and 𝑎 ∈ Γ, the terminal 𝑎 has at
most 𝐾 associates, i.e., also 𝐿 has bounded associates. Hence, by Theorem 3.7(1),
𝐿 is a parenthesis language as well.

Now we define a new subclass of context-free grammars, which we call tree
generating context-free grammars. Formally, for each ΣΞ-cfg 𝐺, we say that 𝐺 is
tree generating if L(𝐺) ⊆ TΣ.

In the next example we give a tree generating ΣΞ-cfg.

Example 3.9. Let Σ = {𝜔(3), 𝛽(0)}. We consider the ΣΞ-cfg

𝐺 = ({𝑆, 𝐴, 𝐵, 𝐶}, 𝑆, 𝑅) ,

where

𝑅 = { 𝑆 → 𝐴𝑆𝐵⟩ , 𝑆 → 𝐴𝐶𝐵⟩ , 𝐴 → 𝜔⟨𝐶# , 𝐵 → #𝐶 , 𝐶 → 𝛽⟨⟩ } .

Then we have, e.g.,

𝑆 ⇒ 𝐴𝑆𝐵⟩ ⇒ 𝜔⟨𝐶#𝑆𝐵⟩ ⇒ 𝜔⟨𝛽⟨⟩#𝑆𝐵⟩
⇒ 𝜔⟨𝛽⟨⟩#𝐴𝐶𝐵⟩𝐵⟩ ⇒ 𝜔⟨𝛽⟨⟩#𝜔⟨𝐶#𝐶𝐵⟩𝐵⟩
⇒ 𝜔⟨𝛽⟨⟩#𝜔⟨𝛽⟨⟩#𝐶𝐵⟩𝐵⟩ ⇒ 𝜔⟨𝛽⟨⟩#𝜔⟨𝛽⟨⟩#𝛽⟨⟩𝐵⟩𝐵⟩
⇒ 𝜔⟨𝛽⟨⟩#𝜔⟨𝛽⟨⟩#𝛽⟨⟩#𝐶⟩𝐵⟩ ⇒ 𝜔⟨𝛽⟨⟩#𝜔⟨𝛽⟨⟩#𝛽⟨⟩#𝛽⟨⟩⟩𝐵⟩
⇒ 𝜔⟨𝛽⟨⟩#𝜔⟨𝛽⟨⟩#𝛽⟨⟩#𝛽⟨⟩⟩#𝐶⟩ ⇒ 𝜔⟨𝛽⟨⟩#𝜔⟨𝛽⟨⟩#𝛽⟨⟩#𝛽⟨⟩⟩#𝛽⟨⟩⟩ .

Evidently, L(𝐺) ⊆ TΣ, hence 𝐺 is tree generating.

3.2. Regular tree grammars
A regular tree grammar over Σ (for short: Σ-rtg) [2, 4, 5] is a ΣΞ-cfg 𝒢 = (𝑁, 𝑆, 𝑅)
such that each rule in 𝑅 has the form 𝐴 → 𝜂 with 𝜂 ∈ TΣ(𝑁). Obviously, if 𝐴 ⇒* 𝜉
for some 𝜉 ∈ (ΣΞ)*, then 𝜉 ∈ TΣ.
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The Σ-tree language generated by 𝒢 is the set

L(𝒢) = {𝜉 ∈ TΣ | 𝑆 ⇒* 𝜉} .

We call each 𝐿 ⊆ TΣ regular if there exists a Σ-rtg 𝒢 such that L(𝒢) = 𝐿. Observe
that each Σ-rtg is a tree generating context-free grammar.

Example 3.10. Let Σ = {𝜔(3), 𝛽(0)}. We consider the Σ-rtg 𝒢 = ({𝑆}, 𝑆, 𝑅),
where 𝑅 = { 𝑆 → 𝜔⟨𝛽⟨⟩#𝛽⟨⟩#𝛽⟨⟩⟩ , 𝑆 → 𝜔⟨𝛽⟨⟩#𝑆#𝛽⟨⟩⟩ }. Fig. 1 shows, for
each 𝑛 ∈ N+, the tree 𝜉𝑛 and the derivation of 𝒢 for 𝜉𝑛. In fact, L(𝒢) = {𝜉𝑛 | 𝑛 ∈
N+}. One can show that, for the tree generating ΣΞ-cfg 𝐺 defined in Example 3.9,
we have L(𝒢) = L(𝐺).

4. Sequential transducers
To prove our results in the next section, it is necessary to recall the concept of
sequential transducer and the Sequential Transducer Theorem.

Let Γ and Δ be two alphabets. A (Γ, Δ)-sequential transducer (or just sequen-
tial transducer) [6] is a tuple 𝒮 = (𝑄, 𝑞0, 𝛿) where 𝑄 is a finite nonempty set (states),
𝑞0 ∈ 𝑄 (start state), and 𝛿 is a finite subset of 𝑄 × Γ* × Δ* × 𝑄 (transitions).

Let 𝒮 = (𝑄, 𝑞0, 𝛿) be a (Γ, Δ)-sequential transducer. For all 𝑤 ∈ Γ* and 𝑢 ∈ Δ*,
we have 𝑢 ∈ 𝒮(𝑤) iff there exist 𝑘 ∈ N, 𝑤1, . . . , 𝑤𝑘 ∈ Γ*, 𝑢1, . . . , 𝑢𝑘 ∈ Δ*, and
𝑞1, . . . , 𝑞𝑘 ∈ 𝑄 such that 𝑤 = 𝑤1 · · · 𝑤𝑘, 𝑢 = 𝑢1 · · · 𝑢𝑘, and (𝑞𝑖−1, 𝑤𝑖, 𝑢𝑖, 𝑞𝑖) ∈ 𝛿 for
each 𝑖 ∈ [𝑘]. Moreover, for every 𝐿 ⊆ Γ*, we have

𝒮(𝐿) =
⋃︁

𝑤∈𝐿

𝒮(𝑤) .

We call a binary relation 𝜙 ⊆ Γ* × Δ* a (Γ, Δ)-transduction (or just: transduc-
tion) if there exists a (Γ, Δ)-sequential transducer 𝒮 such that 𝒮(𝑤) = 𝜙(𝑤) for
every 𝑤 ∈ Γ*.

Lemma 4.1. [6, Thm. 6.4.3] (The Sequential Transducer Theorem) Let 𝐿 ⊆ Γ* be
a context-free language and 𝒮 be a (Γ, Δ)-sequential transducer. Then 𝒮(𝐿) ⊆ Δ*

is a context-free language as well.

5. Results
In this section we answer questions (Q1) and (Q2), which we proposed in the
Introduction. To answer these questions the following steps are necessary.

Let 𝜙 : (ΣΞ)* → (ΣΞ)* be the mapping such that, for each string 𝑤 ∈ (ΣΞ)*,
the mapping 𝜙 replaces every occurrence of 𝜎⟨ in 𝑤 into ⟨𝜎 simultaneously for all
𝜎 ∈ Σ. Formally, for every string

𝑤 = 𝑣0𝜎1⟨𝑣1 · · · 𝜎𝑘⟨𝑣𝑘 over ΣΞ
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𝑆 ⇒𝒢 𝜔

𝛽 𝑆 𝛽

⇒𝒢 𝜔

𝛽 𝜔 𝛽

𝛽 𝑆 𝛽

⇒*
𝒢 𝜉𝑛 = 𝜔

𝛽 𝜔 𝛽

𝛽 𝛽...

𝜔

𝛽 𝛽 𝛽

Figure 1. A derivation of the Σ-rtg 𝒢 defined in Example 3.10 for
𝑛 ∈ N+ and 𝜉𝑛, where 𝜉𝑛 is the tree in which the symbol 𝜔 occurs

𝑛 times.

Table 2. The illustration of the mapping 𝜙.

𝑤 𝜙(𝑤)
𝜔⟨𝛽⟨⟩#𝛽⟨⟩#𝛽⟨⟩⟩ ⟨𝜔⟨𝛽⟩#⟨𝛽⟩#⟨𝛽⟩⟩

𝜔𝛽⟨⟩𝜔⟨# 𝜔⟨𝛽⟩⟨𝜔#
⟨⟨⟩⟩⟨⟩ ⟨⟨⟩⟩⟨⟩

⟨⟨#⟩⟨⟨⟨#⟩ ⟨⟨#⟩⟨⟨⟨#⟩

with 𝑘 ∈ N, 𝑣0, 𝑣1, . . . , 𝑣𝑘 ∈ (ΣΞ)*, 𝜎1, . . . , 𝜎𝑘 ∈ Σ such that, for each 𝑖 ∈ {0, . . . , 𝑘},
there do not exist 𝑢, 𝑣 ∈ (ΣΞ)* and 𝜎 ∈ Σ such that 𝑣𝑖 = 𝑢𝜎⟨𝑣, we have

𝜙(𝑤) = 𝑣0⟨𝜎1𝑣1 · · · ⟨𝜎𝑘𝑣𝑘 .

Example 5.1. Let Σ = {𝜔(3), 𝛽(0)}. Table 2 shows 𝜙(𝑤) for some particular 𝑤
over ΣΞ.

Now we give a (ΣΞ, ΣΞ)-sequential transducer 𝒮 such that, for all strings 𝑤
over ΣΞ, we have 𝒮(𝑤) = 𝜙(𝑤). Fig. 2 depicts that sequential transducer 𝒮 =
({𝑝, 𝑞}, 𝑝, 𝛿) as follows. We represent every state 𝑞′ ∈ {𝑝, 𝑞} as a circle with 𝑞′

in its center, the start state 𝑝 by an ingoing directed edge with the label “start”,
and each transition (𝑝′, 𝑢, 𝑣, 𝑞′) ∈ 𝛿 by a directed edge from 𝑝′ to 𝑞′ with the label
𝑢/𝑣. In order to make our figure compact, we add the quantifications “(∀𝜎 ∈ Σ) :”,
“(∀𝑎 ∈ Ξ) :”, or “(∀𝑎 ∈ Ξ∖{⟨}) :” to omit a few edges. Furthermore, the label of the
edge from 𝑞 to 𝑝 consists of two lines representing concisely that (𝑞, 𝜎⟨, ⟨𝜎, 𝑝) ∈ 𝛿
for every 𝜎 ∈ Σ and (𝑞, 𝑎, 𝑎, 𝑝) ∈ 𝛿 for each 𝑎 in Ξ ∖ {⟨}, respectively. Observe that,
for each 𝑤 over ΣΞ, the set 𝒮(𝑤) is a singleton set, and thus, we sometimes identify
𝒮(𝑤) with its one and only element.

The following result shows that 𝜙 is a (ΣΞ, ΣΞ)-transduction.

Lemma 5.2. For each 𝑤 over ΣΞ, we have 𝒮(𝑤) = 𝜙(𝑤).

Proof. We prove our statement by induction on the length of 𝑤. Clearly, for each
𝑤 in ΣΞ ∪ {𝜀} ∪ {𝜎⟨| 𝜎 ∈ Σ}, we have 𝒮(𝑤) = 𝜙(𝑤).
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Now let 𝑤 = 𝑤′𝑏 for some 𝑤′ ∈ (ΣΞ)* and 𝑏 ∈ ΣΞ. By I.H., we may as-
sume that 𝒮(𝑤′) = 𝜙(𝑤′). By the construction of 𝒮, there exist 𝑘 ∈ N+ and
𝑤1, . . . , 𝑤𝑘 ∈ (ΣΞ)* such that 𝑤′ = 𝑤1 · · · 𝑤𝑘 and 1 ≤ len(𝑤𝑖) ≤ 2 for all 𝑖 ∈ [𝑘].
Furthermore, there exist 𝑢1, . . . , 𝑢𝑘 ∈ (ΣΞ)* and 𝑞0, 𝑞1, . . . , 𝑞𝑘 ∈ {𝑝, 𝑞} such that
𝒮(𝑤′) = 𝑢1 · · · 𝑢𝑘, 𝑞0 = 𝑝, and (𝑞𝑖−1, 𝑤𝑖, 𝑢𝑖, 𝑞𝑖) ∈ 𝛿 for each 𝑖 ∈ [𝑘]. We consider
the next cases.

Assume that 𝑤𝑘 = 𝑎𝜎 for some 𝑎 in ΣΞ ∪ {𝜀} and 𝜎 ∈ Σ and 𝑏 = ⟨. We have
(𝑞𝑘−1, 𝑎, 𝑎, 𝑞) ∈ 𝛿 if 𝑎 ∈ Σ; and (𝑞𝑘−1, 𝑎, 𝑎, 𝑝) ∈ 𝛿 if (𝑎 ∈ Ξ and 𝑞𝑘−1 = 𝑝) or
(𝑎 ∈ Ξ ∖ {⟨} and 𝑞𝑘−1 = 𝑞). Since 𝒮(𝑤′) = 𝜙(𝑤′), we may assume that 𝑞𝑘−1 ̸= 𝑞
or 𝑎 ̸= ⟨. Moreover, both (𝑝, 𝜎⟨, ⟨𝜎, 𝑝) ∈ 𝛿 and (𝑞, 𝜎⟨, ⟨𝜎, 𝑝) ∈ 𝛿. Hence, 𝒮(𝑤) =
𝑢1 · · · 𝑢𝑘−1𝑎⟨𝜎, and furthermore, 𝒮(𝑤) = 𝜙(𝑤).

Otherwise, i.e., 𝑤𝑘 ̸= 𝑎𝜎 or 𝑏 ̸= ⟨, we have (𝑞𝑘, 𝑏, 𝑏, 𝑞′) ∈ 𝛿 for some 𝑞′ ∈ {𝑝, 𝑞},
and thus, 𝒮(𝑤) = 𝜙(𝑤).

The next result is an immediate consequence of Lemma 4.1 using the (ΣΞ, ΣΞ)-
sequential transducer 𝒮 given at the beginning of this section.

Corollary 5.3. Let 𝐺 be a ΣΞ-cfg. There exists a ΣΞ-cfg 𝐺𝒮 such that L(𝐺𝒮) =
𝒮(L(𝐺)).

Next we show that 𝒮(TΣ) is a parenthesis language by constructing a ΣΞ-
parenthesis grammar 𝐺Σ such that L(𝐺Σ) = 𝒮(TΣ). Let 𝐺Σ = ({𝑆}, 𝑆, 𝑅) be the
ΣΞ-cfg such that

𝑅 = {𝑆 → ⟨𝜎 𝑆#𝑆# . . . #𝑆⏟  ⏞  
𝑘-times

⟩ | 𝑘 ∈ N, 𝜎 ∈ Σ(𝑘)} .

Clearly, 𝐺Σ is a parenthesis grammar.

Lemma 5.4. L(𝐺Σ) = 𝒮(TΣ).

Proof. It is sufficient to prove that, for each 𝑤 ∈ (ΣΞ)*, the following statements
are equivalent.

1. 𝑆 ⇒*
𝐺Σ

𝑤.
2. There exists 𝜉 ∈ TΣ such that 𝑤 = 𝒮(𝜉).
(1 ⇒ 2). We prove it by induction on the length of the derivation. If 𝑆 ⇒𝐺Σ 𝑤,

then 𝑤 = ⟨𝛼⟩ for some 𝛼 ∈ Σ(0), and, clearly, for 𝜉 = 𝛼⟨⟩, we have ⟨𝛼⟩ = 𝒮(𝛼⟨⟩).
Now assume that 𝑆 ⇒𝑛+1

𝐺Σ
𝑤 for some 𝑛 ∈ N. This derivation can be written in

the form

𝑆 ⇒𝐺Σ ⟨𝜎𝑆#𝑆# . . . #𝑆⟩ ⇒*
𝐺Σ ⟨𝜎𝑤1#𝑤2# . . . #𝑤𝑘⟩ = 𝑤 ,

where 𝑆 → ⟨𝜎𝑆#𝑆# . . . #𝑆⟩ is in 𝑅, and by I.H., for each 𝑖 ∈ [𝑘], there exists
𝜉𝑖 ∈ TΣ such that 𝑤𝑖 = 𝒮(𝜉𝑖). Then, for the tree 𝜉 = 𝜎⟨𝜉1#𝜉2# . . . #𝜉𝑘⟩, we have
𝑤 = 𝒮(𝜉).

(2 ⇒ 1). We prove it by structural induction on 𝜉. If 𝜉 = 𝛼⟨⟩ for some 𝛼 ∈ Σ(0),
then 𝑤 = ⟨𝛼⟩. Since 𝑆 → ⟨𝛼⟩ is in 𝑅, we have 𝑆 ⇒𝐺Σ 𝑤.
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𝑝start 𝑞

(∀𝜎 ∈ Σ) : 𝜎⟨ /⟨𝜎

(∀𝑎 ∈ Ξ) : 𝑎/𝑎

(∀𝜎 ∈ Σ) : 𝜎/𝜎
(∀𝜎 ∈ Σ) : 𝜎/𝜎

(∀𝜎 ∈ Σ) : 𝜎⟨/⟨𝜎
(∀𝑎 ∈ Ξ ∖ {⟨}) : 𝑎/𝑎

Figure 2. Illustration of the (ΣΞ, ΣΞ)-sequential transducer 𝒮
given at the beginning of Section 5.

Now let 𝜉 = 𝜎⟨𝜉1#𝜉2# . . . #𝜉𝑘⟩ for some 𝑘 ∈ N+, 𝜎 ∈ Σ(𝑘), and 𝜉1, 𝜉2, . . . , 𝜉𝑘 ∈
TΣ. Observe that we have 𝒮(𝜉) = ⟨𝜎𝒮(𝜉1)#𝒮(𝜉2)# . . . #𝒮(𝜉𝑘)⟩. By I.H., for each
𝑖 ∈ [𝑘], we have 𝑆 ⇒*

𝐺Σ
𝒮(𝜉𝑖). Since the rule 𝑆 → ⟨𝜎𝑆#𝑆# . . . #𝑆⟩ is in 𝑅, we

have

𝑆 ⇒𝐺Σ ⟨𝜎𝑆#𝑆# . . . #𝑆⟩ ⇒*
𝐺Σ ⟨𝜎𝒮(𝜉1)#𝒮(𝜉2)# . . . #𝒮(𝜉𝑘)⟩ = 𝒮(𝜉) = 𝑤 .

Now we are ready to answer question (Q1) as follows.

Theorem 5.5. It is decidable, for an arbitrary ΣΞ-cfg 𝐺, whether 𝐺 is tree gen-
erating.

Proof. By Corollary 5.3, there exists a ΣΞ-cfg 𝐺𝒮 such that L(𝐺𝒮) = 𝒮(L(𝐺)).
Then we have

L(𝐺) ⊆ TΣ iff 𝒮(L(𝐺)) ⊆ 𝒮(TΣ) iff L(𝐺𝒮) ⊆ L(𝐺Σ), (5.1)

where the second equivalence follows from Lemma 5.4. By Lemma 3.6 (for 𝐺1 = 𝐺𝒮
and 𝐺2 = 𝐺Σ), it is decidable whether L(𝐺𝒮) ⊆ L(𝐺Σ). Hence, by (5.1), it is
decidable whether L(𝐺) ⊆ TΣ as well.

Built upon the preceding result, we give an answer to question (Q2).

Theorem 5.6. Let 𝐺 be a ΣΞ-cfg such that 𝐺 is tree generating. We can effectively
construct a Σ-rtg 𝒢 such that L(𝒢) = L(𝐺).

Proof. If 𝐺 is a Σ-rtg, then we let 𝒢 = 𝐺 and we are done, otherwise we proceed
as follows.

By Corollary 5.3, there exists a ΣΞ-cfg 𝐺𝒮 such that L(𝐺𝒮) = 𝒮(L(𝐺)). More-
over, by (5.1), we have L(𝐺𝒮) ⊆ L(𝐺Σ).

Since L(𝐺Σ) is a parenthesis language, by Corollary 3.8, also L(𝐺𝒮) is a paren-
thesis language. By Theorem 3.7(2), we can effectively construct a ΣΞ-parenthesis
grammar 𝐺′ = (𝑁 ′, 𝑆′, 𝑅′) such that L(𝐺′) = L(𝐺𝒮). Recall that, since 𝐺′ is a
parenthesis grammar, each rule in 𝑅′ has the form 𝐴 → ⟨𝜃⟩ such that 𝐴 ∈ 𝑁 ′ and
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𝜃 is a string over 𝑁 ′ ∪ Σ ∪ {#}. We note that, by Observation 3.2, 𝐺′ is chain-free
and 𝜀-free. Furthermore, by Lemma 3.1, we may assume that 𝐺′ is reduced.

Let 𝐴 ∈ 𝑁 ′, 𝜃 be a string over 𝑁 ′ ∪ Σ ∪ {#}, and 𝜉 = 𝜎⟨𝜉1#𝜉2# . . . #𝜉𝑘⟩ in TΣ
for some 𝑘 ∈ N, 𝜎 ∈ Σ(𝑘), and 𝜉1, 𝜉2, . . . , 𝜉𝑘 ∈ TΣ. We claim that

if 𝐴 ⇒𝐺′ ⟨𝜃⟩ ⇒*
𝐺′ 𝒮(𝜉) , then 𝜃 = 𝜎𝐴1#𝐴2# . . . #𝐴𝑘

for some 𝐴1, 𝐴2, . . . , 𝐴𝑘 ∈ 𝑁 ′ with 𝐴𝑖 ⇒*
𝐺′ 𝒮(𝜉𝑖) for all 𝑖 ∈ [𝑘] .

(5.2)

Now we prove (5.2). Since 𝐺′ is a parenthesis grammar, by Lemma 3.4, there do
not exist 𝐵 ∈ 𝑁 ′ and 𝛾 ∈ prefix(𝜎𝒮(𝜉1)#𝒮(𝜉2)# . . . #𝒮(𝜉𝑘)) such that 𝐵 ⇒*

𝐺′ 𝛾,
and thus, 𝜃 = 𝜎𝜃′ for some string 𝜃′ over 𝑁 ′∪Σ∪{#}. We proceed by case analysis.

Assume that 𝑘 = 0. Then 𝜎 = 𝛼 and 𝜉 = 𝛼⟨⟩ for some 𝛼 ∈ Σ(0), and hence,
𝒮(𝛼⟨⟩) = ⟨𝛼⟩. Furthermore, since 𝐺′ is a parenthesis grammar, we have 𝜃 = 𝛼 and
𝜃′ = 𝜀.

Now assume that 𝑘 > 0. Then, since ⟨ is in prefix(𝒮(𝜉1)#𝒮(𝜉2)# . . . #𝒮(𝜉𝑘))
and 𝐺′ is a parenthesis grammar, we must have 𝜃′ = 𝐴1𝜃′′ for some 𝐴1 ∈ 𝑁 ′ and
string 𝜃′′ over 𝑁 ′ ∪ Σ ∪ {#}. Since 𝐺′ is a parenthesis grammar, by Lemma 3.4,
for all 𝑤 ∈ (ΣΞ)*, if 𝐴1 ⇒*

𝐺′ 𝑤, then 𝑤 = ⟨𝑢⟩ for some 𝑢 ∈ (ΣΞ)* such that 𝑢
is balanced. The one and only way to satisfy the aforementioned requirement on
𝐴1 with respect to 𝐴 ⇒𝐺′ ⟨𝜎𝐴1𝜃′′⟩ ⇒*

𝐺′ 𝒮(𝜉) is that if 𝐴1 ⇒*
𝐺′ 𝒮(𝜉1). (Observe

that, since 𝐺′ is a parenthesis grammar, we have 𝐴1 ⇒𝐺′ ⟨𝜃1⟩ ⇒*
𝐺′ 𝒮(𝜉1) for some

string 𝜃1 over 𝑁 ′ ∪ Σ ∪ {#}, which satisfies the condition of (5.2) as well.) Then,
since 𝐺′ is a parenthesis grammar, by Lemma 3.4, there do not exist 𝐶 ∈ 𝑁 ′

and 𝑣 ∈ prefix(#𝒮(𝜉2)# . . . #𝒮(𝜉𝑘)) such that 𝐶 ⇒*
𝐺′ 𝑣, and hence, 𝜃′′ = #𝜃

for some string 𝜃 over 𝑁 ′ ∪ Σ ∪ {#}. Putting these together, we currently have
𝜃 = ⟨𝜎𝐴1#𝜃⟩. Clearly, by continuing our argumentation in a similar way, we can
show that 𝜃 = 𝜎𝐴1#𝐴2# . . . #𝐴𝑘 and that 𝐴𝑖 ⇒*

𝐺′ 𝒮(𝜉𝑖) for all 𝑖 ∈ [𝑘]. This
completes the proof of (5.2).

It follows from (5.2) that each rule in 𝑅′ has the form 𝐴 → ⟨𝜎𝐴1#𝐴2# . . . #𝐴𝑘⟩
with 𝑘 ∈ N, 𝜎 ∈ Σ(𝑘), and 𝐴, 𝐴1, 𝐴2, . . . , 𝐴𝑘 ∈ 𝑁 ′.

Next we can effectively construct the Σ-rtg 𝒢 = (𝑁 ′, 𝑆′, 𝑅′′) such that 𝐴 →
𝜎⟨𝐴1#𝐴2# . . . #𝐴𝑘⟩ is in 𝑅′′ iff 𝐴 → ⟨𝜎𝐴1#𝐴2# . . . #𝐴𝑘⟩ is in 𝑅′.

We claim that, for all 𝐴 ∈ 𝑁 ′ and 𝜉 ∈ TΣ, we have

𝐴 ⇒*
𝐺′ 𝒮(𝜉) iff 𝐴 ⇒*

𝒢 𝜉 . (5.3)

Next we prove (5.3) by structural induction on 𝜉. Let 𝜉 = 𝛼⟨⟩ for some 𝛼 ∈ Σ(0).
Clearly, we have 𝒮(𝛼⟨⟩) = ⟨𝛼⟩. Moreover, we have

𝐴 ⇒*
𝐺′ ⟨𝛼⟩ iff 𝐴 → ⟨𝛼⟩ is in 𝑅′ iff 𝐴 → 𝛼⟨⟩ is in 𝑅′′ iff 𝐴 ⇒*

𝒢 𝛼⟨⟩ .

Now let 𝜉 = 𝜎⟨𝜉1#𝜉2# . . . #𝜉𝑘⟩ with 𝑘 ∈ N+, 𝜎 ∈ Σ(𝑘), and 𝜉1, 𝜉2, . . . , 𝜉𝑘 ∈ TΣ.
For every 𝐴1, 𝐴2, . . . , 𝐴𝑘 ∈ 𝑁 ′, the rule 𝐴 → ⟨𝜎𝐴1#𝐴2# . . . #𝐴𝑘⟩ exists in 𝑅′ iff
the rule 𝐴 → 𝜎⟨𝐴1#𝐴2# . . . #𝐴𝑘⟩ exists is in 𝑅′′. Moreover, by I. H., for each
𝑖 ∈ [𝑘], we have 𝐴𝑖 ⇒*

𝐺′ 𝒮(𝜉𝑖) iff 𝐴𝑖 ⇒*
𝒢 𝜉𝑖. So, we have

𝐴 ⇒𝐺′ ⟨𝜎𝐴1#𝐴2# . . . #𝐴𝑘⟩ ⇒*
𝐺′ ⟨𝜎𝒮(𝜉1)#𝐴2# . . . #𝐴𝑘⟩
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⇒*
𝐺′ ⟨𝜎𝒮(𝜉1)#𝒮(𝜉2)# . . . #𝒮(𝜉𝑘)⟩ = 𝒮(𝜉)

if and only if

𝐴 ⇒𝒢 𝜎⟨𝐴1#𝐴2# . . . #𝐴𝑘⟩ ⇒*
𝒢 𝜎⟨𝜉1#𝐴2# . . . #𝐴𝑘⟩

⇒*
𝒢 𝜎⟨𝜉1#𝜉2# . . . #𝜉𝑘⟩ = 𝜉 .

Therefore, for each 𝜉 ∈ TΣ, we have

𝒮(𝜉) ∈ L(𝐺′) iff 𝑆′ ⇒*
𝐺′ 𝒮(𝜉) iff(*)𝑆′ ⇒*

𝒢 𝜉 iff 𝜉 ∈ L(𝒢) ,

where at (*) we used the fact that 𝑆′ ⇒*
𝐺′ 𝒮(𝜉) iff 𝑆′ ⇒*

𝒢 𝜉 by (5.3).
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Abstract. We consider a multiclass retrial system with classical retrials,
and present a new short proof of the sufficient stability (positive recurrence)
condition of the system. The proof is based on the analysis of the departures
from the system and a balance equation between the arrived and departed
work. Moreover, we apply the asymptotic results from the theory of renewal
and regenerative processes. This analysis is then extended to the system with
the outgoing calls. A few numerical examples illustrate theoretical analysis.
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1. Introduction
The importance of the retrial queues to model the modern wireless telecommuni-
cation systems is well-known, for instance, see [2–4, 8], where also a comprehensive
bibliography on research related to retrial queues can be found. In this work we
focus on the stability analysis of a classical retrial queue, and using regenerative
arguments present a new short proof of the known sufficient stability condition of
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such a system. This proof is not only much shorter than that have been used earlier
(see [1, 9]) but also allows easily to cover more general retrial systems with the so-
called ‘outgoing’ calls [11]. Although there are many papers which investigate the
steady-state performance of the retrial queues, still a little attention is devoted to
stability analysis outside the Markovian setting, which is the topic of this research.

In this regard, we first mention a fundamental work [1] in which a detailed
stability analysis of a general 𝐺/𝐺/1-type single-server retrial queue is developed.
The authors study the system with a stationary input process and non-exponential
retrial times, and also investigate the convergence rate to stationarity, but they do
not appeal to the regenerative method. The stability of multiserver retrial systems
is studied in a few papers. For instance, the paper [7] studies such a system with a
finite buffer, batch Markovian arrival process, phase-type service time distribution
and a general retrial rate, and stability analysis is based on the corresponding
embedded Markov chains.

In the present paper, we consider the stability of a multiclass retrial 𝑀/𝐺/1
queue with independent Poisson inputs of primary customers belonging to 𝑁 differ-
ent classes. Then we outline how this analysis is extended to a multiserver system.
If an arriving class-𝑖 primary customer finds server busy, he joins the corresponding
(infinite capacity) orbit 𝑖, and, after exponential time, attempts to capture server
again. These attempts continue until he finds server idle. Service time as well as
the retrial times are assumed to be class-dependent.

We use the regenerative approach [5, 10, 16, 17] to reprove the known stability
condition, and this work thus complements our previous works [9] and [11]. In [9],
the proof is based on the negative drift of the remaining work in the (single) orbit,
while in the paper [11], we utilize the positive drift of the idle time of server. In a
contrast, in the current analysis we observe the system at the departure instants and
evaluate the idle time of servers after each departure. Then, assuming instability,
the idle times decreases, and this effect, in the limit, contradicts a predefined
condition. Then, according to the approach developed in [14, 15], we appeal to a
characterization of the remaining regeneration time of a basic process to deduce
that it is positive recurrent. This approach leads to a radical simplification of the
stability analysis and also is extended to the system in which there are ’outgoing
calls’ during idle periods of the servers. The idea to consider the output process
is not new of course. For instance, the analysis of 𝑀/𝐺/1-type retrial system in
[8] is based on the analysis of an embedded Markov chain representing the orbit
size at the service completion epochs. The main feature of a retrial system from
the point-of-view of stability analysis is that, in such a system, after each service
completion, the server becomes idle for a random time until the beginning of the
next service. This implies a loss of the server capacity after each departure, and
thus the service discipline turns out to be not work-conserving. Fortunately, the
service discipline in the retrial queueing system with classical retrials approaches
the work-conserving discipline in the corresponding buffered system as the orbit
size increases, and by this reason, it is asymptotically work-conserving [9]. This
leads to the coincidence of the stability conditions in the retrial system and in the
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corresponding classical buffered system.
The stability analysis then is extended to the system in which the idle server

initiates an outgoing call [11]. Although these calls are expected to increase the
utilization of the server, while keeping the throughput of the primary external
customers, it is intuitive that the stability condition remains the same in this case
as well, and we show it below.

The main contribution of this paper is to present a new short proof of the
sufficient stability condition of this model, which then allows to study analogously
the system with the outgoing calls (We note that the main result of this paper
has been announced in [12].) Moreover, the approach used in this paper has a
promising potential to analyse stability condition of a multiserver multicalss system
in which the service times are both class- and server-dependent. In particular, it is
demonstrated in a recent paper [13] where the stability analysis of a retrial system
(a modified Erlang system) with two classes of customers and 𝑐 identical servers
has been performed by means of the same approach.

The rest of this paper is organized as follows. Section 2 describes the model
and the regenerative structure of a basic stochastic process. In Section 3, we give
the main balance equation and present the new proof of the stability condition. In
Section 4, the stability analysis is extended to the system with the outgoing calls.
To illustrate the theoretical results, some numerical results based on stochastic
simulation are included in Section 5.

2. Description of the model
We consider a multiclass retrial 𝑀/𝐺/1 queueing system with 𝑁 independent Pois-
son inputs of primary customers, and for each class 𝑖, denote by 𝜏𝑖 a generic (expo-
nential) interarrival time, with rate 𝜆𝑖 = 1/E𝜏𝑖, by {𝑆

(𝑖)
𝑛 } the iid service time (with

generic time 𝑆(𝑖) with rate 𝜇𝑖 = 1/E𝑆(𝑖)), and by 𝛾𝑖 the rate of (exponential) class-𝑖
retrial time, 𝑖 = 1, . . . , 𝑁 . If a class-𝑖 primary customer finds server busy, he joins
the corresponding (infinite capacity) orbit 𝑖 and, after the exponential time with
rate 𝛾𝑖, the customer attempts to capture server. He continues his attempts until
finds the server idle. Denote by 𝛾0 = min 𝛾𝑖. This rule is called ’classical retrial
policy’, and if the orbit size equals 𝑁 , then the retrial rate at this instant is lower
bounded by 𝛾0𝑁 by the memoryless property of the exponential distribution.

To describe the regenerative structure of the system, we denote by 𝑄(𝑡) the total
number of customers in the system at instant 𝑡−, let {𝑡𝑘} be the arrival instants of
the superposed input (Poisson) process and 𝑄(𝑡𝑘) =: 𝑄𝑘. Then the regeneration
instants {𝑇𝑛} of the process {𝑄(𝑡), 𝑡 ≥ 0} are recursively defined as

𝑇𝑛+1 = inf
𝑘

(𝑡𝑘 > 𝑇𝑛 : 𝑄𝑘 = 0), 𝑛 ≥ 0, (2.1)

(𝑇0 := 0), and the regeneration instants of the embedded process {𝑄𝑛} are

𝜃𝑛+1 = inf(𝑘 > 𝜃𝑛 : 𝑄𝑘 = 0), 𝑛 ≥ 0 (𝜃0 := 0). (2.2)
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The generic regeneration period, that is the distance between two arbitrary adjacent
regeneration points, is denoted by 𝑇 (for continuous-time construction (2.1)) and by
𝜃 (for discrete-time construction (2.2)). If the mean E𝑇 < ∞ then the regenerative
process {𝑄(𝑡)} (and the queueing system) is called positive recurrent (stable), and
it implies the existence of the stationary process 𝑄(𝑡) ⇒ 𝑄, 𝑡 → ∞ (⇒ denotes
convergence in distribution). If E𝑇 = ∞ then the system is called null-recurrent
or unstable. By the (stochastic) equality 𝑇 =𝑠𝑡 𝜏1 + · · · + 𝜏𝜃, it follows by the
Wald’s identity that E𝑇 = E𝜃 E𝜏, where both sides of the equality are finite/infinite
simultaneously [6], implying that both processes {𝑄(𝑡)} and {𝑄𝑛} are positive
recurrent/null-recurrent simultaneously.

3. Stability analysis
Denote by

𝜌𝑖 = 𝜆𝑖/𝜇𝑖, 𝜌 =
𝑁∑︁

𝑖=1
𝜌𝑖. (3.1)

Below we present a new and short proof of the following statement.

Theorem 3.1. If 𝜌 < 1 then the (initially idle) system under consideration is
positive recurrent, E𝑇 < ∞.

Proof. Let {𝑑𝑘, 𝑘 ≥ 1} be the departure instances of the served customers leaving
the system. Denote by 𝑉𝑖(𝑡) the total workload which class-𝑖 customers bring in
the system in time interval [0, 𝑡] and let 𝑉 (𝑡) =

∑︀
𝑖 𝑉𝑖(𝑡). Moreover denote by

𝑊 (𝑡) the remaining work in all orbits at instant 𝑡, and let 𝐼(𝑡) be the total idle
time of the server in interval [0, 𝑡]. (All processes we consider are right-continuous
with left-hand limits [15].) Finally, denote by

𝑊 (𝑑𝑛) = 𝑊𝑛, 𝑉 (𝑑𝑛) = 𝑉𝑛, 𝐼(𝑑𝑛) = 𝐼𝑛, 𝑛 ≥ 1.

By assumption, the first customer arrives at instant 𝑡1 = 0 in the empty system (it
is called zero initial state), and we obtain the following balance equation

𝑊𝑛 = 𝑉𝑛 − 𝑑𝑛 + 𝐼𝑛, 𝑛 ≥ 1. (3.2)

We notice that the arrived in the interval [0, 𝑑𝑛] class-𝑖 work can be written as

𝑉𝑖(𝑑𝑛) =
𝐴𝑖(𝑑𝑛)∑︁

𝑘=1
𝑆

(𝑖)
𝑘 ,

where 𝐴𝑖(𝑑𝑛) is the number of class-𝑖 arrivals in [0, 𝑑𝑛], 𝑖 = 1, . . . , 𝑁, 𝑛 ≥ 1. It
is easy to find, using the Strong Law of Large Numbers and the property of the
cumulative processes [17] that with probability 1 (w.p.1)

lim
𝑛→∞

𝑉𝑖(𝑑𝑛)
𝑑𝑛

= 𝜌𝑖,
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regardless of whether the system is stable or not, implying

lim
𝑛→∞

𝑉𝑛

𝑑𝑛
= 𝜌. (3.3)

(Indeed it follows from theory of cumulative processes, that convergence in mean
in (3.3) holds as well.) Now we assume, by a contradiction, that the system is null-
recurrent that is E𝜃 = ∞. (Then E𝑇 = ∞ as well, see [6].) Note that 𝜃 is a generic
number of arrivals and departures within a regeneration period of the system. By
a characterization of the renewal process [15], it then follows from E𝜃 = ∞ that
the remaining regeneration time

𝜃(𝑛) := inf
𝑘

(𝜃𝑘 − 𝑛 : 𝜃𝑘 − 𝑛 > 0), (3.4)

at instant 𝑛 up to the next regeneration instant, increases to infinity in probability,
that is

𝜃(𝑛) ⇒ ∞, 𝑛 → ∞. (3.5)

Denote 𝑄(𝑑𝑛) = 𝑄𝑛. Using a proof by contradiction we can show (see [15]) that
𝑄𝑛 ̸⇒ ∞ implies E𝜃 < ∞. Thus it follows from (3.5) that E𝜃 = ∞, and then we
obtain as well

𝑄𝑛 ⇒ ∞, 𝑛 → ∞. (3.6)

Denote by Δ𝑘 = 𝐼(𝑑𝑘+1) − 𝐼(𝑑𝑘) the idle time of server between the 𝑘th and
(𝑘 + 1)th departures. We note that, provided 𝑄𝑘 ≥ 𝑛, the mean idle time of server
after the 𝑘th departure is upper bounded by the constant

𝐶𝑛 := 1/(𝜆 + 𝑛𝛾0), (3.7)

and 𝐶𝑛 → 0 as 𝑛 → ∞. (Recall that 𝛾0 is the minimal retrial rate.) This shows
that, if 𝑄𝑘 ≥ 𝑛, then EΔ𝑘 ≤ 𝐶𝑛 can be done arbitrarily small for 𝑛 large enough
(𝑛 ≥ 𝑘). Then one can show that for an arbitrary 𝜀 > 0

E𝐼𝑛 ≤ 𝜀𝑛(1 + 1/𝜆) + 𝐿,

where 𝐿 is a constant. (For details see formulas (21)-(25) in the paper [13].) This
implies that, under assumption (3.6),

lim
𝑛→∞

E𝐼𝑛

𝑛
= 0. (3.8)

We assume that if the 𝑛th customer entering server belongs to class 𝑖, then we
assign the service time 𝑆

(𝑖)
𝑛 from the corresponding iid sequence {𝑆

(𝑖)
𝑛 } initially

intended for this class of customers. (In other words, we omit not used elements of
this sequence.) Now we consider the ’minimal’ service times realized by the server,

𝑆(0)
𝑛 = min

1≤𝑖≤𝑁
𝑆(𝑖)

𝑛 , 𝑛 ≥ 1.
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These times constitute an iid sequence {𝑆
(0)
𝑛 } with generic element 𝑆(0). Now we

define a random walk
̂︀𝑑𝑛 =

𝑛∑︁

𝑘=1
𝑆

(0)
𝑘 , 𝑛 ≥ 1. (3.9)

An important observation is that ̂︀𝑑𝑛 ≤ 𝑑𝑛, 𝑛 ≥ 1. Now we can write

𝐼𝑛

𝑑𝑛
≤ 𝐼𝑛

̂︀𝑑𝑛

= 𝐼𝑛

𝑛

𝑛

̂︀𝑑𝑛

, 𝑛 ≥ 1.

On the other hand, we have, from the renewal theory, that w.p.1,

lim
𝑛→∞

𝑛

̂︀𝑑𝑛

= 1
E𝑆(0) . (3.10)

Then it follows from (3.8) that, as 𝑛 → ∞,

𝐼𝑛

𝑛
⇒ 0.

In turn, then there exists a subsequence 𝑛𝑘 → ∞, 𝑘 → ∞, such that

lim
𝑘→∞

𝐼𝑛𝑘

𝑛𝑘
= 0, (3.11)

w.p.1, see [6]. Now we return to the balance equation (3.2) written for the subse-
quence {𝑛𝑘}:

𝑊𝑛𝑘
= 𝑉𝑛𝑘

− 𝑑𝑛𝑘
+ 𝐼𝑛𝑘

, 𝑛 ≥ 1. (3.12)

Note that ̂︀𝑑𝑛𝑘
→ ∞ w.p.1 and, as in (3.10),

lim
𝑘→∞

𝑛𝑘

̂︀𝑑𝑛𝑘

= 1
E𝑆(0) .

Thus, w.p.1, as 𝑘 → ∞,

𝐼𝑛𝑘

𝑑𝑛𝑘

= 𝐼𝑛𝑘

𝑛𝑘

𝑛𝑘

𝑑𝑛𝑘

≤ 𝐼𝑛𝑘

𝑛𝑘

𝑛𝑘

̂︀𝑑𝑛𝑘

→ 0. (3.13)

Now we divide both sides of (3.12) by 𝑑𝑛𝑘
and let 𝑘 → ∞. Because

lim
𝑘→∞

𝑊𝑛𝑘

𝑑𝑛𝑘

≥ 0 (3.14)

(this limit exists because the r.h.s. limit of (3.12) exists), then we obtain that

𝜌 ≥ 1, (3.15)

implying a contradiction with the assumption 𝜌 < 1. In other words,

𝑄(𝑑𝑛) ̸⇒ ∞, 𝑛 → ∞,
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and there exists a subsequence {𝑧𝑘}, 𝑧𝑘 → ∞ and some 𝜀 > 0 and constant 𝐶 < ∞,
such that

inf
𝑘

P(𝑄(𝑑𝑧𝑘
) ≤ 𝐶) ≥ 𝜀.

We note that a ’regeneration’ condition

min
1≤𝑖≤𝑁

P(𝜏 > 𝑆(𝑖)) > 0

in this system holds automatically because the input process is Poisson, see [15].
Then by a standard method [15] we can show that the remaining regeneration time
(3.4) (measured in the number of the arrivals/departures within a cycle)

𝜃(𝑛𝑘) ̸⇒ ∞, (3.16)

which in turn implies that the mean number of arrivals/departures within a regen-
eration cycle E𝜃 < ∞. Finally,

E𝑇 = E𝜃 E𝜏 < ∞, (3.17)

and the proof of Theorem 3.1 is hereby completed.

Remark 3.2. The prove given above is radically shorter and more intuitive than
that have been obtained in previous works [9, 11, 15]. This also relates to the 2nd
step of the stability analysis describing the so-called ’unloading’ of the system after
the step (3.16).

Remark 3.3. It follows from (3.17) that, under assumption 𝜌 < 1, the continuous-
time processes and the embedded processes (both at the instants {𝑡𝑛} and {𝑑𝑛})
are positive recurrent.

Assume that the system has 𝑚 ≥ 1 identical servers. In this system definition
of the regeneration points remains the same as in (2.1). In this case, in the balance
equation (3.2), 𝑑𝑛 is replaced by 𝑚𝑑𝑛 and the total idle time of all servers in interval
[0, 𝑑𝑛] becomes

𝐼𝑛 =
𝑚∑︁

𝑗=1

𝑛−1∑︁

𝑘=1
Δ(𝑗)

𝑘 ,

where Δ(𝑗)
𝑘 denotes the idle time of server 𝑗 after the 𝑘th departure. The extension

of stability analysis to this case is straightforward, and the proof of the following
Theorem 3.4 follows mainly the same lines as the proof of Theorem 3.1.

Theorem 3.4. If 𝜌 < 𝑚 then the (initially idle) system is positive recurrent,
E𝑇 < ∞.
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4. Extensions to the system with outgoing calls
Now we consider a single-server system with outgoing calls. Keeping the main
notation, we assume that, provided the server is idle, it generates an outgoing
class-𝑖 call with rate 𝜈𝑖, and there are 𝐾 different types of such calls. Denote
the total rate by 𝜈 =

∑︀𝐾
𝑖=1 𝜈𝑖. The service times (durations) of class-𝑖 calls are

iid {𝑍
(𝑖)
𝑛 , 𝑛 ≥ 1} with the mean E𝑍(𝑖) < ∞, 𝑖 = 1, . . . , 𝐾. (We omit serial index

denoting a generic element of an iid sequence.) In this system the balance equation,
again considered at the departure instants {𝑑𝑛}, becomes

𝑉𝑛 + Z𝑛 = 𝑊𝑛 + 𝑑𝑛 − 𝐼𝑛, (4.1)

where Z𝑛 is the workload generated by the outgoing calls in the interval [0, 𝑑𝑛]. It
is assumed that the service of an outgoing call is not interrupted by a newly arrived
external customer. Note that in this case the upper bound 𝐶𝑛 in (3.7) is modified
as follows:

𝐶𝑛 = 1
𝜆 + 𝑛𝛾0 + 𝜈

.

Now we denote

𝑆(0)
𝑛 = min

1≤𝑖≤𝑁
𝑆(𝑖)

𝑛 , 𝑍(0)
𝑛 = min

1≤𝑖≤𝐾
𝑍(𝑖)

𝑛 𝑛 ≥ 1,

and redefine the instants ̂︀𝑑𝑛 (see (3.9)) as

̂︀𝑑𝑛 =
𝑛∑︁

𝑘=1
min{𝑆

(0)
𝑘 , 𝑍

(0)
𝑘 }, 𝑛 ≥ 1.

As above, 𝑑𝑛 ≥ ̂︀𝑑𝑛 → ∞. Assume again that convergence (3.6) holds true. Then,
as in Section 3, there exists a subsequence 𝑑𝑛𝑘

→ ∞, 𝑘 → ∞, satisfying (3.11) (not
necessary the same one). Rewrite the balance equation (4.1) as

𝑉𝑛𝑘
+ Z𝑛𝑘

= 𝑊𝑛𝑘
+ 𝑑𝑛𝑘

− 𝐼𝑛𝑘
,

and show that, as 𝑘 → ∞,

Z𝑛𝑘

𝑑𝑛𝑘

≤ Z𝑛𝑘

̂︀𝑑𝑛𝑘

→ 0 w.p.1. (4.2)

Denote by 𝑁𝑛𝑘
the number of events in the Poisson process with rate 𝜈 in time

interval [0, 𝐼𝑛𝑘
]. Then it is easy to see that 𝑁𝑛𝑘

≥𝑠𝑡
̂︀𝑁𝑛𝑘

, where ̂︀𝑁𝑛𝑘
is the number

of actual outgoing calls generated in interval [0, 𝑑𝑛𝑘
]. It is because some calls,

among (maximally possible) number 𝑁𝑛𝑘
, are ’lost’ (if server transmits another

outgoing call), and in result ̂︀𝑁𝑛𝑘
in general turns out to be less than 𝑁𝑛𝑘

. Denote
by 𝑣𝑛 the work which call 𝑛 brings in the system, 𝑛 ≥ 1. Then 𝑣𝑛 is (stochastically)
upper bounded as

𝑣𝑛 ≤𝑠𝑡 𝑍(1)
𝑛 + · · · + 𝑍(𝐾)

𝑛 =: 𝒵𝑛,
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where iid {𝒵𝑛} have generic element 𝒵 with mean E𝒵 =
∑︀𝐾

𝑖=1 E𝑍(𝑖) < ∞. It now
follows from above the following stochastic inequality

Z𝑛𝑘
=

̂︀𝑁𝑛𝑘∑︁

𝑗=1
𝑣𝑗 ≤𝑠𝑡

𝑁𝑛𝑘∑︁

𝑗=1
𝒵𝑗 . (4.3)

We note that, on the event {sup𝑘 𝐼𝑛𝑘
< ∞}, it follows that sup𝑘 Z𝑛𝑘

< ∞ as well
(because the number of the events in any finite interval is finite w.p.1), implying
Z𝑛𝑘

= 𝑜( ̂︀𝑑𝑛𝑘
), 𝑘 → ∞. Otherwise, on the event {lim𝑘→∞ 𝐼𝑛𝑘

= ∞}, we can write,
by (4.3)

Z𝑛𝑘

̂︀𝑑𝑛𝑘

≤ 1
𝑁𝑛𝑘

𝑁𝑛𝑘∑︁

𝑗=1
𝒵𝑗

𝑁𝑛𝑘

𝐼𝑛𝑘

𝐼𝑛𝑘

̂︀𝑑𝑛𝑘

,

and now (4.2) follows from (3.13) because, by the Strong Law of Large Numbers,

lim
𝑘→∞

1
𝑁𝑛𝑘

𝑁𝑛𝑘∑︁

𝑗=1
𝒵𝑗 = E𝒵 < ∞,

and by the renewal theory,

lim
𝑘→∞

𝑁𝑛𝑘

𝐼𝑛𝑘

= 𝜈 < ∞.

It now follows that (4.2) holds and, as in (3.14) (in notation (3.1)), we arrive to
the contradictory condition (3.15). The above analysis can be summarized as the
following statement.

Theorem 4.1. If 𝜌 < 1 then the initially idle retrial system with the outgoing calls
is positive recurrent.

5. Simulation
The purpose of the numerical result presented below (and based on the stochastic
discrete-event simulation) is to demonstrate the asymptotically work-conserving
property meaning that, as the orbit sizes increase, the dynamics of the service
process becomes similar to that in the classic buffered system [9]. By this reason
we consider the border of the stability region, that is 𝜌 = 1, in which case the
system becomes unstable. (An exception is the experiment shown on Fig. 7.) Also
we analyze stability of the multiserver system (to illustrate Theorem 3.4) and we
demonstrate simulation results for a three-server system. More exactly, we consider
two-class retrial systems with input rates 𝜆1 = 20/3, 𝜆2 = 10/3 and with 1 and 3
servers, respectively.

To keep value 𝜌 = 1, we take service rate 𝜇 = 10 for 1-server system, and
𝜇 = 10/3 for each server in 3-server system. Fig. 1 demonstrates a decreasing of
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the expected idle periods EΔ𝑘, as 𝑘 increases, for exponential (Exp) and Pareto

Figure 1. The expected idle time EΔ𝑘 vs. simulation time: Exp.
service time (grey) and Pareto service time with 𝛼 = 2 (black);

retrial rates 𝛾1 = 𝛾2 = 30.

Figure 2. The expected server idle time in the system with out-
going calls vs. simulation time: Exp. service time (grey), Pareto

service time (black); 𝛾1 = 𝛾2 = 30, 𝜈 = 30.

Figure 3. The workload of the outgoing calls with Weibull service
time vs. modeling time: Exp. service time (grey), Pareto service

time (black); 𝛾1 = 𝛾2 = 30, 𝜈 = 30.
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service time distribution

𝐹 (𝑥) = 1 −
(︁𝑥0

𝑥

)︁𝛼

, 𝑥 ≥ 𝑥0, (5.1)

where parameter 𝑥0 = 0.05 for 1-server system, and 𝑥0 = 0.15 for 3-server system,

Figure 4. The idle server probability P𝐼 in the original system vs.
simulation time: 1 server (grey) and 3 servers (black); 𝛾1 = 𝛾2 = 30.

Figure 5. The idle server probability P𝐼 vs. simulation time in the
system with outgoing calls: 1 server (grey) and 3 servers (black);

𝛾1 = 𝛾2 = 30, 𝜈 = 30.

Figure 6. The orbit size in retrial system (grey) and buffer size in
the buffered system (black), with Pareto service time, vs. simulation

time; 𝛾1 = 𝛾2 = 10.
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Figure 7. The orbit size in the original retrial system (dotted line)
and the buffer size in the buffered system (solid line), with Pareto

service time, vs. traffic intensity 𝜌; 𝛾1 = 𝛾2 = 10.

and parameter 𝛼 = 2 in all cases. Fig. 2 shows a similar result for the system with
one class of the outgoing calls with rate 𝜈 = 30. The service times of the outgoing
calls have Weibull distribution

𝐹 (𝑥) = 1 − exp
{︁

−
(︁𝑥

𝑏

)︁𝑎}︁
, 𝑥 ≥ 0,

with the shape parameter 𝑎 = 0.9, while the scale parameter 𝑏 = 0.1 for 1-server
system and 𝑏 = 0.3 for 3-server system, respectively.

Thus Fig. 1 and Fig. 2 confirm the limit (3.11) and the asymptotic work-conser-
ving property both for the original one -server retrial system and for the correspond-
ing system with the outgoing calls, when 𝜌 = 1. Fig. 3 describes the same effect
expressed as a vanishing fraction of the workload generated by the outgoing calls,
if 𝜌 = 1, confirming the limit (4.2). Similar results given on Fig. 4, Fig. 5 show that
the idle time fraction (’idle time probability’) goes to zero in all considered sys-
tems, but this convergence is faster in the system with outgoing calls. Finally, we
compare the orbit size in the retrial system and the buffer size in the corresponding
buffered system with Pareto service time (5.1) (see Fig. 6, Fig. 7). In particular,
Fig. 6 shows that (for 𝜌 = 1) the orbit size initially increases faster than the buffer
size but then they behave similarly. Fig. 7 also demonstrates the proximity be-
tween the orbit size and buffer size for the different values of the traffic intensity 𝜌
(modeling time is 200 slots). Nevertheless, the orbit size is slightly larger than the
buffer size, and it is an expected result.

6. Conclusion
In this work, we develop a new and short regenerative proof of the stability condi-
tion of a multiclass retrial system with classical retrials. Unlike previous proofs, we
focus on the departures of customers and, provided the number of orbital customers
increases, show a contradiction with a predefined negative drift condition, which
turns out to be a sufficient stability condition. This approach is then extended to
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the system with outgoing calls, and it has a promising potential in the stability
analysis of more general retrial systems. Some numerical examples based on the
simulation are given which illustrate the asymptotically work-conserving property
of the system with classical retrials.
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Abstract. We consider two-class retrial queueing system with constant re-
trial rate fed by Poisson input and apply regenerative confidence estimation
for mean number of customers in the stable orbit, while the other orbit in-
timately grows. The simulation results illustrate that partially stable case
providing accurate confidence estimation, even the stability conditions, re-
lated for the whole system, are violated.
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1. Introduction
The paper deals with a single server retrial rate queuing system under constant
retrial rate policy. The model admits two classes of customers, arrivals join the
system according to Poisson input. The service times are independent and iden-
tically distributed among the corresponding class. If the server is busy at arrival
instant, the new customer joins the orbit associated with its class and then try
to occupy the server after class-dependent exponentially distributed retrial time
according to FIFO discipline.

Retrial systems have a huge sphere of modern applications. For instance, such
models successfully describe various call centers [16, 19] or the work of computer
networks and internet protocols [7, 8]. The applications of retrial models to wireless
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technologies are presented in [9, 15]. Retrial queuing systems are widely studied in
literature, it is worth mentioning the basic books and surveys [1, 2, 10, 18].

We consider two class retrial system in partially stable mode: the first class orbit
is stochastically bounded and the second class orbit infinitely grows in probability.
To define partially stability conditions we rely on the preliminary results obtained
in [6] and developed in [5]. The basic goal of the paper is to construct confidence
interval for mean number of customers in the first orbit in case of partially stable
mode. We apply regenerative method of confidence estimation. Generally, the
regenerative method is applicable if the system under consideration is stable. The
novelty of the present research is the following: we use regenerative approach to
obtain confidence interval in case the only orbit is stochastically bounded while
stability conditions for the whole system are violated.

The paper is organized as follow. Section 2 contains the detailed description of
the system under consideration. Section 3 presents the concept of partial stability
and known conditions for the partially stable mode. Next in Section 4 we briefly
discuss the regenerative method of confidence estimation. Section 5 containes simu-
lation results for partially stable model. We compare obtained confidence intervals
with the results for corresponding single orbit retrial system in a stable mode.
Section 6 concludes the paper.

2. Description of the model
We consider a single-server bufferless retrial system under constant retrial rate
policy denoted by system Σ. The model admits two classes of customers. Namely
arrivals form the superposition of two Poisson inputs with corresponding rates 𝜆𝑖,
where 𝑖 = 1, 2 defines the class number. Thus the total input rate is the following:
𝜆 = 𝜆1 + 𝜆2. We define the sequence of arrival instants by {𝑡𝑛, 𝑛 ≥ 1}. Note that
interarrival times 𝜏𝑛 = 𝑡𝑛+1 − 𝑡𝑛 are independent and exponentially distributed
with a rate 𝜆. Let 𝜏 define the generic interarrival time, thus E𝜏 = 1/𝜆.

Next we assume that class-𝑖 service times are independent, generally distributed
and stochastically equivalent to 𝑆(𝑖) with corresponding mean 1/𝜇𝑖. Define the
marginal load coefficient by

𝜌𝑖 = 𝜆𝑖/𝜇𝑖.

Thus the total load coefficient is obtained as

𝜌 = 𝜌1 + 𝜌2.

If the class-𝑖 arrival, that meets the server busy, joins the corresponding infinite-
capacity virtual orbit and then tries to occupy the server after an exponential time
with a rate 𝛼𝑖. We define the auxiliary load coefficient associated with class-𝑖 orbit
customers by

𝜌𝑖 = 𝛼𝑖/𝜇𝑖.

The total orbits load coefficient is the following

𝜌 = 𝜌1 + 𝜌2.
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Consider 𝑁 (𝑖)(𝑡) – the number of customers at orbit 𝑖 at time instant 𝑡. The
total number of customers in the system Σ is defined by the following process

𝑋(𝑡) = 𝜈(𝑡) + 𝑁 (1)(𝑡) + 𝑁 (2)(𝑡), 𝑡 ≥ 0, (2.1)

where 𝜈(𝑡) ∈ {0, 1} represents the number of customers on service. Thus the only
reason for unstable behavior of the system is the infinite growth of orbits size.
(Note that the term “size” actually means the number of customers on the orbit,
while the configuration of the system admits the infinite number of waiting places
for orbit calls).

Constant retrial rate policy implies that the orbit rates 𝛼𝑖 are fixed and do
not depend on the processes 𝑁 (𝑖)(𝑡). Unlike the classical retrial models, where the
intensity of orbit customers increases proportionally to its number. Thus in classical
multi-orbit case, the behavior of one (at instance, class-𝑖0) orbit affects to other
orbit(s). Namely when the load of class-𝑖0 customers increases, the corresponding
orbit size grows, and the server attack in more intensive. This implies more load
to the other orbits and the growth of their sizes. Thus in classical retrial models
instability of one orbit leads to the instability of other orbits. Such a property does
not hold for constant retrial rate model, considered in present paper: the orbit size
does not affect the intensity of orbit customers, and one orbit can infinitely grow,
while the other is stable. In such a case the phenomenon of partial stability arises.

3. Partial stability: preliminary results
In this section we refer to the known results related to the conditions of partially
stable regime in two-class retrial model with constant retrial rate. First we briefly
discuss the stability concept. Note that all considered continuous-time processes
are assumed to be defined at instant 𝑡−. Each instant 𝑡𝑛 when the new arrival joins
into totally empty system (𝑋(𝑡𝑛) = 0) the model starts over in stochastic sense
or regenerates. From this point of view the process 𝑋(𝑡) is called a regenerative
process. The regenerative process is called positive recurrent if regeneration period
has finite mean. In zero-delayed case positive recurrence implies that the system
possesses have stationary regime [3]. Actually the positive recurrence of the process
𝑋 means that starting from the arbitrary instant 𝑡 the system becomes empty in
a finite time. In this case we define that the system is stable. From this point of
view the stability is equivalent to the positive recurrence. Detailed description of
the regeneration approach to the stability analysis could be found in [12–14, 17].

By partial stability (of class-1 orbit) we define the case when class-1 orbit size
process stays tight while class-2 orbit increases unlimited in probability. Note the
process 𝑁 (1) is tight [17] if for any 𝛿 > 0 exists a finite constant 𝐶 ≥ 0 such that

inf
𝑡

P
(︀
N(1)(t) ≤ C

)︀
≥ 1 − 𝛿. (3.1)

Namely we obtain that only the first orbit is stochastically bounded. (Obviously
that the symmetric case for partial stability of class-2 orbit is defined in analogical
terms.)
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Consider the absolutely continuous distribution function 𝐹 with density 𝑓 , de-
fined for all 𝑥 such that 1 − 𝐹 (𝑥) > 0. Next define the failure rate by 𝑟(𝑥) :=
𝑓(𝑥)/

(︀
1 − 𝐹 (𝑥)

)︀
. We say that the distribution 𝐹 belongs to a special sub-class 𝒟

if inf𝑥≥0 𝑟(𝑥) > 0.
The conditions of partially stable regime were firstly formulated in [6] for the

multi-class retrial model, where service time distributions belongs The partial sta-
bility conditions for the model Σ considered in present paper (when class-1 orbit
is tight) was obtained in [5] via load coefficients as follows:

𝜌1 > 𝜌1(𝜌 + 𝜌), (3.2)
𝜌 > 𝜌2/(𝜌2 + 𝜌2). (3.3)

Note that to obtained the conditions (3.2), (3.3) the authors in [5] had analyzed
two-dimensional Markov Chain

Y =
{︀

𝑌
(1)

𝑘 , 𝑌
(2)

𝑘

}︀
, 𝑘 ≥ 1,

associated with corresponding numbers of customers in the first and in the second
orbit just after the departure instants (𝑘 defines the actual number of departures
from the system after its service completion). The Markov property holds for the
random sequences {𝑌

(𝑖)
𝑘 , 𝑘 ≥ 1}, 𝑖 = 1, 2 because input stream is assumed to be

Poisson.
Relying on the technique presented in [11], it is possible to show that under

conditions (3.2), (3.3) the Markov Chain Y is transient. Such a transient case is
illustrated by the stability of the first orbit dynamics and the infinite growth of
the second one, see [5] for details. Moreover under assumption that service time
distributions belong to the sub-class 𝒟 the conditions (3.2), (3.3) coincide with the
partial stability conditions from [6]. Note that positive recurrence of Y implies the
stability for the model Σ and corresponds to the positive recurrence of the basic
process 𝑋.

Next our goal is to explore the behavior of the model under consideration when
(3.2), (3.3) hold true. In this case we can expect that after some finite instant the
second orbit is not empty and the total load to the server is equivalent to the load
in the single-orbit retrial system, where class-2 customers arrive with a rate 𝜆2 +𝛼2
and are lost in case the server is busy at arrival instants. Then we construct the
auxiliary process in original two-orbit system Σ as follows:

𝑋(1)(𝑡) = 𝜈(𝑡) + 𝑁 (1)(𝑡), 𝑡 ≥ 0

and its discrete analogue 𝑋
(1)
𝑛 = 𝑋(1)(𝑡−

𝑛 ), 𝑛 ≥ 1. Next consider the sequence

𝛽𝑘 = min
𝑛

{𝑛 > 𝛽𝑘−1 : 𝑋(1)
𝑛 = 0}, 𝑘 ≥ 1, 𝛽0 = 0,

which defines the numbers of arrivals to the system when the server is idle and the
first orbit is empty. Thus {𝛽𝑘} represents the regeneration points of the process
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{𝑋
(1)
𝑛 }. Next we define the sequence of independent and identically distributed

(iid) regeneration cycles length in discrete time (with a generic length 𝐵) by

𝐵𝑘 = 𝛽𝑘 − 𝛽𝑘−1, 𝑛 ≥ 1.

Note that under conditions (3.2), (3.3) the process {𝑋(𝑡)} (and the whole sys-
tem) does not regenerate at instants 𝑡𝛽𝑘

, while the process 𝑋(1) is positive recur-
rent. Partial stability conditions consider solely the tightness of the first orbit size
process (3.1), which allows to show that with a positive probability the process
𝑋(1) reaches the zero value in a finite time, hence EB < ∞.

In case the positive recurrence we can apply regeneration method (RM) for the
system under consideration. RM is a powerful tool in stochastic analysis, in the
next section rely on the regeneration confidence estimation to bound the dynamics
of the first orbit size in partially stable regime.

4. Regenerative estimation

Recall the regenerative process 𝑋
(1)
𝑛 , which is the positive recurrent under condi-

tions (3.2), (3.3). Note that in this case the orbit size process 𝑁
(1)
𝑛 also regenerates

with regeneration points {𝛽𝑘}. In present section we construct the interval estima-
tors for the mean value of the process 𝑁

(1)
𝑛 . Consider iid accumulated numbers of

customers in the first orbit over the 𝑘-th regeneration cycle by

𝑍𝑘 =
(𝛽𝑘)−1∑︁

𝑗=𝛽(𝑘−1)

𝑁
(1)
𝑗 , 𝑘 ≥ 1.

By the results from regeneration theory and in case of positive recurrence, the
following limit exists:

𝑟𝑘 :=
∑︀𝑘

𝑗=1 𝑍𝑗
∑︀𝑘

𝑗=1 𝐵𝑗

→ EZ
EB =: 𝑟, 𝑘 → ∞, (4.1)

where 𝑍 is a generic element of a sequence {𝑍𝑘, 𝑘 ≥ 1}.
Note, that 𝑟𝑘 coincides with an average number of customers in the first orbit

within interval [0, 𝑡𝛽𝑘
):

𝑟𝑘 = 1
𝛽𝑘

𝛽𝑘∑︁

𝑗=1
𝑁

(1)
𝑗 .

Actually, the result (4.1) means that with a growth of cycle number, time average
value of regenerative process converges to the ratio of mean cumulative value over
cycle to mean cycle length. Namely, in case of positive recurrence, the behavior of
regenerative process could is described by its cycle characteristics.

By Proposition 4.1 from [4] the estimator 𝑟𝑘 satisfies the following Central Limit
Theorem
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√
𝑘
(︀
𝑟𝑘 − 𝑟

)︀
⇒ N(0, 𝜎2), 𝑛 → ∞, (4.2)

where
𝜎2 = 𝐸[𝑍 − 𝑟𝐵]2

(︀
𝐸𝐵

)︀2

and N(0, 𝜎2) is a normal distribution with zero mean. Hence, if limit (4.1) exists,
then weak convergence (4.2) holds and implies the following 100(1−𝛾)% confidence
interval:

𝑟 ∈
[︁
𝑟𝑘 − Δ𝑘, 𝑟𝑘 + Δ𝑘

]︁
, (4.3)

with the accuracy
Δ𝑘 = 𝑧𝛾𝜎𝑘√

𝑘
.

Note, that 𝛾 is a given reliability and

𝜎2
𝑘 = 𝑘2

𝑘 − 1

∑︀𝑘
𝑖=1

(︀
𝑍𝑖 − 𝑟𝑘𝐵𝑖

)︀2

(︀ ∑︀𝑘
𝑖=1 𝐵𝑖

)︀2 .

(The value 𝑧𝛾 defines (1 − 𝛾/2)-quantile of the standard normal law.)

4.1. Single-orbit system
The sequence {𝛽𝑘} does not detect regenerations of the whole sequence Σ, and we
analyze the positive recurrent process 𝑋(1) to obtain the confidence interval (4.3).

Next we construct an additional single orbit retrial model denoted by Σ̂ as
follows: the input stream is fed by Poisson process with a total rate 𝜆1 + 𝜆2 + 𝛼2,
the new arrival belongs to class 1 with a probability

𝜆1
𝜆1 + 𝜆2 + 𝛼2

.

Service times are iid, class-dependent and stochastically equivalent to the corre-
sponding service times {𝑆

(𝑖)
𝑛 } previously defined for a model Σ. If class-1 arrival

met the busy server it joins the orbit with a constant retrial rate 𝛼1, while the
second class arrival in this case leaves the system. We can expect that such new
system is not less loaded than original system Σ: in case the second orbit is empty,
the server is attacked by the Poisson input with a rate 𝜆1 + 𝜆2 and the customers
from the orbit 1 (if any). In case 𝑁

(2)
𝑛 > 0 both models Σ and Σ̂ behave equiva-

lently in the sense of server load. The convergence of the first orbit size process in
Σ to the orbit size in Σ̂ is illustrated in [5].

The model Σ̂ strictly regenerates when arrivals join into totally empty system.
Denote the generic regeneration cycle length by �̂�. Stability condition for such a
model is defined as follows, see [6]:

𝜌1 > 𝜌1(𝜌 + 𝜌)
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and coincides with (3.2).
Thus partially stable regime in the original model Σ implies the positive re-

currence of corresponding single orbit system: EB̂ < ∞, and we can apply the
regenerative method of confidence estimation for mean number of orbit customers
in Σ̂. Define by 𝑟 the mean orbit size, by 𝑟𝑘 and Δ̂𝑘 the corresponding estimators
obtained with the regenerative method for the system Σ̂ exactly as in (4.3). (Note
𝑘 defines the number of regeneration cycles in Σ̂).

Next our goal is to validate the accuracy of interval [𝑟𝑘 ± Δ𝑘], comparing it
with [𝑟𝑘 ± Δ̂𝑘] under assumption that conditions (3.2) and (3.3) hold true. Note
that (3.3) does not influence to the stability of Σ̂ and the regenerative estimation
is applicable even if (3.3) is violated, but in this case original model Σ does not
converge to Σ̂ the comparison of obtained intervals have no sense. Note that under
conditions

𝜌1 > 𝜌1(𝜌 + 𝜌),
𝜌 ≤ 𝜌2/(𝜌2 + 𝜌2)

the model Σ is strictly stable, see [5].

5. Simulations
We assume exponential distributions of service times and fix the following values:

𝜆1 = 4, 𝜆2 = 1, 𝜇1 = 8, 𝜇2 = 4,

thus
𝜌1 = 0.5, 𝜌2 = 0.25, 𝜌 = 0.75.

5.1. Partial stability region
We define 𝛼1 = 20, 𝛼2 = 2, which implies

𝜌1 = 3.125, 𝜌2 = 0.500, 𝜌 = 3.625.

Note that initial values of parameters were arbitrary chosen inside the partly stable
region to provide the fulfilness of conditions (3.2) and (3.3). Next we consider
𝑛 = 100 000 arrivals and simulate both systems Σ and Σ̂. All the experiments
were implemented in RStudio development environment. We obtained 𝑘1 = 6083
regenerations in the original system, 𝑘2 = 6020 regeneration in the single orbit
system. Average orbit sizes as follows: 𝑟𝑘1 = 3.66, 𝑟𝑘2 = 3.68. The comparison
of confidence intervals obtained by regeneration method is presented on Figure 1.
The results for both systems almost coincide: Δ𝑘1 ≈ Δ̂𝑘2 = 0.36.
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Figure 1. Mean orbit size in Σ and Σ̂, 𝛼1 = 20, 𝛼2 = 2.

5.2. Orbit-2 stability border
Next we set the value 𝛼2 = 2.8, while 𝛼1 = 20. Thus in comparison with the first
example we decrease the difference between two parts of the inequality (3.3) and
go closer to the border of stability region for the system Σ. Note that in this case
the input stream in Σ̂ is more intensive. We obtain 𝑘1 = 4184, 𝑘2 = 3957, 𝑟𝑘1 =
4.32, 𝑟𝑘2 = 4.79. The accuracy difference is more notable: Δ𝑘1 = 0.38, Δ̂𝑘2 = 0.45.
Confidence intervals for the considered parameters are presented on Figure 2.

With the growth of the second orbit rate the difference between two models
become more significant.

5.3. Instability border
In this example we define 𝛼1 = 11, 𝛼2 = 2. Thus we touch on the condition (3.2)
and move closer to the instability border for the model Σ̂. (Note that in case the
condition (3.2) is violated and (3.3) holds, both orbits in Σ go to infinity, see [5].)

We obtained rare (in comparison with previous cases) regenerations 𝑘1 = 1162,
𝑘2 = 1081. Note that all simulations are based on 𝑛 = 100 000 arrivals. Less
number of regeneration cycles provide less accurate intervals 𝑟𝑘1 = 18.93, Δ𝑘1 =
3.89, 𝑟𝑘2 = 21.91, Δ̂𝑘2 = 3.91.

Remind that in all presented examples the conditions (3.2) and (3.3) hold. We
started from 𝛼1 = 20, 𝛼2 = 2 and then explored the cases 𝛼2 ↑ and 𝛼1 ↓. Namely
in examples B and C we decreased the differences in two parts of inequalities (3.2)
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Figure 2. Mean orbit size in Σ and Σ̂, 𝛼1 = 20, 𝛼2 = 2.8.

Figure 3. Mean orbit size in Σ and Σ̂, 𝛼1 = 11, 𝛼2 = 2.
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and (3.3), respectively. Note that in cases 𝛼2 ↓ and 𝛼1 ↑ the model Σ converges
to Σ̂ and confidence intervals obtained for mean orbit sizes for both system almost
coincide (as on Figure 1).

6. Conclusion
In this paper we study two-class retrial model with constant retrial rates in partially
stable regime. In spite of the model under consideration is not stable, we analyze
the positive recurrent class-1 orbit size process and apply the regenerative method
to construct confidence interval for mean number of class-1 orbit customers. The
simulation results correspond with confidence intervals obtained for strictly stable
single-orbit model. Thus we illustrate that partially stable case allows to provide
accurate confidence estimation.

References
[1] J. Artalejo, A. Gomez-Corral, in: Retrial Queueing Systems: A Computational Approach,

Cham: Springer, 2008.
[2] J. Artalejo, T. Phung-Duc: Single server retrial queues with two way communication,

Applied Mathematical Modelling 37 (2013), pp. 1811–1822.
[3] S. Asmussen, in: Applied probability and Queues. 2nd edn. New York: Springer, 2003.
[4] S. Asmussen, P. Glynn, in: Stochastic Simulation: Algorithms and Analysis, New York:

Springer-Verlag, 2007.
[5] K. Avrachenkov, M. E., R. Nekrasova: Stability analysis of two-class retrial systems with

constant retrial rates and general service times, ArXiv abs/2110.09840 (2021).
[6] K. Avrachenkov, E. Morozov, B. Steyaert: Sufficient stability conditions for multi-class

constant retrial rate systems, Queueing Systems 82.1-2 (2016), pp. 149–171.
[7] K. Avrachenkov, P. Nain, U. Yechiali: A retrial system with two input streams and two

orbit queues, Queueing Systems 77.1 (2014), pp. 1–31.
[8] K. Avrachenkov, U. Yechiali: Retrial networks with finite buffers and their application to

internet data traffic, Probability in the Engineering and Informational Sciences 22.4 (2008),
pp. 519–536.

[9] I. Dimitriou: A queueing system for modeling cooperative wireless networks with coupled
relay nodes and synchronized packet arrivals, Performance Evaluation 114 (2017), pp. 16–31.

[10] G. Falin: A survey of retrial queues, Queueing systems 7.2 (1990), pp. 127–167.
[11] G. Fayolle, V. A. Malyshev, M. V. Menshikov, in: Topics in the Constructive Theory of

Countable Markov Chains. 1st edn. Cambridge University Press, 1995.
[12] A. Law, D. Kelton, in: Simulation Modeling and Analysis. 5th edn. New York: McGraw-

Hill, 2014.
[13] E. Morozov: A multiserver retrial queue: Regenerative stability analysis, Queueing systems

56 (2007), pp. 157–168.
[14] E. Morozov, R. Delgado: Stability analysis of regenerative queues, Automation and Re-

mote control 70 (2009), pp. 1977–1991.

93



Annal. Math. et Inf. R. Nekrasova

[15] E. Morozov, T. Phung-Duc: Regenerative analysis of two-way communication orbit queue
with general service time, Proceedings International Conference Queueing Theory and Net-
work Applications 10932 (2018).

[16] E. Morozov, A. Rumyantsev, S. Dey, T. Deepak: Performance analysis and stability
of multiclass orbit queue with constant retrial rates and balking, Performance Evaluation
134.10200 (2019).

[17] E. Morozov, B. Steyaert, in: Stability Analysis of Regenerative Queueing Models: Math-
ematical Methods and Applications, Springer, 2021.

[18] T. Phung-Duc: Retrial Queueing Models: A Survey on Theory and Applications, ArXiv
abs/1906.09560 (2019), pp. 1–31.

[19] T. Phung-Duc, W. Rogiest, Y. Takahashi, H. Bruneel: Retrial queues with balanced call
blending: analysis of single-server and multiserver model, Annals of Operations Research
239.2 (2016), pp. 429–449.

94



Submitted: October 27, 2022
Accepted: December 3, 2022
Published online: December 28, 2022

Annales Mathematicae et Informaticae
56 (2022) pp. 95–108
DOI: https://doi.org/10.33039/ami.2022.12.003
URL: https://ami.uni-eszterhazy.hu

Generalized Middle-Square Method∗

Viktória Padányi, Tamás Herendi

Department of Computer Science, Faculty of Informatics, University of Debrecen
padanyi.viktoria@inf.unideb.hu
herendi.tamas@inf.unideb.hu

Abstract. In this paper, we generalize John von Neumann’s Middle-Square
Method (MSM) to canonical number systems (CNS). Additionally, we present
some observations and statistical tests of the sequences generated by the
described generators.
Keywords: pseudorandom number generator, middle square method, canoni-
cal number system
AMS Subject Classification: 11K45, 11A63, 11B37, 62-08

1. Introduction
Pseudorandom number generators (PRNG) are often used in solving different the-
oretical and practical problems. The particular applications expect appropriate
properties. The most important properties are the distribution of elements pro-
duced by the generators, the low correlation between the consecutive elements, and
the large period length. In terms of usage, the speed, the resource requirements,
and the qualities of the generators are interesting issues. A general approach for
constructing pseudorandom number sequences is the following: the elements of the
sequence are computed from the previous elements recursively. Recursion can be
resolved by the use of a seed. The next seed is computed iteratively from the
preceding seeds, and the random values are extracted from them.

John von Neumann’s Middle Square Method is an interesting way to construct
uniformly distributed PRNG since this was the first practical random number gen-
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erator. In 1946 John von Neumann introduced the method (first published in
[11]). It was simple and fast to execute with ENIAC. He used a recursive def-
inition, where the initial value 𝑥0 is some 2𝑘-digit decimal number. For 𝑛 > 0
he defined 𝑥𝑛 = ⌊𝑥2

𝑛−1/10𝑘⌋ (mod 102𝑘). The period length of the constructed
sequence depends on the initial value. In general, the longest period has length
at most 82𝑘, but very often, it is much shorter. Practically, it is a rather weak
generator. If the seed became 0, it is 0 for all consecutive members. N. Metropolis
[9] investigated the MSM in binary number systems. He showed that in the case
of 20-bit numbers, there are only 13 different cycles. The longest period amongst
the 13 cases is 142, which is rather short. It is not obvious to recognize this short
period because of the long preperiod.

A more detailed description of PRNGs can be found in [4] and [12].
In this paper, we also deal with canonical number systems. It has long been

well-known that positive integers can be represented in a digital way. One of the
generalizations of this was studied in [4, p. 189] by D. E. Knuth. He defined a
number system for the Gaussian integers similar to the rational integers, where the
number system had base −1+ 𝑖. This was later further generalized by I. Kátai and
J. Szabó [3], where the existence of other number system bases was proved but still
in the Gaussian integers. Later, I. Kátai and B. Kovács in [2], B. Kovács in [6] and
B. Kovács and A. Pethő in [7], and [8] even further generalized the definition of
the CNS for the ring of algebraic integers. They also proved their existence. In [6],
a simple condition is given for the construction of CNSs, but in general, it is not
obvious to find them. For the sake of simplicity, we will focus on binary CNSs. A.
Kovács [5] presented a complete description of binary canonical number systems
of degrees not greater than 8. Later, P. Burcsi and A. Kovács [1] extended the
results for CNSs of degrees 9, 10 and 11. The arithmetic in these number systems
is similar to the rational integers with the classical digit representation. However,
the calculation of the next digit requires a more difficult reduction operation. Our
discussion will focus on binary CNSs.

For instance, let 𝛼 be a root of the polynomial 𝑥2 +𝑥+2, e.g., − 1
2 + 𝑖 1

2
√

7. One
can prove that in the ring of algebraic integers Z[𝛼], every number can be written
in the canonical form 𝛾 =

∑︀ℎ
𝑖=0 𝑐𝑖𝛼

𝑖, where 𝑐𝑖 ∈ {0, 1}.

Example 1. Addition in a binary number system

1 1 0 1 0 1
+ 1 0 1 1 1 1

2 1 1 2 1 2
- 1 1 2

2 1 1 1 0 0
- 1 1 2

-1 -1 0 1 1 1 0 0
+ 1 1 2

1 0 1 0 1 1 1 0 0
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Let 𝛾1 = 110101 and 𝛾2 = 101111 be 6-bit long binary numbers in the above
representation. Then 𝛾 = 𝛾1 + 𝛾2 can be calculated according to Example 1. Here
we used the fact that 1 1 2 represents 0.

In the following sections, we define the generalized version of the MSM in binary
CNS and analyze some properties of these generators.

2. Definitions and preliminary results
In this chapter, we define some necessary notions and state important results.

Definition 2.1. Let 𝐴 be a finite set, and 𝑢 be a sequence over 𝐴. We say that
𝑢 ∈ 𝐴∞ is periodic with period length 𝜚 ∈ N, if there exists 𝜚0 ∈ N, such that

𝑢𝑛+𝜚 = 𝑢𝑛 for all 𝑛 ≥ 𝜚0 .

The smallest 𝜚0 and 𝜚 with the previous property will be called the preperiod
and minimal period length of 𝑢, respectively.

If 𝑛 ≥ 𝜚0, then the subsequence 𝑢𝑛, . . . , 𝑢𝑛+𝜚−1 is called a period of the se-
quence.

Remark 2.2. Let 𝐴 be a finite set, 𝑢 ∈ 𝐴∞, 0 < 𝑘 ∈ N and 𝐹 : 𝐴𝑘 → 𝐴. If the
sequence satisfies the recurrence defined by 𝑢𝑛 = 𝐹 (𝑢𝑛−1, . . . , 𝑢𝑛−𝑘) for all 𝑛 ≥ 𝑘,
then 𝑢 is periodic with period length 𝜚 ≤ |𝐴|𝑘.

The following definition is the generalization of number systems for complex
numbers given by I. Kátai and J. Szabó in [3].

Definition 2.3. Let 𝑅 be an integral domain, 𝛼 ∈ 𝑅 and 𝑁 = {𝑛1, . . . , 𝑛𝑚} ⊆
Z. The pair (𝛼, 𝑁) is called a number system in 𝑅, if any 𝛾 ∈ 𝑅 has a unique
representation in the form 𝛾 =

∑︀ℎ
𝑖=0 𝑐𝑖𝛼

𝑖, where 𝑐𝑖 ∈ 𝑁 for all 0 ≤ 𝑖 ≤ ℎ and
𝑐ℎ ̸= 0, if ℎ ̸= 0. The number system is called canonical, if 𝑁 = {0, 1, . . . , 𝑚 − 1}.

We will use the notation 𝐿(𝛾, 𝛼, 𝑁) = ℎ+1, i.e. the length of the representation
of 𝛾 in the number system (𝛼, 𝑁).

Theorem 2.4. Let 𝑝 ∈ Z[𝑥] be an irreducible polynomial with deg(𝑝) = 𝑛, and
𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + · · · + 𝑎0 such that 1 = 𝑎𝑛 ≤ 𝑎𝑛−1 ≤ . . . 𝑎0 and 2 ≤ 𝑎0. Furthermore,
let 𝛼 be a root of 𝑝 and 𝑁 = {0, 1, . . . , 𝑎0 − 1}. Then (𝛼, 𝑁) is a canonical number
system in Z[𝛼].

Proof. The theorem is proven in a more general setting in [6].

Let 𝛽 be an algebraic number of degree 𝑛 ≧ 1. Then 𝛽(𝑖) denotes the 𝑖th

conjugates of 𝛽 for all 𝑖 = 1, . . . , 𝑛.
Let 𝛼, 𝛾 ∈ Q[𝛽]. For the sake of simplicity, we use the notation

|log|𝛼𝛾 = max
1≤𝑖≤𝑛

log
⃒⃒
𝛾(𝑖)⃒⃒

log |𝛼(𝑖)| .
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Theorem 2.5. Let 𝛽 be an algebraic integer of degree 𝑛 ≧ 1, and let (𝛼, 𝑁)
be a number system in Z[𝛽]. Then there exist effectively computable constants
𝐶1 = 𝐶1(𝛼, 𝑁) and 𝐶2 = 𝐶2(𝛼, 𝑁) depending only on 𝛼 and 𝑁 , such that

|log|𝛼𝛾 + 𝐶1 ≦ 𝐿(𝛾, 𝛼, 𝑁) ≦ |log|𝛼𝛾 + 𝐶2 (2.1)

holds for every 0 ̸= 𝛾 ∈ Z[𝛽].

Proof. The theorem is proven in [8].

Remark 2.6. John von Neumann’s MSM uses squaring as the only arithmetic
operation. We observe how the length of the numbers changes after squaring.

We fix 𝛼 and the corresponding CNS, and we use the notation 𝐶1 = 𝐶1(𝛼, 𝑁),
𝐶2 = 𝐶2(𝛼, 𝑁) and 𝐿(𝛾) = 𝐿(𝛾, 𝛼, 𝑁).

For example in the usual binary representation 𝛼 = 2. The length of the binary
representation of an integer 𝑛 can be expressed by

𝐿(𝑛, 2) = ⌊log2(𝑛)⌋ + 1 =
⌊︂

log 𝑛

log 2

⌋︂
+ 1 ,

which means that 𝐶1 = 0 and 𝐶2 = 1.
With our simplified notation, equation (2.1) is simplified to

|log|𝛼𝛾 + 𝐶1 ≤ 𝐿(𝛾) ≤ |log|𝛼𝛾 + 𝐶2 . (2.2)

Let 𝛾 ∈ Z[𝛽] be an algebraic integer with length 𝐿(𝛾). By (2.2),

|log|𝛼𝛾 ≤ 𝐿(𝛾) − 𝐶1 , (2.3)

and
𝐿(𝛾) − 𝐶2 ≤ |log|𝛼𝛾 . (2.4)

Applying (2.2), (2.3) and (2.4) to the length of 𝛾2, we obtain

𝐿(𝛾2) ≥ |log|𝛼𝛾2 + 𝐶1 = 2|log|𝛼𝛾 + 𝐶1

≥ 2(𝐿(𝛾) − 𝐶2) + 𝐶1 = 2𝐿(𝛾) − 2𝐶2 + 𝐶1

and

𝐿(𝛾2) ≤ |log|𝛼𝛾2 + 𝐶2 = 2|log|𝛼𝛾 + 𝐶2

≤ 2(𝐿(𝛾) − 𝐶1) + 𝐶2 = 2𝐿(𝛾) − 2𝐶1 + 𝐶2 .

With the notations 𝐶3 = 𝐶1 − 2𝐶2 and 𝐶4 = 𝐶2 − 2𝐶1, we have

2𝐿(𝛾) + 𝐶3 ≤ 𝐿(𝛾2) ≤ 2𝐿(𝛾) + 𝐶4 . (2.5)

We should remark that 𝐶1 and 𝐶3 may have negative values. In Section 4, we
show some estimates on the values of 𝐶3 and 𝐶4 for different 𝛼’s.

Since 𝐿(𝛾) and 𝐿(𝛾2) are integers, thus 𝐶3 and 𝐶4 can be chosen to be integers
without losing precision.
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B. Kovács and A. Pethő in [8] prove not only the existence of the constants but
also provide a way how to determine them. Their formula is explicit for 𝐶1 but
implicit for 𝐶2. Based on the described method, we calculated the values of 𝐶1,
𝐶2, 𝐶3, and 𝐶4 for some polynomials.

By the proof of the Thoerem of [8]

𝐶1 = min
1≤𝑖≤𝑛

log
(︀⃒⃒

𝛼(𝑖)⃒⃒ − 1
)︀

− log(𝑎0 − 1)
log

⃒⃒
𝛼(𝑖)

⃒⃒ .

For the determination of 𝐶2, one has to compute first some intermediate bounds

𝐶2,𝑖 = 𝑎0 − 1⃒⃒
𝛼(𝑖)

⃒⃒
− 1

.

Now, let
Γ =

{︁
𝛿 | 𝛿 ∈ Z[𝛼],

⃒⃒
⃒𝛿(𝑖)

⃒⃒
⃒ ≤ 𝐶2,𝑖

}︁
,

and
𝐶2 = max

𝛿∈Γ
𝐿(𝛿, 𝛼) .

In the following, we show the values of the constants for some binary number
systems. The structures are defined by Z[𝛼], where 𝛼’s are given by their defining
polynomials 𝑝(𝑥). In these computations, the symbol i denotes the imaginary unit
(everywhere else in the paper, 𝑖 is an integer).

𝑝(𝑥) = 𝑥2 + 𝑥 + 2 :

𝛼1, 2 = −1
2 ± i1

2
√

7 |𝛼1| = |𝛼2| =
√

2

𝐶2,1 = 𝐶2,2 ≈ 2.41
𝐶1 ≈ −2.54 𝐶2 = 6
𝐶3 = −12 𝐶4 = 10

𝑝(𝑥) = 𝑥2 + 2𝑥 + 2 (the case of Gaussian integers, considered by Knuth in [4,
p. 189]):

𝛼1, 2 = −1 ± i |𝛼1| = |𝛼2| =
√

2
𝐶2,1 = 𝐶2,2 ≈ 2.41

𝐶1 ≈ −2.54 𝐶2 = 8
𝐶3 = −16 𝐶4 = 12

𝑝(𝑥) = 𝑥3 + 𝑥2 + 𝑥 + 2 :

𝛼1 ≈ −1.35 𝛼2, 3 ≈ 0.18 ± i · 1.20
𝐶2,1 ≈ 2.83 𝐶2,2 = 𝐶2,3 ≈ 4.64

𝐶1 ≈ −7.85 𝐶2 = 13
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𝐶3 = −31 𝐶4 = 27

𝑝(𝑥) = 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 2 :

𝐶2,1 = 𝐶2,2 ≈ 3.97 𝐶2,3 = 𝐶2,4 ≈ 7.72
𝐶1 ≈ −16.77 𝐶2 = 21

𝐶3 = −46 𝐶4 = 32

In the last two cases, we detailed only some significant steps of the above-
mentioned computation.

Related to the previously computed constants, we did some experiments. In
Table 2, we collected the results of how the sizes of the squares changed after
squaring in the considered canonical number systems. The set of four CNSs is
extended by the two rational binary number systems with bases 2 and −2.

We consider all the numbers of 20 to 30 digits. For a given length ℎ, the table
contains the distances of the minimal and maximal lengths of the squares from
the expected 2ℎ. Additionally, the average lengths of the squares are presented.
The last column displays the theoretical bounds for the corresponding values of
distances.

Studying the results, one may conjecture that the minimal and maximal lengths
of the squares are considerably closer to the expected value of 2ℎ than the analytical
computations show. Another suspicion is that the average length of squares is close
to 2ℎ, but increasing the degree of the base 𝛼 increases the averages.

3. Arithmetic in canonical number systems
Let (𝛼, 𝑁) be a CNS and 𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + · · · + 𝑎0 be the defining polynomial of 𝛼
according to Theorem 2.4. The usual arithmetic of integers can be generalized to
(𝛼, 𝑁). The modified carry computation can be derived from 𝑝, described below.

Let 𝛽 ∈ Z[𝛼] be the result of some arithmetical operation, and 𝛽 =
∑︀ℎ

𝑖=0 𝑏𝑖𝛼
𝑖

is the representation without reduction. If for all 0 ≤ 𝑖 ≤ ℎ, 𝑏𝑖 ∈ {0, . . . , 𝑎0 − 1}
then 𝛽 is represented in (𝛼, 𝑁). Assume now that there exists 0 ≤ 𝑖 ≤ ℎ such that
𝑏𝑖 /∈ {0, . . . , 𝑎0 − 1} and let 𝑗 be the smallest such integer. Let 𝑐 ∈ Z be such that
𝑏𝑗 = 𝑐 · 𝑎0 + 𝑏′

𝑗 with 0 ≤ 𝑏′
𝑗 < 𝑎0. Since

0 = 𝑎𝑛𝛼𝑛 + 𝑎𝑛−1𝛼𝑛−1 + · · · + 𝑎0 ,

thus

𝛽 =
ℎ∑︁

𝑖=0
𝑏𝑖𝛼

𝑖 + 𝑐𝛼𝑗 · (𝑎𝑛𝛼𝑛 + 𝑎𝑛−1𝛼𝑛−1 + · · · + 𝑎0)

=
ℎ′∑︁

𝑖=0
𝑏′

𝑖𝛼
𝑖 ,
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where 𝑏𝑖 = 𝑏′
𝑖 if 0 ≤ 𝑖 < 𝑗, and 𝑏′

𝑗 ∈ {0, . . . , 𝑎0 − 1}.
In this new representation of 𝛽, either all coefficients are in {0, . . . , 𝑎0 − 1} or

the smallest 𝑘 such that 𝑏𝑘 /∈ {0, . . . , 𝑎0 − 1} satisfies 𝑗 < 𝑘. It is proven in [7],
that this iteration will terminate in finitely many steps, providing the unique, valid
digit expansion of 𝛽 in (𝛼, 𝑁).

Based on the above observation, one can create an algorithm for the arithmetic
operations in (𝛼, 𝑁), similar to the usual carry computation used for rational in-
tegers.

By Theorem 2.4, the results of arithmetic operations have finite representation,
whence the carry algorithm will always terminate.

Table 2. Lengths of squares

Length of base numbers
Digits 20 21 22 23 24 25 26 27 28 29 30 T

Defining polynomial: 𝑥 − 2
Decrease 1 1 1 1 1 1 1 1 1 1 1 1
Increase 0 0 0 0 0 0 0 0 0 0 0 0
Average 39.6 41.6 43.6 45.6 47.6 49.6 51.6 53.6 55.6 57.6 59.6

Defining polynomial: 𝑥 + 2
Decrease 3 3 3 3 3 3 3 3 3 3 3 4
Increase 1 1 1 1 1 1 1 1 1 1 1 2
Average 38.9 40.9 42.9 44.9 46.9 48.9 50.9 52.9 54.9 56.9 58.9

Defining polynomial: 𝑥2 + 𝑥 + 2
Decrease 8 8 8 8 8 8 8 8 8 8 8 12
Increase 5 5 5 5 5 5 5 5 5 5 5 10
Average 39.6 41.6 43.6 45.6 47.6 49.6 51.6 53.6 55.6 57.6 59.6

Defining polynomial: 𝑥2 + 2𝑥 + 2
Decrease 12 12 12 12 12 12 12 12 12 12 12 16
Increase 9 9 9 9 9 9 9 9 9 9 9 12
Average 40.6 42.6 44.6 46.6 48.6 50.6 52.6 54.6 56.6 58.6 60.6

Defining polynomial: 𝑥3 + 𝑥2 + 𝑥 + 2
Decrease 11 14 14 14 14 14 14 14 14 14 14 31
Increase 12 12 12 12 12 12 12 12 12 12 12 27
Average 41.6 43.5 45.5 47.5 49.5 51.5 53.5 55.5 57.5 59.5 61.5

Defining polynomial: 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 2
Decrease 17 18 18 18 18 18 20 20 20 20 20 46
Increase 21 21 21 21 21 21 21 21 21 21 21 32
Average 43.8 45.6 47.6 49.7 51.9 53.9 55.7 57.7 59.7 61.8 63.8
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4. Generalized Middle-Square Method
Using binary CNSs, we may generalize John von Neumann’s MSM.

Let 𝑝(𝑥) ∈ Z[𝑥] be an irreducible polynomial of degree 𝑛, and with coefficients
1 = 𝑎𝑛 ≤ 𝑎𝑛−1 ≤ · · · ≤ 𝑎0 = 2. The corresponding CNS has only 2 digits: 0 and 1.
For the sake of simplicity, we will call the digits bits and the digit representation
of algebraic integers in Z[𝛼] as a binary representation.

In the design of the generator, we use a seed of 𝑚 ∈ N bits. Similarly, as it
is done in the original construction, let 𝑢 be a sequence over Z[𝛼] defined by the
following:

𝑢0 ∈ is a random 𝑚-bit number;

if 𝑘 > 0, let

𝑢2
𝑘−1 =

ℎ∑︁

𝑖=0
𝑏𝑖𝛼

𝑖 , with 𝑏ℎ ̸= 0 , 𝑡 =
⌊︂

ℎ − 𝑚

2

⌋︂
and

𝑢𝑘 =
𝑚−1∑︁

𝑖=0
𝑏𝑖+𝑡+1𝛼𝑖 .

The value of 𝑚 should be chosen to be large enough, in particular such that
2𝑚 + 𝐶3 > 𝑚, i.e. 𝑚 > −𝐶3, where 𝐶3 is as defined in section 2.

Another approach is if 𝑡 = ⌊ 𝑚
2 ⌋, but then 𝑚

2 > −𝐶3 should hold.

5. Experimental results
This section provides some experimental results related to the Generalized Middle-
Square Method (GMSM). We observe the periodicity properties for several base
polynomials, particularly those studied in the previous sections.

Furthermore, some statistical tests – the distributions of moving averages, zero-
crossing gaps, and frequency classes – are presented for the GMSM generators,
where the arithmetics are derived from the polynomials 𝑥2 + 𝑥 + 2 and 𝑥4 + 𝑥3 +
𝑥2 + 𝑥 + 2. Comparison of the data – both optically and numerically – shows that
increasing the degree of the polynomials improves the properties of the generated
sequences.

Figure 1 displays the distributions of the moving average of the sequences.
We have initialized the sequences with randomly chosen integers. The sizes of

the samples are 108. The seeds are 63-bit words, and the pseudorandom values
are obtained by a reduction to the 14-bit prefixes (the least significant 49 bits are
eliminated). The length of the window for the summation is 100.

We have used the following simple formula to compute the sequence of moving
averages:

𝑎𝑘 = 1
100

𝑘+100∑︁

𝑖=𝑘

𝑢𝑖 ,
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Figure 1. Moving average distribution

where (𝑢𝑖) is the sequence generated by the GMSM.
Next, we observed the generators’ behavior under the random walk test.

Figure 2. Random walk
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The generated sequences are balanced around 0 by a shift with the mean value:
𝑣𝑘 = 𝑢𝑘 − 𝐸(𝑢). Using the new samples, we have computed the cumulative sums:

𝑐𝑘 =
𝑘∑︁

𝑖=0
𝑣𝑖 ,

The test calculates the frequency of the lengths of the gaps between consecutive
zero crossings of 𝑐. The results are presented in Figure 2.

Finally, we have investigated to the distribution of the frequency classes. The
values of the sequences are arranged into 214 intervals of equal lengths (again, we
reduce the random samples to the 14 most significant bits):

U𝑖 =
{︁

𝑢𝑘 | 𝑖 =
⌊︁ 𝑢𝑘

249

⌋︁}︁
, where 𝑖 ∈

{︀
0, . . . , 214 − 1

}︀
.

Our objective is to describe the probability of the event when the same (reduced)
random value appears exactly 𝑡 times for a given 𝑡.

For normalization reasons, the minimum and maximum of the cardinalities are
computed:

min = min
{︀

|U𝑖| | 𝑖 = 0..214 − 1
}︀

and
max = max

{︀
|U𝑖| | 𝑖 = 0..214 − 1

}︀
.

Figure 3 displays the distributions of the relative frequencies of the cardinalities
of 𝑈𝑘.

The horizontal axis is normalized, and the plotted values are calculated accord-
ing to the following formulas:

𝑥𝑡 = 𝑡 − min
max − min ,

𝑦𝑡 =
⃒⃒{︀

𝑖 | |U𝑖| = 𝑡, 0 ≤ 𝑖 < 214}︀⃒⃒
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Although the above-presented graphs show good properties of the regarded
generators, the investigation of a detailed statistical test provides a more accurate
description of the behavior of the sequences. We have tested two of our generators
with the NIST Statistical Test Suite (c.f. [10]). The results are summarized in
Tables 4 and 5. These two are the MSMs corresponding to the polynomials 𝑥2+𝑥+2
and 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 2. We denote them by GMSM1 and GMSM2 in the tables,
respectively. In both sequences, we have used a 63-bit seed. The bit sequences for
the tests are produced by simply writing the blocks of seeds bit by bit consecutively.

We compared the results with two of the NIST’s built-in generators, the LCG
and SHA1. The comparison shows that the properties of GMSM sequences are
between the two built-in ones.

We used the default parameter adjustments in Table 3.
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Figure 3. Frequency distribution

Table 3. NIST default settings

Test name Block length
Block frequency 128
Non-overlapping template 9
Overlapping template 9
Approximate entropy 10
Serial 16
Linear Complexity 500

Both tests have the same arguments: the lengths of the sample sequences are
1000000, and the numbers of independent bitstreams are 1000. The level of accep-
tance is left to the default 0.01. In Table 4, one can see that both generators have
an acceptable uniformity level on average.

Table 5 shows the ratio of the 1000 bitstreams accepted by the tests. Referring
to the final report of the NIST test suite, "the minimum pass rate for each statistical
test with the exception of the random excursion (variant) test is approximately
0.981819", while "the minimum pass rate for the random excursion (variant) test
is approximately 0.979456". Based on this recommendation, we may say that both
generators have passed all tests.

Last but not least, in Table 6, we have collected the periodicity properties of
the same GMSM sequences as in Table 2.

Again, one block corresponds to the CNS given by the defining polynomial of
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its base. The entries are:
- the number of disjoint cycles;
- the maximal length of the cycles;
- the number of the length-1 cycles

for the different seed sizes. The trivial 0-cycle is excluded from the table.

Table 4. NIST test results: 𝑝-values

𝑝-value
GMSM1 GMSM2

Frequency 0.574903 0.142872
Block Frequency 0.936823 0.516113
Cumulative Sums 0.225069 0.484351
Runs 0.818343 0.761719
Longest Run 0.015707 0.674543
Rank 0.807412 0.552383
FFT 0.145326 0.368587
Non-Overlapping Template 0.511596 0.501944
Overlapping Template 0.248014 0.825505
Universal 0.152044 0.655854
Approximate Entropy 0.769527 0.353733
Random Excursions 0.292500 0.341976
Random Excursions Variant 0.480915 0.385875
Serial 0.145441 0.236631
Linear Complexity 0.492436 0.347257

Table 5. NIST test results: proportions

Proportion
GMSM1 GMSM2

Frequency 0.9870 0.9890
Block Frequency 0.9890 0.9950
Cumulative Sums 0.9855 0.9890
Runs 0.9880 0.9890
Longest Run 0.9870 0.9900
Rank 0.9870 0.9860
FFT 0.9930 0.9870
Non-Overlapping Template 0.9905 0.9895
Overlapping Template 0.9860 0.9910
Universal 0.9920 0.9920
Approximate Entropy 0.9880 0.9850
Random Excursions 0.9853 0.9930
Random Excursions Variant 0.9866 0.9912
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Table 6. All cycles in GMSM sequences

Nontrivial cycles
Digits (seed) 10 11 12 13 14 15 16 17 18 19 20

Defining polynomial: 𝑥 − 2
Cycles 4 4 6 4 9 12 12 10 11 6 12
Max period length 5 5 10 2 56 70 111 203 197 2 142
Stability points 2 3 3 3 3 3 4 4 6 5 6

Defining polynomial: 𝑥 + 2
Cycles 2 6 7 7 11 12 16 11 13 18 18
Max period length 3 3 2 34 10 27 51 30 2 39 4
Stability points 1 3 4 3 5 4 6 5 8 9 8

Defining polynomial: 𝑥2 + 𝑥 + 2
Cycles 3 4 4 2 4 6 3 3 4 9 7
Max period length 2 2 10 19 10 13 34 21 13 256 476
Stability points 2 3 1 1 1 1 1 1 2 2 2

Defining polynomial: 𝑥2 + 2𝑥 + 2
Cycles 2 4 6 5 5 7 5 4 7 12 13
Max period length 1 2 2 5 5 11 20 2 7 24 117
Stability points 2 3 4 2 2 2 2 3 5 9 8

Defining polynomial: 𝑥3 + 𝑥2 + 𝑥 + 2
Cycles 10 13 6 6 3 1 5 6 7 11 5
Max period length 5 5 9 5 1 1 7 67 20 165 57
Stability points 8 10 4 5 3 1 3 3 3 3 1

Defining polynomial: 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 2
Cycles 5 8 6 5 5 7 10 11 6 6 8
Max period length 13 19 4 12 83 22 57 54 270 125 258
Stability points 2 1 3 3 3 3 6 7 2 2 3

The first block contains test results in the CNS with base 2, i.e., the simple
binary representation of non-negative rational integers.

In the second block, the number system is the extension of the previous to the
whole set of integers with base −2.

One must remark that even if they have small period lengths, the sequences
can be used for pseudorandom number generators because of the long preperiod.
Increasing the size of the seed increases the period length and the length of the
longest period, but not in a monotonous way.
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Abstract. Informatics education in Hungary is based on the National Base
Curriculum (NAT) and the Frame Curricula. These documents contain the
subjects (sciences), the number of classes for each subject and the require-
ments for each grade. According to the NAT2012, Informatics as a compul-
sory school subject is introduced in Grade 6. The filemanagement is among
the first topics that students must learn according to the Frame Curricula.
However, this is not their first encounter with filemanagent, since by the
age of 12 most of the students are already active users of digital tools, and
associated with the false assumptions of digital natives. Due to the late
introduction, the filemanagement is one of the most neglected topics in in-
formatics education. Nevertheless, this is one of the most important topics,
since it is essential for further development in handling digital products. Our
research group developed the Webtable-Datatable Conversion (WDC) high-
mathability method to teach filemanagement. This approach not only focuses
on the main file operations but handles real world problems which require firm
algorithm construction and datamanagement. The aim of the present study
is to measure the effectiveness of the WDC approach with Grade 9 students,
where the comparison of groups studying with the traditional and the WDC
methods was carried out.
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1. Introduction

1.1. The role of filemanagement in studying informatics
According to researchers [5, 6, 26, 28–30] and the Hungarian National Base Cur-
riculum [20], computational thinking is the fourth basic skill alongside the 3Rs
(Reading, wRiting and aRithmetic). Consequently – similar the other three skills
– computational thinking should be developed from the beginning of organized ed-
ucation [13, 16, 25]. Although, the development of computational thinking skills
is emphasized in the National Base Curriculum, in the Frame Curricula [18, 19]
– which is created on the bases of the National Base Curricula [20] – is hardly
detectable. The focus of the informatics Frame Curricula [18, 19] is reather on
teaching the software environments and tools, for the students to be able to navi-
gate in programs. Furthermore, informatics as a compulsory subject is introduced
in Grade 6, only one class a week. The primary reasons why the filemanagement
does not receive enough attention is due to the extremely low number of classes,
the late introduction of the school subject, and the attitude assigned to digital
natives [16, 22]. In general, it is assumed that every student know it and use it,
and consequently, there is no need to pay attention to this topic.

1.2. High-mathability teaching approaches
The IEEE & ACM report [1] defines three level of mastery, which is in complete ac-
cordance with Pólya’s [21] concept-based high-mathability problem-solving method
[2–4, 8, 9]. The steps are built on each other, so are the levels of mastery: analyses
of the problem (1), construction of plan (2), implementation (3), and discussion
(4). However, in informatics education, the focus is on the third level of problem
solving, ignoring the first and the second – understanding the problem, what we
know about the problem and the planning, building algorithm – thus making it
impossible to reach the fourth level, the evaluation, the discussion. Overall, the
Hungarian Frame Curricula [18, 19] does not pay attention to the development of
the students’ computer thinking skills and does not support the algorithm building
and the schema construction, which play crucial role in cognitive load [27] and
ultimatily activating fast and slow thinking effectively [12, 15].

2. WDC method
The Webtable-Datatable Conversion (WDC) [4, 12, 14] method is a high-mathability
approach [4, 7, 10], which is based on the use of schemata and building algorithm
in the subject of filemanagement. At the beginning of the educational process the
teacher raises a problem: how a table available on an webpage (webtable) can be
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converted to a datatable for further use in spreadsheet- and/or database- man-
agement or programming. WDC is time consuming teaching-learning appoach for
developing fundamental skills in informatics. Furthermore, the method heavily re-
lies on the students’ knowledge stored in the longterm memory. Considering theses
bases, the teacher leads the conversation with coaching techniques [9, 17], where
targeted questions are used to help students to set up the characteristics of the
data, to understand the problem, and to find their own solutions. In Pólya’s ter-
minology the method is entitled guided discovery [21]. Students can also get help
in Redmenta [23] where a matching test is built to find operations and the corre-
sponding steps of the algorithms (the tasks are developed by one of our pre-service
teachers of informatics). Based on the algorithm, the students complete the steps
which primarily are fundamental file operations: save, save as, create, open, close,
etc.

The matching tasks (Redmenta) develop students’ fast thinking skills [15, 27],
based on the schemata build up in long-term memory. It is important that the
students do not only follow strict steps, they rather focus on the problem and the
problem-solving strategies, otherwise they would not be able to solve the tasks,
since they are all different – authentic content. During the conversion process,
office applications are used – especially browsers, word processers, and spreadsheet
programs. The selection of the program depends on the original sources, the webta-
bles, and the goals of the classes and the projects. Here, we must note that using
these programs in the conversion process allow us to lay the fundamental skills to
their effective use.

3. Measurement
To quantify and prove the efficiency of the WDC method, our research group tested
experiment groups where this novel, high-mathability approach was introduced,
and compared their results to control groups where the traditional, low-mathability,
tool- and environment-focused methods are used to teach file handling (based on the
Frame Curricula). Four hypotheses were formulated to see how students develop
using the low-mathability and the newly introduced WDC method.

H1. In the pre-test, there is no significant difference between the results of the
experimental and the control groups.

H2. The results of the students in the post-test are significantly higher than in
the pre-test.

H3. In the post-test, the experimental group reached significantly higher results.

H4. The rate of development was significantly higher in the experimental group
than in the control group.
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3.1. Sample
The teaching and the testing process took place in the academic year of 2018/2019,
in two high schools in Hungary. All students from Grade 9 formed both the ex-
perimental and the control groups. Filemanagement is taught from Grade 6 in the
elementary school for every student included in the sample, based on the Frame
Curricula [18, 19] and on the local curriculum of the schools. The groups were
tested before (pre-test) and after (post-test) the teaching period, however some
students were unable to participate in both measurement due various reasons: the
teacher of two control groups refused to cooperate, students’ illness, and school
activities. Consequently, the comparison was based on the results of students who
completed both tests. Table 1 shows the number of students who participated in
our tests.

Table 1. The sample, the number of students participatin in the
tests.

Experiment group Control group
Pre-test 30 79
Post-test 35 51
Paired 28 45

3.2. Tasks
The test consisted of six tasks with various number of questions focusing on the
knowledge and conscious use of concepts of filemanagement: extensions, file types,
editing/saving/opening files – in general, handling files. (Appendix)

Task F1 presents a well-known warning message of Windows operating system,
which appears when one wants to change the extension of a data file [11]. The
testsheet allowed students to mark more than one answer, but there is only one
correct answer. With this liberty of selecting multiple answers, our aim was to
measure whether students would realize that there is only one correct answer and
whether they can reveal the juxtapositions in the answers. The only correct answer
is “Changes what program is associated with the extension, but the file remains
usable”.

Task F2 was the an open question. Students had to answer the “What happens
when we double-click on a document file?” question. This operation is a four-step
process, where the expected algorithm is the following:

• checking the extension of the file

• checking the assigned program to the extention

• running the assigned program

• opening the file
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In Task F3 students had to provide an answer on how a spreadsheet can be con-
verted into a text file. Students were able to choose the correct answer from the
listed options. Task F4 inquired about the cut file operation: “What happens when
you cut a file?” In a similar way to the previous tasks, students had to choose their
answers from the listed options. We allowed multiple selections even though that
there was only one correct answer. In Task F5, students had to decide the types of
the listed files, considering their names and extensions. Based on Tasks F1 and F2,
we have found that students are not familiar with the definition of extension and
their types. The results of the current task support and extend this finding. This
can be explained by the widespread use of the File Explorer present in Windows
operating systems, where the extensions of the files are hidden by default. We de-
signed Task F6 to have questions about the same knowledge items using differing
approaches and phrasing. In this way we could gather data about the conscious
choices and reliable knowledge of students. Each question could be answered with
the following options: TRUE, FALSE or I DON’T KNOW.

4. Results

4.1. Pre-test

In the pre-test the average results of the experimental (33.73%) and the control
(38.02%) groups were almost the same, the statistical analyses showed no significant
differences between the groups (𝑝 = 0.0607) (Figure 1). We examined the results
of the tasks separately where also no difference can be detected (Table 2). These
outcomes prove H1 hypothesis, between the results of the groups has no differences
in the pre-test.

Figure 1. The total results –tasks F1–F6 – of the pre-test by
groups (all sample, not only paired).
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Table 2. The rate of correct answers for each task in the fileman-
agement test including all students.

tasks experiment group control group
F1 3.33% 5.06%
F2 19.17% 23.10%
F3 36.67% 34.18%
F4 46.67% 54.43%
F5 36.67% 37.55%
F6 38.33% 44.94%

total 33.73% 38.02%

The students reached extremely low result in some tasks, like F1 and F2 (Ta-
ble 3). The main reason for this is that incorrect answers were marked along
with the correct(s). Lots of the students marked multiple answers, while only one
of them was correct. Those answers were accepted as correct where students only
marked the correct answer. In the experimental groups 3.33%, in the control group
5.06% of the students marked the correct answer without others. (Table 2).

Table 3. The correct solutions and the proportions of students’
answers in Task F2.

experiment group control group
extension 0.00% 0.00%

association 0.00% 1.26%
run 0.00% 3.79%

open 75.67% 87.34%
total 19.17% 23.10%

In the other tasks, students completed between 30–50% (Table 2) in average.
Despite the higher results, it is clear that the students are not aware of basic
definitions and concepts. The computational thinking skills of the students are
low, they are not able to explain the process of activities which they carry out
frequently.

4.2. Post-test

In the post-test, the number of the students was lower than in the pre-test (Table 1).
The experimental group, in almost every task reached significantly higher results
than the control group, expect in task F4 (Table 4). Consequently, the total result
of the experimental group is significantly higher than of the control group, which
proves H2 hypotheses (p=0.0000) (Table 4).
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Table 4. The average results (%) of the two groups of students in
the post-test.

tasks experiment group control group p
F1 28.57% 7.84% 0.0200
F2 35.00% 24.51% 0.0110
F3 62.867% 21.57% 0.0001
F4 40.00% 47.06% 0.5229
F5 53.33% 36.93% 0.0019
F6 55.95% 45.91% 0.0003

total 50.51% 37.88% 0.0000

In Task F4, similar to the previous tasks, students had to choose their answers
from the listed options. We allowed multiple selections even though that there
was only one correct answer. In this task, students from the experimental group
reached 40%, while the control group score is 47.06%. We must note here that
in the experimental group with the exception of one student, everyone marked
the correct answer (97.14%). However, those answers cannot be accepted where
multiple answers were marked, even though one of them is the correct answer. In
contrast, in the control group 84.31% of the students could recognize the correct
solution which is less than in experimental group. Table 1 contains the number of
students participating in both tests. For the comparison we used and work with
the results of those students who participated both tests. The experimental group
improved its score except in Task F4 and they reached significantly higher results
in the following tasks: F2, F5, F6 (Table 5). The development of the total results
is significant compared to the pre-test (p=0.0000). Consequently, the experimental
group proves H3 hypothesis.

Table 5. The comparison of the results of the pre- and post-tests.

experiment group control group
tasks pre-test post-test p pre-test post-test p
F1 3.57% 32.14% 0.0087 4.44% 8.89% 0.4204
F2 19.64% 33.93% 0.0028 25.00% 24.44% 0.7100
F3 35.71% 60.71% 0.0698 33.33% 24.44% 0.2901
F4 50.00% 39.29% 0.3262 53.33% 44.44% 0.3770
F5 36.90% 52.38% 0.0050 40.74% 38.15% 0.5557
F6 38.69% 54.76% 0.0009 40.74% 45.18% 0.0965

total 34.14% 49.57% 0.0000 36.98% 37.87% 0.5795

The results of the control group show different pattern, they could not improve
their results significantly in any of the tasks (Table 5). In task F3, F4, F5 lower
results were obtained compared to the pre-test, nonetheless the differences were not
significant. In terms of total results, there is lesser than 1% improvement, which
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clearly demonstrate the ineffectiveness of the low-mathability, traditional methods.
According to the results of the test, the control group did not prove H2 hypothesis.

Figure 2. The results in the pre- and post-test.

We measured the difference between the rate of the development, where the
experimental group obviously improved to a greater extent (Figure 2). The exper-
imental group started from a lower level (but not significant) and reached a signif-
icantly higher level in the post-test. The control group was only able to develop
0.89% during the teaching period, while the experimental group increased its level
with 15.43%. Consequently, H4 hypothesis is proved. In general, we can conclude
that the high-mathability approach with focusing on schema-construction is more
effective than the tool-centered, interface-dependent approaches widely accepted in
schools.

5. Misconceptions
The students arrived from several schools, they learned ICT with various meth-
ods, this is a reason why they have different IT background knowledge, nonethe-
less, there were no significant differences between the experimental and the control
groups in the pre-test. Therefore, the most common answers of the pre-test were
analyzed without grouping. In Task F1 we allowed the multiple selection, however
it has only one correct answer. In the pre-test 70.64% of the students marked more
options. In the study, we searched for common response pairs, although there were
students who marked more than two responses, but the incidence of identity in
these groups is low. Based on the pre-test these are the most common response
pairs:
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• Option 2 with 5

• Option 3 with 6

• Option 3 with 5

Table 6. In the pre-test, the most common students’ response pairs
in task F1.

pairs pre-test
2 and 5 32.11%
3 and 6 23.85%
3 and 5 22.93%

The pairs show that the students do not have sufficient knowledge of the con-
cepts of the extension and association. The most common response pairs refer to
students’ own erroneous experiences and the unquestionable nature of the Win-
dows error message (Table 6) [11]. One explanation to these low resutls that these
students learned with interface-based traditional methods which are focused on
navigation and the implementation without thinking and problem-solving. An-
other possibility is that they did not study filemanagement at school, based on
the false assumption that as digital natives they already know it. Another com-
mon feature of these traditional methods are that students only work with the
default extension of the office programs and they use the file explorer, where the
file extension is not visible by default.

In the post-test, we analyzed the students’ answers by group, where the results
of all post-tests in the group were taken into account, not only the paired (Table 1).
In the experimental group, the number of the students in the post-test who gave
the correct answer increased (Table 4), but the number of multiple responders is
still significant (60%). Based on the answers from these students, the following
pairs of the answers are the most common (Table 7):

• Option 4 with 6

• Option 1 with 6

Table 7. In the post-test, the most common students’ response
pairs in task F1 by group.

experiment group control group
pairs results pairs results

4 and 6 17.14% 2 and 5 15.68%
1 and 6 14.28% 5 and 6 11.76%

In the experimental group, the most common pair is the 4-6, which contains
the correct answer (4), so students have already some knowledge about it, however
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not so clear. These students learned with WDC method, consequently, the misun-
derstanding points out which element of knowledge requires greater focus during
the educational process. 70.58% of the students from the control group selected
multiple answers. In this group the most common pair is still option 2 and 5, how-
ever, a new pair appeared (Table 7). Students in Task F2 did not provide enough
answers. The number of students in the post-test who still only know one of the
four steps of the process is still high in both group (experimental group 57.14%,
control group 86.27%). Therefore, we have not enough data to make a conclusion.

Table 8. The order of preference for the answers to task f3, and
its change in the post-test compared to the pre-test.

experiment group control group
pre-test post-test pre-test post-test

pref. % pref % pref. % pref. %
conversation 4 12.66 4 19.61 4 12.66 4 19.61
export 5 7.59 7 1.96 5 7.59 7 1.96
modifying the extension 2 16.46 2 31.37 2 16.46 2 31.37
google search 6 6.33 – 0 6 6.33 – 0
save as, selecting the new filetype 1 36.71 1 33.33 1 36.71 1 33.33
import 8 2.53 7 1.96 8 2.53 7 1.96
association 7 3.80 5 7.84 7 3.80 5 7.84
save as, changing the filetype manually 3 15.19 3 29.41 3 15.19 3 29.41
online converter 8 2.53 – 0 8 2.53 – 0
open in Notepad 7 3.80 6 3.92 7 3.80 6 3.92

In Task F3, we cannot find pairs to form groups based on the answers. Conse-
quently, we did not look for frequently occurring pairs, but followed the preferences
of the students’ answers and its changes.

The number of the students from the experimental group who marked the cor-
rect answer doubled (Table 8). In contrast, the number of correct answers did not
change significantly in the control group. However, the frequency of two responses
– modifying the extension; save as, changing the filetype manually – were greatly
increased so much so that it equals the number of students who chose the correct
option. The knowledge of the control group has become even more fragmented
than before. During the educational process in the control group, instead of be-
coming more accurate, students’ knowledge became increasingly burdened with
misconceptions, which is a very big problem. In Task F4 many students knew the
correct answer, but they chose an extra option. In the pre-test, the most common
counterparts to the correct answer is “a copy created of the file” and the “it is
moved to the Recycle bin” in both group. This misconception can also be clearly
detected in the post-test. The students see the cut operation in two ways:

• by itself: the operation disappears the file during the cut, so students assume
that the file is deleted.

• together with another operation: when the concept of the paste operation
has merged with cut.
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Both methods are needed to eliminate this misconception and to pay attention
to it. There is no evidence for misconceptions in Task F5 and F6, only a gap in
the students’ knowledge is detectable.

6. Conclusion
Filemanagement is one of the most essential topics in informatics and computer
sciences. Reliable knowledge cannot be built on uncertain bases, consequently,
on this topic greater emphasis should be placed and not be ignored, as has been
happening so far.

We have introduced a high-mathability, schema-centered approach entitled WDC.
The essence of the method is that tables originated on webpages are converted to
datatables primarily through a file conversion processes. The other feature of the
method is that real contexts are presented in classes, which increases the motivation
of the students.

During the measurement of the effectiveness of the method WDC, we found
that in the pre-test, the students, after 3 years of studying informatics in schools,
do not have reliable knowledge in filemanagement. Their computational thinking
skill is low, they cannot consciously use the tools of the Windows operating system,
for example they do not know what happens during cutting operation, what the
extension is and what it is for [24].

During the teaching period, the control groups studied with traditional, low-
mathability methods, using decontextualized materials, if any, which is the widely
accepted approach in educational environments. Our measurement proves that
there is no difference between the students’ results in the pre- and the post-test,
which indicates that the teaching intervention has no effect on the development
on the students’ skills and knowledge. On the contrary, the experimental group
studied with the WDC approach, their result increased in the post-test compared
to the pre-test, and the development was found significant.

Based on the results of our measurement, we can conclude that education should
not focus on the use of tools, interfaces, and the software environments, but rather
on real problem-solving, where tools play a secondary role in the problem-solving
process. We have found proof that with the WDC high-mathability approach stu-
dents can build their knowledge level by level, and they could be solving unknown
problems and situations based on their developed concepts and schemata. The
analysis of students’ responses has drawn attention to a number of misconceptions
that provide a good basis for developing teaching-learning methods. It would be
worthwhile to explore the cause of misunderstanding, which would make teaching
filemanagement more effective.

Our measurement clearly shows the there is a great need for new, effective
problem-solving-based approaches in teaching informatics, computer sciences. The
requirement of the Frame Curricula cannot be completed with the low-mathability
methods widely supported by education systems. The WDC method is an effective
alternative for teaching filemanagement, and also lays the fundamentals of the

119



Annal. Math. et Inf. K. Sebestyén, G. Csapó, M. Csernoch

topics the text- and spreadsheets-management by using authentic sources, real
contents. The method based on the concept-based problem-solving approach of
Pólya, using the method of guided discovery with an algorithmic focus [4, 24] is
proved effective in developing the students’ computational thinking skills.
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Abstract. In this paper, a finite-source retrial queueing system with two-
way communication is investigated with the help of a simulation program of
own. If a randomly arriving request from the finite-source finds the single
server idle its service starts immediately, otherwise it joins an orbit from
where it generates retrial/repeated calls after a random time. To increase
the utilization of the server when it becomes idle after a random time an
outgoing request is called for service from an infinity source. Upon its arrival
if the server is busy, it goes to a buffer and when the server becomes idle
again its service starts immediately. requests arriving from the finite-source
and orbit are referred to as primary or incoming ones while requests called
from the infinite source are referred to as secondary or outgoing requests,
respectively. The service times of the primary and secondary requests are
supposed to be random variables having different distributions. However,
randomly catastrophic failures may happen to all the requests in the system,
that is from the orbit, the service unit, and the buffer. In this case, the
primary requests return to the finite-source, and the secondary ones are lost.
The operation of the system is restored after a random time. Until the
restoration is finished no arrivals and service take place in the system. All
the above-mentioned times are supposed to be independent random variables.

The novelty of this paper is to perform a sensitivity analysis of the failure
and restoration/repair times on the main characteristics to illustrate the effect
of different distributions having the same average and variance value. Our
aim is to determine the distribution of the number of requests in the system,
the average response time of an arbitrary primary request without successful
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service, also the average response time of an arbitrary and successfully served
primary request, the total utilization of the service unit, or the probability
that a primary request leaves the system without successful service because
of a catastrophic event. Results are illustrated graphically obtained by our
simulation program.
Keywords: finite-source queueing, two-way communication, catastrophic fail-
ure, restoration, sensitivity analysis, characteristics, simulation

1. Introduction
Retrial queues with two-way communication arose as stochastic models of call
centers, where the operator can provide both inbound/incoming and outbound/out-
going calls. The idea of call blending is to improve the productivity of call centers
by reducing the idle time of an operator was investigated among others in [2, 3, 5],
and references cited in them.

However, from a practical point of view, it is also important to investigate
situations where the server is not always able to serve the requests. There are many
models and assumptions about the distribution of the operation and restoration
time of the server. In case of a breakdown, there are many options corresponding
to the behavior of request under service and the request generation process. In this
paper, we deal with catastrophes, sometimes called disasters or negative requests
which clear all the requests from the service facility, orbit, buffer, and stop the
arrivals of the requests. The interested reader is referred to among others [1, 7, 8]
and references cited in them.

In our earlier papers we dealt with finite-source single server two-way com-
munication systems with an unreliable server under different repair options and
request generation processes. With the help of simulation, the main characteristics
were obtained and sensitivity analysis was carried out corresponding to failure and
repair time distributions, see [9–11].

The primary aim of the present paper is to carry out a sensitivity analysis of the
time of catastrophe and restoration/repair on the main characteristicsto illustrate
the effect of different distributions having the same average and variance value. Our
goal is to determine the distribution of the number of requests in the system, the
average response time of an arbitrary primary request without successful service,
also the average response time of arbitrary and successfully served primary request,
the total utilization of the service unit, or the probability that a primary request
leaves the system without successful service because of a catastrophic event. Results
are illustrated graphically obtained by our simulation program.

2. System model
Figure 1 shows the behavior of the system with the aim that we are interested
in investigating the effect of the catastrophes on the main characteristics. That
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is the reason that we assume exponentially distributed random variables except
the distribution of the time of disaster. 𝑁 sources generate requests after an
exponentially distributed time with parameter 𝜆 independently of each other. If
an arriving request finds the single server idle its service starts immediately, the
services time is supposed to be exponentially distributed with parameter 𝜇1. If
the serves is busy the call joins an orbit from where it generates retrial/repeated
calls after an exponentially distributed time with parameter 𝜈. To increase the
utilization of the server when it becomes idle after an exponentially distributed
time with parameter 𝜆2 an outgoing request is called for service from an infinity
source. Upon its arrival, if the server is busy, it goes to a buffer and when the server
becomes idle again its service starts immediately. The service time of this type of
request is supposed to be exponentially distributed with parameter 𝜇2. Requests
arriving from the finite-source and orbit are referred to as primary or incoming
ones while requests called from the infinite source are referred to as secondary or
outgoing requests, respectively.

However, randomly catastrophic failures may happen clearing all the requests
in the system, that is from the orbit, the service unit, and the buffer. In this case,
the primary requests return to the finite-source, and the secondary ones are lost.
The operation of the system is restored after an exponentially distributed time with
parameter 𝛾2. Until the restoration is finished no arrivals and service take place in
the system. All the above-mentioned times are assumed to be independent random
variables. Catastrophes can take place according to gamma, hypo-exponential,
hyper-exponential, Pareto and lognormal distribution selecting their parameters to
have the same average value.

Figure 1. System model.
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3. Simulation results and examples
We applied the simulation approach to obtain all the desired characteristics. Due
to the simulation, we can deal with generally distributed random variables repre-
senting different times that occurred in the model construction. Expect the case
when all the random variables are exponentially distributed it is very difficult, if
not impossible to get an analytical solution to the characteristics. The estimation is
carried out by applying a statistical package in which the method of batch averages
is used, see [6]. First, we deal with exponentially distributed failure time with pa-
rameter 𝛾1 and show the effect of the failure rate on the probability that a primary
request leaves the system without successful service, see Table 2. Then we turn our
attention to generally distributed failure times when the (CV) squared coefficient
of variation which is defined as variance/(square of average) is greater or less than
one. In both cases we consider distributions with the same average and variances
to show the effect of the particular distribution on some of the characteristics.

We must admit by choosing different input parameters our aim is to show how
the system behaves and they are not realistic values since we do not have data for
this type of system. In this phase the paper is more theoretic than practical.

3.1. Exponentially distributed failure times
In this part, the failure time is assumed to be exponentially distributed with pa-
rameter 𝛾1. The other input parameters are given in Table 1. This model was
treated by the help of a software package called MOSEL (MOdeling, Specification
and Evaluation Language) and served as a validation for the simulation, see [4].

Table 1. Numerical values of model parameters for exponentially
distributed failure time.

N 𝜆 𝜆2 𝜇1 𝜇2 𝜈 𝛾2

100 0.02 0.5 1 2.5 0.01 1

Table 2. Probability that a primary request departs because of a
catastrophic event.

𝛾1 P(departure)
0.00001 0.002113

0.01 0.535419
0.1 0.724697

It should be mentioned that even for a small failure intensity the probability of
departure is not negligible. In addition, in Figure 2 we can see how the distribution
of the number of primary requests changes as the failure rate increases. In the case
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Figure 2. Distribution of the number of primary requests in the
system.

of a very small value the distribution graph is similar to a normal distribution, but
as we increase the failure rate the distribution is unknown.

3.2. Different distributions of failure time of the system, CV
is greater than one

This part is devoted to the sensitivity analysis of the characteristics corresponding
to the distribution of failure times. Table 3 shows the used parameter setting and
Table 4 collects the values of parameters in the case of gamma, hyper-exponential,
lognormal, and Pareto distributions. We assume that 𝐶𝑉 > 1 and to perform a
valid comparison both the average value and variance are the same using different
parameters’ values.

Table 3. Numerical values of model parameters.

N 𝜆2 𝜇1 𝜇2 𝜈 𝛾2

100 0.5 1 2.5 0.01 1

The steady-state probability of the number of primary requests in the systems
is presented in Figure 3 when 𝜆 = 0.02. Having the same average and variance,
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Table 4. Parameters of failure time.

Distribution Gamma Hyper-exponential Pareto Lognormal
Parameters 𝛼 = 0.31225 𝑝 = 0.3619707 𝛼 = 2.145538 𝑚 = 1.0027833

𝛽 = 0.05588 𝜆1 = 0.1295528 𝑘 = 2.9835251 𝜎 = 1.1981970
𝜆2 = 0.2283569

average 5.588
Variance 100

Squared CV 3.2024857438

Figure 3. Distribution of the number of primary requests in the
system.

the obtained results vary from each other which is especially true in the case of the
Pareto distribution. This figure illustrates the impact of the selected distribution
on the operation of the system, as was expected.

In Figures 4, 5 the average response time of a primary request and a primary
request without successful service can be seen as the function of the arrival rate 𝜆.
Essential differences can be observed which is due to the distributions. Naturally,
the average response time of requests without successful service should be greater
as they leave the system because of catastrophes. Some of them can be in the
orbit and one under service. Since the average failure time is 5.588 we expected
that all the average response times are less than this value. However, it is true
only for the Pareto distribution. It also looks surprising that three averages first
increasing then decreasing, while in the Pareto case it is increasing. During several
simulation runs, we realized that the behavior of the systems heavily depends on
the variance of the failure time and the other input parameters of the system.
Our explanation for the unexpected higher average response time is the following.
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Figure 4. Average response time of a primary request.

Figure 5. Average response time of a primary request without
service.

Since the standard deviation of the operation time is almost two times higher than
its average there will be short operation times in which there are no requests in
the system, and there are long operation times with high response times. Thus
the average response time can be greater than the average operation time. The
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Figure 6. Probability that a primary request departs.

Figure 7. Total utilization w.r. primary requests.

maximum of the average happens only at special parameter setup.
Figure 6 shows the probability that a request departs from the system due to

the catastrophe. There are differences between the distributions and of course the
probability is an increasing function of the arrival rate from the source since more
and more requests are in the system when a catastrophe happens.
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Figure 8. Total utilization w.r. primary requests without service.

Figure 9. Total utilization w.r. secondary requests.

In Figures 7, 8, 9 utilization of the server corresponding to different types of
requests is illustrated. As usual, the utilization of the server with respect to a
certain type of request is defined as the probability that the server is busy with
that type of request, respectively. There is a very special property of finite-source
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retrial queues, namely under special parameter setup the mean response time of
a customer has maximum as the function of arrival rate from the source. We
could find such a parameter setup that there is maximum of the utilization for the
primary requests which includes requests with successful and without successful
service, see Figure 7. In the first phase due to the increasing number of requests
the utilization increases, but after a certain point due to the catastrophes many
requests depart from the system and the utilization decreases.

Figure 8 shows the utilization corresponding to the departed requests due to the
catastrophes. Since the number of requests in the system increases as the function
of the arrival rate 𝜆 more and more requests depart the systems because of the
failure, hence the utilization decreases. As we can observe this measure is almost
the same for all distributions.

Finally, Figure 9 shows the utilization of the server with respect to the secondary
requests invited when the server is idle. The behavior can be explained by the
catastrophes since the server in this case is idle and there is more chance for a
secondary request to occupy the server.

3.3. Different distributions of failure time of the system, CV
is less than one

This part is devoted to the sensitivity analysis of the characteristics with respect
to the distribution of failure times. Table 3 shows the used parameter setting and
Table 5 collects the values of parameters in the case of gamma, hypo-exponential,
lognormal, and Pareto distribution. 𝐶𝑉 < 1 and both the average value and
variance are the same using different parameters’ values.

Table 5. Parameters of failure time.

Distribution Gamma Hypo-exponential Pareto Lognormal
Parameters 𝛼 = 1.2320819 𝜇1 = 0.2 𝛼 = 2.4940153 𝑚 = 1.423548

𝛽 = 0.2204778 𝜇2 = 1.7 𝑘 = 3.3475773 𝜎 = 0.7708627
average 5.588

Variance 25.3460207612
Squared CV 0.811634349

Due to the lack of pages, we cannot show the same characteristics as we pre-
sented before. We can summarize the findings as follows. The average response
times are not greater than the average operation time due to the smaller variance of
the operation time. All the other characteristics show similar behavior with fewer
differences between the different distributions. In general, performing several sim-
ulation runs we observed that the variance of the response times of requests behave
similar way as the variance of the operation time either 𝐶𝑉 > 1 or 𝐶𝑉 < 1. One
of the advantages of the simulation approach is that we can estimate any of the
characteristics giving not only expected values but variances, too.

131



Annal. Math. et Inf. J. Sztrik, Á. Tóth

4. Conclusion
A finite-source retrial queueing system with two-way communication was investi-
gated with the help of simulation. We were interested in carrying out a sensitivity
analysis of the failure and restoration/repair times on the main characteristics to
illustrate the effect of different distributions having the same average and variance
value. We aimed to determine the distribution of the number of requests in the
system, the average response time of an arbitrary primary request without suc-
cessful service, also the average response time of arbitrary and successfully served
primary request, the total utilization of the service unit, or the probability that a
primary request leaves the system without successful service because of a catas-
trophic event. Results were illustrated graphically and some explanations were
given. The scientific message of the this paper is following: from earlier papers
published in different high level journals it can be seen that systems with catas-
trophic failures are important and needs investigations. The authors are not aware
of any papers with two-way communications with this type of failures. In our opin-
ion allowing non-exponentially distributed operation times the analytic solution is
hopeless. The only way is the simulation method. It is a natural question to ask
how the characteristics of the system depends on the distribution of the opera-
tion time assuming the same first two moments, respectively. That was our strong
motivation and we are confident that this paper is a valuable contribution to this
topic.
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