Solving selected problems on the Chinese remainder theorem

Viliam Ďuriša, Veronika Bojdováa ${ }^{\text {a }}$, Timotej Šumnýb
${ }^{2}$ Department of Mathematics, Faculty of Natural Sciences, Constantine The Philosopher
University in Nitra, Tr. A. Hlinku 1, Nitra, Slovakia
vduris@ukf.sk, vbojdova@ukf.sk
${ }^{\text {b }}$ Štefan Moyses Primary School, Školská 608, Tesárske Mlyňany, Slovakia sumnyt@gmail.com

Abstract

The Chinese remainder theorem provides the solvability conditions for the system of linear congruences. In section 2 we present the construction of the solution of such a system. Focusing on the Chinese remainder theorem usage in the field of number theory, we looked for some problems. The main contribution is in section 3, consisting of Problems 3.1, 3.2 and 3.3 from number theory leading to the Chinese remainder theorem. Finally, we present a different view of the solution of the system of linear congruences by its geometric interpretation, applying lattice points.

Keywords: Chinese remainder theorem, proof, construction of a solution, geometric interpretation

AMS Subject Classification: 11A07, 01A99

1. Introduction

One of the first systematic knowledge of the discipline we now call number theory came from ancient China [10, 11], where queries leading to linear indeterminate equations and systems of linear congruences occurred. Indeterminate linear equations of two unknowns occurred mainly in commercial tasks, e.g. by selling several kinds of goods at integer prices. Apart from mathematics (e.g. in astronomy) appeared more complicated problems leading to systems of linear indeterminate equations with multiple unknowns, which we classify within the congruence domain nowadays. A very significant knowledge from this period, in particular, is the so-called Chinese remainder theorem, which determines the necessary and sufficient

[^0]conditions for the solvability of a system of linear congruences. In the mathematical treatise, which comes from the ancient Chinese mathematician Sun-c' ($4^{\text {th }}$ century AD), we can find this problem [7]: "An unknown number of things is given. If they are counted by three, two remain, if they are counted by five, three remain, if they are counted by seven, there remain two. Determine the number of these things."

Solving this problem is easy. The least common multiple of the numbers 3,5 , and 7 is 105 , so one solution of the problem will occur in the set $\{1,2, \ldots, 105\}$. From the second condition, it follows, that the solution is a number in the form $5 n+3$ from the given set. Therefore it suffices to check the numbers $3,8,13, \ldots, 103$, if the remainder after division by three (resp. seven) meets the problem conditions. The smallest suitable solution is $x=23$. There are still other solutions, which are "repeated by 105 ", and are in the form $y \equiv 23 \bmod 105$. The problem of the Chinese mathematician Sun-c' reached both India and Europe [6], and especially in the $18^{\text {th }}$ and $19^{\text {th }}$ centuries engaged the attention of mathematicians L. Euler and C. F. Gauss. The Chinese used a lunar calendar, in which small and large months changed by 29 and 30 days, so the year had 354 days. However, such a calendar brought problems, because due to the different length of the solar year, which the Chinese set at $365 \frac{1}{4}$ days, it happened that the beginnings of the years were not in fixed dates. The Chinese inserted after 19 lunar years another 7 lunar months (around 600 BC) [2]. At the end of the first millennium AD, Chinese mathematicians and astronomers devoted great effort to calculate the so-called Great period, i.e. the question in how many years the three periods will meet the tropical year with $365 \frac{1}{4}$ days, the lunar month with $29 \frac{499}{940}$ days and a sixty-day cycle [13]. The problem led to a system of congruences with large numbers. The Chinese mathematician Qin Jiushao [12] came up with a solution to the system of congruences $x \equiv 193440(\bmod 1014000), x \equiv 16377(\bmod 499067)$, where $x=$ $6172608 n$, (n is the number of years elapsed since the Great Period) [8].

There are several ways to formulate the Chinese remainder theorem.
Theorem 1.1. Let there be a system of solvable linear congruences

$$
\begin{array}{ll}
a_{1} x \equiv b_{1} & \left(\bmod m_{1}\right) \\
a_{2} x \equiv b_{2} & \left(\bmod m_{2}\right) \tag{1.1}\\
\vdots & \\
a_{k} x \equiv b_{k} & \left(\bmod m_{k}\right),
\end{array}
$$

where $a_{i}, b_{i}, m_{i}(i=1,2, \ldots, k)$ are given integers. If m_{i} are pairwise coprime, then the system is solvable; or more precisely, elements of the congruence class modulo $m=m_{1} m_{2} \cdots m_{k}$ satisfy all given congruences. This statement is called the Chinese remainder theorem [9].

Proof. By mathematical induction. First, consider a system with two congruences:

$$
\begin{aligned}
& a_{1} x \equiv b_{1} \quad\left(\bmod m_{1}\right) \\
& a_{2} x \equiv b_{2} \quad\left(\bmod m_{2}\right) .
\end{aligned}
$$

The first congruence is solvable from assumption, hence there exists $x \equiv c_{1}($ $\left.\left(\bmod m_{1}\right)\right)$ which satisfies the first congruence. Substitute this solution $x=c_{1}+$ $t m_{1}, t \in Z$, into the second congruence:

$$
\begin{aligned}
a_{2}\left(c_{1}+m_{1} t\right) & \equiv b_{2} \quad\left(\bmod m_{2}\right) \\
\left(a_{2} m_{1}\right) t & \equiv\left(b_{2}-a_{2} c_{1}\right) \quad\left(\bmod m_{2}\right)
\end{aligned}
$$

Since m_{1} and m_{2} are coprime, then $\operatorname{gcd}\left(a_{2} m_{1}, m_{2}\right)=\operatorname{gcd}\left(a_{2}, m_{2}\right)$. From the theorem assumptions the second congruence is solvable too, therefore $\operatorname{gcd}\left(a_{2}, m_{2}\right) \mid b_{2}$. However, this already results in $\operatorname{gcd}\left(a_{2} m_{1}, m_{2}\right) \mid b_{2}$, which is the condition for solvability of the congruence $\left(a_{2} m_{1}\right) t \equiv\left(b_{2}-a_{2} c_{1}\right)\left(\bmod m_{2}\right)$. So we have $t \equiv c_{2}$ $\left(\bmod m_{2}\right)$, which satisfies the second congruence. Then we can rewrite x as:

$$
x=c_{1}+m_{1}\left(c_{2}+s m_{2}\right)=\left(c_{1}+c_{2} m_{1}\right)+s\left(m_{1} m_{2}\right)
$$

where $c_{1}, c_{2}, s \in Z$. Thus, the solution of the system of the two linear congruences is the whole congruence class

$$
x \equiv e_{1} \quad\left(\bmod m_{1} m_{2}\right)
$$

where $e_{1}=c_{1}+c_{2} m_{1}$.
Now suppose the statement holds true for $k=\nu$. Consider the system of $\nu+1$ solvable linear congruences with pairwise coprime moduli $m_{1}, m_{2}, \ldots, m_{\nu+1}$. The system of first ν congruences is solvable from the induction assumption, so we have

$$
x \equiv e_{\nu} \quad\left(\bmod m_{1} m_{2} \ldots m_{\nu}\right)
$$

satisfying the first ν congruences. We have to find out if any element of this congruence class is also the solution of the last congruence. We solve the system of congruences:

$$
\begin{aligned}
x & \equiv e_{\nu} \quad\left(\bmod m_{1} m_{2} \ldots m_{\nu}\right) \\
a_{\nu+1} x & \equiv b_{\nu+1} \quad\left(\bmod m_{\nu+1}\right) .
\end{aligned}
$$

Since $\operatorname{gcd}\left(m_{\nu+1}, m_{1}, \ldots, m_{\nu}\right)=1$, then there exists the solution of this system of two congruences (by analogy to the first step of the proof).

The Chinese remainder theorem says nothing about a case of the congruence system (1.1) with non-coprime moduli. In this case, the system can be unsolvable, although individual congruences are solvable. But the system also can be solvable.

2. The construction of a solution of a system of linear congruences

First, we present the applicable construction method for a solution of the system (1.1). We show, that u in the following form is a solution of the system (1.1).

Theorem 2.1. Consider the solvable system of linear congruences (1.1). Then

$$
u=\sum_{i=1}^{k} \frac{m}{m_{i}} c_{i} r^{(i)}=\frac{m}{m_{1}} c_{1} r^{(1)}+\cdots+\frac{m}{m_{k}} c_{k} r^{(k)}
$$

is a common solution of given system, where $r^{(i)}$ is a solution of $a_{i} x \equiv b_{i}\left(\bmod m_{i}\right)$ and c_{i} is a solution of

$$
\frac{m}{m_{i}} y \equiv 1 \quad\left(\bmod m_{i}\right), \quad m=m_{1} m_{2} \ldots m_{k}, i=1, \ldots, k, \quad \operatorname{gcd}\left(\frac{m}{m_{i}}, m_{i}\right)=1
$$

Proof. First, let us solve the congruences

$$
\frac{m}{m_{i}} y \equiv 1 \quad\left(\bmod m_{i}\right), \quad i=1, \ldots, k, \quad \operatorname{gcd}\left(\frac{m}{m_{i}}, m_{i}\right)=1
$$

where c_{i} is the appropriate solution. Let $r^{(i)}$ be a solution satisfying

$$
a_{i} x \equiv b_{i} \quad\left(\bmod m_{i}\right), \quad i=1, \ldots, k .
$$

We show that

$$
u=\sum_{i=1}^{k} \frac{m}{m_{i}} c_{i} r^{(i)}=\frac{m}{m_{1}} c_{1} r^{(1)}+\cdots+\frac{m}{m_{k}} c_{k} r^{(k)}
$$

satisfies any of the congruences $a_{i} x \equiv b_{i}\left(\bmod m_{i}\right)$.
We express

$$
a_{i} x=a_{i} u=a_{i} \sum_{i=1}^{k} \frac{m}{m_{i}} c_{i} r^{(i)}=a_{i}\left(\frac{m}{m_{1}} c_{1} r^{(1)}+\cdots+\frac{m}{m_{i}} c_{i} r^{(i)}+\cdots+\frac{m}{m_{k}} c_{k} r^{(k)}\right) .
$$

Since all members $\frac{m}{m_{1}}, \ldots, \frac{m}{m_{k}}$ except member $\frac{m}{m_{i}}$ are divisible by the number m_{i}, we get

$$
a_{i} u \equiv a_{i} \frac{m}{m_{i}} c_{i} r^{(i)} \quad\left(\bmod m_{i}\right)
$$

Since c_{i} is a solution of $\frac{m}{m_{i}} y \equiv 1\left(\bmod m_{i}\right)$, then $\frac{m}{m_{i}} c_{i} \equiv 1\left(\bmod m_{i}\right)$, and thus

$$
a_{i} u \equiv a_{i} r^{(i)} \quad\left(\bmod m_{i}\right)
$$

And finally from $a_{i} r^{(i)} \equiv b_{i}\left(\bmod m_{i}\right)$ we have $a_{i} u \equiv b_{i}\left(\bmod m_{i}\right)$.
Now we show that any $x=u+t m, t \in Z$ satisfies the congruence $a_{i} x \equiv b_{i}$ $\left(\bmod m_{i}\right)$. We have

$$
a_{i}(u+t m)=a_{i} u+a_{i} t m
$$

where $a_{i} u \equiv b_{i}\left(\bmod m_{i}\right)$ and $a_{i} t m \equiv 0\left(\bmod m_{i}\right)$, while $\exists h \in Z: m=h m_{i}$. Then

$$
a_{i}(u+t m) \equiv b_{i} \quad\left(\bmod m_{i}\right)
$$

If the congruence $a_{i} x \equiv b_{i}\left(\bmod m_{i}\right)$ has n_{i} incongruent solutions $r^{(i)}$, then we have together $n_{1} n_{2} \cdots n_{k}$ incongruent solutions $u=\frac{m}{m_{1}} c_{1} r^{(1)}+\cdots+\frac{m}{m_{i}} c_{i} r^{(i)}+\cdots+$ $\frac{m}{m_{k}} c_{k} r^{(k)}$ of the system (1.1). We show, that all are incongruent by modulo m.

If we changed any of the solutions $r^{(i)}$ of the congruence $a_{i} x \equiv b_{i}\left(\bmod m_{i}\right)$ of the common solution u of the system to an incongruent one by modulo m_{i}, we would get an incongruent solution u. Let's change, e.g., h solutions $r^{(i)}(h \leq k)$ to incongruent ones by modulo m_{i} and arrange the expressions $\frac{m}{m_{i}} c_{i} r^{(i)}$ in \bar{u} by placing forward those, which contain an incongruent solution $r^{(i)}$. Then, after re-indexing members in u and re-denoting incongruent solutions, we can write
$u_{2}=\frac{m}{m_{1}} c_{1} r_{2}^{(1)}+\cdots+\frac{m}{m_{i}} c_{i} r_{2}^{(i)}+\cdots+\frac{m}{m_{h}} c_{h} r_{2}^{(h)}+\frac{m}{m_{h+1}} c_{h+1} r^{(h+1)}+\cdots+\frac{m}{m_{k}} c_{k} r^{(k)}$.
We show, that u_{2} is not congruent with u by modulo m. By contradiction, if $u \equiv u_{2}(\bmod m)$, then $m\left|u-u_{2} \wedge m_{i}\right| m \Rightarrow m_{i} \mid u-u_{2}$, hence $u \equiv u_{2}\left(\bmod m_{i}\right)$. Then

$$
\begin{aligned}
\frac{m}{m_{1}} c_{1} r^{(1)}+\cdots+ & \frac{m}{m_{i}} c_{i} r^{(i)}+\cdots+\frac{m}{m_{h}} c_{h} r^{(h)}-\left(\frac{m}{m_{1}} c_{1} r_{2}^{(1)}+\cdots\right. \\
+ & \left.\frac{m}{m_{i}} c_{i} r_{2}^{(i)}+\cdots+\frac{m}{m_{h}} c_{h} r_{2}^{(h)}\right) \equiv 0 \quad\left(\bmod m_{i}\right)
\end{aligned}
$$

From the last congruence we have

$$
\frac{m}{m_{i}} c_{i} r^{(i)}-\frac{m}{m_{i}} c_{i} r_{2}^{(i)} \equiv 0 \quad\left(\bmod m_{i}\right) \quad \Leftrightarrow \quad \frac{m}{m_{i}} c_{i} r^{(i)} \equiv \frac{m}{m_{i}} c_{i} r_{2}^{(i)} \quad\left(\bmod m_{i}\right)
$$

Since $\frac{m}{m_{i}} c_{i} \equiv 1\left(\bmod m_{i}\right)$, then $r^{(i)} \equiv r_{2}^{(i)}\left(\bmod m_{i}\right)$, what is a contradiction. Hence solution u_{2} can not be congruent with u by modulo m. This means we have incongruent solutions u and u_{2}.

3. Selected problems from number theory leading to use of Chinese remainder theorem

Focusing on the use of the Chinese remainder theorem, we present the proofs of selected problems from number theory. We also present simple codes in R language to demonstrate the solutions to these problems.

Problem 3.1. There are at most two n-digit numbers with the property $x^{2}=k 10^{n}+x$. Such numbers x, whose squares end in themselves, are called 1 -automorphic numbers (see e.g. [5]).

Solution. We are searching for natural numbers x, among n-digit numbers $0 \leq$ $x<10^{n}$, with the property:

$$
x^{2}=k 10^{n}+x
$$

Hence

$$
x^{2}-x=k 10^{n}=k 2^{n} 5^{n},
$$

which leads to congruence $x^{2} \equiv x\left(\bmod 10^{n}\right)$, or

$$
\begin{equation*}
x^{2}-x=x(x-1) \equiv 0 \quad\left(\bmod 10^{n}\right) \tag{3.1}
\end{equation*}
$$

Since $x \in N$, then it is true that if x is even then $x-1$ is odd, or if x is odd then $x-1$ is even. Then from (3.1) we get, that x satisfies either system of congruences

$$
\begin{align*}
x & \equiv 0 \quad\left(\bmod 2^{n}\right) \\
x-1 & \equiv 0 \quad\left(\bmod 5^{n}\right) \quad \Leftrightarrow \quad x \equiv 1 \quad\left(\bmod 5^{n}\right) \tag{3.2}
\end{align*}
$$

or system of congruences

$$
\begin{align*}
x & \equiv 0 \quad\left(\bmod 5^{n}\right) \\
x-1 & \equiv 0 \quad\left(\bmod 2^{n}\right) \quad \Leftrightarrow \quad x \equiv 1 \quad\left(\bmod 2^{n}\right) . \tag{3.3}
\end{align*}
$$

Since $\operatorname{gcd}\left(2^{n}, 5^{n}\right)=1$ and $0 \equiv 1(\bmod 1)$ holds true, then the system (3.2) and also the system (3.3) has a unique solution modulo $2^{n} 5^{n}$. Consequently there are at most two n-digit numbers with the property $x^{2}=k 10^{n}+x$.

We present a code in R language to demonstrate solutions for $n \in\{1, \ldots, 8\}$:

```
library(numbers)
n=8
a1=c(1,0)
a2=c(0,1)
for (i in 1:n) {
    m=c(2^i, 5^i)
        print(chinese(a1,m))
        print(chinese(a2,m)) }
> 5
        6
        25
        76
        625
        376
        9376
        90625
        890625
        109376
        2890625
        7 1 0 9 3 7 6
        12890625
        87109376
```

Problem 3.2 (inspired by [1]). For every positive integer n, there exist n consecutive positive integers such that none of them is a power of a prime.

Solution. We show that for any n there exists $x \in N$ such that none of the numbers $x+1, x+2, \ldots, x+n \in N$ is a power of a prime. The number $x+i(i=1,2, \ldots, n)$ is not a power of a prime if there are two different primes p, q, that divide $x+i$.

Let $n \in N, i=1,2, \ldots, n$, and let all $p_{1}, p_{2}, \ldots, p_{n}, q_{1}, q_{2}, \ldots, q_{n}$ be distinct primes. We look for $x \in N$, which satisfies $p_{i} q_{i} \mid x+i$ for each $i=1,2, \ldots, n$. Written as the system of congruences we have

$$
x+i \equiv 0 \quad\left(\bmod p_{i} q_{i}\right)
$$

or

$$
\begin{equation*}
x \equiv p_{i} q_{i}-i \quad\left(\bmod p_{i} q_{i}\right) \tag{3.4}
\end{equation*}
$$

for $i=1,2, \ldots, n$.
Since $p_{i}, q_{i}(i=1,2, \ldots, n)$ were distinct, then $\operatorname{gcd}\left(p_{i} q_{i}, p_{j} q_{j}\right)=1$. Hence there exists one solution x of the system (3.4). Thus, for any $n \in N$ we found (constructed) $x \in N$ such that numbers $x+1, x+2, \ldots, x+n \in N$ have two different prime divisors.

A simple code in R language allows us to demonstrate the solution for $n=3$: the three consecutive integers are 18458, 18459 and 18460. With help of prime factorization it's easy to see, that none of them is a power of a prime.

```
library(numbers)
n = 3
p = c(11,7,5)
q=c(2,3,13)
i = 1:n
x = chinese(p*q-i,p*q)
print(x)
> }1845
library(gmp)
factorize(x+1)
> 2 11 839
factorize(x+2)
> 3 3 7 7 293
factorize(x+3)
> 2 2 5 13 71
```

Problem 3.3 (inspired by [1]). There exists a set S of three positive integers such that for any two distinct $a, b \in S a-b$ divides a and b but none of the other elements of S.

Figure 1. Elements of S.

Solution. Denote three positive integers from S by $x, x+d_{1}, x+d_{1}+d_{2}$, where d_{1}, d_{2} denote the differences between consecutive elements of S (Figure 1).
We have 3 pairs of distinct elements and we write down the divisibility conditions for the first element x :

$$
\begin{align*}
d_{1} \mid x & \Leftrightarrow \quad x \equiv 0 \quad\left(\bmod d_{1}\right) \\
d_{1}+d_{2} \mid x & \Leftrightarrow \quad x \equiv 0 \quad\left(\bmod d_{1}+d_{2}\right) \tag{3.5}\\
d_{2} \nmid x & \Leftrightarrow \quad x \equiv a_{1} \quad\left(\bmod d_{2}\right),
\end{align*}
$$

where $a_{1} \in\left\{1,2, \ldots, d_{2}-1\right\}$ is the non-zero remainder. We show, that it suffices to choose any coprime positive integers $d_{1}, d_{2}, d_{1}<d_{2}$, and then the existence of x follows from the Chinese remainder theorem.

Let $d_{1}, d_{2}, d_{1}<d_{2}$, be any coprime positive integers, hence also $d_{1}, d_{2}, d_{1}+d_{2}$ are pairwise coprime. Remainder $a_{1} \in\left\{1,2, \ldots, d_{2}-1\right\}$ depends on the choice of d_{1}, d_{2} following way. From the condition $x+d_{1} \equiv 0\left(\bmod d_{2}\right)$ we have $x \equiv-d_{1}$ $\left(\bmod d_{2}\right)$, which together with congruence

$$
x \equiv a_{1} \quad\left(\bmod d_{2}\right)
$$

gives the result for $a_{1}: a_{1} \equiv-d_{1}\left(\bmod d_{2}\right)$, so we can put $a_{1}=d_{2}-d_{1}$ (since $d_{1}<d_{2}$). Since $d_{1}, d_{2}, d_{1}+d_{2}$ are pairwise coprime moduli, then there is a unique solution of the system (3.5):

$$
\begin{aligned}
& x \equiv 0 \quad\left(\bmod d_{1}\right) \\
& x \equiv 0 \quad\left(\bmod d_{1}+d_{2}\right) \\
& x \equiv d_{2}-d_{1} \quad\left(\bmod d_{2}\right) .
\end{aligned}
$$

We can get some solutions of this example by using the following code in R language:

```
library(numbers)
d1 = 8
d2 = 15
a = c(0,0,d2-d1)
m = c(d1,d1+d2,d2)
x = chinese(a,m)
print(c(x,x+d1,x+d1+d2))
```

Table 1. Some solutions.

d_{1}	d_{2}	x	$x+d_{1}$	$x+d_{1}+d_{2}$
2	3	10	12	15
2	7	54	56	63
8	15	2392	2400	2415

4. Geometric interpretation of the solution of system of linear congruences

Finally, we present a different view of the solution of the system of linear congruences by its geometric interpretation, applying lattice points. For some basic knowledge of the lattice points, see, e.g. [4].

Consider a congruence $a x \equiv b(\bmod m), a, b, x, m \in Z, m>1$. There is a direct connection between this congruence relation and the Diophantine equation [3], while $a x-b=y m, y \in Z$, represents the linear Diophantine equation

$$
a x-m y=b
$$

(where $x, y \in Z$ are the unknowns and $a, b, m \in Z, a, b \neq 0$, are given constants).
On the other hand, the equation

$$
\begin{equation*}
a x-m y-b=0 \tag{4.1}
\end{equation*}
$$

represents a straight line (in Euclidean plane). So for given $a, b, m \in Z$ the solution of the congruence $a x \equiv b(\bmod m)$ geometrically represents all intersection points $\left[x_{0}, y_{0}\right], x_{0}, y_{0} \in Z$, of the straight line (4.1) and the lattice of integral coordinates.

Example 4.1. Consider system of congruences

$$
\begin{aligned}
& 3 x \equiv 4 \quad(\bmod 8) \\
& 4 x \equiv 2 \quad(\bmod 5)
\end{aligned}
$$

Both congruences are solvable $(\operatorname{gcd}(3,8)=1 \mid 4$ and $\operatorname{gcd}(4,5)=1 \mid 2)$. The solution of the second congruence $4 x \equiv 2(\bmod 5)$ is $x \equiv 3(\bmod 5)$. Substitute $x=3+5 t, t \in Z$ into the first congruence, then

$$
3(3+5 t) \equiv 4 \quad(\bmod 8)
$$

hence

$$
15 t \equiv-5 \quad(\bmod 8)
$$

with a solution $t \equiv 5(\bmod 8)$. Finally, after substitution $t=5+8 y, y \in Z$ into x :

$$
x=3+5(5+8 y)=28+40 y
$$

we get the solution $x \equiv 28(\bmod 40)$ of the system.

Figure 2 shows the geometric representation of the congruence $x \equiv 28(\bmod 40)$. That means, there are infinitely many points $\left[x_{0}, y_{0}\right]$ with integer coordinates on the green straight line $x-28-40 y=0$. See, that e.g. the lattice point $[68,1]$ is one of the solution points.

Figure 2. Example of the intersection of straight line and a lattice of the integer coordinates.

In our geometric interpretation of the Diophantine equation, we consider the solvability conditions based on the lattice points, through which the line represented by equation (4.1) passes.

Now consider a system of linear congruences (1.1), where $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for all $i, j, i \neq j, i, j=1, \ldots, k$. Such a system of congruences can be converted to Diophantine equations with the same consideration as mentioned above. Since we are looking for a common solution for these Diophantine equations, geometrically this means that we are looking for a line that passes through all the lattice, which is characteristic for concrete Diophantine equations. The solution of such a system of equations is a congruence

$$
x \equiv u \quad\left(\bmod \prod m_{i}\right)
$$

which we can interpret as a straight line in the form

$$
x-u-y \prod m_{i}=0 .
$$

In other words, considered congruences give us information about a line in various specific scales, and we're looking for its formula. For an illustration of this representation, an example follows.

Example 4.2. Consider system of congruences

$$
\begin{align*}
2 x-4 & \equiv 0 \quad(\bmod 8) \\
2 x-1 & \equiv 0 \quad(\bmod 3) \tag{4.2}\\
13 x-4 & \equiv 0 \quad(\bmod 5) .
\end{align*}
$$

We will construct the solution of the system of congruences according to the Theorem 2.1. We see, that $\operatorname{gcd}(8,3)=\operatorname{gcd}(3,5)=\operatorname{gcd}(8,5)=1$, so we can apply the Chinese remainder theorem. Denote $m=2^{3} \cdot 3 \cdot 5=120$. Then the number of system solutions is $n=n_{1} n_{2} n_{3}=2 \cdot 1 \cdot 1=2$.

Congruence $2 x-4 \equiv 0(\bmod 8)$ has solutions $r_{1}^{(1)}=2, r_{2}^{(1)}=6$, congruence $2 x-1 \equiv 0(\bmod 3)$ has a solution of $r^{(2)}=2$ and congruence $13 x-4 \equiv 0(\bmod 5)$ has a solution of $r^{(3)}=3$.

Solutions of congruences $\frac{120}{8} y \equiv 1(\bmod 8), \frac{120}{3} y \equiv 1(\bmod 3)$ and $\frac{120}{5} y \equiv 1$ $(\bmod 5)$ are $c_{1}=7, c_{2}=1$ and $c_{3}=4$, respectively.

Finally $u=15 \cdot 7 r^{(1)}+40 \cdot 1 r^{(2)}+24 \cdot 4 r^{(3)}=105 r^{(1)}+40 r^{(2)}+96 r^{(3)}$.

Table 2. Summary of the resulting two solutions.

	$r^{(1)}$	$r^{(2)}$	$r^{(3)}$	u
1.	2	2	3	$578 \equiv 98(\bmod 120)$
2.	6	2	3	$998 \equiv 38(\bmod 120)$

Figure 3. Geometric interpretation of the solution.

The solutions from Table 2 are represented in the Figure 3 by straight lines with equations

$$
\begin{aligned}
& x-120 y-98=0 \\
& x-120 y-38=0 .
\end{aligned}
$$

Finally we mention, that there exists one residue class containing all solutions in form $x \equiv 38(\bmod 60)$, represented by a straight line with equation $x-60 y-38=0$.

5. Conclusion

The paper introduces the historical background of the Chinese remainder theorem, focusing on one of its proofs. Section 2 presents the construction of a solution of a system of linear congruences, which gives the applicable solving method of the system (1.1). The main contribution is in section 3, consisting of three problems from number theory, leading to the Chinese remainder theorem. The article also deals with the geometric interpretation of the solution of the system of linear congruences. It introduces a different perspective of the solution, applying lattice points and the relationship between the congruence and the Diophantine equation. Illustrating examples supplement all of the theoretical results.

References

[1] E. Chen: The Chinese Remainder Theorem, February 3, 2015, article for olympiad students, 2015.
[2] C. Cullen: Astronomy and Mathematics in Ancient China: The 'Zhou Bi Suan Jing', UK: Cambridge University Press, 2007.
[3] V. Ďuriš, D. Gonda, A. Tirpáková, G. Pavlovičová: Teaching Congruences in Connection with Diophantine Equations, Education Sciences 11.9 (2021), pp. 1-14, DoI: https://doi.o rg/10.3390/educsci11090538.
[4] V. Ďuriš, T. ŠumnÝ: Diophantine Geometry in Space E2 and E3, TEM Journal 8.1 (2019), pp. 78-81, DOI: https://doi.org/10.18421/TEM81-10.
[5] V. de Guerre, R. A. Fairbairn: Automorphic Numbers, J. Recr. Math. 1 (1968), pp. 173179.
[6] A. P. Juškevič: History of mathematics in the Middle Ages, Prague: Academia, 1977.
[7] S. Kangsheng: Historical Development of the Chinese Remainder Theorem, Arch. Hist. Exact Sci. 38.4 (1988), pp. 285-305, DOI: https://doi.org/10.1007/bf00357063.
[8] J. C. Martzloff: Astronomy and Calendars - The Other Chinese Mathematics, 1st ed. Switzerland: Springer Nature, 2016.
[9] P. Ribenboim: The Little Book of Bigger Primes, 2nd ed. New York: Springer-Verlag, 2004.
[10] D. E. Smith: History of Mathematics, vol. I, US: Dover Publications, 1958.
[11] D. E. Smith: History of Mathematics, vol. II, US: Dover Publications, 1958.
[12] C. Smoryňski: Logical Number Theory I, Germany: Springer Verlag Berlin Heidelberg, 1991.
[13] D. Yinke: Ancient Chinese Inventions, China: China Intercontinental Press, 2005.

[^0]: Submitted: November 16, 2021
 Accepted: February 16, 2022
 Published online: February 17, 2022

