Enumeration of Fuss-skew paths

Toufik Mansour ${ }^{\text {a }}$, José Luis Ramírez ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, University of Haifa, 3498838 Haifa, Israel tmansour@univ.haifa.ac.il
${ }^{\mathrm{b}}$ Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia jlramirezr@unal.edu.co

Abstract

In this paper, we introduce the concept of a Fuss-skew path and then we study the distribution of the semi-perimeter, area, peaks, and corners statistics. We use generating functions to obtain our main results.

Keywords: Skew Dyck path, Fuss-Catalan numbers, generating function
AMS Subject Classification: 05A15, 05A19

1. Introduction

A skew Dyck path is a lattice path in the first quadrant that starts at the origin, ends on the x-axis, and consists of up-steps $U=(1,1)$, down-steps $D=(1,-1)$, and left-steps $L=(-1,-1)$, such that up and left steps do not overlap. The definition of skew Dyck path was introduced by Deutsch, Munarini, and Rinaldi [4]. Some additional results about skew Dyck path can be found in $[2,5,8,14]$.

Let s_{n} denote the number of skew Dyck path of semilength n, where the semilength of a path is defined as the number its up-steps. The sequence s_{n} is given by the combinatorial sum $s_{n}=\sum_{k=1}^{n}\binom{n-1}{k-1} c_{k}$, where $c_{n}=\frac{1}{n+1}\binom{2 n}{n}$ is the n-th Catalan number. The sequence s_{n} appears in OEIS as A002212 [15], and its first few values are

$$
1, \quad 1, \quad 3, \quad 10, \quad 36, \quad 137, \quad 543, \quad 2219, \quad 9285, \quad 39587 .
$$

One way to generalize the classical Dyck paths is to regard the length of an up-step U as a parameter. Given a positive number ℓ, an ℓ-Dyck path is a lattice path in the first quadrant from $(0,0)$ to $((\ell+1) n, 0)$ where $n \geq 0$ using up-steps

[^0]$U_{\ell}=(\ell, \ell)$ and down-steps $U=(1,-1)$. For $\ell=1$, we recover the classical Dyck path. The total number of ℓ-Dyck path with length $(\ell+1) n$ is given by $c_{\ell}(n)=\frac{1}{t n+1}\binom{(t+1) n}{n}($ cf. [1]). We will refer to ℓ-Dyck paths here as the "Fuss" case because the sequence $c_{\ell}(n)$ was first investigated by N. I. Fuss (see, for example, [7, 16] for several combinatorial interpretations for both the Catalan and Fuss-Catalan numbers).

Our focus in this paper is to introduce a Fuss analogue of the skew Dyck path. Given a positive integer ℓ, an ℓ-Fuss-skew path is a path in the first quadrant that starts at the origin, ends on the x-axis, and consists of up-steps $U_{\ell}=(\ell, \ell)$, downsteps $D=(1,-1)$, and left steps $L=(-1,-1)$, such that up and left steps do not overlap. Given an ℓ-Fuss-skew path P, we define the semilength of P, denote by $|P|$, as the number of up-steps of P. For example, Figure 1 shows a 3-Fuss-skew path of semilength 6 . It is clear that the 1-Fuss-skew paths coincide with the skew Dyck paths. Let $\mathbb{S}_{n, \ell}$ denote the set of all ℓ-Fuss-skew path of semilength n, and $\mathbb{S}_{\ell}=\bigcup_{n \geq 0} \mathbb{S}_{n, \ell}$. For example, Figure 4 shows all the paths in $\mathbb{S}_{2,2}$.

Figure 1. 3-Fuss-skew path of semilength 6.

2. Counting special steps

For a given path $P \in \mathbb{S}_{\ell}$, we use $u(P), d(P)$, and $t(P)$ to denote the number of up-steps, down-steps, and left-steps of P, respectively. In this section, we study the distribution of these parameters over \mathbb{S}_{ℓ}. Using these parameters, we define the generating function

$$
F_{\ell}(x, p, q):=\sum_{P \in \mathbb{S}_{\ell}} x^{u(P)} p^{d(P)} q^{t(P)}
$$

For simplicity, we use F_{ℓ} to denote the generating function $F_{\ell}(x, p, q)$.
Theorem 2.1. The generating function $F_{\ell}(x, p, q)$ satisfies the functional equation

$$
\begin{equation*}
F_{\ell}=1+x\left(p F_{\ell}+q\right)^{\ell-1}\left(p F_{\ell}^{2}+q\left(F_{\ell}-1\right)\right) . \tag{2.1}
\end{equation*}
$$

Proof. Let \mathcal{A}_{i} denote the ℓ-Fuss-skew paths whose last y-coordinate is i and let A_{i} denote the generating function defined by

$$
A_{i}=\sum_{P \in \mathcal{A}_{i}} x^{u(P)} p^{d(P)} q^{t(P)}
$$

A non-empty ℓ-Fuss-skew path can be uniquely decomposed as either $U_{\ell} T D P$ or $U_{\ell} T L$, where $U_{\ell} T$ is a lattice path in \mathcal{A}_{1} and P is an ℓ-Fuss-skew path (see Figure 2 for a graphical representation of this decomposition). From this decomposition, we obtain the functional equation (cf. [6])

$$
\begin{equation*}
F_{\ell}=1+x\left(p A_{1} F_{\ell}+q A_{1}\right) \tag{2.2}
\end{equation*}
$$

Figure 2. Decomposition of a ℓ-Fuss-skew path.
The paths of \mathcal{A}_{i} can be decomposed as $T D P$ or $T L$, where $T \in \mathcal{A}_{i+1}$ for $i=1, \ldots, \ell-2$ and $P \in \mathbb{S}_{\ell}$ (see Figure 3 for a graphical representation of this decomposition). Moreover, the paths of $\mathcal{A}_{\ell-1}$ are decomposed as $P_{1} D P_{2}$ or $P^{\prime} L$, where $P_{1}, P_{2}, P^{\prime} \in \mathbb{S}_{\ell}$ and P^{\prime} is non-empty.

Figure 3. Decomposition of the paths in \mathcal{A}_{i}.
From the above decompositions, we obtain the functional equations

$$
A_{i}=p A_{i+1} F_{\ell}+q A_{i+1}, \quad \text { for } \quad i=1, \ldots, \ell-2, \quad \text { and } \quad A_{\ell-1}=p F_{\ell}^{2}+q\left(F_{\ell}-1\right)
$$

Note that in these functional equations we do not consider the first up-step because it was considered in (2.2). Therefore, we have

$$
\begin{aligned}
F_{\ell} & =1+x\left(p F_{\ell}+q\right) A_{1}=1+x\left(p F_{\ell}+q\right)^{2} A_{2} \\
& =\cdots=1+x\left(p F_{\ell}+q\right)^{\ell-1}\left(p F_{\ell}^{2}+q\left(F_{\ell}-1\right)\right)
\end{aligned}
$$

Let $s_{\ell}(n, p, q)$ denote the joint distribution over $\mathbb{S}_{n, \ell}$ for the number of down and left steps, that is,

$$
s_{\ell}(n, p, q)=\sum_{P \in \mathbb{S}_{n, \ell}} p^{d(P)} q^{t(P)}
$$

It is clear that $F_{\ell}=\sum_{n \geq 0} s_{\ell}(n, p, q) x^{n}$. From the Lagrange inversion theorem (see for instance [13]), we give a combinatorial expression for the sequence $s_{\ell}(n, p, q)$.

Theorem 2.2. For $n \geq 1$, the sequence $s_{\ell}(n, p, q)$ is given by

$$
\frac{1}{n} \sum_{j=0}^{n} \sum_{k=0}^{j}\binom{n}{j}\binom{j}{k}\binom{n(\ell-1)}{n-2 j+k-1} p^{2 n-1-2 j}(2 p+q)^{k}(p+q)^{n(\ell-2)+2 j-k+1}
$$

In particular, the total number of ℓ-Fuss-skew paths of semilength n is

$$
s_{\ell}(n):=s_{\ell}(n, 1,1)=\frac{1}{n} \sum_{j=0}^{n} \sum_{k=0}^{j}\binom{n}{j}\binom{j}{k}\binom{n(\ell-1)}{n-2 j+k-1} 3^{k} 2^{n(\ell-2)+2 j-k+1} .
$$

Proof. The functional equation given in Theorem 2.1 can be written as

$$
Q_{\ell}=x\left(p\left(Q_{\ell}+1\right)+q\right)^{\ell-1}\left(p\left(Q_{\ell}+1\right)^{2}+q Q_{\ell}\right)
$$

where $Q_{\ell}=F_{\ell}-1$. From the Lagrange inversion theorem, we deduce

$$
\begin{aligned}
& {\left[x^{n}\right] H_{\ell}=\frac{1}{n}\left[z^{n-1}\right](p(z+1)+q)^{(\ell-1) n}\left(p(z+1)^{2}+q z\right)^{n}} \\
& =\frac{1}{n}\left[z^{n-1}\right] \sum_{s \geq 0}\binom{(\ell-1) n}{s}(p z)^{s}(p+q)^{(\ell-1) n-s}\left(p z^{2}+(2 p+1) z+p\right)^{n} \\
& =\frac{1}{n}\left[z^{n-1}\right] \sum_{s \geq 0}\binom{(\ell-1) n}{s}(p z)^{s}(p+q)^{(\ell-1) n-s} \\
& \quad \times \sum_{j=0}^{n} \sum_{k=0}^{j}\binom{n}{j}\binom{j}{k} p^{n-j}((2 p+q) z)^{k}\left(p z^{2}\right)^{j-k} \\
& =\frac{1}{n} \sum_{j=0}^{n} \sum_{k=0}^{j}\binom{n}{j}\binom{j}{k}\binom{n(\ell-1)}{n-2 j+k-1} p^{2 n-1-2 j}(2 p+q)^{k}(p+q)^{n(\ell-2)+2 j-k+1}
\end{aligned}
$$

For example, Figure 4 shows all 2-Fuss-skew paths of semilength 2 counted by the term $s_{\ell}(2, p, q)=3 p^{4}+6 p^{3} q+4 p^{2} q^{2}+p q^{3}$.

Figure 4. 2-Fuss-skew paths counted by $s_{\ell}(2, p, q)$.

From Theorem 2.2, we obtain that the total number of down-steps over the ℓ-Fuss-skew paths of semilength n is given by

$$
\begin{aligned}
& \left.\frac{\partial s_{\ell}(n, p, 1)}{\partial p}\right|_{p=1} \\
& =\frac{1}{n} \sum_{j=0}^{n} \sum_{k=0}^{j}\binom{n}{j}\binom{j}{k}\binom{n(\ell-1)}{n-2 j+k-1} 2^{(\ell-2) n+2 j-k} 3^{k-1}(3 n(\ell+2)+k-6 j-3) .
\end{aligned}
$$

Moreover, the total number of left-steps over the ℓ-Fuss-skew paths of semilength n is

$$
\begin{aligned}
& \left.\frac{\partial s_{\ell}(n, 1, q)}{\partial q}\right|_{q=1} \\
& =\frac{1}{n} \sum_{j=0}^{n} \sum_{k=0}^{j}\binom{n}{j}\binom{j}{k}\binom{n(\ell-1)}{n-2 j+k-1} 2^{(\ell-2) n+2 j-k} 3^{k-1}(3 n(\ell-2)-k+6 j+3)
\end{aligned}
$$

Equation (2.1) can be explicitly solved for $\ell=1$. In this case, we obtain the generating function

$$
F_{1}(x, p, q)=\frac{1-q x-\sqrt{(1-q x)(1-(4 p+q) x)}}{2 p x}
$$

Moreover, the generating functions for the total number of down-steps (A026388) and left steps (A026376) over the skew-Dyck paths are respectively

$$
\frac{1-4 x+3 x^{2}-\sqrt{1-6 x+5 x^{2}}(1-x)}{2 x \sqrt{1-6 x+5 x^{2}}}
$$

and

$$
\frac{1-3 x-\sqrt{1-6 x+5 x^{2}}}{2 \sqrt{1-6 x+5 x^{2}}}
$$

Notice that we recover some of the results of [5].
Finally, Table 1 shows the first few values of the total number of ℓ-Fuss-skew paths of semilength n.

Table 1. Values of $s_{\ell}(n, 1,1)$ for $1 \leq \ell \leq 5, n=1, \ldots, 7$.

$\ell \backslash n$	1	2	3	4	5	6	7
$\ell=1$	1	3	10	36	137	543	2219
$\ell=2$	2	14	118	1114	11306	120534	1331374
$\ell=3$	4	64	1296	29888	745856	19614464	535394560
$\ell=4$	8	288	13568	734720	43202560	2681634816	172936069120

2.1. The width of a path

For a given path $P \in \mathbb{S}_{\ell}$, we define the width of P, denoted by $\nu(P)$, as the x coordinate of the last point of P. For example, the width of the path given in Figure 1 is 20 . We define the generating function

$$
G_{\ell}(x, y):=G_{\ell}=\sum_{P \in \mathbb{S}_{\ell}} x^{u(P)} y^{\nu(P)}
$$

Note that each U_{ℓ} and D step of a path increases the width by ℓ units and 1 unit, respectively, while the left-step L decreases the width by 1 unit. Therefore, we have the functional equation

$$
\begin{align*}
G_{\ell} & =1+x y^{\ell}\left(y G_{\ell}+y^{-1}\right)^{\ell-1}\left(y G_{\ell}^{2}+y^{-1}\left(G_{\ell}-1\right)\right) \\
& =1+x\left(y^{2} G_{\ell}+1\right)^{\ell-1}\left(y^{2} G_{\ell}^{2}+\left(G_{\ell}-1\right)\right) \tag{2.3}
\end{align*}
$$

Let $g_{\ell}(n, y)$ denote the distribution over $\mathbb{S}_{n, \ell}$ for the width parameter, i.e.,

$$
g_{\ell}(n, y)=\sum_{P \in \mathbb{S}_{n, \ell}} y^{\nu(P)}
$$

From the functional equation (2.3) and the Lagrange inversion theorem, we obtain the following theorem.

Theorem 2.3. For $n \geq 1$, the sequence $g_{\ell}(n, y)$ is given by

$$
\frac{1}{n} \sum_{j=0}^{n} \sum_{k=0}^{j}\binom{n}{j}\binom{j}{k}\binom{n(\ell-1)}{n-2 j+k-1} y^{4(n-j)-2}\left(y^{2}+1\right)^{n(\ell-2)+2 j-k+1}\left(2 y^{2}+1\right)^{k}
$$

For example, $g_{2}(2, y)=y^{2}+4 y^{4}+6 y^{6}+3 y^{8}$. This polynomial can be found from the paths in Figure 4. For $\ell=1$, we obtain the explicit generating function with respect to the width of a skew Dyck path.

$$
G_{1}(x, y)=\frac{1-x-\sqrt{(1-x)\left(1-x-4 x y^{2}\right)}}{2 x y^{2}}
$$

3. Number of peaks

For a given path $P \in \mathbb{S}_{\ell}$, we define the peaks of P, denoted by $\rho(P)$, as the number of subpaths of the form $U_{\ell} D$ (for counting peaks in a Dyck path, for example, see $[9,11])$. For example, the number of peaks of the path given in Figure 1 is 5 . We define the generating function

$$
P_{\ell}(x, y):=P_{\ell}=\sum_{P \in \mathbb{S}_{\ell}} x^{u(P)} y^{\rho(P)}
$$

Theorem 3.1. The generating function $P_{\ell}(x, y)$ satisfies the functional equation

$$
P_{\ell}=1+x\left(P_{\ell}+1\right)^{\ell-1}\left(\left(P_{\ell}-1+y\right) P_{\ell}+\left(P_{\ell}-1\right)\right)
$$

Proof. Let C_{i} denote the generating function defined by $C_{i}=\sum_{P \in \mathcal{A}_{i}} x^{u(P)} y^{\rho(P)}$. From the decomposition given for the ℓ-Fuss-skew paths, we have the equation $P_{\ell}=1+x\left(C_{1} P_{\ell}+C_{1}\right)$. Moreover,

$$
\begin{aligned}
C_{i} & =C_{i+1} P_{\ell}+C_{i+1}, \quad \text { for } i=1, \ldots, \ell-2, \text { and } \\
C_{\ell-1} & =\left(P_{\ell}-1+y\right) P_{\ell}+\left(P_{\ell}-1\right)
\end{aligned}
$$

From these relations, we obtain the desired result.
Let $p_{\ell}(n, y)$ denote the distribution over \mathbb{S}_{n} for the peaks statistic, i.e.,

$$
p_{\ell}(n, y)=\sum_{P \in \mathbb{S}_{n}} y^{\rho(P)}
$$

From the Lagrange inversion theorem, we deduce the following result.
Theorem 3.2. For $n \geq 1$, we have

$$
p_{\ell}(n, y)=\frac{1}{n} \sum_{j=0}^{n} \sum_{k=0}^{j}\binom{n}{j}\binom{j}{k}\binom{n(\ell-1)}{n-2 j+k-1} 2^{n(\ell-2)+2 j-k+1} y^{n-j}(y+2)^{k}
$$

In particular, the total number of peaks in all ℓ-Fuss-skew paths of semilength n is

$$
\begin{aligned}
& \left.\frac{\partial p_{\ell}(n, y)}{\partial y}\right|_{y=1} \\
& =\frac{1}{n} \sum_{j=0}^{n} \sum_{k=0}^{j}\binom{n}{j}\binom{j}{k}\binom{n(\ell-1)}{n-2 j+k-1} 2^{n(\ell-2)+2 j-k+1} 3^{k-1}(3(n-j)+k)
\end{aligned}
$$

For example, $p_{2}(2, y)=8 y+6 y^{2}$. This polynomial can be found from the paths in Figure 4. For $\ell=1$ we obtain the generating function

$$
P_{1}(x, y)=\frac{1-x y-\sqrt{(1-x y)^{2}-4(1-x) x}}{2 x}
$$

Moreover, the generating function for the total number of peaks is

$$
\frac{1-x-\sqrt{1-6 x+5 x^{2}}}{2 \sqrt{1-6 x+5 x^{2}}}
$$

Table 2 shows the first few values of the number of peaks in ℓ-Fuss-skew paths of semilength n.

Table 2. Total number of peaks in \mathbb{S}_{ℓ}.

$\ell \backslash n$	1	2	3	4	5	6	7
$\ell=1$	1	4	17	75	339	1558	7247
$\ell=2$	2	20	226	2696	33138	415164	5270850
$\ell=3$	4	96	2672	78848	2400896	74568704	2347934464
$\ell=4$	8	448	29440	2054144	147986432	10878189568	810813030400

4. Number of corners

For a given path $P \in \mathbb{S}_{\ell}$, we define a corner of P as a right angle caused by two consecutive steps in the graph of P. For example, the path given in Figure 5 has 4 corners, depicted in red. This statistic has been studied in other combinatorial structures as integer partitions [3], compositions [10], and bargraphs [12].

Figure 5. Corners of a path.
Let $\tau(P)$ denote the number of corners of P. We define the bivariate generating function

$$
W_{\ell}(x, y):=W_{\ell}=\sum_{P \in \mathbb{S}_{\ell}} x^{u(P)} y^{\tau(P)}
$$

In this section, we analyze the cases $\ell=1$ and $\ell=2$. We leave as an open question the case $\ell \geq 3$.

Theorem 4.1. The generating function $W_{1}(x, y)$ satisfies the functional equation

$$
x y(1+y) W_{1}^{3}-\left(2-x\left(2-y^{2}\right)\right) W_{1}^{2}+3(1-x) W_{1}+x-1=0 .
$$

Proof. Let \mathcal{D} and \mathcal{L} denote the skew Dyck paths whose last step is a down-step or a left-step, respectively. Let D and L denote the generating functions defined by

$$
D=\sum_{P \in \mathcal{D}} x^{u(P)} y^{\tau(P)} \quad \text { and } \quad L=\sum_{P \in \mathcal{L}} x^{u(P)} y^{\tau(P)}
$$

A non-empty skew Dyck path can be uniquely decomposed as either $U T_{1} L$ or $U T_{2} D T_{3}$, where T_{1}, T_{2}, and T_{3} are lattice paths in \mathbb{S}_{1} with T_{1} non-empty. In the first case, T_{1} has two options: the last step is a down-step or a left step, see Figure 6. Then, this case contributes to the generating function the term $x(y D+L)$.

Figure 6. Decomposition of a skew Dyck path.

On the other hand, T_{2} can be an empty path or a path in \mathcal{D} or \mathcal{L}. If T_{3} is empty, then this case contributes to the generating function the term $x(y+D+L y)$. On the other hand, if the path T_{3} is non-empty, then this case contributes to the generating function the term $x(y+D+y L) y\left(W_{1}-1\right)$, see Figure 7. Summarizing these cases, we obtain the functional equation

$$
W_{1}=1+x(y D+L)+x(y+D+y L)\left(1+y\left(W_{1}-1\right)\right) .
$$

From a similar argument, we obtain the equations

$$
D=x(y+D+y L)(1+y D) \quad \text { and } \quad L=x(y D+L)+x(y+D+y L)(y L)
$$

Figure 7. Decomposition of a skew Dyck path.

Using the Gröbner basis on the polynomial equations for W_{1}, D, and L, we obtain the desired result.

We can use a symbolic software computation to obtain the first few terms of the formal power series of $W_{1}(x, y)$ as follows:

$$
\begin{aligned}
W_{1}(x, y)= & 1+x y+x^{2}\left(y+y^{2}+y^{3}\right)+x^{3}\left(y+2 y^{2}+4 y^{3}+2 y^{4}+y^{5}\right) \\
& +x^{4}\left(y+3 y^{2}+9 y^{3}+9 y^{4}+10 y^{5}+3 y^{6}+y^{7}\right)+\cdots
\end{aligned}
$$

From the equation given in Theorem 4.1, we obtain

$$
3 x S^{3}(x)+6 x S^{2}(x) K(x)-2 x S^{2}(x)-2(2-x) S(x) K(x)+3(1-x) K(x)=0
$$

where $K(x)$ is the generating function for the total number of corners in skew Dyck paths and $S(x)=\left(1-x-\sqrt{1-6 x+5 x^{2}}\right) /(2 x)$ is the generating function for the number of the skew Dyck paths. Solving the above equation, we obtain the generating function

$$
\begin{aligned}
K(x) & =\frac{2(1-x)(3+x) x}{(1-x)(3-2 x)(1-5 x)+\left(3-11 x+4 x^{2}\right) \sqrt{1-6 x+5 x^{2}}} \\
& =x+6 x^{2}+30 x^{3}+145 x^{4}+695 x^{5}+3327 x^{6}+15945 x^{7}+\cdots .
\end{aligned}
$$

Theorem 4.2. The generating function $W_{2}(x, y)$ satisfies the functional equation

$$
\begin{aligned}
& x^{2} y^{4}(1+y)^{3} W_{2}^{6}-x y^{2}(1+y)^{2}\left(1-x\left(1+6 y+y^{2}-3 y^{3}\right)\right) W_{2}^{5} \\
& +x y\left(-4-7 y+3 y^{3}+x(1+y)^{2}\left(4+9 y-11 y^{2}-6 y^{3}+3 y^{4}\right)\right) W_{2}^{4} \\
& +\left(4-2 x(1+y)^{2}\left(4-7 y+y^{2}\right)-x^{2}(1+y)^{2}\left(-4+2 y+21 y^{2}-8 y^{3}-5 y^{4}+y^{5}\right)\right) W_{2}^{3} \\
& +\left(-12-x^{2}(1+y)^{2}\left(8+4 y-18 y^{2}+4 y^{3}+y^{4}\right)-2 x\left(-10-9 y+6 y^{2}+6 y^{3}+y^{4}\right)\right) W_{2}^{2} \\
& +\left(12+x^{2}(1+y)^{2}\left(5+4 y-7 y^{2}+y^{3}\right)+x\left(-17-16 y+2 y^{2}+4 y^{3}+3 y^{4}\right)\right) W_{2} \\
& +\left(-4+x^{2}(1+y)^{2}\left(-1-y+y^{2}\right)+x\left(5+4 y-y^{4}\right)\right)=0 .
\end{aligned}
$$

Proof. Let \mathcal{D}_{2} and \mathcal{L}_{2} denote the 2-Fuss-skew paths whose last step is a down-step or a left-step, respectively. Let D_{2} and L_{2} denote the generating functions defined by

$$
D_{2}=\sum_{P \in \mathcal{D}_{2}} x^{u(P)} y^{\tau(P)} \quad \text { and } \quad L_{2}=\sum_{P \in \mathcal{L}_{2}} x^{u(P)} y^{\tau(P)}
$$

From a similar argument as in the proof of Theorem 4.1, we obtain the system of polynomial equations

$$
\begin{aligned}
W_{2}= & 1+x\left(\left(y+y D_{2}+L_{2}\right)\left(1+y^{2} D_{2}+y L_{2}\right)\left(1+y\left(W_{2}-1\right)\right)+\left(D_{2}+y L_{2}\right)\right. \\
& \left.+\left(D_{2}+y L_{2}\right) y\left(1+y\left(W_{2}-1\right)\right)+\left(y+y D_{2}+L_{2}\right)\left(y+y D_{2}+y^{2} L_{2}\right)\right) \\
D_{2}= & x\left(\left(y+y D_{2}+L_{2}\right)\left(1+y^{2} D_{2}+y L_{2}\right) y D_{2}+\left(D_{2}+y L_{2}\right)+\left(D_{2}+y L_{2}\right) y\left(y D_{2}\right)\right. \\
& \left.+\left(y+y D_{2}+L_{2}\right)\left(y+y D_{2}+y^{2} L_{2}\right)\right) \\
L_{2}= & x\left(\left(y+y D_{2}+L_{2}\right)\left(1+y^{2} D_{2}+y L_{2}\right)\left(1+y L_{2}\right)+\left(D_{2}+y L_{2}\right) y\left(1+y L_{2}\right)\right) .
\end{aligned}
$$

By using the Gröbner basis, we obtain the desired result.

Expanding with Mathematica the functional equation for W_{2}, we find

$$
\begin{aligned}
W_{2}(x, y)= & 1+\left(y+y^{2}\right) x+\left(y+3 y^{2}+5 y^{3}+4 y^{4}+y^{5}\right) x^{2} \\
& +\left(y+5 y^{2}+16 y^{3}+27 y^{4}+33 y^{5}+25 y^{6}+9 y^{7}+2 y^{8}\right) x^{3}+\cdots .
\end{aligned}
$$

Moreover, the first few terms of the total number of corners in \mathbb{S}_{2} are
$3 x+43 x^{2}+561 x^{3}+7209 x^{4}+92703 x^{5}+1197151 x^{6}+15532917 x^{7}+202428373 x^{8}+\cdots$.
From Figure 4 one can verify that there are 43 corners over all paths in $\mathbb{S}_{2,2}$.

5. Other generalization

Let \mathbb{H}_{ℓ} denote the skew Dyck paths where left steps are below the line $y=\ell$. In particular, \mathbb{H}_{0} are the Dyck path and \mathbb{H}_{∞} are the skew Dyck path. We define the generating function

$$
H_{\ell}(x, p, q):=\sum_{P \in \mathbb{H}_{\ell}} x^{u(P)} p^{d(P)} q^{t(P)}
$$

For simplicity, we use H_{ℓ} to denote the generating function $H_{\ell}(x, p, q)$.
Theorem 5.1. For $\ell \geq 1$, we have

$$
\begin{equation*}
H_{\ell}=1+q x\left(H_{\ell-1}-1\right)+p x H_{\ell-1} H_{\ell} \tag{5.1}
\end{equation*}
$$

with the initial value $H_{0}=\frac{1-\sqrt{1-4 p x}}{2 p x}$.
Proof. A non-empty skew Dyck path in \mathbb{H}_{ℓ} can be decomposed as $U T_{1} L$ or $U T_{2} D T_{3}$, where $T_{1}, T_{2} \in \mathbb{H}_{\ell-1}$ with T_{1} a non-empty path, and $T_{3} \in \mathbb{H}_{\ell}$. From this decomposition follows the functional equation.

Recall that the m th Chebyshev polynomial of the second kind satisfies the recurrence relation $U_{m}(t)=2 t U_{m-1}(t)-U_{m-2}(t)$ with $U_{0}(t)=1$ and $U_{1}(t)=2 t$. Thus by induction on ℓ and Theorem 5.1, we obtain the following result.

Theorem 5.2. Let $t=\frac{1+q x}{2 \sqrt{x(p+q-p q x)}}$ and $r=\sqrt{x(p+q-p q x)}$. The generating function H_{ℓ} is given by

$$
\frac{\left(q x U_{n-1}(t)-r U_{n-2}(t)\right) C(p x)+(1-q x) U_{n-1}(t)}{U_{n-1}(t)-r U_{n-2}(t)-p x U_{n-1}(t) C(p x)}
$$

where U_{m} is the mth Chebyshev polynomial of the second kind and $C(x)=\frac{1-\sqrt{1-4 x}}{2 x}$ the generating function for the Catalan numbers $\frac{1}{n+1}\binom{2 n}{n}$.

The generating functions for the total number of skew Dyck path in \mathbb{H}_{ℓ} for $\ell=1,2,3$ are

$$
\begin{aligned}
& H_{1}(x, 1,1)=\frac{3-2 x-\sqrt{1-4 x}}{1+\sqrt{1-4 x}} \\
& H_{2}(x, 1,1)=\frac{1+2 x-2 x^{2}-(1-2 x) \sqrt{1-4 x}}{1-x-2(1-x) x+(1+x) \sqrt{1-4 x}} \\
& H_{3}(x, 1,1)=\frac{1-3 x+7 x^{2}-4 x^{3}+\left(1+x-3 x^{2}\right) \sqrt{1-4 x}}{1-4 x+2 x^{3}+\left(1+2 x^{2}\right) \sqrt{1-4 x}} .
\end{aligned}
$$

Acknowledgements. We thanks Mark Shattuck for his comments on the previous version of the paper.

References

[1] J.-C. Aval: Multivariate Fuss-Catalan numbers, Discrete Math. 308 (2008), pp. 4660-4669, DOI: https://doi.org/10.1016/j.disc.2007.08.100.
[2] J. L. Baril, J. L. Ramírez, L. M. Simbaqueba: Counting prefixes of skew Dyck paths, J. Integer Seq. Article 21.8.2 (2021).
[3] A. Blecher, C. Brennan, A. Knopfmacher, T. Mansour: Counting corners in partitions, Ramanujan J. 39 (2016), pp. 201-224, DOI: https://doi.org/10.1007/s11139-014-9666-4.
[4] E. Deutsch, E. Munarini, S. Rinaldi: Skew Dyck paths, J. Statist. Plann. Inference 140 (2010), pp. 2191-2203, DOI: https://doi.org/10.1016/j.jspi.2010.01.015.
[5] E. Deutsch, E. Munarini, S. Rinaldi: Skew Dyck paths, area, and superdiagonal bargraphs, J. Statist. Plann. Inference 140 (2010), pp. 1550-1526, DOI: https://doi.org/10.1016/j.j spi.2009.12.013.
[6] P. Flajolet, R. Sedgewick: Analytic Combinatorics, Cambridge University Press, 2009.
[7] S. Heubach, N. Y. Li, T. Mansour: Staircase tilings and k-Catalan structures, Discrete Math. 308 (2008), pp. 5954-5964, DOI: https://doi.org/10.1016/j.disc.2007.11.012.
[8] Q. L. Lu: Skew Motzkin paths, Acta Math. Sin. (Engl. Ser.) 33 (2017), pp. 657-667, DOI: https://doi.org/10.1007/s10114-016-5292-y.
[9] T. Mansour: Counting peaks at height k in a Dyck path, J. Integer Seq. Article 02.1.1 (2002).
[10] T. Mansour, A. S. Shabani, M. Shattuck: Counting corners in compositions and set partitions presented as bargraphs, J. Difference Equ. Appl. 24 (2018), pp. 992-1015, Doi: https://doi.org/10.1080/10236198.2018.1444760.
[11] T. Mansour, M. Shattuck: Counting Dyck paths according to the maximum distance between peaks and valleys, J. Integer Seq. Article 12.1.1 (2012).
[12] T. Mansour, G. Yildirim: Enumerations of bargraphs with respect to corner statistics, Appl. Anal. Discrete Math. 14 (2020), pp. 221-238, DOI: https://dx.doi.org/10.2298/AADM18110 1009M.
[13] D. Merlini, R. Sprugnoli, M. C. Verri: Lagrange inversion: when and how, Acta Appl Math. 94 (2006), pp. 233-249, DOI: https://doi.org/10.1007/s10440-006-9077-7.
[14] H. Prodinger: Partial skew Dyck paths - A kernel method approach, arXiv:2108.09785v1 (2021), DOI: https://arxiv.org/abs/2108.09785v2.
[15] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Doi: https://oeis.org/.
[16] R. Stanley: Catalan Numbers, Cambridge University Press, 2015.

[^0]: Submitted: December 22, 2021
 Accepted: January 14, 2022
 Published online: January 29, 2022

