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Abstract. Let 𝑃𝑘 be the 𝑘th Padovan number and 𝐸𝑘 be the 𝑘th Perrin
number. In this paper, we study the Padovan and Perrin numbers of the
form 𝑥𝑎 ± 𝑥𝑏 + 1. In particular, we first find an upper bound for 𝑎, 𝑏, 𝑛 as
a function of 𝑥. Moreover, we determine all Padovan numbers and Perrin
numbers of the form 𝑥𝑎 ± 𝑥𝑏 + 1 such that 0 ≤ 𝑏 < 𝑎 and 2 ≤ 𝑥 ≤ 20.
Keywords: Padovan numbers, Perrin numbers Linear form in logarithms, re-
duction method
AMS Subject Classification: 11B39, 11D45, 11J86

1. Introduction
Let U = {𝑈𝑛}𝑛≥0 be some interesting sequence of positive integers. The problem of
finding 𝑈𝑛 in a particular form has a very rich history. In 2006, Bugeaud, Mignotte
and Siksek [2] proved that the only perfect power Fibonacci numbers are 0, 1, 8, 144
and the only perfect powers among Lucas numbers are 1, 4. Luca and Szalay [6]
showed that there are only finitely many Fibonacci numbers of the form 𝑝𝑎 ±𝑝𝑏 +1,
where 𝑝 is a number and 𝑎 and 𝑏 are positive integers with max{𝑎, 𝑏} ≥ 2. In [8],
Marques and Togbé determined all the Fibonacci and Lucas numbers of the form
2𝑎 + 3𝑏 + 5𝑐, where 𝑎, 𝑏 and 𝑐 are nonnegative integers with 𝑐 ≥ max{𝑎, 𝑏}. In [1],
Bravo and Luca determined all the generalized Fibonacci numbers which are some
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powers of two. Very recently, Qu and Zeng [10] determined all the Pell and Pell-
Lucas numbers that are of the form −2𝑎 −3𝑏 +5𝑐, where 𝑎, 𝑏 and 𝑐 are nonnegative
integers with some restrictions. For more related results, one can see [3–5, 7, 12].

In this paper, we continue this discussion to the sequences of Padovan, and
Perrin numbers, which we define below. The Padovan sequence {𝑃𝑚}𝑚≥0 is defined
by

𝑃𝑚+3 = 𝑃𝑚+1 + 𝑃𝑚,

for 𝑚 ≥ 0, where 𝑃0 = 𝑃1 = 𝑃2 = 1. This is the sequence A000931 in the OEIS
[14]. A few terms of this sequence are

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, · · ·

Let {𝐸𝑚}𝑚≥0 be the Perrin sequence given by

𝐸𝑚+3 = 𝐸𝑚+1 + 𝐸𝑚,

for 𝑚 ≥ 0, where 𝐸0 = 3, 𝐸1 = 0 and 𝐸2 = 2. Its first few terms are

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, 644, · · ·

It is the sequence A001608 in the OEIS [14].
Now, we are interested in studying the Padovan and Perrin numbers which are

in the form of 𝑥𝑎 ± 𝑥𝑏 + 1. More precisely, we consider the following equations

𝑃𝑛 = 𝑥𝑎 ± 𝑥𝑏 + 1 (1.1)
𝐸𝑛 = 𝑥𝑎 ± 𝑥𝑏 + 1 (1.2)

and prove the following results.

Theorem 1.1. All the solutions of Diophantine equation (1.1) satisfy

𝑎 < 𝑛 < 2.58 · 1031(log 𝑥)4. (1.3)

Furthermore, the only solutions of Diophantine equation (1.1) in positive integers
(𝑛, 𝑥, 𝑎, 𝑏) with 0 ≤ 𝑏 < 𝑎 and 2 ≤ 𝑥 ≤ 20 are

𝑃3 = 𝑃4 = 21 − 20 + 1

𝑃5 = 22 − 21 + 1 = 31 − 30 + 1

𝑃6 = 22 − 20 + 1 = 41 − 40 + 1

𝑃7 = 23 − 22 + 1 = 51 − 50 + 1

𝑃8 = 23 − 21 + 1 = 32 − 31 + 1 =
71 − 70 + 1

𝑃9 = 24 − 23 + 1 = 32 − 30 + 1 =
91 − 90 + 1

𝑃10 = 121 − 120 + 1

𝑃11 = 24 − 20 + 1 = 42 − 40 + 1 =
161 − 160 + 1

𝑃12 = 52 − 51 + 1

𝑃15 = 26 − 24 + 1 = 43 − 42 + 1 =
72 − 70 + 1

𝑃16 = 27 − 26 + 1
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and

𝑃6 = 21 + 20 + 1

𝑃7 = 31 + 30 + 1

𝑃8 = 22 + 21 + 1 = 51 + 50 + 1

𝑃9 = 71 + 70 + 1

𝑃10 = 101 + 100 + 1

𝑃12 = 24 + 22 + 1 = 42 + 41 + 1 =
191 + 190 + 1

𝑃14 = 25 + 22 + 1 = 33 + 33 + 1

𝑃15 = 25 + 24 + 1

𝑃19 = 53 + 52 + 1.

Theorem 1.2. All the solutions of Diophantine equation (1.2) satisfy

𝑛 ≤ 3.35 · 1030(log 𝑥)4. (1.4)

Furthermore, the only solutions of Diophantine equation (1.2) in positive integers
(𝑛, 𝑥, 𝑎, 𝑏) with 0 ≤ 𝑏 < 𝑎 and 2 ≤ 𝑥 ≤ 20 are

𝐸0 = 22 − 21 + 1 = 31 − 30 + 1

𝐸2 = 21 − 20 + 1

𝐸3 = 22 − 21 + 1 = 31 − 30 + 1

𝐸4 = 22 − 21 + 1

𝐸5 = 𝐸6 = 23 −22 +1 = 51 −50 +1

𝐸7 = 22 − 21 + 1 = 32 − 31 + 1 =
71 − 70 + 1

𝐸8 = 101 − 100 + 1

𝐸9 = 121 − 120 + 1

𝐸10 = 25 − 24 + 1 = 171 − 170 + 1

𝐸12 = 25 − 22 + 1

and

𝐸5 = 𝐸6 = 31 + 30 + 1

𝐸7 = 22 + 21 + 1 = 51 + 50 + 1

𝐸8 = 23 + 20 + 1 = 81 + 80 + 1

𝐸9 = 101 + 100 + 1

𝐸10 = 22 + 21 + 1 = 151 + 150 + 1

𝐸11 = 201 + 200 + 1

𝐸12 = 31 + 30 + 1

𝐸14 = 72 + 70 + 1.

The outline of this paper is as follows. In section 2, we recall some results that
are useful for the proofs of Theorem 1.1 and Theorem 1.2. Particularly, we recall
some of the properties of Padovan and Perrin numbers, a result of Matveev [9]
that we will use to obtain lower bounds for linear forms in logarithms of algebraic
numbers, de Weger reduction method [15]. In the last two sections, we will com-
pletely prove Theorem 1.1 and Theorem 1.2 using Baker method and the reduction
method.
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2. Auxiliary results
First, we recall some facts and properties of the Padovan and the Perrin sequences
which will be used later. One can see [11]. The characteristic equation

Ψ(𝑥) := 𝑥3 − 𝑥− 1 = 0

has roots 𝛼, 𝛽, 𝛾 = 𝛽, where

𝛼 = 𝑟1 + 𝑟2
6 , 𝛽 = −𝑟1 − 𝑟2 + 𝑖

√
3(𝑟1 − 𝑟2)

12 ,

and
𝑟1 = 3

√︁
108 + 12

√
69 and 𝑟2 = 3

√︁
108 − 12

√
69.

Let

𝑐𝛼 = (1 − 𝛽)(1 − 𝛾)
(𝛼− 𝛽)(𝛼− 𝛾) = 1 + 𝛼

−𝛼2 + 3𝛼+ 1 ,

𝑐𝛽 = (1 − 𝛼)(1 − 𝛾)
(𝛽 − 𝛼)(𝛽 − 𝛾) = 1 + 𝛽

−𝛽2 + 3𝛽 + 1 ,

𝑐𝛾 = (1 − 𝛼)(1 − 𝛽)
(𝛾 − 𝛼)(𝛾 − 𝛽) = 1 + 𝛾

−𝛾2 + 3𝛾 + 1 = 𝑐𝛽 .

Binet’s formula for 𝑃𝑛 is

𝑃𝑛 = 𝑐𝛼𝛼
𝑛 + 𝑐𝛽𝛽

𝑛 + 𝑐𝛾𝛾
𝑛, for all 𝑛 ≥ 0 (2.1)

and Binet’s formula for 𝐸𝑛 is

𝐸𝑛 = 𝛼𝑛 + 𝛽𝑛 + 𝛾𝑛, for all 𝑛 ≥ 0. (2.2)

Numerically, we have

1.32 < 𝛼 < 1.33,
0.86 < |𝛽| = |𝛾| < 0.87,
0.72 < 𝑐𝛼 < 0.73,
0.24 < |𝑐𝛽 | = |𝑐𝛾 | < 0.25.

It is easy to check that
|𝛽| = |𝛾| = 𝛼−1/2.

Further, using induction on 𝑛, we can prove that

𝛼𝑛−2 ≤ 𝑃𝑛 ≤ 𝛼𝑛−1, for all 𝑛 ≥ 4 (2.3)

and
𝛼𝑛−2 ≤ 𝐸𝑛 ≤ 𝛼𝑛+1, for all 𝑛 ≥ 2. (2.4)
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Let K := Q(𝛼, 𝛽) be the splitting field of the polynomial Ψ over Q. Then, [K :
Q] = 6. The Galois group of K over Q is given by

Gal(K/Q) ∼= {(1), (𝛼𝛽), (𝛼𝛾), (𝛽𝛾), (𝛼𝛽𝛾), (𝛼𝛾𝛽)} ∼= 𝑆3.

The next tools are related to the transcendental approach to solve Diophantine
equations. For any non-zero algebraic number 𝛾 of degree 𝑑 over Q, whose minimal
polynomial over Z is 𝑎

∏︀𝑑
𝑗=1
(︀
𝑋 − 𝛾(𝑗))︀, we denote by

ℎ(𝛾) = 1
𝑑

(︃
log |𝑎| +

𝑑∑︁

𝑗=1
log max

(︁
1,
⃒⃒
𝛾(𝑗)⃒⃒)︁

)︃

the usual absolute logarithmic height of 𝛾.
To prove Theorems 1.1 and 1.2, we use lower bounds for linear forms in loga-

rithms to bound the index 𝑛 appearing in equations (1.1) and (1.2). We need the
following general lower bound for linear forms in logarithms due to Matveev [9].

Lemma 2.1. Let 𝛾1, . . . , 𝛾𝑠 be a real algebraic numbers and let 𝑏1, . . . , 𝑏𝑠 be nonzero
rational integer numbers. Let 𝐷 be the degree of the number field Q(𝛾1, . . . , 𝛾𝑠) over
Q and let 𝐴𝑗 be a positive real number satisfying

𝐴𝑗 = max{𝐷ℎ(𝛾), |log 𝛾|, 0.16} for 𝑗 = 1, . . . , 𝑠.

Assume that
𝐵 ≥ max{|𝑏1|, . . . , |𝑏𝑠|}.

If 𝛾𝑏1
1 · · · 𝛾𝑏𝑠

𝑠 ̸= 1, then

|𝛾𝑏1
1 · · · 𝛾𝑏𝑠

𝑠 − 1| ≥ exp(−𝐶(𝑠,𝐷)(1 + log𝐵)𝐴1 · · ·𝐴𝑠),

where 𝐶(𝑠,𝐷) := 1.4 · 30𝑠+3 · 𝑠4.5 ·𝐷2(1 + log𝐷).

After getting the upper bound of 𝑛 which is generally too large, the next step
is to reduce it. For this reduction, we present a variant of the reduction method of
Baker and Davenport due to de Weger [15]).

Let 𝜗1, 𝜗2, 𝛽 ∈ R be given, and let 𝑥1, 𝑥2 ∈ Z be unknowns. Let

Λ = 𝛽 + 𝑥1𝜗1 + 𝑥2𝜗2. (2.5)

Let 𝑐, 𝛿 be positive constants. Set 𝑋 = max{|𝑥1|, |𝑥2|}. Let 𝑋0, 𝑌 be positive.
Assume that

|Λ| < 𝑐 · exp(−𝛿 · 𝑌 ), (2.6)
𝑌 ≤ 𝑋 ≤ 𝑋0. (2.7)

When 𝛽 = 0 in (2.5), we get

Λ = 𝑥1𝜗1 + 𝑥2𝜗2.
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Put 𝜗 = −𝜗1/𝜗2. We assume that 𝑥1 and 𝑥2 are coprime. Let the continued
fraction expansion of 𝜗 be given by

[𝑎0, 𝑎1, 𝑎2, . . .]

and let the 𝑘th convergent of 𝜗 be 𝑝𝑘/𝑞𝑘 for 𝑘 = 0, 1, 2, . . .. We have the following
results.

Lemma 2.2 ([15, Lemma 3.2]). Let

𝐴 = max
0≤𝑘≤𝑌0

𝑎𝑘+1,

where
𝑌0 = −1 + log(

√
5𝑋0 + 1)

log
(︁

1+
√

5
2

)︁ .

If (2.6) and (2.7) hold for 𝑥1, 𝑥2 and 𝛽 = 0, then

𝑌 <
1
𝛿

log
(︂
𝑐(𝐴+ 2)𝑋0

|𝜗2|

)︂
.

When 𝛽 ̸= 0 in (2.5), put 𝜗 = −𝜗1/𝜗2 and 𝜓 = 𝛽/𝜗2. Then we have

Λ
𝜗2

= 𝜓 − 𝑥1𝜗+ 𝑥2.

Let 𝑝/𝑞 be a convergent of 𝜗 with 𝑞 > 𝑋0. For a real number 𝑥, we let ‖𝑥‖ =
min{|𝑥 − 𝑛|, 𝑛 ∈ Z} be the distance from 𝑥 to the nearest integer. We have the
following result.

Lemma 2.3 ([15, Lemma 3.3]). Suppose that

‖𝑞𝜓‖ > 2𝑋0
𝑞
.

Then, the solutions of (2.6) and (2.7) satisfy

𝑌 <
1
𝛿

log
(︂

𝑞2𝑐

|𝜗2|𝑋0

)︂
.

We conclude this section by recalling two lemmas that we need in the sequel:

Lemma 2.4 ([13, Lemma 7]). If 𝑚 ≥ 1, 𝑇 > (4𝑚2)𝑚 and 𝑇 > 𝑦/(log 𝑦)𝑚. Then,

𝑦 < 2𝑚𝑇 (log 𝑇 )𝑚.

Lemma 2.5 ([15, Lemma 2.2, page 31]). Let 𝑎, 𝑥 ∈ R and 0 < 𝑎 < 1. If |𝑥| < 𝑎,
then

|log(1 + 𝑥)| < − log(1 − 𝑎)
𝑎

|𝑥|
and

|𝑥| < 𝑎

1 − 𝑒−𝑎
|𝑒𝑥 − 1|.
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3. Padovan numbers of the form 𝑥𝑎 ± 𝑥𝑏 + 1
In this section, we will prove Theorem 1.1.

3.1. The proof of inequality (1.3)
First of all, we find a relation between 𝑎 and 𝑛. By combining (2.3) together with
(1.1), we get

𝛼𝑛−2 < 𝑃𝑛 = 𝑥𝑎 ± 𝑥𝑏 + 1 < 𝑥𝑎 + 𝑥𝑏 + 1 < 3𝑥𝑎 (3.1)

and
𝑥𝑎

2 < 𝑥𝑎 − 𝑥𝑏 < 𝑥𝑎 ± 𝑥𝑏 + 1 = 𝑃𝑛 < 𝛼𝑛−1. (3.2)

Taking logarithms on both sides of inequalities (3.1) and (3.2) and combining them,
we obtain (︂

log 𝑥
log𝛼

)︂
𝑎− log 2

log𝛼 + 1 < 𝑛 <

(︂
log 𝑥
log𝛼

)︂
𝑎+ log 3

log𝛼 + 2. (3.3)

Particularly, using the fact that 𝑥 ≥ 2, we conclude that

𝑎 < 𝑛. (3.4)

By using (2.1), we rewrite equation (1.1) as

|𝑐𝛼𝛼
𝑛 − 𝑥𝑎| ≤ 2|𝑐𝛽 ||𝛽|𝑛 + 𝑥𝑏 + 1 < 𝑥𝑏+1.

Dividing both sides of the last inequality by 𝑥𝑎, we get

⃒⃒
𝑐𝛼𝛼

𝑛𝑥−𝑎 − 1
⃒⃒
<

1
𝑥𝑎−𝑏−1 . (3.5)

Now, we apply Matveev’s result (see Lemma 2.1) to the left-hand side of (3.5).
First, the expression on the left-hand side of (3.5) is nonzero, since this expression
being zero means that 𝑐𝛼𝛼

𝑛 = 𝑥𝑎 ∈ Z, which is false since if we conjugate this
relation by the automorphism of Galois 𝜎 := (𝛼𝛽) we would get 1 < 𝑥𝑎 = |𝑐𝛽𝛽

𝑛| <
1. In order to apply Lemma 2.1, we take 𝑠 := 3,

(𝛾1, 𝑏1) := (𝑐𝛼, 1), (𝛾2, 𝑏2) := (𝛼, 𝑛) (𝛾3, 𝑏3) := (𝑥,−𝑎).

For this choice we have 𝐷 = 3, ℎ(𝛾1) = (log 23)/3, ℎ(𝛾2) = (log𝛼)/3, ℎ(𝛾3) = log 𝑥
and max{1, 𝑛, 𝑎} ≤ 𝑛. In conclusion, 𝐵 := 𝑛, 𝐴1 := 3.2, 𝐴2 := 0.3 and 𝐴3 := 3 log 𝑥
are suitable choices. By Lemma 2.1, we obtain the following estimate

⃒⃒
𝑐𝛼𝛼

𝑛𝑥−𝑎 − 1
⃒⃒

≥ exp(−7.79 · 1012 · log 𝑥 · (1 + log𝑛)). (3.6)

We combine (3.5) and (3.6) to obtain

𝑎− 𝑏 < 7.8 · 1012(1 + log𝑛). (3.7)
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We now use a second linear form in logarithms by rewriting equation (1.1) in a
different way. Using Binet formula (2.1), we get that

⃒⃒
𝑐𝛼𝛼

𝑛 −
(︀
𝑥𝑎−𝑏 ± 1

)︀
𝑥𝑏
⃒⃒

≤ 2|𝑐𝛽 ||𝛽|𝑛 + 1 < 1.5.

Dividing both sides of the above inequality by 𝑥𝑎 ± 𝑥𝑏, we obtain
⃒⃒
⃒𝑐𝛼

(︀
𝑥𝑎−𝑏 ± 1

)︀−1
𝛼𝑛𝑥−𝑏 − 1

⃒⃒
⃒ < 1.5

𝑥𝑎 ± 𝑥𝑏
<

1
𝛼𝑛−10 , (3.8)

where we have also used the fact that 𝑥𝑎 ± 𝑥𝑏 > 𝑥𝑎/2, 𝛼𝑛−2 < 3𝑥𝑎 and 9 < 𝛼8.
We observe that the left-hand side of (3.8) is nonzero, otherwise we would get

𝑥𝑎 ± 𝑥𝑏 = 𝑐𝛼𝛼
𝑛. (3.9)

Conjugating (3.9) in Q(𝛼, 𝛽) by the automorphism 𝜎 := (𝛼𝛽), we get

1 < 𝑥𝑎 ± 𝑥𝑏 = |𝑐𝛽𝛽
𝑛| < 1.

Now we again apply Lemma 2.1 as before but with 𝑠 := 3,

𝛾1 := 𝑐𝛼(𝑥𝑎−𝑏 ± 1)−1, 𝛾2 := 𝛼, 𝛾3 := 𝑥, 𝑏1 := 1, 𝑏2 := 𝑛, 𝑏3 := −𝑏.

Here, we can take 𝐷 = 3, 𝐵 := 𝑛, 𝐴2 := 0.3, 𝐴3 := 3 log 𝑥 and since (using the
proprieties of absolute logarithmic height and inequality (3.7))

ℎ(𝛼1) < ℎ(𝑐𝛼) + ℎ(𝑥𝑎−𝑏) + log 2 < 7.81 · 1012 log 𝑥(1 + log𝑛),

then we can take 𝐴1 := 2.35 ·1013 log 𝑥(1+log𝑛). We obtain the following estimate

exp(−5.72 · 1025 · (log 𝑥)2(1 + log𝑛)2) ≤ 1
𝛼𝑛−10 ,

which leads us to
𝑛

(log𝑛)2 < 8.14 · 1026(log 𝑥)2. (3.10)

By applying Lemma 2.4 in the inequality (3.10), we obtain

𝑛 < 22 ·
(︀
8.14 · 1026(log 𝑥)2)︀ ·

(︀
log
(︀
8.14 · 1026(log 𝑥)2)︀)︀2

. (3.11)

Finally, combining equations (3.4) and (3.11), and using the fact that

log
(︀
8.14 · 1026(log 𝑥)2)︀ < 89 log 𝑥, for 𝑥 ≥ 2,

we obtain
𝑎 < 𝑛 < 2.58 · 1031(log 𝑥)4. (3.12)

This proves the first part of Theorem 1.1. Next, we determine the solutions of
equation (1.1) in the specified range.
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3.2. The solutions of equation (1.1) for 2 ≤ 𝑥 ≤ 20
Let 𝑥 be a fixed integer such that 2 ≤ 𝑥 ≤ 20. The inequality (3.12) gives

𝑛 < 2.08 · 1033. (3.13)

The upper bound of 𝑛 given by (3.13) is very large, so we will reduce it further.
To do this, we will use several times Lemma 2.3. From inequality (3.5), we put

Λ1 := 𝑛 log𝛼− 𝑎 log 𝑥+ log 𝑐𝛼 and Γ1 := 𝑒Λ1 − 1.

Then, for 𝑎− 𝑏 ≥ 2 and 2 ≤ 𝑥 ≤ 20, we have

|Γ1| < 1
𝑥𝑎−𝑏−1 <

1
2𝑎−𝑏−1 <

1
2 .

By Lemma 2.5 and the above inequality, we get

|Λ1| = |log(Γ1 + 1)| < 4 log 2
2𝑎−𝑏

< 2.8 exp(−0.69(𝑎− 𝑏)).

Since max{𝑎, 𝑛} = 𝑛, then inequality (3.13) implies that we can take 𝑋0 := 2.08 ·
1033. Further, we choose

𝑐 := 2.8, 𝛿 := 0.69, 𝛽 := log 𝑐𝛼,

(𝜗1, 𝜗2) := (log𝛼, log 𝑥), 𝜗 := − log𝛼/ log 𝑥, 𝜓 := log 𝑐𝛼/ log 𝑥.

Using Maple, we find that 𝑞80 satisfies the hypotheses of Lemma 2.3, for all 𝑥 ∈
[2, 20]. Furthermore, Lemma 2.3 implies the inequality

𝑎− 𝑏 ≤ 237

in all cases.
Now, assume that 𝑎− 𝑏 ≤ 237. Let us consider

Λ2 := 𝑛 log𝛼− 𝑏 log 𝑥− log(𝑐𝛼(𝑥𝑎−𝑏 ± 1)) and Γ2 := 𝑒Λ2 − 1.

Then for 𝑛 ≥ 13, we have
|Γ2| < 1

𝛼3 <
1
2 ,

(see (3.8)). By Lemma 2.5, we get

|Λ2| = |log(Γ2 + 1)| < 2 log 2
𝛼𝑛−10 < 23.1 exp(−0.28𝑛).

Since max{𝑏, 𝑛} = 𝑛, then inequality (3.13) implies that we can take 𝑋0 := 2.08 ·
1033. Further, we can choose

𝑐 := 23.1, 𝛿 := 0.28, 𝛽𝑚 := − log(𝑐𝛼(𝑥𝑚 ± 1)), 1 ≤ 𝑚 ≤ 237,
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(𝜗1, 𝜗2) := (log𝛼,− log 𝑥) 𝜗 := − log𝛼/ log 𝑥, 𝜓𝑚 = − log(𝑐𝛼(𝑥𝑚 ± 1))/ log 𝑥.

Again, we use Maple to find that 𝑞120 satisfies the hypotheses of Lemma 2.3 for
all 𝑥 ∈ [2, 20] and 𝑚 ∈ [1, 237]. Moreover, Lemma 2.3 implies that 𝑛 ≤ 845 in all
cases.

We use Maple for the second time using the new upper bound of 𝑛 with 𝑞20, we
get 𝑛 ≤ 196 which implies by (3.3) that 𝑎 ≤ 82.

Finally, we write a program in Maple to obtain 𝑃𝑛’s which are of the form
𝑥𝑎 ± 𝑥𝑏 + 1 with 2 ≤ 𝑥 ≤ 20, 1 ≤ 𝑛 ≤ 196, and 1 ≤ 𝑎 ≤ 82. One can check that
the only solutions of equation (1.1) are those cited in Theorem 1.1. This completes
the proof of Theorem 1.1.

4. Perrin numbers of the form 𝑥𝑎 ± 𝑥𝑏 + 1
In this section, we will prove Theorem 1.2 using the above method to prove Theo-
rem 1.1. For the sake of completeness, we will give almost all of the details.

4.1. The proof of inequality (1.4)
First of all, we will explore a relation between 𝑎 and 𝑛. By combining (2.4) together
with (1.2), we get

𝛼𝑛−1 < 𝐸𝑛 = 𝑥𝑎 ± 𝑥𝑏 + 1 < 𝑥𝑎 + 𝑥𝑏 + 1 < 3𝑥𝑎, (4.1)

and
𝑥𝑎

2 < 𝑥𝑎 − 𝑥𝑏 < 𝑥𝑎 ± 𝑥𝑏 + 1 = 𝐸𝑛 < 𝛼𝑛+1. (4.2)

By taking logarithms on both sides of inequalities (4.1) and (4.2) and putting them
together, we obtain

(︂
log 𝑥
log𝛼

)︂
𝑎− log 2

log𝛼 − 1 < 𝑛 <

(︂
log 𝑥
log𝛼

)︂
𝑎+ log 3

log𝛼 + 1.

Particularly, using the fact that 𝑥 ≥ 2, we conclude that

𝑎 < 𝑛.

By using (2.2), we rewrite equation (1.2) into the form of

|𝛼𝑛 − 𝑥𝑎| ≤ 2|𝛽|𝑛 + 𝑥𝑏 + 1 < 𝑥𝑏+2.

Dividing both sides of the last inequality by 𝑥𝑎, we get
⃒⃒
𝛼𝑛𝑥−𝑎 − 1

⃒⃒
< 𝑥−(𝑎−𝑏−2). (4.3)

Now, we are in a situation to apply Matveev’s result (see Lemma 2.1) to the left-
hand side of (4.3). The expression on the left-hand side of (4.3) is nonzero, since
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this expression being zero means that 𝑥𝑎 = 𝛼𝑛. So 𝛼𝑛 ∈ Z for some positive integer
𝑛, which is false. In order to apply Lemma 2.1, we take 𝑠 := 3,

𝛾1 := 𝛼, 𝛾2 := 𝑥, 𝑏1 := 𝑛, 𝑏2 := −𝑎.
For this choice, we have𝐷 = 3, ℎ(𝛾1) = (log𝛼)/3, ℎ(𝛾2) = log 𝑥, and max{1, 𝑛, 𝑎} =
𝑛. In conclusion, we take 𝐵 := 𝑛, 𝐴1 := 0.3 and 𝐴2 := 3 log 𝑥. By Lemma 2.1, we
obtain the following estimate

⃒⃒
𝛼𝑛𝑥−𝑎 − 1

⃒⃒
≥ exp(−1.18 · 1011 · log 𝑥 · (1 + log𝑛)). (4.4)

Combining (4.3) and (4.4), we obtain
𝑎− 𝑏 < 1.19 · 1011(1 + log𝑛). (4.5)

We now use a second linear form in logarithms by rewriting equation (1.2) in a
little different way. Using Binet formula (2.2), we get

⃒⃒
𝛼𝑛 −

(︀
𝑥𝑎−𝑏 ± 1

)︀
𝑥𝑏
⃒⃒

≤ 2|𝛽|𝑛 + 1 < 2.
Dividing both sides of the above inequality by 𝑥𝑎 ± 𝑥𝑏, we obtain

⃒⃒
⃒
(︀
𝑥𝑎−𝑏 ± 1

)︀−1
𝛼𝑛𝑥−𝑏 − 1

⃒⃒
⃒ < 2

𝑥𝑎 ± 𝑥𝑏
<

1
𝛼𝑛−10 , (4.6)

where we have also used the fact that 𝑥𝑎 ± 𝑥𝑏 > 𝑥𝑎/2, 𝛼𝑛−1 < 3𝑥𝑎 and 12 < 𝛼9.
We observe that the left-hand side of (4.6) is nonzero, otherwise we would get

𝑥𝑎 ± 𝑥𝑏 = 𝛼𝑛. (4.7)
Conjugating (4.7) in Q(𝛼, 𝛽) by using the automorphism of Galois 𝜎 := (𝛼𝛽), we
get

1 < |𝑥𝑎 ± 𝑥𝑏| = 𝛽𝑛 < 1.
Now, let us apply again Lemma 2.1 as before but with 𝑠 := 3,

𝛾1 := 𝑥𝑎−𝑏 ± 1, 𝛾2 := 𝛼, 𝛾3 := 𝑥, 𝑏1 := −1, 𝑏2 := 𝑛, 𝑏3 := −𝑏.
Again here, we take 𝐷 = 3, 𝐵 := 𝑛, 𝐴2 := 0.9, 𝐴3 := 3 log 𝑥 and since (using the
properties of absolute logarithmic height and inequality (4.5))

ℎ(𝛼1) < ℎ(𝑥𝑎−𝑏) + log 2 < 1.2 · 1011 log 𝑥(1 + log𝑛),
then we can take 𝐴1 := 3.6 · 1011 log 𝑥(1 + log𝑛). We obtain the following estimate

exp(−7.89 · 1024 · (log 𝑥)2(1 + log𝑛)2) ≤ 1
𝛼𝑛−10 ,

which leads us to
𝑛

(log𝑛)2 < 1.13 · 1026(log 𝑥)2, (4.8)

where we used 1 + log𝑛 < 2 log𝑛. Finally, by Lemma 2.4 and using fact that
log
(︀
1.13 · 1026(log 𝑥)2)︀ < 86 log 𝑥, for 𝑥 ≥ 2, inequality (4.8) gives us

𝑛 ≤ 3.35 · 1030(log 𝑥)4. (4.9)
This proves the first part of Theorem 1.2.
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4.2. The solutions of equation (1.2) for 2 ≤ 𝑥 ≤ 20
Let 𝑥 be a fixed integer such that 2 ≤ 𝑥 ≤ 20. The inequality (4.9) becomes

𝑛 < 2.7 · 1032. (4.10)

Now, we will reduce the upper bound of 𝑛 given by (4.10) as this bound is very
large. To do this, we will use several times Lemma 2.2. From inequality (4.3), we
put

Λ3 := 𝑛 log𝛼− 𝑎 log 𝑥 and Γ3 := 𝑒Λ3 − 1.
Then, for 𝑎− 𝑏 ≥ 3 and 2 ≤ 𝑥 ≤ 20, we have

|Γ3| < 1
𝑥𝑎−𝑏−1 <

1
2𝑎−𝑏−2 <

1
2 .

By Lemma 2.5 and the above inequality, we get

|Λ3| = |log(Γ3 + 1)| < 4 log 2
2𝑎−𝑏

< 2.8 exp(−0.69(𝑎− 𝑏)).

As max{𝑎, 𝑛} = 𝑛, then inequality (4.10) implies that we take 𝑋0 := 2.7 · 1032 and

𝑌0 := 155.85544 . . . , 𝑐 := 2.8, 𝛿 := 0.69,
(𝜗1, 𝜗2) := (log𝛼,− log 𝑥), 𝜗 := − log𝛼/ log 𝑥.

Using Maple, we find that
𝐴 = 1584.

So from Lemma 2.2, we deduce that

𝑎− 𝑏 ≤ 121

in all the cases.
Suppose now that 𝑎− 𝑏 ≤ 121. Let us consider

Λ4 := 𝑛 log𝛼− 𝑏 log 𝑥− log(𝑥𝑎−𝑏 ± 1) and Γ4 := 𝑒Λ4 − 1.

Then for 𝑛 ≥ 13, inequality (4.6)) give

|Γ4| < 1
𝛼3 <

1
2 .

By Lemma 2.5, we get

|Λ4| = |log(Γ4 + 1)| < 2 log 2
𝛼𝑛−10 < 23.1 exp(−0.28𝑛).

We know that max{𝑏, 𝑛} = 𝑛, then inequality (3.13) implies that we can take
𝑋0 := 2.7 · 1032. Further, we choose

𝑐 := 23.1, 𝛿 := 0.28, 𝛽𝑚 := − log(𝑥𝑚 ± 1), 1 ≤ 𝑚 ≤ 101,
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(𝜗1, 𝜗2) := (log𝛼,− log 𝑥), 𝜗 := − log𝛼/ log 𝑥, 𝜓𝑚 := log(𝑥𝑚 ± 1)/ log 𝑥.

With Maple, we find that 𝑞125 satisfies the hypotheses of Lemma 2.3 for all 𝑥 ∈
[2, 20] and 𝑚 ∈ [1, 121] except in the cases

(𝑎, 𝑥) ∈ {(1, 1), (1, 3), (1, 9), (2, 5), (2, 3), (2, 9), (3, 3), (3, 9), (3, 7), (4, 15), (4, 17)}.

Furthermore, Lemma 2.3 gives us 𝑛 ≤ 890 in all the cases.
In the cases when

(𝑎, 𝑥) ∈ {(1, 1), (1, 3), (1, 9), (2, 5), (2, 3), (2, 9), (3, 3), (3, 9), (3, 7), (4, 15), (4, 17)},

we use Lemma 2.2 and get 𝑛 ≤ 309. So, in all the cases we have 𝑛 ≤ 890.
Finally, we write a program in Maple to determine 𝐸𝑛’s which are of the form

of 𝑥𝑎 ± 𝑥𝑏 + 1 with 2 ≤ 𝑥 ≤ 20, 1 ≤ 𝑛 ≤ 890, 1 ≤ 𝑏 < 𝑎 ≤ 340. We find that
the only solutions of the equation (1.2) are the ones cited in Theorem 1.2. Hence,
Theorem 1.2 is completely proved.
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to improve this paper.
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