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Abstract
In this note, we introduce a very simple approach to obtain Horadam

identities with binomial coefficients including an additional parameter. Many
known Fibonacci identities (as well as polynomial identities) will follow im-
mediately as special cases.

Keywords: Horadam number, Fibonacci number, binomial transform

AMS Subject Classification: 11B37, 11B39

1. Introduction and motivation

Layman [15] recalled the Fibonacci identities

𝐹2𝑛 =
𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
𝐹𝑘, 2𝑛𝐹𝑛 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
𝐹2𝑘, 3𝑛𝐹𝑛 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
𝐹4𝑘,

and attributed them to Hoggatt [9]. Here, as usual, 𝐹𝑛 is the 𝑛th Fibonacci number,
defined by 𝐹0 = 0, 𝐹1 = 1 and 𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛, 𝑛 ≥ 0. Layman proved more
such identities, in particular, the following alternating sums:

(−1)𝑛𝐹3𝑛 =
𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(−2)𝑘𝐹2𝑘, (−5)𝑛𝐹3𝑛 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(−2)𝑘𝐹5𝑘,

∗Statements and conclusions made in this article are entirely those of the author. They do not
necessarily reflect the views of LBBW.
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and

(−4)𝑛𝐹3𝑛 =
𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(−1)𝑘𝐹6𝑘.

Several additional sums of this kind and generalizations were derived by Carlitz
and Ferns [5], Carlitz [4], Haukkanen [7, 8] and Prodinger [16]. More recently,
some authors also worked on generalizations and derived expressions for sums with
weighted binomial sums, sums with polynomials and sums where only half of the
binomial coefficients are used. We refer to [2] and [10–14]. Adegoke [1] generalized
many of the above results and derived summation identities involving Horadam
numbers and binomial coefficients, some of which we will encounter below.

In this note, we give another type of generalization of some Horadam binomial
sums. More precisely, we introduce a very simple approach to obtain Horadam
identities with an additional parameter. All results are derived completely routinely
using standard methods.

Let 𝑤𝑛 = 𝑤𝑛(𝑎, 𝑏; 𝑝, 𝑞) be a general Horadam sequence, i.e., a second order
recurrence

𝑤𝑛 = 𝑝𝑤𝑛−1 − 𝑞𝑤𝑛−2, 𝑛 ≥ 2,

with nonzero constant 𝑝, 𝑞 and initial values 𝑤0 = 𝑎, 𝑤1 = 𝑏. We mention the fol-
lowing instances: 𝑤𝑛(0, 1; 1,−1) = 𝐹𝑛 is the Fibonacci sequence, 𝑤𝑛(0, 1; 2,−1) =
𝑃𝑛 is the Pell sequence, 𝑤𝑛(0, 1; 1,−2) = 𝐽𝑛 is the Jacobsthal sequence, 𝑤𝑛(0, 1; 3, 2)
= 𝑀𝑛 is the Mersenne sequence, 𝑤𝑛(0, 1; 6, 1) = 𝐵𝑛 is the balancing number
sequence, 𝑤𝑛(2, 1; 1,−1) = 𝐿𝑛 is the Lucas sequence, 𝑤𝑛(2, 2; 2,−1) = 𝑄𝑛 is
the Pell-Lucas sequence, 𝑤𝑛(2, 1; 1,−2) = 𝑗𝑛 is the Jacobsthal-Lucas sequence,
and 𝑤𝑛(1, 3; 6, 1) = 𝐶𝑛 is Lucas-balancing number sequence. All sequences are
listed in OEIS [17] where additional information and references are available. We
also note that the sequence 𝑤𝑛 also contains important sequences of polynomials:
𝑤𝑛(0, 1;𝑥,−1) = 𝐹𝑛(𝑥) are the Fibonacci polynomials, 𝑤𝑛(0, 1; 2𝑥,−1) = 𝑃𝑛(𝑥)
are the Pell polynomials, 𝑤𝑛(0, 1; 1,−2𝑥) = 𝐽𝑛(𝑥) are the Jacobsthal polynomials,
and 𝑤𝑛(0, 1; 6𝑥, 1) = 𝐵𝑛(𝑥) are the balancing polynomials, respectively.

The Binet formula of 𝑤𝑛 in the non-degenerated case, 𝑝2 − 4𝑞 > 0, is

𝑤𝑛 = 𝐴𝛼𝑛 +𝐵𝛽𝑛,

with
𝐴 =

𝑏− 𝑎𝛽
𝛼− 𝛽 , 𝐵 =

𝑎𝛼− 𝑏
𝛼− 𝛽 ,

and where 𝛼 and 𝛽 are roots of the equation 𝑥2 − 𝑝𝑥+ 𝑞 = 0, that is

𝛼 =
𝑝+

√︀
𝑝2 − 4𝑞

2
, 𝛽 =

𝑝−
√︀
𝑝2 − 4𝑞

2
.

In what follows we will need the following expressions:

𝛼+ 𝛽 = 𝑝, 𝛼𝛽 = 𝑞, 𝛼− 𝛽 =
√︀
𝑝2 − 4𝑞,

6 R. Frontczak



as well as
𝛼2 = 𝑝𝛼− 𝑞, 𝛽2 = 𝑝𝛽 − 𝑞, (1.1)

𝛼3 = (𝑝2 − 𝑞)𝛼− 𝑝𝑞, 𝛽2 = (𝑝2 − 𝑞)𝛽 − 𝑝𝑞, (1.2)

𝛼4 = (𝑝3 − 2𝑝𝑞)𝛼− 𝑞(𝑝2 − 𝑞), 𝛽2 = (𝑝3 − 2𝑝𝑞)𝛽 − 𝑞(𝑝2 − 𝑞),
and so on.

Finally, we mention the standard fact about sequences and their binomial trans-
forms [3]: Let (𝑎𝑛)𝑛≥0 be a sequence of numbers and (𝑏𝑛)𝑛≥0 be its binomial
transform. Then, we have the following relations:

𝑏𝑛 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
𝑎𝑘 ⇔ 𝑎𝑛 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(−1)𝑛−𝑘𝑏𝑘.

2. A simple generalization

The next lemma will be the key ingredient to derive our results.

Lemma 2.1. Let 𝑛 and 𝑗 be integers with 0 ≤ 𝑗 ≤ 𝑛. Then, for each 𝑎, 𝑥 ∈ C we
have the identity

(︂
𝑛

𝑗

)︂
𝑥𝑗(𝑎± 𝑥)𝑛−𝑗 =

𝑛∑︁

𝑘=𝑗

(︂
𝑘

𝑗

)︂(︂
𝑛

𝑘

)︂
(±1)𝑘−𝑗𝑥𝑘𝑎𝑛−𝑘.

Proof. From the binomial theorem we have

(︂
𝑛

𝑗

)︂
𝑥𝑗(𝑎± 𝑥)𝑛−𝑗 =

(︂
𝑛

𝑗

)︂ 𝑛−𝑗∑︁

𝑚=0

(︂
𝑛− 𝑗
𝑚

)︂
(±1)𝑚𝑥𝑚+𝑗𝑎𝑛−(𝑗+𝑚)

=

(︂
𝑛

𝑗

)︂ 𝑛∑︁

𝑘=𝑗

(︂
𝑛− 𝑗
𝑘 − 𝑗

)︂
(±1)𝑘−𝑗𝑥𝑘𝑎𝑛−𝑘

=
𝑛∑︁

𝑘=𝑗

(︂
𝑘

𝑗

)︂(︂
𝑛

𝑘

)︂
(±1)𝑘−𝑗𝑥𝑘𝑎𝑛−𝑘,

where in the last step we have used the identity
(︂
𝑛

𝑗

)︂(︂
𝑛− 𝑗
𝑘 − 𝑗

)︂
=

(︂
𝑛

𝑘

)︂(︂
𝑘

𝑗

)︂
, 0 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛.

Example 2.2. Setting (𝑥; 𝑎) = (𝛼2;−𝑞), (𝑥; 𝑎) = (𝛽2;−𝑞), using (1.1) and the
linearity of the Binet form gives the following identity valid for all 0 ≤ 𝑗 ≤ 𝑛

(︂
𝑛

𝑗

)︂
𝑝𝑛−𝑗𝑤𝑛+𝑗+𝑚 =

𝑛∑︁

𝑘=𝑗

(︂
𝑘

𝑗

)︂(︂
𝑛

𝑘

)︂
𝑞𝑛−𝑘𝑤2𝑘+𝑚, 𝑚 ≥ 0.

A short remark on Horadam identities with binomial coefficients 7



The case 𝑗 = 0 and the corresponding inverse binomial transform produce imme-
diately

(︁𝑝
𝑞

)︁𝑛
𝑤𝑛+𝑚 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
𝑞−𝑘𝑤2𝑘+𝑚

as well as

𝑞−𝑛𝑤2𝑛+𝑚 =
𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(−1)𝑛−𝑘

(︁𝑝
𝑞

)︁𝑘
𝑤𝑘+𝑚.

Obviously, with 𝑤𝑛 = 𝐹𝑛 (or 𝐿𝑛) we recover the classical results, which appeared
in [5] and [15]. The balancing number counterparts were stated in [6].

Example 2.3. If we set ∆ = 𝑝2 − 4𝑞, then a simple computation shows that

𝛼2 − 𝑞 =
√
∆𝛼 and 𝛽2 − 𝑞 = −

√
∆𝛼.

Thus, with (𝑥; 𝑎) = (𝛼2;−𝑞), (𝑥; 𝑎) = (𝛽2;−𝑞) and using again (1.1), we see that
if 𝑛 and 𝑗 have the same parity, then for all 0 ≤ 𝑗 ≤ 𝑛

(︂
𝑛

𝑗

)︂
∆(𝑛−𝑗)/2𝑤𝑛+𝑗+𝑚 =

𝑛∑︁

𝑘=𝑗

(︂
𝑘

𝑗

)︂(︂
𝑛

𝑘

)︂
(−𝑞)𝑛−𝑘𝑤2𝑘+𝑚, 𝑚 ≥ 0.

Especially, for 𝑗 = 0 and 𝑛 even we get

𝑞−𝑛∆𝑛/2𝑤𝑛+𝑚 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(−𝑞)−𝑘𝑤2𝑘+𝑚

and for 𝑗 = 1 and 𝑛 odd

−𝑞−𝑛∆(𝑛−1)/2𝑛𝑤𝑛+1+𝑚 =
𝑛∑︁

𝑘=1

(︂
𝑛

𝑘

)︂
𝑘(−𝑞)−𝑘𝑤2𝑘+𝑚.

If 𝑛 and 𝑗 are of unequal parity (𝑛 odd and 𝑗 even, for instance), then
(︂
𝑛

𝑗

)︂
∆(𝑛−1−𝑗)/2𝑣𝑛+𝑗+𝑚 =

𝑛∑︁

𝑘=𝑗

(︂
𝑘

𝑗

)︂(︂
𝑛

𝑘

)︂
(−𝑞)𝑛−𝑘𝑢2𝑘+𝑚, 𝑚 ≥ 0,

and (︂
𝑛

𝑗

)︂
∆(𝑛+1−𝑗)/2𝑢𝑛+𝑗+𝑚 =

𝑛∑︁

𝑘=𝑗

(︂
𝑘

𝑗

)︂(︂
𝑛

𝑘

)︂
(−𝑞)𝑛−𝑘𝑣2𝑘+𝑚, 𝑚 ≥ 0,

with 𝑢𝑛 = 𝑤𝑛(0, 1; 𝑝, 𝑞) and 𝑣𝑛 = 𝑤𝑛(2, 𝑝; 𝑝, 𝑞).

Example 2.4. Setting (𝑥; 𝑎) = (𝛼3;−𝑝𝑞), (𝑥; 𝑎) = (𝛽3;−𝑝𝑞), using (1.2) yields for
all 0 ≤ 𝑗 ≤ 𝑛

(︂
𝑛

𝑗

)︂
(𝑝2 − 𝑞)𝑛−𝑗𝑤𝑛+2𝑗+𝑚 =

𝑛∑︁

𝑘=𝑗

(︂
𝑘

𝑗

)︂(︂
𝑛

𝑘

)︂
(𝑝𝑞)𝑛−𝑘𝑤3𝑘+𝑚, 𝑚 ≥ 0.

8 R. Frontczak



The case 𝑗 = 0 in combination with the binomial transform produce

(︁𝑝2 − 𝑞
𝑝𝑞

)︁𝑛
𝑤𝑛+𝑚 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(𝑝𝑞)−𝑘𝑤3𝑘+𝑚

as well as

(𝑝𝑞)−𝑛𝑤3𝑛+𝑚 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(−1)𝑛−𝑘

(︁𝑝2 − 𝑞
𝑝𝑞

)︁𝑘
𝑤𝑘+𝑚.

Example 2.5. Combining the values (𝑥; 𝑎) = (𝑝𝛼3; 𝑞2) and (𝑥; 𝑎) = (𝑝𝛽3; 𝑞2) with

𝑝𝛼3 + 𝑞2 = (𝑝2 − 𝑞)𝛼2, and 𝑝𝛽3 + 𝑞2 = (𝑝2 − 𝑞)𝛽2,

Lemma 2.1 gives
(︂
𝑛

𝑗

)︂
𝑝𝑗(𝑝2 − 𝑞)𝑛−𝑗𝑤2𝑛+𝑗+𝑚 =

𝑛∑︁

𝑘=𝑗

(︂
𝑘

𝑗

)︂(︂
𝑛

𝑘

)︂
𝑝𝑘𝑞2𝑛−2𝑘𝑤3𝑘+𝑚, 𝑚 ≥ 0.

Again, from the case 𝑗 = 0 and the binomial transform we get

(︁𝑝2 − 𝑞
𝑞2

)︁𝑛
𝑤2𝑛+𝑚 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂(︁ 𝑝
𝑞2

)︁𝑘
𝑤3𝑘+𝑚

as well as (︁ 𝑝
𝑞2

)︁𝑛
𝑤3𝑛+𝑚 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(−1)𝑛−𝑘

(︁𝑝2 − 𝑞
𝑞2

)︁𝑘
𝑤2𝑘+𝑚.

Example 2.6. In this example we combine the values (𝑥; 𝑎) = (𝛼4; 𝑞(𝑝2 − 𝑞)) and
(𝑥; 𝑎) = (𝛽4; 𝑞(𝑝2 − 𝑞)) to get
(︂
𝑛

𝑗

)︂
(𝑝(𝑝2 − 2𝑞))𝑛−𝑗𝑤𝑛+3𝑗+𝑚 =

𝑛∑︁

𝑘=𝑗

(︂
𝑘

𝑗

)︂(︂
𝑛

𝑘

)︂
(𝑞(𝑝2 − 𝑞))𝑛−𝑘𝑤4𝑘+𝑚, 𝑚 ≥ 0.

Hence,
(︁𝑝(𝑝2 − 2𝑞)

𝑞(𝑝2 − 𝑞)
)︁𝑛
𝑤𝑛+𝑚 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(𝑞(𝑝2 − 𝑞))−𝑘𝑤4𝑘+𝑚

as well as

(𝑞(𝑝2 − 𝑞))−𝑛𝑤4𝑛+𝑚 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(−1)𝑛−𝑘

(︁𝑝(𝑝2 − 2𝑞)

𝑞(𝑝2 − 𝑞)
)︁𝑘
𝑤𝑘+𝑚.

Example 2.7. An application of Lemma 2.1 with (𝑥; 𝑎) = (𝛼4; 𝑞2) and (𝑥; 𝑎) =
(𝛽4; 𝑞2) and noting that

𝛼4 + 𝑞2 = (𝑝2 − 2𝑞)𝛼2 and 𝛽4 + 𝑞2 = (𝑝2 − 2𝑞)𝛽2,
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proves the next identity:
(︂
𝑛

𝑗

)︂
(𝑝2 − 2𝑞)𝑛−𝑗𝑤2𝑛+2𝑗+𝑚 =

𝑛∑︁

𝑘=𝑗

(︂
𝑘

𝑗

)︂(︂
𝑛

𝑘

)︂
𝑞2𝑛−2𝑘𝑤4𝑘+𝑚, 𝑚 ≥ 0.

The case 𝑗 = 0 in conjunction with the binomial transform yield

(︁𝑝2 − 2𝑞

𝑞2

)︁𝑛
𝑤2𝑛+𝑚 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
𝑞−2𝑘𝑤4𝑘+𝑚

as well as

𝑞−2𝑛𝑤4𝑛+𝑚 =
𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(−1)𝑛−𝑘

(︁𝑝2 − 2𝑞

𝑞2

)︁𝑘
𝑤2𝑘+𝑚.

3. Slightly more general identities

Lemma 3.1. For each 𝑛 ≥ 1 we have the relations

𝛼𝑛 = 𝛼𝑢𝑛 − 𝑞𝑢𝑛−1 and 𝛽𝑛 = 𝛽𝑢𝑛 − 𝑞𝑢𝑛−1

with 𝑢𝑛 = 𝑤𝑛(0, 1; 𝑝, 𝑞).

Proof. We can prove the statements by induction on 𝑛. Since, 𝛼1 = 𝛼𝑢1− 𝑞𝑢0, the
inductive step is

𝛼𝑛+1 = 𝛼𝛼𝑛

= 𝛼2𝑢𝑛 − 𝑞𝛼𝑢𝑛−1

= (𝛼𝑢2 − 𝑞𝑢1)𝑢𝑛 − 𝑞𝛼𝑢𝑛−1

= 𝛼(𝑝𝑢𝑛 − 𝑞𝑢𝑛−1)− 𝑞𝑢𝑛 (𝑢2 = 𝑝)

= 𝛼𝑢𝑛+1 − 𝑞𝑢𝑛.

The proof of the second statement is a copy of the first proof.

The next identity is stated as a proposition.

Proposition 3.2. For integers 𝑚 ≥ 2, 𝑟 ≥ 0 and 0 ≤ 𝑗 ≤ 𝑛 it is true that
(︂
𝑛

𝑗

)︂
𝑢−𝑛
𝑚−1𝑢

𝑛−𝑗
𝑚 𝑤𝑗(𝑚−1)+𝑛+𝑟 =

𝑛∑︁

𝑘=𝑗

(︂
𝑘

𝑗

)︂(︂
𝑛

𝑘

)︂
𝑢−𝑘
𝑚−1𝑞

𝑛−𝑘𝑤𝑚𝑘+𝑟.

Proof. From Lemma 3.1 we see that

𝑞 +
𝛼𝑛

𝑢𝑛−1
= 𝛼

𝑢𝑛
𝑢𝑛−1

and 𝑞 +
𝛽𝑛

𝑢𝑛−1
= 𝛽

𝑢𝑛
𝑢𝑛−1

.

Using Lemma 2.1 with 𝑎 = 𝑞 and 𝑥 = 𝛼𝑛

𝑢𝑛−1
and 𝑥 = 𝛽𝑛

𝑢𝑛−1
completes the proof.
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The next two sum identities follow immediately:

(︁ 𝑢𝑚
𝑞𝑢𝑚−1

)︁𝑛
𝑤𝑛+𝑟 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(𝑞𝑢𝑚−1)

−𝑘𝑤𝑚𝑘+𝑟

as well as

(𝑞𝑢𝑚−1)
−𝑛𝑤𝑚𝑛+𝑟 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(−1)𝑛−𝑘

(︁ 𝑢𝑚
𝑞𝑢𝑚−1

)︁𝑘
𝑤𝑘+𝑟.

We also mention the formula for 𝑗 = 1:

𝑛𝑢−𝑛
𝑚−1𝑢

𝑛−1
𝑚 𝑤𝑛+𝑚+𝑟−1 =

𝑛∑︁

𝑘=1

(︂
𝑛

𝑘

)︂
𝑘𝑢−𝑘

𝑚−1𝑞
𝑛−𝑘𝑤𝑚𝑘+𝑟.

Lemma 3.3. For each 𝑘, 𝑛 ≥ 1 we have the relations

𝛼𝑘𝑛 =
𝑢𝑘𝑛
𝑢𝑛

𝛼𝑛 − 𝑞𝑛𝑢(𝑘−1)𝑛

𝑢𝑛
and 𝛽𝑘𝑛 =

𝑢𝑘𝑛
𝑢𝑛

𝛽𝑛 − 𝑞𝑛𝑢(𝑘−1)𝑛

𝑢𝑛

with 𝑢𝑛 = 𝑤𝑛(0, 1; 𝑝, 𝑞).

Proof. Both statements can be verified directly by computation working with 𝑢𝑛𝛼𝑘𝑛

(respectively 𝑢𝑛𝛽𝑘𝑛) and 𝑞 = 𝛼𝛽.

Proposition 3.4. For integers 𝑚 ≥ 2, 𝑠 ≥ 1, 𝑟 ≥ 0, and 0 ≤ 𝑗 ≤ 𝑛 we have the
identity

(︂
𝑛

𝑗

)︂(︁ 𝑢𝑠
𝑢𝑚𝑠

)︁𝑗(︁ 𝑢𝑚𝑠

𝑢(𝑚−1)𝑠

)︁𝑛
𝑞−𝑠𝑛𝑤𝑠𝑛+𝑠𝑗(𝑚−1)+𝑟

=
𝑛∑︁

𝑘=𝑗

(︂
𝑘

𝑗

)︂(︂
𝑛

𝑘

)︂
𝑞−𝑠𝑘

(︁ 𝑢𝑠
𝑢(𝑚−1)𝑠

)︁𝑘
𝑤𝑚𝑠𝑘+𝑟.

Proof. The identity follows upon combining Lemma 2.1 with Lemma 3.3 with 𝑎 =
𝑞𝑠𝑢(𝑚−1)𝑠/𝑢𝑠 and 𝑥 = 𝛼𝑚𝑠 and 𝑥 = 𝛽𝑚𝑠, respectively.

The special identities for 𝑗 = 0 are

(︁ 𝑢𝑚𝑠

𝑢(𝑚−1)𝑠

)︁𝑛
𝑞−𝑠𝑛𝑤𝑠𝑛+𝑟 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
𝑞−𝑠𝑘

(︁ 𝑢𝑠
𝑢(𝑚−1)𝑠

)︁𝑘
𝑤𝑚𝑠𝑘+𝑟

and

(︁ 𝑢𝑠
𝑢(𝑚−1)𝑠

)︁𝑛
𝑞−𝑠𝑛𝑤𝑚𝑠𝑛+𝑟 =

𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(−1)𝑛−𝑘𝑞−𝑠𝑘

(︁ 𝑢𝑚𝑠

𝑢(𝑚−1)𝑠

)︁𝑘
𝑤𝑠𝑘+𝑟.
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Corollary 3.5. For integers 𝑠 ≥ 1, 𝑟 ≥ 0 and 0 ≤ 𝑗 ≤ 𝑛 we have the identity
(︂
𝑛

𝑗

)︂
𝑣𝑛−𝑗
𝑠 𝑞−𝑠𝑛𝑤𝑠(𝑛+𝑗)+𝑟 =

𝑛∑︁

𝑘=𝑗

(︂
𝑘

𝑗

)︂(︂
𝑛

𝑘

)︂
𝑞−𝑠𝑘𝑤2𝑠𝑘+𝑟.

In particular,

(−1)𝑛𝑞−𝑠𝑛𝑤2𝑠𝑛+𝑟 =
𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
(−1)𝑘𝑞−𝑠𝑘𝑣𝑘𝑠𝑤𝑠𝑘+𝑟

and

𝑞−𝑠𝑛𝑣𝑛𝑠𝑤𝑠𝑛+𝑟 =
𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
𝑞−𝑠𝑘𝑤2𝑠𝑘+𝑟.

Proof. Set 𝑚 = 2 in Proposition 3.4 and use 𝑢2𝑛/𝑢𝑛 = 𝑣𝑛.

Some more examples could be stated, but we stop here, as the principle is clear.

Acknowledgements. The author thanks Kunle Adegoke for discussions. He
is also grateful to the anonymous referee for a rapid review and for suggesting
important references that are directly linked to this research project.
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Abstract

Our original paper [1], contains some typos that we would like to fix here.
These typos do not affect the final results that we obtained.

Keywords: Pentagonal numbers, heptagonal numbers, repdigits.

AMS Subject Classification: 11A25, 11B39, 11J86

In the proof of Theorem 2.1, we should have multiplied equation (2.2) by
16𝐴2ℓ2102𝑟 instead of 16ℓ2102𝑟. This gives us

𝑌 2 = 𝑋3 +𝐴, (1)

where
𝑋 := 4𝐴ℓ10𝑚1+𝑟, 𝑌 := 12𝐴ℓ10𝑟(2𝐴𝑛+𝐵),
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54 (2021) pp. 15–16
doi: https://doi.org/10.33039/ami.2021.03.010
url: https://ami.uni-eszterhazy.hu
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and
𝐴 := 16𝐴2ℓ2102𝑟

(︀
9(𝐵2 − 4𝐴𝐶)− 4𝐴ℓ

)︀
.

The second typo is that equation (2.6) should have been

ℓ

(︂
10𝑚 − 1

9

)︂
=
𝑛(5𝑛− 3)

2
. (2)

The last typo is that 𝑎3 should have been

𝑎3 := 11979ℓ2104𝑟(99− 24ℓ).

Except the above typos, all the proofs and computations are correct.

Acknowledgements. We thank Dr. Eric F. Bravo for pointing out to us the
typos in our paper.
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Abstract
This survey presents the well-known Warshall’s algorithm, a generaliza-

tion and some interesting applications: transitive closure of relations, dis-
tances between vertices in graphs, number of paths in acyclic digraphs, all
paths in digraphs, scattered complexity for rainbow words, special walks in
finite automata.
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1. Introduction

Warshall’s algorithm [14] with its generalization [11] is widely used in graph theory
[1, 3–5, 8–10, 12] and in various fields of sciences (e.g. fuzzy [13] and quantum [6]
theory, Kleene algebra [7]). In the following, we present the algorithm, its gener-
alization, and the collected applications related to graphs, to be easily accessible
together here.

Let 𝑅 be a binary relation on the set 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛}, we write 𝑠𝑖𝑅𝑠𝑗 if 𝑠𝑖
is in relation with 𝑠𝑗 . The relation 𝑅 can be represented by the so called relation
matrix, which is

𝐴 = (𝑎𝑖𝑗)𝑖=1,𝑛

𝑗=1,𝑛

, where 𝑎𝑖𝑗 =

{︃
1, if 𝑠𝑖𝑅𝑠𝑗 ,
0, otherwise.

Annales Mathematicae et Informaticae
54 (2021) pp. 17–31
doi: https://doi.org/10.33039/ami.2021.08.001
url: https://ami.uni-eszterhazy.hu
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The transitive closure of the relation 𝑅 is the binary relation 𝑅* defined as:
𝑠𝑖𝑅

*𝑠𝑗 if and only if there exists 𝑠𝑝1
, 𝑠𝑝2

, . . ., 𝑠𝑝𝑟
, 𝑟 ≥ 2 such that 𝑠𝑖 = 𝑠𝑝1

, 𝑠𝑝1
𝑅𝑠𝑝2

,
𝑠𝑝2

𝑅𝑠𝑝3
, . . . , 𝑠𝑝𝑟−1

𝑅𝑠𝑝𝑟
, 𝑠𝑝𝑟

= 𝑠𝑗 . The relation matrix of 𝑅* is 𝐴* = (𝑎*𝑖𝑗).

Let us define the following two operations: i) if 𝑎, 𝑏 ∈ {0, 1} then 𝑎+ 𝑏 = 0 for
𝑎 = 0, 𝑏 = 0, and 𝑎 + 𝑏 = 1 otherwise; ii) 𝑎 · 𝑏 = 1 for 𝑎 = 1, 𝑏 = 1, and 𝑎 · 𝑏 = 0
otherwise. In this case

𝐴* = 𝐴+𝐴2 + · · ·+𝐴𝑛.

The transitive closure of a relation can be computed easily by the Warshall’s algo-
rithm [2, 14]:

Warshall(𝐴,𝑛)
Input: the relation matrix 𝐴; the number of elements 𝑛
Output: 𝑊 = 𝐴*

1 𝑊 ← 𝐴
2 for 𝑘 ← 1 to 𝑛
3 do for 𝑖← 1 to 𝑛
4 do for 𝑗 ← 1 to 𝑛
5 do if 𝑤𝑖𝑘 = 1 and 𝑤𝑘𝑗 = 1
6 then 𝑤𝑖𝑗 ← 1
7 return 𝑊

Listing 1. Warshall’s algorithm.

The complexity of this algorithm is Θ(𝑛3).
A binary relation can be represented by a directed graph (i.e. digraph) too. The

relation matrix is equal to the adjacency matrix of the corresponding graph. See
Fig. 1 for an example. Fig. 2 represents the graph of the corresponding transitive
closure relation.

𝑣3

𝑣2

𝑣1

𝑣5 𝑣4

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎟⎠

Figure 1. A binary relation represented by a graph with the cor-
responding adjacency matrix.
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𝑣3

𝑣2

𝑣1

𝑣5 𝑣4

⎛
⎜⎜⎜⎜⎝

0 1 1 1 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 0
0 1 1 1 0

⎞
⎟⎟⎟⎟⎠

Figure 2. The transitive closure of the relation in Fig. 1.

2. Generalization of Warshall’s algorithm

Lines 5 and 6 in the Warshall’s algorithm presented in Listing 1 can be expressed
as

𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + 𝑤𝑖𝑘 · 𝑤𝑘𝑗

using the operations defined above. If instead of the operations + and · we use two
operations ⊕ and ⊙ from a semiring, a generalized Warshall’s algorithm results
[11]:

Generalized-Warshall(𝐴,𝑛)
Input: the relation matrix 𝐴; the number of elements 𝑛
Output: 𝑊 = 𝐴*

1 𝑊 ← 𝐴
2 for 𝑘 ← 1 to 𝑛
3 do for 𝑖← 1 to 𝑛
4 do for 𝑗 ← 1 to 𝑛
5 do 𝑤𝑖𝑗 ← 𝑤𝑖𝑗 ⊕ (𝑤𝑖𝑘 ⊙ 𝑤𝑘𝑗)
6 return 𝑊

Listing 2. The generalized Warshall’s algorithm.

The complexity of this algorithm is also Θ(𝑛3). This generalization leads us to
a number of interesting applications.
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3. Applications

3.1. Distances between vertices. Floyd–Warshall algorithm

Given a (di)graph with positive or negative edge weights (but with no negative
cycles) and its modified adjacency matrix 𝐷0 = (𝑑0𝑖𝑗), we can obtain the distance
matrix 𝐷 = (𝑑𝑖𝑗) in which 𝑑𝑖𝑗 represents the distance between vertices 𝑣𝑖 and 𝑣𝑗 .
The distance between vertices 𝑣𝑖 and 𝑣𝑗 is the length of the shortest path between
them. The modified adjacency matrix 𝐷0 = (𝑑0𝑖𝑗) is the following:

𝑑0𝑖𝑗 =

⎧
⎪⎨
⎪⎩

0, if 𝑖 = 𝑗,

∞, if there is no edge from vertex 𝑣𝑖 to vertex 𝑣𝑗 , 𝑖 ̸= 𝑗,

𝑤𝑖𝑗 , the weight of the edge from 𝑣𝑖 to 𝑣𝑗 , 𝑖 ̸= 𝑗.

Choosing for ⊕ the min operation (minimum of two real numbers), and for ⊙ the
real addition (+), we obtain the well-known Floyd–Warshall algorithm as a special
case of the generalized Warshall’s algorithm [5, 11, 12] :

Floyd-Warshall(𝐷0, 𝑛)
Input: the adjacency matrix 𝐷0; the number of elements 𝑛
Output: the distance matrix 𝐷
1 𝐷 ← 𝐷0

2 for 𝑘 ← 1 to 𝑛
3 do for 𝑖← 1 to 𝑛
4 do for 𝑗 ← 1 to 𝑛
5 do 𝑑𝑖𝑗 ← min{𝑑𝑖𝑗 , 𝑑𝑖𝑘 + 𝑑𝑘𝑗}
6 return 𝐷

Listing 3. Floyd-Warshall algorithm.

An example is presented in Fig. 3. The shortest paths can also be easily obtained
by storing the previous vertex 𝑣𝑘 on the path, in line 5 of Listing 3. In the case
of acyclic digraphs, the algorithm can be easily modified to obtain the longest
distances between vertices and consequently the longest paths.

3.2. Number of paths in acyclic digraphs

Here, by path we understand a directed path. In an acyclic digraph the following
algorithm counts the number of paths between vertices [4, 9]. The operation ⊕, ⊙
are the classical add and multiply operations for real numbers and let 𝑤𝑖𝑗 denote
the number of paths from vertex 𝑣𝑖 to vertex 𝑣𝑗 .
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𝑣1 𝑣2 𝑣3

𝑣4𝑣5

1 1

3

8 1

2

45

𝐷0 =

⎛
⎜⎜⎜⎜⎝

0 1 3 ∞ 8
∞ 0 1 ∞ 5
∞ ∞ 0 1 ∞
∞ ∞ ∞ 0 2
∞ ∞ 4 ∞ 0

⎞
⎟⎟⎟⎟⎠

𝐷 =

⎛
⎜⎜⎜⎜⎝

0 1 2 3 5
∞ 0 1 2 4
∞ ∞ 0 1 3
∞ ∞ 6 0 2
∞ ∞ 4 5 0

⎞
⎟⎟⎟⎟⎠

Figure 3. A weighted digraph with the corresponding matrices.

Warshall-Paths(𝐴,𝑛)
Input: the adjacency matrix 𝐴; the number of elements 𝑛
Output: 𝑊 with number of paths between vertices
1 𝑊 ← 𝐴
2 for 𝑘 ← 1 to 𝑛
3 do for 𝑖← 1 to 𝑛
4 do for 𝑗 ← 1 to 𝑛
5 do 𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + 𝑤𝑖𝑘 · 𝑤𝑘𝑗

6 return 𝑊

Listing 4. Finding the number of paths between vertices.

The proof is omitted, as it is very similar to the one given in [2] for the original
Warshall’s algorithm.

An example can be seen in Fig. 4. For example between vertices 𝑣1 and 𝑣3 there
are 3 paths: (𝑣1, 𝑣2, 𝑣3); (𝑣1, 𝑣2, 𝑣5, 𝑣3) and (𝑣1, 𝑣6, 𝑣5, 𝑣3).

For the case when the arcs of the graph are colored, we may be interested in
the number of monochromatic paths. The generalized algorithm can also be used
for monochromatic subgraphs. The following novel algorithm (first described here)
solves the problem for all colors at once.

In the adjacency (color) matrix, 𝑎𝑖𝑗 is equal to the code of the color of the arc
(𝑣𝑖, 𝑣𝑗), and is equal to 0, if there is no arc from 𝑣𝑖 to 𝑣𝑗 . In the three-dimensional
result matrix 𝑊 the element 𝑤𝑖𝑗𝑝 represents the number of the paths from 𝑣𝑖 to 𝑣𝑗
with 𝑝-colored arcs each.
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𝑣3

𝑣2

𝑣1

𝑣6

𝑣5

𝑣4

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 1
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

𝑊 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 3 4 2 1
0 0 2 2 1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Figure 4. An acyclic digraph and the corresponding matrices.

Warshall-Monochromatic-Paths(𝐴,𝑛, 𝑐)
Input: adjacency color matrix 𝐴; number of elements 𝑛; number of colors 𝑐
Output: matrix 𝑊 with number of monochromatic paths between vertices
1 Set all elements of 𝑊 equal to 0
2 for 𝑖← 1 to 𝑛
3 do for 𝑗 ← 1 to 𝑛
4 do if 𝑎𝑖𝑗 ̸= 0
5 do 𝑤𝑖𝑗𝑎𝑖𝑗

← 1
6 for 𝑝← 1 to 𝑐
7 do for 𝑘 ← 1 to 𝑛
8 do for 𝑖← 1 to 𝑛
9 do for 𝑗 ← 1 to 𝑛

10 do 𝑤𝑖𝑗𝑝 ← 𝑤𝑖𝑗𝑝 + 𝑤𝑖𝑘𝑝 · 𝑤𝑘𝑗𝑝

11 return 𝑊

Listing 5. Finding the number of monochromatic paths between vertices.

The sides for 𝑝 = 1, . . . , 𝑐 of the three-dimensional matrix 𝑊 contain the result
for the different colors (see Fig. 5).
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𝑣3

𝑣2𝑣1

𝑣6

𝑣5 𝑣4

No. of red paths:

𝑊 (*, *, 1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2 2 0 1 0
0 0 1 0 0 0
0 0 0 0 0 0
0 1 2 0 1 0
0 1 1 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

No. of blue paths:

𝑊 (*, *, 2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 3 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 2 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Figure 5. An example of a colored digraph with the two sides of
the solution matrix.

3.3. All paths in digraphs

The Warshall’s algorithm combined with the Latin square method can be used to
obtain all paths in a (not necessarily acyclic) digraph [9]. A path will be denoted
by a string formed by its vertices in their natural order in the path.

Let us consider a matrix 𝒜 with the elements 𝐴𝑖𝑗 which are a set of strings.
Initially, the elements of this matrix are defined as:

𝐴𝑖𝑗 =

{︃
{𝑣𝑖𝑣𝑗}, if ∃ an arc from 𝑣𝑖 to 𝑣𝑗 , 𝑖 ̸= 𝑗,

∅, otherwise,
for 𝑖, 𝑗 = 1, 2, . . . , 𝑛. (3.1)

If 𝒜 and ℬ are sets of strings, 𝒜ℬ will be formed by the set of concatenation of
each string from 𝒜 with each string from ℬ, if they have no common letters:

𝒜ℬ =
{︀
𝑎𝑏
⃒⃒
𝑎 ∈ 𝒜, 𝑏 ∈ ℬ, if 𝑎 and 𝑏 have no common letters

}︀
. (3.2)

If 𝑠 = 𝑠1𝑠2 · · · 𝑠𝑝 is a string, let us denote by ′𝑠 the string obtained from 𝑠 by
eliminating the first character: ′𝑠 = 𝑠2𝑠3 · · · 𝑠𝑝. Let us denote by ′𝐴𝑖𝑗 the set 𝐴𝑖𝑗

in which we eliminate from each element the first character. In this case ′𝒜 is a
matrix with elements ′𝐴𝑖𝑗 .

Operations are: set union and set product defined as before.
Starting with the matrix 𝒜 defined as before, the algorithm to obtain all paths

is the following, in which 𝑊𝑖𝑗 represents the set of paths from vertex 𝑣𝑖 to 𝑣𝑗 .
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Warshall-Latin(𝒜, 𝑛)
Input: the adjacency matrix 𝒜 defined in (3.1); the number of elements 𝑛
Output: 𝒲 matrix of the paths between vertices
1 𝒲 ← 𝒜
2 for 𝑘 ← 1 to 𝑛
3 do for 𝑖← 1 to 𝑛
4 do for 𝑗 ← 1 to 𝑛
5 do if 𝑊𝑖𝑘 ̸= ∅ and 𝑊𝑘𝑗 ̸= ∅
6 then 𝑊𝑖𝑗 ←𝑊𝑖𝑗 ∪𝑊𝑖𝑘

′𝑊𝑘𝑗

7 return 𝒲

Listing 6. Algorithm for finding all paths in digraphs.

An example is presented in Fig. 6: here, for example, between vertices 𝑣1 and 𝑣3
there are two paths: 𝑣1𝑣3 and 𝑣1𝑣2𝑣3.

𝑣1 𝑣2 𝑣3

𝑣4𝑣5

𝒜 =

⎛
⎜⎜⎜⎜⎝

∅ {𝑣1𝑣2} {𝑣1𝑣3} ∅ {𝑣1𝑣5}
∅ ∅ {𝑣2𝑣3} ∅ ∅

{𝑣3𝑣1} ∅ ∅ ∅ ∅
∅ ∅ {𝑣4𝑣3} ∅ {𝑣4𝑣5}
∅ ∅ ∅ ∅ ∅

⎞
⎟⎟⎟⎟⎠

𝒲 =

⎛
⎜⎜⎜⎜⎝

∅ {𝑣1𝑣2} {𝑣1𝑣3, 𝑣1𝑣2𝑣3} ∅ {𝑣1𝑣5}
{𝑣2𝑣3𝑣1} ∅ {𝑣2𝑣3} ∅ {𝑣2𝑣3𝑣1𝑣5}
{𝑣3𝑣1} {𝑣3𝑣1𝑣2} ∅ ∅ {𝑣3𝑣1𝑣5}
{𝑣4𝑣3𝑣1} {𝑣4𝑣3𝑣1𝑣2} {𝑣4𝑣3} ∅ {𝑣4𝑣5}
∅ ∅ ∅ ∅ ∅

⎞
⎟⎟⎟⎟⎠

Figure 6. An example of digraph for all paths problem with the
corresponding matrices.

Although the algorithm is not polynomial (due to the 𝑊𝑖𝑘
′𝑊𝑘𝑗 multiplication),

the method can be used well in practice for many cases.
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3.4. Scattered complexity for rainbow words
The application described in this subsection can be found in [9]. Let Σ be an
alphabet, Σ𝑛 the set of all length-𝑛 words over Σ, Σ* the set of all finite word over
Σ.

Definition 3.1. Let 𝑛 and 𝑠 be positive integers, 𝑀 ⊆ {1, 2, . . . , 𝑛 − 1} and 𝑢 =
𝑥1𝑥2 . . . 𝑥𝑛 ∈ Σ𝑛. An 𝑀-subword of length 𝑠 of 𝑢 is defined as 𝑣 = 𝑥𝑖1𝑥𝑖2 . . . 𝑥𝑖𝑠
where

𝑖1 ≥ 1,

𝑖𝑗+1 − 𝑖𝑗 ∈𝑀 for 𝑗 = 1, 2, . . . , 𝑠− 1,

𝑖𝑠 ≤ 𝑛.
Definition 3.2. The number of 𝑀 -subwords of a word 𝑢 for a given set 𝑀 is the
scattered subword complexity, simply 𝑀 -complexity.

Examples. The word 𝑎𝑏𝑐𝑑 has 11 {1, 3}-subwords: 𝑎, 𝑎𝑏, 𝑎𝑏𝑐, 𝑎𝑏𝑐𝑑, 𝑎𝑑, 𝑏, 𝑏𝑐, 𝑏𝑐𝑑,
𝑐, 𝑐𝑑, 𝑑. The {2, 3 4, 5}-subwords of the word 𝑎𝑏𝑐𝑑𝑒𝑓 are the following: 𝑎, 𝑎𝑐, 𝑎𝑑,
𝑎𝑒, 𝑎𝑓 , 𝑎𝑐𝑒, 𝑎𝑐𝑓 , 𝑎𝑑𝑓 , 𝑏, 𝑏𝑑, 𝑏𝑒, 𝑏𝑓 , 𝑏𝑑𝑓 , 𝑐, 𝑐𝑒, 𝑐𝑓 , 𝑑, 𝑑𝑓 , 𝑒, 𝑓 .

Words with different letters are called rainbow words. The 𝑀 -complexity of a
length-𝑛 rainbow word does not depend on what letters it contains, and is denoted
by 𝐾(𝑛,𝑀).

To compute the 𝑀 -complexity of a rainbow word of length 𝑛 we will use graph
theoretical results. Let us consider the rainbow word 𝑎1𝑎2 . . . 𝑎𝑛 and the corre-
sponding digraph 𝐺 = (𝑉,𝐸), with

𝑉 =
{︀
𝑎1, 𝑎2, . . . , 𝑎𝑛

}︀
,

𝐸 =
{︀
(𝑎𝑖, 𝑎𝑗) | 𝑗 − 𝑖 ∈𝑀, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛

}︀
.

For 𝑛 = 6,𝑀 = {2, 3, 4, 5} see Fig. 7.
The adjacency matrix 𝐴 = (𝑎𝑖𝑗)𝑖=1,𝑛

𝑗=1,𝑛

of the graph is defined by:

𝑎𝑖𝑗 =

{︃
1, if 𝑗 − 𝑖 ∈𝑀,

0, otherwise,
for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛.

Because the graph has no directed cycles, the element in row 𝑖 and column 𝑗 in 𝐴𝑘

(where 𝐴𝑘 = 𝐴𝑘−1𝐴, with 𝐴1 = 𝐴) will represent the number of length-𝑘 directed
paths from 𝑎𝑖 to 𝑎𝑗 . If 𝐼 is the identity matrix (with elements equal to 1 only on
the first diagonal, and 0 otherwise), let us define the matrix 𝑅 = (𝑟𝑖𝑗):

𝑅 = 𝐼 +𝐴+𝐴2 + · · ·+𝐴𝑘, where 𝑘 < 𝑛, 𝐴𝑘+1 = 𝑂 (the null matrix).

The 𝑀 -complexity of a rainbow word is then

𝐾(𝑛,𝑀) =

𝑛∑︁

𝑖=1

𝑛∑︁

𝑗=1

𝑟𝑖𝑗 .
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𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

Figure 7. Graph for {2, 3, 4, 5}-subwords of the rainbow word of
length 6.

Matrix 𝑅 can be better computed using the Warshall-Paths algorithm described
in Listing 4, which gives a matrix 𝑊 , and therefore 𝑅 = 𝐼 +𝑊 .

For example, let us consider the graph in Fig. 7. [9] The corresponding adja-
cency matrix is:

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

After applying the Warshall-Paths algorithm:

𝑊 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 2 3
0 0 0 1 1 2
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, 𝑅 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 2 3
0 1 0 1 1 2
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and then 𝐾
(︀
6, {2, 3, 4, 5}

)︀
= 20, the sum of elements in 𝑅.

Remark 3.3. For this case the Warshall-Paths algorithm can be slightly modi-
fied: because of the specific form of the graph the lines 2 and 4 can also be written
in the following form:

2 for 𝑘 ← 2 to 𝑛− 1
4 do for 𝑗 ← 𝑖+ 1 to 𝑛

Using the Warshall-Latin algorithm (Listing 6) we can obtain all nontrivial
(with length at least 2) 𝑀 -subwords of a given length-𝑛 rainbow word 𝑎1𝑎2 · · · 𝑎𝑛.
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Let us consider a matrix 𝒜 with the elements 𝐴𝑖𝑗 which form a set of strings.
Initially this matrix is defined as:

𝐴𝑖𝑗 =

{︃
{𝑎𝑖𝑎𝑗}, if 𝑗 − 𝑖 ∈𝑀,

∅, otherwise,
for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛.

The set of nontrivial 𝑀 -subwords is
⋃︀

𝑖,𝑗∈{1,2,...,𝑛}𝑊𝑖𝑗 .

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8

Figure 8. Graph for {3, 4, 5, 6, 7}-subwords of the rainbow word of
length 8.

For 𝑛 = 8, 𝑀 = {3, 4, 5, 6, 7} (see Fig. 8) the initial matrix is:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∅ ∅ ∅ {𝑎1𝑎4} {𝑎1𝑎5} {𝑎1𝑎6} {𝑎1𝑎7} {𝑎1𝑎8}
∅ ∅ ∅ ∅ {𝑎2𝑎5} {𝑎2𝑎6} {𝑎2𝑎7} {𝑎2𝑎8}
∅ ∅ ∅ ∅ ∅ {𝑎3𝑎6} {𝑎3𝑎7} {𝑎3𝑎8}
∅ ∅ ∅ ∅ ∅ ∅ {𝑎4𝑎7} {𝑎4𝑎8}
∅ ∅ ∅ ∅ ∅ ∅ ∅ {𝑎5𝑎8}
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The result of the algorithm in this case is:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∅ ∅ ∅ {𝑎1𝑎4} {𝑎1𝑎5} {𝑎1𝑎6} {𝑎1𝑎7, 𝑎1𝑎4𝑎7} {𝑎1𝑎8, 𝑎1𝑎4𝑎8, 𝑎1𝑎5𝑎8}
∅ ∅ ∅ ∅ {𝑎2𝑎5} {𝑎2𝑎6} {𝑎2𝑎7} {𝑎2𝑎8, 𝑎2𝑎5𝑎8}
∅ ∅ ∅ ∅ ∅ {𝑎3𝑎6} {𝑎3𝑎7} {𝑎3𝑎8}
∅ ∅ ∅ ∅ ∅ ∅ {𝑎4𝑎7} {𝑎4𝑎8}
∅ ∅ ∅ ∅ ∅ ∅ ∅ {𝑎5𝑎8}
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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3.5. Special walks in finite automata
Let us consider a finite automaton 𝐴 = (𝑄,Σ, 𝛿, {𝑞1}, 𝐹 ), where 𝑄 is a finite set
of states, Σ the input alphabet, 𝛿 : 𝑄 × Σ → 𝑄 the transition function, 𝑞1 the
initial state, 𝐹 the set of final states. In the following, we omit to mark the initial
and the final states. The transition function can also be generalized to words:
𝛿(𝑞, 𝑤𝑎) = 𝛿(𝛿(𝑞, 𝑤), 𝑎), where 𝑞 ∈ 𝑄, 𝑎 ∈ Σ, 𝑤 ∈ Σ*. A sequence of the form

𝑞1, 𝑎1, 𝑞2, 𝑎2, . . . , 𝑎𝑛−1, 𝑞𝑛, 𝑛 ≥ 2,

where
𝛿(𝑞1, 𝑎1) = 𝑞2, 𝛿(𝑞2, 𝑎2) = 𝑞3, . . . , 𝛿(𝑞𝑛−1, 𝑎𝑛−1) = 𝑞𝑛

is a walk in the automata labelled by the word 𝑎1𝑎2 . . . 𝑎𝑛−1. This also can be
written as:

𝑞1
𝑎1−−−→ 𝑞2

𝑎2−−−→ 𝑞3
𝑎3−−−→ · · ·

𝑎𝑛−2

−−−→ 𝑞𝑛−1

𝑎𝑛−1

−−−→ 𝑞𝑛,

or shortly: 𝑞1
𝑎1𝑎2...𝑎𝑛−1

−−−−−−→ 𝑞𝑛.

We are interested in finding walks with special labels: one-letter power words
(power of a single letter) and rainbow words (containing only dissimilar letters).

3.5.1. Walks labeled with one-letter power words

For each pair 𝑝, 𝑞 of states we search for the letters 𝑎 for which there exists a natural
𝑘 ≥ 1 such that we have the transition 𝛿(𝑝, 𝑎𝑘) = 𝑞 (see [11]). Let us denote these
sets by:

𝑊𝑖𝑗 = {𝑎 ∈ Σ | ∃𝑘 ≥ 1, 𝛿(𝑞𝑖, 𝑎
𝑘) = 𝑞𝑗},

where 𝑎𝑘 is a length-𝑘 one-letter power word.
Here the elements 𝐴𝑖𝑗 of the adjacency matrix 𝒜 initially are defined as:

𝐴𝑖𝑗 = {𝑎 | 𝛿(𝑞𝑖, 𝑎) = 𝑞𝑗}, for 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

Instead of ⊕ we use here set union (∪) and instead of ⊙ set intersection (∩).

Warshall-Automata-1(𝒜, 𝑛)
Input: the adjacency matrix 𝒜; the number of states 𝑛
Output: the matrix 𝒲 with sets of letters for one letter power words
1 𝒲 ← 𝒜
2 for 𝑘 ← 1 to 𝑛
3 do for 𝑖← 1 to 𝑛
4 do for 𝑗 ← 1 to 𝑛
5 do 𝑊𝑖𝑗 ←𝑊𝑖𝑗 ∪ (𝑊𝑖𝑘 ∩𝑊𝑘𝑗)
6 return 𝒲

Listing 7. Finding walks labeled by one-letter power words.
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𝑞1 𝑞2

𝑞3𝑞4

𝑐

𝑏, 𝑑

𝑎
𝑏

𝑏

𝑏

Figure 9. An example of a finite automaton without indicating
the initial and final states.

The transition table of the finite automaton in Fig. 9 is:

𝛿 𝑎 𝑏 𝑐 𝑑
𝑞1 𝑞3 𝑞2 𝑞1 𝑞2
𝑞2 ∅ 𝑞3 ∅ ∅
𝑞3 ∅ 𝑞4 ∅ ∅
𝑞4 ∅ 𝑞1 ∅ ∅

Matrices for the graph in Fig. 9 are the following:

𝒜 =

⎛
⎜⎜⎝

{𝑐} {𝑏, 𝑑} {𝑎} ∅
∅ ∅ {𝑏} ∅
∅ ∅ ∅ {𝑏}
{𝑏} ∅ ∅ ∅

⎞
⎟⎟⎠ , 𝒲 =

⎛
⎜⎜⎝

{𝑏, 𝑐} {𝑏, 𝑑} {𝑎, 𝑏} {𝑏}
{𝑏} {𝑏} {𝑏} {𝑏}
{𝑏} {𝑏} {𝑏} {𝑏}
{𝑏} {𝑏} {𝑏} {𝑏}

⎞
⎟⎟⎠ .

For example 𝛿(𝑞2, 𝑏𝑏) = 𝑞4, 𝛿(𝑞2, 𝑏𝑏𝑏) = 𝑞1, 𝛿(𝑞2, 𝑏𝑏𝑏𝑏) = 𝑞2, 𝛿(𝑞1, 𝑐𝑘) = 𝑞1 for 𝑘 ≥ 1.

3.5.2. Walks labeled with rainbow words

To find walks with rainbow labels, we can use the a variant of the Warshall-
Latin algorithm (Listing 6), where instead of string of vertices 𝑣1𝑣2 · · · 𝑣𝑘 we use
the corresponding string of labels of the edges (𝑣1, 𝑣2), . . . , (𝑣𝑘−1, 𝑣𝑘).

Here the elements 𝐴𝑖𝑗 of the adjacency matrix 𝒜 are initially defined as:

𝐴𝑖𝑗 = {𝑎 | 𝛿(𝑞𝑖, 𝑎) = 𝑞𝑗}, for 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

The concatenation 𝑊𝑖𝑘𝑊𝑘𝑗 in the following algorithm is defined as in the formula
(3.2). Each element of 𝑊𝑖𝑘 is concatenated with each element of 𝑊𝑘𝑗 only if these
elements (which are strings) have no common letters. If a string appears more than
once during concatenation, only one copy is retained. The following algorithm is a
new one.
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Warshall-Automata-2(𝒜, 𝑛)
Input: the adjacency matrix 𝒜; the number of states 𝑛
Output: the matrix 𝒲 of the rainbow words between vertices
1 𝒲 ← 𝒜
2 for 𝑘 ← 1 to 𝑛
3 do for 𝑖← 1 to 𝑛
4 do for 𝑗 ← 1 to 𝑛
5 do if 𝑊𝑖𝑘 ̸= ∅ and 𝑊𝑘𝑗 ̸= ∅
6 then 𝑊𝑖𝑗 ←𝑊𝑖𝑗 ∪𝑊𝑖𝑘𝑊𝑘𝑗

7 return 𝒲

Listing 8. Finding walks labeled by rainbow words.

For the automaton in Fig. 9 the above algorithm uses the matrix 𝒜:

𝒜 =

⎛
⎜⎜⎝

{𝑐} {𝑏, 𝑑} {𝑎} ∅
∅ ∅ {𝑏} ∅
∅ ∅ ∅ {𝑏}
{𝑏} ∅ ∅ ∅

⎞
⎟⎟⎠

and gives the following result:

𝒲 =

⎛
⎜⎜⎝

{𝑐} {𝑏, 𝑑, 𝑐𝑏, 𝑐𝑑} {𝑎, 𝑐𝑎, 𝑑𝑏, 𝑐𝑑𝑏} {𝑎𝑏, 𝑐𝑎𝑏}
∅ ∅ {𝑏} ∅
∅ ∅ ∅ {𝑏}

{𝑏, 𝑏𝑐} {𝑏𝑑, 𝑏𝑐𝑑} {𝑏𝑎, 𝑏𝑐𝑎} ∅

⎞
⎟⎟⎠ .

Conclusions

In 1962 S. Warshall published the algorithm later named after him for computing
the transitive closure of a binary relation [14]. R. W. Floyd reported the applica-
tion of this in the same year to determine the shortest paths in weighted graphs
[5]. P. Robert and J. Ferland in their 1968 article [11] gave an interesting gener-
alization that led to the applications discussed in this article [5, 9, 11, 12]. Two
algorithms, Warshalł-Monochromatics-Paths and Warshall-Automata-2,
are new applications firstly described here.

It is amazing how diverse the applications are. And there can be more!

Acknowledgements. The author thanks the anonymous reviewers for their at-
tentive and thorough work in improving the paper with their helpful remarks.
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Abstract

In this paper we generalize the well-known notions of Horn and 𝑞-Horn
formulae. A Horn clause, by definition, contains at most one positive literal.
A Horn formula contains only Horn clauses. We generalize these notions as
follows. A clause is a 𝑤-Horn clause if and only if it contains at least one
negative literal or it is a unit or it is the empty clause. A formula is a 𝑤-Horn
formula if it contains only 𝑤-Horn clauses after exhaustive unit propagation,
i.e., after a Boolean Constraint Propagation (BCP) step. We show that the
set of 𝑤-Horn formulae properly includes the set of Horn formulae. A function
𝛽(𝑥) is a valuation function if 𝛽(𝑥) + 𝛽(¬𝑥) = 1 and 𝛽(𝑥) ∈ {0, 0.5, 1},
where 𝑥 is a Boolean variable. A formula ℱ is a 𝑞-Horn formula if and only
if there is a valuation function 𝛽(𝑥) such that for each clause 𝐶 in ℱ we
have that

∑︀
𝑥∈𝐶 𝛽(𝑥) ≤ 1. In this case we call 𝛽(𝑥) a 𝑞-feasible valuation

for ℱ . In other words, a formula is 𝑞-Horn if and only if each clause in
it contains at most one “positive” literal (where 𝛽(𝑥) = 1) or at most two
half ones (where 𝛽(𝑥) = 0.5). We generalize these notions as follows. A
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formula ℱ is a 𝑧-Horn formula if and only if ℱ ′= BCP(ℱ) and either ℱ ′ is
trivially satisfiable or trivially unsatisfiable or there is a valuation function
𝛾(𝑥) such that for each clause 𝒞 in ℱ ′ we have that

∑︀
𝑥∈𝒞∧𝛾(𝑥)̸=0.5 𝛾(¬𝑥) ≥ 1

or
∑︀

𝑥∈𝐶∧𝛾(𝑥)=0.5 𝛾(𝑥) = 1. In this case we call 𝛾(𝑥) to be a 𝑧-feasible
valuation for 𝐹 ′. In other words, a formula is 𝑧-Horn if and only if each
clause in it after a BCP step contains at least one “negative” literal (where
𝛾(𝑥) = 0) or exactly two half ones (where 𝛾(𝑥) = 0.5). We show that the
set of 𝑧-Horn formulae properly includes the set of 𝑞-Horn formulae. We also
show that the 𝑤-Horn SAT problem can be decided in polynomial time. We
also show that each satisfiable formula is 𝑧-Horn.

Keywords: SAT, Horn, 𝑞-Horn, 𝑧-Horn, 𝑤-Horn.

AMS Subject Classification: 03B05, 03B20, 03B70

1. Introduction

Propositional satisfiability is the problem of determining, for a formula of the propo-
sitional calculus, if there is an assignment of truth values to its variables for which
that formula evaluates to true. By SAT we mean the problem of propositional
satisfiability for formulae in conjunctive normal form (CNF).

SAT is the first, and one of the simplest, of the many problems which have been
shown to be 𝒩𝒫-complete [8]. It is the dual of propositional theorem proving, and
many practical 𝒩𝒫-hard problems may be transformed efficiently to SAT. Thus,
a good SAT algorithm would likely have considerable utility. It seems improbable
that a polynomial time algorithm can be found for the general SAT problem unless
𝒩 = 𝒩𝒫, but we know that there are restricted SAT problems that are solvable in
polynomial time. So a “good” SAT algorithm should first check whether the input
SAT instance is an instance of such a restricted SAT problem. In this paper we
introduce the 𝑤-Horn SAT problem, which is solvable in polynomial time. We also
introduce the 𝑧-Horn SAT problem, but we do not know yet whether it is solvable
in polynomial time or not.

We list some polynomial time solvable restricted SAT problems:

1. The restriction of SAT to instances where all clauses have length 𝑘 is denoted
by 𝑘-SAT. 2-SAT and 3-SAT are of special interest, because 3 is the smallest
value of 𝑘 for which 𝑘-SAT is 𝒩𝒫-complete, while 2-SAT is solvable in linear
time [2, 11].

2. Horn SAT is the restriction to instances where each clause contains at most
one positive literal. Horn SAT is solvable in linear time [10, 28], as are a
number of generalizations such as renamable Horn SAT [1, 23], extended
Horn SAT [7] and 𝑞-Horn SAT [5, 6]. An interesting variant for us is dual-
Horn, or anti-Horn SAT, where in each clause there are at most one negative
literal. The dual-Horn SAT is solvable in polynomial time.

3. The hierarchy of tractable satisfiability problems [9], which is based on Horn
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SAT and 2-SAT, is solvable in polynomial time. An instance on the 𝑘 level
of the hierarchy is solvable in 𝒪(𝑛𝑘 + 1) time.

4. Nested SAT, in which there is a linear ordering on the variables and no two
clauses overlap with respect to the interval defined by the variables they
contain, is solvable in linear time. [16].

5. SAT in which no variable appears more than twice. All such problems are
satisfiable in linear time if they contain no unit clauses [32].

6. 𝑟,𝑟-SAT, where 𝑟,𝑠-SAT is the class of problems in which every clause has
exactly 𝑟 literals and every variable has at most 𝑠 occurrences. All 𝑟,𝑟-SAT
problems are satisfiable in polynomial time [32].

7. A formula is SLUR (Single Lookahead Unit Resolution) solvable if, for all
possible sequences of selected variables, algorithm SLUR does not give up.
Algorithm SLUR is a nondeterministic algorithm based on unit propagation.
It eventually gives up the search if it starts with, or creates, an unsatisfiable
formula with no unit clauses. The class of SLUR solvable formulae was devel-
oped as a generalization including Horn SAT, renamable Horn SAT, extended
Horn SAT, and the class of CC-balanced formulae [27].

8. Resolution-Free SAT Problem, where every resolution results in a tautologous
clause, is solvable in linear time [21]. And a generalization of it, the Blocked
SAT Problem, where in each clause there is a blocked literal (resolution on
that literal results in a tautologous clause, or the resolvent together with the
blocked literal is subsumed) [19].

9. Linear autarkies can be found in polynomial time [17]. A partial assignment
is an autarky if it satisfies all clauses such that they have a common variable.
For example, a pure literal is an autarky. Linear autarkies include 𝑞-Horn
formulae, and incomparable with the SLUR [33].

10. Matched expressions are recognized by creating a bipartite graph (𝑉1, 𝑉2, 𝐸),
such that vertices of 𝑉1 represent clauses, vertices of 𝑉2 represent variables,
and there is an edge from clause 𝐶 to variable 𝑣 if and only if 𝐶 contains 𝑣 or
¬𝑣. If there is a total matching in this graph, i.e., there is a subset of edges,
such that each clause and each variable are present but only once, then we
say that the formula is matched. Matched formulae are satisfiable [13]. Total
matching can be constructed, if it exists, in polynomial time. The class of
matched formulae is incomparable with the 𝑞-Horn and SLUR classes.

11. SAT problems generated from directed graphs are always satisfiable. Two
assignments, the one where all variables are true, the so called white assign-
ment, and the one where all variables are false, the so called black assignment,
always satisfy them, so such problems are called Black-and-White SAT prob-
lems [3, 4, 22].
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12. SAT can be solved efficiently by biology inspired methods. For example, 𝒫
systems with active membranes can solve it in linear time [14]. This article
presents two solutions. The first solution is a uniform one, but it is not
polynomially uniform. The second solution, which is based on the first one,
is a polynomially semi-uniform solution. Other membrane based solutions
can be found in [25].

13. When a finite fixed set of Boolean variables is used, then 𝑛-SAT can be solved
by a specific deterministic finite automaton. So 𝑛-SAT is polynomial, but the
specific deterministic finite automaton uses double exponential memory space
[26].

In this paper we generalize the well-known notions of Horn and 𝑞-Horn formulae.
A Horn clause, by definition, contains at most one positive literal. A Horn formula
contains only Horn clauses.

We generalize these notions as follows. A clause is a 𝑤-Horn clause if and only
if it contains at least one negative literal or it is a unit or it is the empty clause. A
formula is a 𝑤-Horn formula if it contains only 𝑤-Horn clauses after propagating
all units in it, i.e., after a BCP step. We show that the set of 𝑤-Horn formulae
properly includes the set of Horn formulae.

A function 𝛽(𝑥) is a valuation function if 𝛽(𝑥)+𝛽(¬𝑥) = 1 and 𝛽(𝑥) ∈ {0, 0.5, 1},
where 𝑥 is a Boolean variable.

A formula is 𝑞-Horn if and only if each clause in it contains at most one “positive”
literal (where 𝛽(𝑥) = 1) or at most two half ones (where 𝛽(𝑥) = 0.5).

We generalize these notions as follows. A formula is 𝑧-Horn if and only if each
clause in it after a BCP step contains at least one “negative” literal or exactly two
half ones.

We show that the set of 𝑧-Horn formulae properly includes the set of 𝑞-Horn
formulae. We also show that the 𝑤-Horn SAT problem can be decided in polynomial
time. We also show that each satisfiable formula is 𝑧-Horn.

2. Definitions

A literal is a Boolean variable or the negation of a Boolean variable. A clause is
a set of literals. A clause set is a set of clauses. An assignment is a set of literals.
Clauses are interpreted as disjunction of their literals. Assignments are interpreted
as conjunction of their literals.

The negation of a variable 𝑣 is denoted by 𝑣. Given a set 𝑈 of literals, we
denote 𝑈 := {𝑢 | 𝑢 ∈ 𝑈} and call it the negation of the set 𝑈 . If 𝑤 denotes a
negative literal 𝑣, then 𝑤 denotes the positive literal 𝑣. If 𝒞 is a clause, then 𝒞 is
an assignment. If 𝒜 is an assignment, then 𝒜 is a clause.

If 𝒞 is a clause and its cardinality is 𝑘, denoted by |𝒞| = 𝑘, then we say that 𝒞
is a 𝑘-clause. Special cases are unit clauses or units which are 1-clauses, and clear
or total clauses which are 𝑛-clauses. Note that any unit clause is at the same time
a clause and an assignment.
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If 𝒮 is a clause set and {𝑢} is a unit, then we can do unit propagation, for short
UP, by {𝑢} on 𝒮, denoted by 𝑈𝑃 (𝒮, {𝑢}), as follows: 𝑈𝑃 (𝒮, {𝑢}) := {𝒞 ∖ {𝑢} | 𝒞 ∈
𝒮 ∧ 𝑢 /∈ 𝒞}.

By BCP we mean exhaustive unit propagation. To be more formal:

𝐵𝐶𝑃 (𝒮) =
{︃
𝐵𝐶𝑃 (𝑈𝑃 (𝒞, {𝑢})), where {𝑢} ∈ 𝒞,
𝒞, if there are no more units in 𝒞.

We say that assignmentℳ is a model for clause set 𝒮 iff for all 𝒞 ∈ 𝒮 we have
ℳ∩ 𝒞 ≠ ∅.

We say that a clause set is trivially unsatisfiable iff it contains the empty clause.
We say that a clause set is trivially satisfiable iff it is the empty set.

We introduce two functions 𝑃 (𝒞), the number of positive literals in clause 𝒞,
and𝑁(𝒞), the number of negative literals in clause 𝒞. Note, that 𝑃 (𝒞)+𝑁(𝒞) = |𝒞|.

The clause 𝒞 is a Horn clause iff 𝑃 (𝒞) ≤ 1. Note that the empty clause is a
Horn clause. The clause set ℱ is a Horn formula iff for each clause 𝒞 in ℱ we have
that 𝒞 is a Horn clause.

We generalize these notions as follows. The clause 𝒞 is a 𝑤-Horn clause iff
𝑁(𝒞) ≥ 1 or 𝒞 is a unit or 𝒞 is the empty clause. The clause set ℱ is a 𝑤-Horn
formula iff ℱ ′ = 𝐵𝐶𝑃 (ℱ) and for each clause 𝒞 in ℱ ′ we have that 𝒞 is a 𝑤-Horn
clause.

Examples for 𝑤-Horn formulae:

1. (¬𝑎 ∨ 𝑏 ∨ 𝑐).

2. (¬𝑎 ∨ ¬𝑏) ∧ (¬𝑎 ∨ 𝑏) ∧ (𝑎 ∨ ¬𝑏).

3. (¬𝑎∨¬𝑏∨¬𝑐)∧ (¬𝑎∨¬𝑏∨ 𝑐)∧ (¬𝑎∨ 𝑏∨¬𝑐)∧ (¬𝑎∨ 𝑏∨ 𝑐)∧ (𝑎∨¬𝑏∨¬𝑐)∧ (𝑎∨
¬𝑏∨ 𝑐)∧ (𝑎∨ 𝑏∨¬𝑐), this example shows the great expressiveness of 𝑤-Horn.

4. (𝑎) ∧ (¬𝑎 ∨ 𝑏), because after BCP we obtain the empty clause set.

5. (¬𝑎∨¬𝑏)∧ (¬𝑎¬𝑏)∧ (𝑎∨¬𝑏)∧ (𝑎∨ 𝑏∨ 𝑐)∧ (¬𝑐), because after BCP we obtain
(¬𝑎 ∨ ¬𝑏) ∧ (¬𝑎 ∨ 𝑏) ∧ (𝑎 ∨ ¬𝑏).

6. (𝑎)∧(¬𝑎) is 𝑤-Horn, because after BCP we obtain a clause set which contains
the empty clause, and the empty clause is 𝑤-Horn.

7. (¬𝑎 ∨ 𝑏 ∨ 𝑐) is 𝑤-Horn, because 𝑁(𝒞) = 1, but not Horn, because 𝑃 (𝒞) = 2.

By 𝑤-Horn SAT problem we mean the problem of deciding whether a given
𝑤-Horn formula is satisfiable or not.

A function 𝛽(𝑥) is a valuation function if 𝛽(𝑥)+𝛽(¬𝑥) = 1 and 𝛽(𝑥) ∈ {0, 0.5, 1},
where 𝑥 is a Boolean variable. Note that if 𝒞 is a clause, then

∑︀
𝑥∈𝒞(𝛽(𝑥)+𝛽(¬𝑥)) =

|𝒞|.
A formula ℱ is a 𝑞-Horn formula iff there is a valuation function 𝛽(𝑥) such that

for each clause 𝒞 in ℱ we have that
∑︀

𝑥∈𝒞 𝛽(𝑥) ≤ 1. In this case we call 𝛽(𝑥) a
𝑞-feasible valuation for ℱ .
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In other words, a formula is 𝑞-Horn if and only if each clause in it contains
at most one “positive” literal (where 𝛽(𝑥) = 1) or at most two half ones (where
𝛽(𝑥) = 0.5). We generalize these notions as follows.

A formula ℱ is a 𝑧-Horn formula iff ℱ ′ = 𝐵𝐶𝑃 (ℱ) and either ℱ ′ is trivially
satisfiable or trivially unsatisfiable or there is a valuation function 𝛾(𝑥) such that∑︀

𝑥∈𝒞∧𝛾(𝑥)̸=0.5 𝛾(¬𝑥) ≥ 1 or
∑︀

𝑥∈𝒞∧𝛾(𝑥)=0.5 𝛾(𝑥) = 1. In this case we call 𝛾(𝑥) to
be a 𝑧-feasible valuation for ℱ ′.

In other words, a formula is 𝑧-Horn if and only if each clause in it after a BCP
step contains at least one “negative” literal (where 𝛾(𝑥) = 0) or exactly two half
ones (where 𝛾(𝑥) = 0.5).

Examples for 𝑧-Horn formulae:

1. (𝑎) ∧ (¬𝑎), because after BCP we obtain a trivially unsatisfiable clause set;
this example is also 𝑞-Horn, because 𝛽(𝑎) = 0.5 is a 𝑞-feasible valuation for
it.

2. (𝑎) ∧ (¬𝑎 ∨ 𝑏), because after BCP we obtain the empty clause set, which is
trivially satisfiable.

3. (𝑎 ∨ 𝑏) ∧ (¬𝑎 ∨ 𝑐), because every 2-SAT problem is a 𝑧-Horn formula.

4. (¬𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐) is 𝑧-Horn, because 𝛾(𝑎) = 𝛾(𝑏) = 𝛾(𝑐) = 0 is a
𝑧-feasible valuation, but it is enough to say that 𝛾(¬𝑎) = 1. Note that this
formula is said not to be 𝑞-Horn, see examples 2.9. and 2.10. in [12], but it
is actually 𝑞-Horn, because 𝛽(¬𝑎) = 0, and 𝛽(𝑏) = 𝛽(𝑐) = 0.5 is a 𝑞-feasible
valuation for it.

5. (¬𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ 𝑐) ∧ (𝑎 ∨ ¬𝑏 ∨ ¬𝑐) is 𝑧-Horn, because 𝛾(¬𝑎) =
𝛾(¬𝑏) = 𝛾(¬𝑐) = 1 is a 𝑧-feasible valuation, but not 𝑞-Horn. This has also
been checked by our 𝑞-Horn / 𝑧-Horn checker written in Java. This checker
can be found on our webpage: http://fmv.ektf.hu/tools.html [20].

3. Properties of 𝑤-Horn formulae

Lemma 3.1. The set of 𝑤-Horn formulae properly includes the set of Horn for-
mulae.

Proof. First we show inclusion. Let ℱ be an arbitrary but fixed Horn formula. Let
ℱ ′ = 𝐵𝐶𝑃 (ℱ). Note that ℱ ′ does not contain any unit clauses. Note furthermore
that ℱ ′ is still a Horn formula, because the set of Horn formulae is closed under
unit propagation. We show that ℱ ′ is a 𝑤-Horn formula. There are two cases:
ℱ ′ is either the empty set or not. In the first case, by definition, ℱ is 𝑤-Horn.
In the second case let 𝒞 be an arbitrary but fixed clause from ℱ ′. There are two
cases, either 𝒞 is the empty clause or not. In the first case 𝒞 is also a 𝑤-Horn
clause. In the second case we do the following steps. We know that 𝒞 is a Horn
clause, so 𝑃 (𝒞) ≤ 1. From this, by multiplying both sides by −1, we obtain that
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−𝑃 (𝒞) ≥ −1, and by adding |𝒞| to both sides, we obtain |𝒞|−𝑃 (𝒞) ≥ |𝒞|−1. From
this, by 𝑃 (𝒞) +𝑁(𝒞) = |𝒞|, we know that 𝑁(𝒞) ≥ |𝒞| − 1. We know that 𝒞 ∈ ℱ ′,
so 𝒞 is not a unit, we also know that it is not empty clause, so |𝒞| − 1 ≥ 1. From
these we obtain that 𝑁(𝒞) ≥ 1. So, by definition, 𝒞 is a 𝑤-Horn clause. Hence, ℱ
is a 𝑤-Horn formula.

As a second step we show that there is a formula which is 𝑤-Horn, but not
Horn. The formula 𝒞 = (¬𝑎 ∨ 𝑏 ∨ 𝑐) is 𝑤-Horn, because 𝑁(𝒞) = 1, but not Horn,
because 𝑃 (𝒞) = 2. Hence, the set of 𝑤-Horn formulae properly includes the set of
Horn formulae.

Theorem 3.2. The 𝑤-Horn SAT problem is solvable in polynomial time.

Proof. Let ℱ be an arbitrary but fixed 𝑤-Horn formula. We show that it is solvable
in polynomial time. Let ℱ ′ = 𝐵𝐶𝑃 (𝒮). This step is polynomial since unit propa-
gation is polynomial [34]. If ℱ ′ contains the empty clause, then ℱ is unsatisfiable.
Otherwise ℱ is satisfiable and its model consists of the units propagated in the
BCP step, the rest of the variables are negative.

4. Properties of 𝑧-Horn formulae

Lemma 4.1. The set of 𝑧-Horn formulae properly includes the set of 𝑞-Horn for-
mulae.

Proof. First we show inclusion. Let ℱ be an arbitrary but fixed 𝑞-Horn formula.
We show that ℱ is a 𝑧-Horn formula. Let ℱ ′ = 𝐵𝐶𝑃 (ℱ). Note that ℱ ′ is still a 𝑞-
Horn formula, because the set of 𝑞-Horn formulae is closed under unit propagation.
There are two cases: ℱ ′ is either the empty set or not. In the first case, by definition,
ℱ is 𝑧-Horn. In the second case let 𝒞 be an arbitrary but fixed clause from ℱ ′.
Note that 𝒞 is not a unit. Since ℱ ′ is a 𝑞-Horn formula, we know that there exists
a 𝑞-feasible valuation for ℱ ′, let us call it 𝛽(𝑥), such that

∑︀
𝑥∈𝒞 𝛽(𝑥) ≤ 1.

There are 4 cases: Either (1)
∑︀

𝑥∈𝒞 𝛽(𝑥) = 0, or (2)
∑︀

𝑥∈𝒞 𝛽(𝑥) = 0.5, or
(3)

∑︀
𝑥∈𝒞 𝛽(𝑥) = 1 and

∑︀
𝑥∈𝒞∧𝛽(𝑥)̸=0.5 𝛽(𝑥) = 1, or (4)

∑︀
𝑥∈𝒞 𝛽(𝑥) = 1 and∑︀

𝑥∈𝒞∧𝛽(𝑥)=0.5 𝛽(𝑥) = 1.
In case (1) either ℱ ′ contains the empty clause or not. In the first case, by

definition, ℱ is 𝑧-Horn. In the second case we have that
∑︀

𝑥∈𝒞∧𝛽(𝑥)̸=0.5 𝛽(¬𝑥) = |𝐶|.
Since 𝐶 is not the empty clause, we have that

∑︀
𝑥∈𝒞∧𝛽(𝑥)̸=0.5 𝛽(¬𝑥) ≥ 1. This

means that 𝛽(𝑥) is a 𝑞-feasible valuation for ℱ ′. Therefore, ℱ is, by definition, a
𝑧-Horn formula.

In case (2) we have that
∑︀

𝑥∈𝒞∧𝛽(𝑥) ̸=0.5 𝛽(¬𝑥) = |𝐶| − 0.5. Since 𝒞 is not the
empty clause and neither a unit, we have that

∑︀
𝑥∈𝒞∧𝛽(𝑥)̸=0.5 𝛽(¬𝑥) ≥ 1. This

means that 𝛽(𝑥) is a 𝑞-feasible valuation for ℱ ′. Therefore, ℱ is, by definition, a
𝑧-Horn formula.

In case (3) we have that
∑︀

𝑥∈𝒞∧𝛽(𝑥)̸=0.5 𝛽(¬𝑥) = |𝐶| − 1. Since 𝒞 is not the
empty clause and neither a unit, we have that

∑︀
𝑥∈𝒞∧𝛽(𝑥)̸=0.5 𝛽(¬𝑥) ≥ 1. This
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means that 𝛽(𝑥) is a 𝑞-feasible valuation for ℱ ′. Therefore, ℱ is, by definition, a
𝑧-Horn formula.

In case (4) we have that
∑︀

𝑥∈𝒞∧𝛽(𝑥)=0.5 𝛽(𝑥) = 1. So 𝛽(𝑥) is a 𝑞-feasible valua-
tion for ℱ ′. Therefore, ℱ is, by definition, a 𝑧-Horn formula.

So in all cases we have that ℱ is a 𝑧-Horn formula. Hence, the set of 𝑧-Horn
formulae includes the set of 𝑞-Horn formulae.

As a second step we show that there is a formula which is 𝑧-Horn, but not
𝑞-Horn. For example the formula (¬𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ 𝑐) ∧ (𝑎 ∨ ¬𝑏 ∨ ¬𝑐) is
𝑧-Horn but not 𝑞-Horn, see the 𝑧-Horn examples in section 2. Hence, the set of
𝑧-Horn formulae properly includes the set of 𝑞-Horn formulae.

Theorem 4.2. Any satisfiable ℱ formula is 𝑧-Horn.

Proof. Let ℱ be an arbitrary but fixed satisfiable formula. Let ℳ be a model for
ℱ , i.e., for each clause 𝒞 in ℱ we have that 𝒞 intersection ℳ is not empty. Let
𝛾(𝑥) be a valuation function constructed in the following way: For all 𝑚 in ℳ let
𝛾(𝑚) = 0. It is easy to see that 𝛾(𝑥) is a 𝑧-feasible valuation for ℱ . Hence, any
satisfiable ℱ formula is 𝑧-Horn.

5. Future work

We do not consider in this paper the question of what the relation is between 𝑤-
Horn and 𝑧-Horn and other generalizations of Horn formulae, linear autarky [18,
24], and other polynomial time SAT problems.

Since we allow more than two “half” literals in a 𝑧-Horn clause if there is at
least one “negative” literal, we can use the so called simulated annealing based
methods [15, 29] to find a 𝑧-feasible valuation of the input clause set.

According to our current ideas the cooling process work as follows. At the
beginning, each literal is a “half” one. Then we cool the system and some literals
become “negative”, we repeat this until we obtain the 2-SAT core of the problem,
which means that in each clause there is at least one “negative” literal or exactly
two “half” ones.

The other way to attack this problem is to use neural networks. The expressive
power of 𝑧-Horn is great, i.e., almost all SAT problems are 𝑧-Horn, but in the
worst case, to find the corresponding 𝑧-feasible function, we have to solve the input
SAT problem. Instead of this expensive method we can use votes like units have
“negative” value, any other variables are “half” ones. We can use more elaborated
neural networks, which predict which variables are “negative”, “positive”, and “half”
one. Then we can combine them to find the 𝑧-feasible function by a voting system,
like in [30, 31].
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Abstract
In this work, we investigated the ability of several Convolutional Neural

Network (CNN) models for predicting the spread of cancer using medical
images. We used a dataset released by the Kaggle, namely PatchCamelyon.
The dataset consists of 220,025 pathology images digitized by a tissue scanner.
A clinical expert labeled each image as cancerous or non-cancerous. We
used 70% of the images as a training set and 30% of them as a validation
set. We design three models based on three commonly used modules: VGG,
Inception, and Residual Network (ResNet), to develop an ensemble model
and implement a voting system to determine the final decision. Then, we
compared the performance of this ensemble model to the performance of
each single model. Additionally, we used a weighted majority voting system,
where the final prediction is equal to the weighted average of the prediction
produced by each network. Our results show that the classification of the two
ensemble models reaches 96%. Thus these results prove that the ensemble
model outperforms single network architectures.
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1. Introduction

Currently, non-communicable diseases are the most significant contributor to mor-
tality rates throughout the world. One type of non-communicable disease that
plays an essential role in the high number of deaths is cancer. In 2015 WHO es-
timated that cancer was the leading cause of human death during the productive
period, which is below 70 years [2]. By definition, cancer refers to more than one
hundred types of diseases with their unique features. Every human being has tril-
lions of body cells that multiply and depend on each other. The body’s metabolism
automatically controls the development of each cell to maintain its size and shape.
However, cancer cells work oppositely. These cells develop regardless the protocol
instructed by the human body. And worse, cancer cells can move from one place
to another [21].

In the last decade, pathologists used a microscope to predict cancer. Experts
are trained to understand clinical symptoms and later diagnose them. The doctor
uses these results for decision making. Now routines like this are no longer a
priority since the development of the whole slide image scanner documents of the
histological images in digital form. By relying on sophisticated imaging and analysis
techniques, this tool can record more complex variables that exist in histological
images [12]. Furthermore, the images produced by this tool can detect not only
the presence of cancer cells in the body but also show biological processes such as
apoptosis, angiogenesis, and metastasis [22]. The histological image documentation
process massively produces a tremendous amount of data. The availability of a
large amount of data can be seen as an opportunity to develop a machine learning
system by designing a Convolutional Neural Network (CNN) [17].

The success of CNNs in producing good predictions can be seen in many pre-
vious works, among others [7, 11, 18, 19]. Krizhevsky et al. developed a network
called Alexnet. This network is designed in eight stack layers. The eight layers are
divided into two large blocks, and the first is filled by five convolutional layers and
three fully connected layers. While at the last layer, this model has a 1000-way
softmax, which refers to multiclass classification problems. They trained it with 1.2
million high-resolution images provided by ImageNet. Using this model, a 16.4%
error rate for 5 CNN architectures and a 15.3% error rate for 7 CNN ones in the
top five classifications were reported [11].

The VGG module was developed by Simonyan et al. The idea of this network
is the definition and the repetition of convolutions blocks. This model also utilizes
Max Pooling layers to reduce the dimension and small filter to decrease computation
costs. Satisfactory results were reported in this work. Namely, using the same
dataset, this study reports a 6.8% error rate for the top five predicted labels and a
23.7% error rate in the top first predicted labels [18].

As we know, CNN is an architecture that was developed to extract features from
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images comprehensively. However, one of the problems faced is the high variety
of the spatial position of the image information. In a dataset, the information we
want to retrieve is not always in the center of the image. Moreover, the desired
information may have a small percentage of other details. The large spatial variety
of information from an image makes it difficult to determine the suitable filter size
for CNN. Using a large filter makes the information more global, thus increasing
the cost of computing. On the other hand, if we use a small filter, it will cause the
information to be more local and eliminate essential knowledge from the image. For
this reason, the Inception architecture was designed by installing multiple different
size filters at the same level and concatenate them to reduce computing costs
without losing deciding information. This idea will produce architectures that
tend to be broad than deep [19].

The above studies showed that a deeper and more complex architecture resulted
in a better accuracy and validation score. However, deep and complex architecture
can damage the accuracy and validation of the model. He et al. tried to solve
this problem by developing a Residual Network (Resnet) model. Resnet’s basic
concept is to group CNN into several blocks, and each block has a short cut to do
a pass. This model architecture is constructed from 34 layers of residual blocks for
the smallest architecture to 152 layers for the most complex one. The 152 layers
single architecture reported very satisfying results by having a 19.38% error rate
for the top first predicted labels and a 4.49% error rate for the top five predicted
labels [7].

2. Related works

Classification using deep learning methods has produced excellent works. One of
these was the work of Veeling et al. [20]. The suggested model adopts the DenseNet
architecture, which uses Dense Block and Transition Block. Dataset was tested on
six different single DenseNet models, and the P4M-DenseNet model gave the best
results with an accuracy score of 89.8%. Kassani et al. [10] developed a model
from three base modules: VGG19, MobileNet, and DenseNet. The model was
trained using transfer learning techniques in a CNN ensemble framework utilizing
four different datasets, including the PatchCamelyon dataset. Specifically, on the
PatchCamelyon dataset, this work reported the accuracy of 94.64% for the CNN
ensemble model. Another study from Xia et al. [23] compared two well-known
CNN training methods, namely training from scratch and fine-tuning. They used
the Camelyon 16 dataset, which is the origin of the PatchCam dataset. This work
reported a result of 84.3% accuracy when the GoogleLeNet architecture was trained
using a fine-tuned training method.

In this work, we investigated two CNN models’ ability, namely single and en-
semble, for predicting the spread of cancer using medical images. We used a Patch-
Camelyon dataset of 220,025 pathology images digitized using a tissue scanner and
labeled as cancerous or non-cancerous. 70% of images were used as a training set
and the rest as the validation set. To develop an ensemble model, we chose three
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commonly used CNN modules, namely VGG, Inception, and Residual ResNet,
with a voting system to determine the final decision. Furtherly, we compared the
performance of this ensemble model to the performance of each single module. Ad-
ditionally, we used a weighted majority voting system where the final prediction is
equal to the weighted average of the prediction produced by each network.

3. Methodology

3.1. Dataset, hardware and software

The data we use is published in Kaggle, the PatchCamelyon dataset, which is
derived from the Camelyon16 Dataset [1, 20]. The dataset consists of pathology
images generated from a digital scanner. The whole slide image are broken down
into smaller segments of size 92× 92 pixels. The dataset contains 220,025 images,
then divided 154,018 for the training set and 66,007 for the validation set. To
simplify our work, we use a validation set as well as a test set. Next, we show
sample images of the data set in Figures 1 and 2. To support this work, we utilize
Google Collaboraty with NVIDIA Cuda Compilation Tool V8.0.61 besides that we
also use DELL desktop with GEFORCE GTX 1060 6GB.

Figure 1. Cancerous images.

Figure 2. Non-cancerous images.
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3.2. Preprocessing and augmentation
We chose 92× 92 pixels as the input size. Furthermore, we used an augmentation
process as part of image pre-processing to provide a sufficient amount of data and
resist the overfitting condition. The technical process involved rotation, shifting,
shearing, zoom and flipping as shown in Table 1.

Table 1. Augmentation process.

Rotation 45∘

Shifting 0.2
Shearing 0.2
Zoom 0.2

Flipping Horizontal

3.3. Base model of ensembles
As for the neural network architectures VGG, Inception, ResNet, we did not in-
tegrate any existing realizations, we implemented them from scratch to gain less
complex models. The first model was the LT-VGG based on the VGG module. We
stacked thirteen layers with the following details: ten convolutions layers and three
fully connected ones. We inserted a Max Pooling layer after every two convolutions
layers to have four pooling layers in total. Before entering fully connected layers,
the feature dimensions are changed using the Flatten layer and then passed on to
three fully connected layers: two 64-neurons and a Softmax with two-classes at the
end of the network.

The second model was LT-Inception based on the Inception module. The mod-
ifications performed in this model include twelve convolutions, which are divided
into two levels. Each level is filled by six convolutions and one Max Pooling layer.
Before going to the next level, the convolutions at level one were concatenated.
After the concatenation process at the second level, the dimension was shrunk us-
ing the Average Pooling layer. The dimensions were changed using the Flatten
layer and finally streamed to three fully connected layers of two 64-neurons and a
Softmax for two-classes.

The last model was the LT-ResNet based on the ResNet module. We installed
eighteen convolutions layers and also inserted one residual layer for every three
convolutional layers. So in total, we used 24 convolutions layers. We also used the
Average Pooling layer to reduce the features’ dimensions before converting to one
dimension using the Flatten Layer. Next, we used two fully connected layers of
two 64-neurons and a Softmax two-classes.

Refers to [4, 15], Softmax function 𝑓(𝑠) : R𝐾 → R𝐾 is a vector function in
the range [0, 1], where 𝐾 is the number of classes. This function is obtained by
calculating the exponential number to the power of 𝑠𝑖, where 𝑠𝑖 refers to the score
𝑠 from class 𝑖. Hereafter, numerator divided by the sum of the constant 𝑒 to the
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power of all score in number of classes:

𝑓(𝑠)𝑖 =
𝑒𝑠𝑖

∑︀𝐾
𝑐=1 𝑒

𝑠𝑐
. (3.1)

3.4. Ensemble model architecture

The ensemble method is one of the popular techniques to improve CNN’s accu-
racy, as described in [9]. The CNN ensemble technique is a combination of several
CNNs used to accomplish the same task. In their study, 193 articles were selected
in four different databases: ACM, Scopus, IEEE Xplore, and PubMed. Their
work reported that the majority voting method is the most widely used in the
heterogeneous ensemble type. The most popular type of classifier is Support Vec-
tor Machine, beating Artificial Neural Network in fourth place. Nevertheless, the
dataset used is mostly extracted from mammograms, not images.

To see more clearly the use of the CNN ensemble method in image datasets, we
also studied the work of Savelli et al. [16]. By implementing the CNN Ensemble,
they detected minor lesions in medical images. From this work, we can see how
the four CNN singles are combined, and then the final decision is taken from the
average score of the four single models. This work used the dataset of medical
images, namely INbreast, which relates to breast cancer, and E-ophtha, a retinal
fundus image.

Furthermore, Haragi’s work[6] designed the CNN ensemble for the classification
of skin lesions. In this study, we focus on recognizing how the final decision tech-
niques are applied to the ensemble method. We can see that the authors consider
several ways, such as Probabilistic, Majority Voting, and Weighting. From the
results reported, there is a significant difference in accuracy between single CNN
and ensemble one. Meanwhile, ensemble CNN’s final decision technique shows that
Simple Majority Voting provides the best accuracy score. On the other hand, the
weighting method excels in measuring the area under curve (AUC).

We trained three base models separately so that the ensemble model will have
three prediction results. We chose two types of voting systems that are used by
the ensemble model. The first voting system is majority voting. This system
gives each base model equal weight without considering achieving each model’s
accuracy when trained separately. Whereas the other voting system is that we
apply special weights to each model, referring to the accuracy of each training’s
results. Furtherly, we compared the performance of this ensemble model to the
performance of each single model. The architecture of the ensemble model shown
in Figure 3.

3.5. Training process

We experimented by gradually increasing the epoch from 10 to 100. The best
results were obtained at the epoch of 50. After that, there was an inconsistency
in both machine capability and the accuracy score. To save training time, we took

50 O. Lantang, Gy. Terdik, A. Hajdu, A. Tiba



Figure 3. Achitecture of the ensemble model.

advantage of implementing the batch size system in the training process.
Since we used more than eight convolutions with non-linear activation, we de-

cided to use the Normal Distribution developed by He et al. [8] as initial weights
during the training process. To optimize the training process, we took advantage
of the ADAM optimizer by setting the learning rate at 1e-4 and reduce by 1e-6 for
each subsequent epoch.

To measure the performance of the model, we have calculated its accuracy,
precision and recall score [3, 14]. It can be derived using the following formulas:

Accuracy =
TP

TP + FP
,

Precision =
TP + TN

TP + TN + FP + FN
,

Recall =
TP

TP + FN
,

where TP stands for true positive, and this value was taken from the data in class
0 (no cancer) and predicted to be accurate as class 0. TN is for true negative, that
is, data was on class 1 (cancer) and correctly predicted as a member of class 1.
Conversely, FP is an abbreviation of false positive, where FP is a member of class
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1, which is wrongly predicted as a member of class 0. And lastly, FN is for false
negative, which is a member of class 0 that was wrongly predicted as a member of
class 1.

We also measured the loss score that represents how far the model is from the
target. To calculate the loss score, we used the cross-entropy for the Softmax loss
function with two classes target. By having formula (3.1), the softmax loss function
will become:

CE = −
𝐾∑︁

𝑖

𝑡𝑖 log(𝑓(𝑠)𝑖). (3.2)

Equation (3.2) explains that cross-entropy CE is the sum of ground truth 𝑡𝑖 loga-
rithm the CNN score of each class that represents by 𝑓(𝑠)𝑖.

The ensemble process is to train the three models separately, then we vote. The
first type of voting used is simple majority voting. Here, we do not pay attention
to each model’s achievement in the training process. In other words, each model
gets the same portion in the voting process. The second type of voting is that we
provide different portions for each model. We tried some combinations of weights
considering the individual accuracies of the ensemble members. The results show
that an optimal choice of weights is 0.35 for the two best networks and 0.3 for
the third network. So, we set LT-ResNet and LT-VGG having weights 0.35 and
LT-Inception 0.30. Voting system itself refers to [5, 13], if we have multiple scores
𝑥1, 𝑥2, . . . , 𝑥𝑛, with corresponding weights 𝑤1, 𝑤2, . . . , 𝑤𝑛, then the weighted mean
can be calculated through

�̄� =

∑︀𝑛
𝑖=1 𝑤𝑖𝑥𝑖∑︀𝑛
𝑖=1 𝑤𝑖

.

4. Results

4.1. Loss score

Figure 4 illustrates the loss score of the three models while training. Graph 𝑎
shows that the LT-ResNet model’s loss score has a stable movement, likewise in
graph 𝑏, which displays a decrease in the loss score, which is also stable from the LT-
Inception model. Meanwhile, the LT-VGG model shows the unsteady movement of
reducing the loss score, as shown in graph 𝑐. Figure 4 shows the three models’ loss
scores, respectively, LT-ResNet 0.1324, LT-Inception 0.1937, and LT-VGG 0.2689
at the last epoch.

4.2. Accuracy, precision and recall

Figure 5 describes the training process of the three base models. From this figure,
we can see the accuracy and validation score of the models. These three graphs show
a significant increase in accuracy from the first epoch to the 50 epochs. The con-
sistently smaller differences between the training and validation accuracies (blue,
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Figure 4. Loss of: (a) LT-ResNet, (b) LT-Inception, (c) LT-VGG.

yellow lines on Figure 5, respectively) prove that the model is not overfitting. The
performance of the LT-ResNet model is shown in graph 𝑎, with an accuracy score of
0.95. Meanwhile, the LT-Inception model’s performance is shown in graph 𝑏, with
an accuracy score of 0.93. The LT-VGG model also has a good performance, as
shown in graph 𝑐, with an accuracy score of 0.95. The training process’s complete
results, which include the accuracy, precision, and recall scores of the three models,
are presented in Table 2.

Figure 5. Accuracy of: (a) LT-Resnet, (b) LT-Inception,
(c) LT-VGG.

Table 2. Precision, Recall and Accuracy of the investigated models.

𝑥 LT-ResNet LT-Inception LT-VGG MV WMV
Pre 0 0.95 0.92 0.95 0.95 0.95
Rec 0 0.97 0.96 0.97 0.98 0.98
Pre 1 0.95 0.93 0.96 0.96 0.96
Rec 1 0.92 0.89 0.92 0.93 0.93
Acc 0.95 0.93 0.95 0.96 0.96

After getting the results from these three models, we proceed by using the
voting method as an implementation of the ensemble model. The majority voting
(MV) results and the weighted majority voting (WMV) results show an equivalent
quality in the calculation of each class. We have precision scores of 0.95 and 0.96,
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respectively, for Class 0 and Class 1. Recall scores apiece 0.98 and 0.93 for Class
0 and Class 1. Finally accuracy score of these two voting systems corrects the
accuracy value of all single models, which is 0.96 for both class.

4.3. Confusion matrix

To see the performance of the models, we present their predictions on the validation
set. In Table 3, we report the predicted results of the three base models and two
voting systems.

Table 3. Confusion matrix of the investigated models.

𝑥 LT-ResNet LT-Inception LT-VGG MV WMV
TP 38043 37657 38186 38392 38397
TN 24677 23634 24504 24773 24787
FP 2020 3063 2193 1924 1910
FN 1265 1653 1124 918 913

From Table 3, we can see that if we compare the prediction results of the three base
models, LT-ResNet model is superior in predicting class 1 and LT-VGG model in
class 0. However, the ensemble model corrects the achievement of the three base
models of around 200 to 300 images per class. Overall, the weighted majority
voitng shows the best result with 38,397 images accurately predicted as class 0 and
24,787 images correctly predicted as class 1. On the other hand, there were 1910
images from class 1 that were mistakenly predicted as class 0, and only 913 images
in class 0 were incorrectly predicted as members of class 1.

5. Conclusion

From this study, we can conclude that the ensemble method can be used to improve
the model’s accuracy. It can be seen from the work of Kassani and ours compared to
Veeling and Xia’s works in Table 4. In this case, we experienced that the weighting
method had no significant impact on the voting process. It can be seen from the
equal accuracy score for the two ensemble models. Developing a network from
scratch can be leveraged to reduce the complexity and depth of the architecture
without compromising the network’s quality. This can be seen from the comparison
of the accuracy of our work with Kassani’s.

From some of our references, several methods might be considered to be used
in future work. One of them is the hyperparameter tuning method. The grid
search method seems considerable to determine hyperparameters automatically.
However, considering machine capability, we cannot use it at this time, and instead,
we specify the parameters manually. Another thing that can be considered is
the weighting method for the final decision, which can be part of the training
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parameters. In other words, the user does not need to determine the weight of
each single model, but the training process itself determines which model has the
most influence on the ensemble model.

Table 4. Comparison results.

Method Architecture Accuracy
Veeling et al. P4M-DenseNet 89.8%

Xia et al. GoogleLeNet fine-tuned 84.3%
Kassani et al Ensemble 94.64%

Proposed method Ensemble 96%
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Abstract
In this paper, we find all the Padovan and Perrin numbers which are Pell

or Pell-Lucas numbers.
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1. Introduction

Let (𝑢𝑛) and (𝑣𝑛) be two linear recurrent sequences. The problem of finding the
common terms of (𝑢𝑛) and (𝑣𝑛) was treated in [4, 5, 7–9]. They proved, under
some assumption, that the Diophantine equation

𝑢𝑛 = 𝑣𝑚

has only finitely many integer solutions (𝑚,𝑛). The aim of this paper is to study
the common terms of Padovan, Perrin, Pell and Pell-Lucas sequences that we will
recall below.
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Let {𝑃𝑚}𝑚≥0 be the Pell sequence given by

𝑃𝑚+2 = 2𝑃𝑚+1 + 𝑃𝑚,

for 𝑚 ≥ 0, where 𝑃0 = 0 and 𝑃1 = 1. This is the sequence A000129 in the OEIS
and its first few terms are

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025, . . .

We let {𝑄𝑚}𝑚≥0 be the companion Lucas sequence of the Pell sequence also
called the sequence of Pell–Lucas numbers. It starts with 𝑄0 = 2, 𝑄1 = 2 and
obeys the same recurrence relation

𝑄𝑚+2 = 2𝑄𝑚+1 +𝑄𝑚, for all 𝑚 ≥ 0

as the Pell sequence. This is the sequence A002203 in the OEIS and its first few
terms are

2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, 16238, 39202, 94642, 228486, 551614, . . .

The Padovan sequence {𝒫𝑛}𝑛≥0 is defined by

𝒫𝑛+3 = 𝒫𝑛+1 + 𝒫𝑛,

for 𝑛 ≥ 0, where 𝒫0 = 0 and 𝒫1 = 𝒫2 = 1. This is the sequence A000931 in the
OEIS. A few terms of this sequence are

0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, . . .

Let {𝐸𝑛}𝑛≥0 be the Perrin sequence given by

𝐸𝑛+3 = 𝐸𝑛+1 + 𝐸𝑛,

for 𝑛 ≥ 0, where 𝐸0 = 3, 𝐸1 = 0 and 𝐸2 = 2. Its first few terms are

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, . . .

It is the sequence A001608 in the OEIS.
The proofs of our main theorems are mainly based on linear forms in logarithms

of algebraic numbers and a reduction algorithm originally introduced by Baker and
Davenport in [1]. Here, we use a version due to de Weger [3]. We organize this
paper as follows. In Section 2, we recall the important results that will be used to
prove our main results. Sections 4–6 are devoted to the statements and the proofs
of our main results.

2. The tools

In this section, we recall all the tools that we will use to prove our main results.
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2.1. Linear forms in logarithms
We need some results from the theory of lower bounds for nonzero linear forms in
logarithms of algebraic numbers. We start by recalling Theorem 9.4 of [2], which
is a modified version of a result of Matveev [6]. Let L be an algebraic number field
of degree 𝑑L. Let 𝜂1, 𝜂2, . . . , 𝜂𝑙 ∈ L not 0 or 1 and 𝑑1, . . . , 𝑑𝑙 be nonzero integers.
We put

𝐷 = max{|𝑑1|, . . . , |𝑑𝑙|},
and

Γ =
𝑙∏︁

𝑖=1

𝜂𝑑𝑖
𝑖 − 1.

Let 𝐴1, . . . , 𝐴𝑙 be positive integers such that

𝐴𝑗 ≥ ℎ′(𝜂𝑗) := max{𝑑Lℎ(𝜂𝑗), | log 𝜂𝑗 |, 0.16}, for 𝑗 = 1, . . . 𝑙,

where for an algebraic number 𝜂 of minimal polynomial

𝑓(𝑋) = 𝑎0(𝑋 − 𝜂(1)) · · · (𝑋 − 𝜂(𝑘)) ∈ Z[𝑋]

over the integers with positive 𝑎0, we write ℎ(𝜂) for its Weil height given by

ℎ(𝜂) =
1

𝑘

⎛
⎝log 𝑎0 +

𝑘∑︁

𝑗=1

max{0, log |𝜂(𝑗)|}

⎞
⎠ .

The following consequence of Matveev’s theorem is Theorem 9.4 in [2].

Theorem 2.1. If Γ ̸= 0 and L ⊆ R, then

log |Γ| > −1.4 · 30𝑙+3𝑙4.5𝑑2L(1 + log 𝑑L)(1 + log𝐷)𝐴1𝐴2 · · ·𝐴𝑙.

2.2. The de Weger reduction
Here, we present a variant of the reduction method of Baker and Davenport due
to de Weger [3]).

Let 𝜗1, 𝜗2, 𝛽 ∈ R be given, and let 𝑥1, 𝑥2 ∈ Z be unknowns. Let

Λ = 𝛽 + 𝑥1𝜗1 + 𝑥2𝜗2. (2.1)

Let 𝑐, 𝜇 be positive constants. Set 𝑋 = max{|𝑥1|, |𝑥2|}. Let 𝑋0, 𝑌 be positive.
Assume that

|Λ| < 𝑐 · exp(−𝜇 · 𝑌 ), (2.2)

𝑌 ≤ 𝑋 ≤ 𝑋0. (2.3)

When 𝛽 = 0 in (2.1), we get

Λ = 𝑥1𝜗1 + 𝑥2𝜗2.
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Put 𝜗 = −𝜗1/𝜗2. We assume that 𝑥1 and 𝑥2 are coprime. Let the continued
fraction expansion of 𝜗 be given by

[𝑎0, 𝑎1, 𝑎2, . . .],

and let the 𝑘th convergent of 𝜗 be 𝑝𝑘/𝑞𝑘 for 𝑘 = 0, 1, 2, . . .. We may assume without
loss of generality that |𝜗1| < |𝜗2| and that 𝑥1 > 0. We have the following results.

Lemma 2.2 (See Lemma 3.2 in [3]). Let

𝐴 = max
0≤𝑘≤𝑌0

𝑎𝑘+1,

where

𝑌0 = −1 + log(
√
5𝑋0 + 1)

log
(︁

1+
√
5

2

)︁ .

If (2.2) and (2.3) hold for 𝑥1, 𝑥2 and 𝛽 = 0, then

𝑌 <
1

𝜇
log

(︂
𝑐(𝐴+ 2)𝑋0

|𝜗2|

)︂
.

When 𝛽 ̸= 0 in (2.1), put 𝜗 = −𝜗1/𝜗2 and 𝜓 = 𝛽/𝜗2. Then, we have

Λ

𝜗2
= 𝜓 − 𝑥1𝜗+ 𝑥2.

Let 𝑝/𝑞 be a convergent of 𝜗 with 𝑞 > 𝑋0. For a real number 𝑥, we let ‖𝑥‖ =
min{|𝑥 − 𝑛|, 𝑛 ∈ Z} be the distance from 𝑥 to the nearest integer. We have the
following result.

Lemma 2.3 (See Lemma 3.3 in [3]). Suppose that

‖ 𝑞𝜓 ‖> 2𝑋0

𝑞
.

Then, the solutions of (2.2) and (2.3) satisfy

𝑌 <
1

𝜇
log

(︂
𝑞2𝑐

|𝜗2|𝑋0

)︂
.

2.3. Properties of Padovan and Perrin sequences

In this subsection, we recall some facts and properties of the Padovan and the
Perrin sequences which will be used later.

The characteristic equation

𝑥3 − 𝑥− 1 = 0,
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has roots 𝛼, 𝛽, 𝛾 = 𝛽, where

𝛼 =
𝑟1 + 𝑟2

6
, 𝛽 =

−𝑟1 − 𝑟2 + 𝑖
√
3(𝑟1 − 𝑟2)

12
,

and
𝑟1 =

3

√︁
108 + 12

√
69 and 𝑟2 =

3

√︁
108− 12

√
69.

Let

𝑐𝛼 =
(1− 𝛽)(1− 𝛾)
(𝛼− 𝛽)(𝛼− 𝛾) =

1 + 𝛼

−𝛼2 + 3𝛼+ 1
,

𝑐𝛽 =
(1− 𝛼)(1− 𝛾)
(𝛽 − 𝛼)(𝛽 − 𝛾) =

1 + 𝛽

−𝛽2 + 3𝛽 + 1
,

𝑐𝛾 =
(1− 𝛼)(1− 𝛽)
(𝛾 − 𝛼)(𝛾 − 𝛽) =

1 + 𝛾

−𝛾2 + 3𝛾 + 1
= 𝑐𝛽 .

The Binet’s formula of 𝒫𝑛 is

𝒫𝑛 = 𝑐𝛼𝛼
𝑛 + 𝑐𝛽𝛽

𝑛 + 𝑐𝛾𝛾
𝑛, for all 𝑛 ≥ 0, (2.4)

and that of 𝐸𝑛 is
𝐸𝑛 = 𝛼𝑛 + 𝛽𝑛 + 𝛾𝑛, for all 𝑛 ≥ 0. (2.5)

Numerically, we have

1.32 < 𝛼 < 1.33,

0.86 < |𝛽| = |𝛾| < 0.87,

0.72 < 𝑐𝛼 < 0.73,

0.24 < |𝑐𝛽 | = |𝑐𝛾 | < 0.25.

It is easy to check that
|𝛽| = |𝛾| = 𝛼−1/2.

Further, using induction, we can prove that

𝛼𝑛−2 ≤ 𝒫𝑛 ≤ 𝛼𝑛−1, holds for all 𝑛 ≥ 4 (2.6)

and
𝛼𝑛−2 ≤ 𝐸𝑛 ≤ 𝛼𝑛+1, holds for all 𝑛 ≥ 2. (2.7)

2.4. Properties of Pell and Pell-Lucas sequences

Let 𝛿 = 1+
√
2 and 𝛿 := 1−

√
2 be the roots of the characteristic equation 𝑥2−2𝑥−1

of 𝑃𝑚 and 𝑄𝑚. The Binet formula of 𝑃𝑚 is given by

𝑃𝑚 =
𝛿𝑚 − 𝛿𝑚

2
√
2

, for all 𝑚 ≥ 0, (2.8)
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and that of 𝑄𝑚 is
𝑄𝑚 = 𝛿𝑚 + 𝛿

𝑚
, for all 𝑚 ≥ 0. (2.9)

Moreover, we have

𝛿𝑚−2 < 𝑃𝑚 < 𝛿𝑚−1, for all 𝑚 ≥ 2, (2.10)

and
𝛿𝑚−1 < 𝑄𝑚 < 𝛿𝑚+1, for all 𝑚 ≥ 2. (2.11)

3. Padovan numbers which are Pell numbers

In this section, we will prove our first main result, which is the following.

Theorem 3.1. The only solutions of the Diophantine equation

𝒫𝑛 = 𝑃𝑚 (3.1)

in positive integers 𝑚 and 𝑛 are

(𝑛,𝑚) ∈ {(0, 0), (1, 1), (2, 1), (3, 1), (4, 2), (5, 2), (8, 3), (11, 4)}.

Hence, 𝒫 ∩ 𝑃 = {0, 1, 2, 5, 12}.
Proof. A quick computation with Maple reveals that the solutions of the Diophan-
tine equation (3.1) in the interval [0, 60] are the solutions cited in Theorem 3.1.

From now, assuming that 𝑛 > 60, then by (2.6) and (2.10), we have

𝛼𝑛−2 < 𝛿𝑚−1 and 𝛿𝑚−2 < 𝛼𝑛−1.

Thus, we get

(𝑛− 2)𝑐1 + 1 < 𝑚 < (𝑛− 1)𝑐1 + 2, where 𝑐1 := log𝛼/ log 𝛿.

Particularly, we have 𝑛 < 4𝑚. So to solve equation (3.1), it suffices to get a good
upper bound on 𝑚.

Equation (3.1) can be expressed as

𝑐𝛼𝛼
𝑛 − 𝛿𝑚

2
√
2
= −𝑐𝛽𝛽𝑛 − 𝑐𝛾𝛾𝑛 −

𝛿
𝑚

2
√
2
,

by using (2.4) and (2.8). Thus, we get
⃒⃒
⃒⃒𝑐𝛼𝛼𝑛 − 𝛿𝑚

2
√
2

⃒⃒
⃒⃒ =

⃒⃒
⃒⃒
⃒𝑐𝛽𝛽

𝑛 + 𝑐𝛾𝛾
𝑛 +

𝛿
𝑚

2
√
2

⃒⃒
⃒⃒
⃒ < 0.85.

Multiplying through by 2
√
2𝛿−𝑚, we obtain

⃒⃒
⃒(𝑐𝛼2

√
2)𝛼𝑛𝛿−𝑚 − 1

⃒⃒
⃒ < 2.41𝛿−𝑚. (3.2)
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Now, we apply Matveev’s theorem by choosing

Λ1 = 2
√
2𝑐𝛼𝛼

𝑛𝛿−𝑚 − 1

and

𝜂1 := 2
√
2𝑐𝛼, 𝜂2 := 𝛼, 𝜂3 := 𝛿, 𝑑1 := 1, 𝑑2 := 𝑛, 𝑑3 := −𝑚.

The algebraic numbers 𝜂1, 𝜂2 and 𝜂3 belong to K := Q(𝛼, 𝛿) for which 𝑑K = 6.
Since 𝑛 < 4𝑚, therefore we can take 𝐷 := 4𝑚 = max{1,𝑚, 𝑛}. Furthermore, we
have

ℎ(𝜂2) =
log𝛼

3
and ℎ(𝜂3) =

log 𝛿

2
,

thus, we can take

max{6ℎ(𝜂2), |log 𝜂2| , 0.16} < 0.58 := 𝐴2

and
max{6ℎ(𝜂3), |log 𝜂3| , 0.16} = 2.65 := 𝐴3.

On the other hand, the conjugates of 𝜂1 are ±2
√
2𝑐𝛼, ±2

√
2𝑐𝛽 and ±2

√
2𝑐𝛾 , so the

minimal polynomial of 𝜂1 is

(𝑥2 − 8𝑐2𝛼)(𝑥
2 − 8𝑐2𝛽)(𝑥

2 − 8𝑐2𝛾) =
529𝑥6 − 2024𝑥4 − 640𝑥2 − 512

529
.

Since 2
√
2𝑐𝛼 > 1 and

⃒⃒
2
√
2𝑐𝛽
⃒⃒
=
⃒⃒
2
√
2𝑐𝛾
⃒⃒
< 1, then we get

ℎ(𝜂1) =
log 529 + 2 log(2

√
2𝑐𝛼)

6
.

So, we can take
max{6ℎ(𝜂1), |log 𝜂1| , 0.16} < 7.8 := 𝐴1.

To apply Matveev’s theorem, we still need to prove that Λ1 ̸= 0. Assume the
contrary, i.e. Λ1 = 0. So, we get

𝛿𝑚 = 2
√
2𝑐𝛼𝛼

𝑛.

Conjugating the above relation using the Q-automorphism of Galois 𝜎 defined by
𝜎 = (𝛼𝛽) and taking the absolute value we obtain

1 < 𝛿𝑚 = 2
√
2 |𝑐𝛽 | |𝛽|𝑛 < 1,

which is a contradiction. Thus Λ1 ̸= 0.
Matveev’s theorem tells us that

log |Λ1| > −1.4× 306 × 34.5 × 62(1 + log 6)(1 + log 4𝑚)× 7.8× 0.58× 2.65

> −1.8× 1014 × (1 + log 4𝑚).
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The last inequality together with (3.2) leads to

𝑚 < 1.99× 1014(1 + log 4𝑚).

Thus, we obtain
𝑚 < 7.52× 1015. (3.3)

Now, we will use Lemma 2.3 to reduce the upper bound (3.3) on 𝑚.
Define

Γ1 = 𝑛 log𝛼−𝑚 log 𝛿 + log(2
√
2𝑐𝛼).

Clearly, we have 𝑒Γ1 − 1 = Λ1. Since Λ1 ̸= 0, then Γ1 ̸= 0. If Γ1 > 0 the we get

0 < Γ1 < 𝑒Γ1 − 1 =
⃒⃒
𝑒Γ1 − 1

⃒⃒
= |Λ1| < 2.41𝛿−𝑚.

If Γ1 < 0, so we have 1 − 𝑒Γ1 =
⃒⃒
𝑒Γ1 − 1

⃒⃒
= |Λ1| < 1/2, because 𝑛 > 60. Then

𝑒|Γ1| < 2. Thus, one can see that

0 < |Γ1| < 𝑒|Γ1| − 1 = 𝑒|Γ1| |Λ1| < 4.82𝛿−𝑚.

From both cases, we deduce that

0 <
⃒⃒
⃒𝑛(− log𝛼) +𝑚 log 𝛿 − log(2

√
2𝑐𝛼)

⃒⃒
⃒ < 4.82 exp(−0.88×𝑚).

The inequality (3.3) implies that we can take 𝑋0 := 3.01× 1016. Furthermore, we
can choose

𝑐 := 4.82, 𝜇 := 0.88, 𝜓 := − log(2
√
2𝑐𝛼)

log𝜇
,

𝜗 :=
log𝛼

log 𝛿
, 𝜗1 := − log𝛼, 𝜗2 := log 𝛿, 𝛽 := − log(2

√
2𝑐𝛼).

With the help of Maple, we find that

𝑞29 = 3860032780734237233

satisfies the hypotheses of Lemma 2.3. Furthermore, Lemma 2.3 tells us

𝑚 <
1

0.88
log

(︂
38600327807342372332 × 4.82

log 𝛿 × 3.01× 1016

)︂
≤ 57.

This contradicts the assumption that 𝑛 > 60. Therefore, the theorem is proved.

4. Padovan numbers which are Pell-Lucas numbers

Our second result will be stated and proved in this section.
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Theorem 4.1. The only solutions of the Diophantine equation

𝒫𝑛 = 𝑄𝑚 (4.1)

in positive integers 𝑚 and 𝑛 are

(𝑛,𝑚) ∈ {(4, 0), (4, 1), (5, 0), (5, 1)}.

Hence, we deduce that 𝒫 ∩𝑄 = {2}.

Proof. A quick computation with Maple reveals that the solutions of the Diophan-
tine equation (4.1) in the interval [0, 60] are those cited in Theorem 4.1.

From now, we suppose that 𝑛 > 60, then by (2.6) and (2.11), we have

𝛼𝑛−2 < 𝛿𝑚+1 and 𝛿𝑚−1 < 𝛼𝑛−1.

Thus, we get

(𝑛− 2)𝑐1 − 1 < 𝑚 < (𝑛− 1)𝑐1 + 1, where 𝑐1 := log𝛼/ log 𝛿.

Particularly, we have 𝑛 < 4𝑚. So, to solve equation (4.1), we will determine a good
upper bound on 𝑚.

By using (2.4) and (2.9), equation (4.1) can be rewritten into the form

𝑐𝛼𝛼
𝑛 − 𝛿𝑚 = −𝑐𝛽𝛽𝑛 − 𝑐𝛾𝛾𝑛 − 𝛿

𝑚

So, we obtain
|𝑐𝛼𝛼𝑛 − 𝛿𝑚| ≤ 2 |𝑐𝛽𝛽𝑛|+ 1 < 1.5.

Multiplying both sides by 𝛿−𝑚, we get
⃒⃒
𝑐𝛼𝛼

𝑛𝛿−𝑚 − 1
⃒⃒
< 1.5𝛿−𝑚. (4.2)

Now, we will apply Matveev’s theorem to

Λ2 = 𝑐𝛼𝛼
𝑛𝛿−𝑚 − 1

by taking

𝜂1 := 𝑐𝛼, 𝜂2 := 𝛼, 𝜂3 := 𝛿, 𝑑1 := 1, 𝑑2 := 𝑛, 𝑑3 := −𝑚.

The algebraic numbers 𝜂1, 𝜂2 and 𝜂3 belong to K := Q(𝛼, 𝛿) with 𝑑K = 6. As
above, we take

𝐷 = 4𝑚, 𝐴2 = 0.58, 𝐴3 = 2.65.

On the other hand, the minimal polynomial of 𝑐𝛼 is

23𝑥3 − 23𝑥2 − 6𝑥− 1,
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which has roots 𝑐𝛼, 𝑐𝛽 and 𝑐𝛾 . Since 𝑐𝛼 < 1 and |𝑐𝛽 | = |𝑐𝛾 | < 1, then we get

ℎ(𝜂1) =
log 23

3
.

So, we can take
max{6ℎ(𝜂1), |log 𝜂1| , 0.16} < 6.28 := 𝐴1.

To apply Matveev’s theorem, we will prove that Λ2 ̸= 0. Suppose the contrary, i.e
Λ2 = 0. Thus, we get

𝛿𝑚 = 𝑐𝛼𝛼
𝑛.

Conjugating the above relation using the Q-automorphism of Galois 𝜎 defined by
𝜎 = (𝛼𝛽) and taking the absolute value, we obtain

1 < 𝛿𝑚 = |𝑐𝛽 | |𝛽|𝑛 < 1,

which is a contradiction. Thus, we deduce that Λ2 ̸= 0.
We use Matveev’s theorem to obtain

log |Λ2| > −1.4× 306 × 34.5 × 62(1 + log 6)(1 + log 4𝑚)× 6.28× 0.58× 2.65

> −1.39× 1014(1 + log 4𝑚).

The last inequality together with (4.2) leads to

𝑚 < 1.58× 1014(1 + log 4𝑚).

Thus, we obtain
𝑚 < 6.05× 1015. (4.3)

Now, we will use Lemma 2.3 to reduce the upper bound (4.3) on 𝑚.
Putting

Γ2 = 𝑛 log𝛼−𝑚 log 𝛿 + log(𝑐𝛼),

we proceed like in Section 3 to obtain

0 < |𝑛(− log𝛼) +𝑚 log 𝛿 − log(𝑐𝛼)| < 3 exp(−0.88×𝑚).

Using inequality (4.3), we take 𝑋0 := 2.42× 1016. Moreover, we choose

𝑐 := 3, 𝜇 := 0.88, 𝜓 := − log(𝑐𝛼)

log𝜇
,

𝜗 :=
log𝛼

log 𝛿
, 𝜗1 := − log𝛼, 𝜗2 := log 𝛿, 𝛽 := − log(𝑐𝛼).

We use Maple to find that

𝑞29 = 3860032780734237233

satisfies the hypotheses of Lemma 2.3. Therefore, we get

𝑚 <
1

0.88
log

(︂
38600327807342372332 × 3

log 𝛿 × 2.42× 1016

)︂
≤ 56.

This contradicts the assumption that 𝑛 > 60. Therefore, the proof of Theorem 4.1
is complete.
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5. Perrin numbers which are Pell numbers

In this section, we will state and prove our third main result.

Theorem 5.1. The only solutions of the Diophantine equation

𝐸𝑛 = 𝑃𝑚 (5.1)

in positive integers 𝑚 and 𝑛 are

(𝑛,𝑚) ∈ {(0, 1), (2, 2), (4, 2), (5, 3), (6, 3), (9, 4), (8, 3), (12, 5)}.

Hence, this implies that 𝐸 ∩ 𝑃 = {0, 2, 5, 12, 29}.
Proof. A quick computation with Maple gives the solutions of the Diophantine
equation (5.1) in the interval [0, 55], cited in Theorem 5.1.

From now, assuming that 𝑛 > 55, then by (2.7) and (2.10), we have

𝛼𝑛−2 < 𝛿𝑚−1 and 𝛿𝑚−2 < 𝛼𝑛+1.

Thus, we get

(𝑛− 2)𝑐1 + 1 < 𝑚 < (𝑛+ 1)𝑐1 + 2, where 𝑐1 := log𝛼/ log 𝛿.

Particularly, we have 𝑛 < 4𝑚. So to solve equation (5.1), we will determine a good
upper bound on 𝑚.

By using (2.5) and (2.8), equation (5.1) can be expressed as

𝛼𝑛 − 𝛿𝑚

2
√
2
= −𝛽𝑛 − 𝛾𝑛 − 𝛿

𝑚

2
√
2
.

Thus, we get ⃒⃒
⃒⃒𝛼𝑛 − 𝛿𝑚

2
√
2

⃒⃒
⃒⃒ =

⃒⃒
⃒⃒
⃒𝛽

𝑛 + 𝛾𝑛 +
𝛿
𝑚

2
√
2

⃒⃒
⃒⃒
⃒ < 2.36.

Dividing through by 𝛿𝑚/(2
√
2), we obtain

⃒⃒
⃒2
√
2𝛼𝑛𝛿−𝑚 − 1

⃒⃒
⃒ < 6.68𝛿−𝑚. (5.2)

Now, we apply Matveev’s theorem to

Λ3 = 2
√
2𝛼𝑛𝛿−𝑚 − 1

and take

𝜂1 := 2
√
2, 𝜂2 := 𝛼, 𝜂3 := 𝛿, 𝑑1 := 1, 𝑑2 := 𝑛, 𝑑3 := −𝑚.

The algebraic numbers 𝜂1, 𝜂2 and 𝜂3 belong to K := Q(𝛼, 𝛿), with 𝑑K = 6. As
before we can take

𝐷 = 4𝑚, 𝐴2 = 0.58 and 𝐴3 = 2.65
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Furthermore, since ℎ(𝜂1) = log(2
√
2), we choose

max{6ℎ(𝜂1), |log 𝜂1| , 0.16} < 6.24 := 𝐴1.

Similarly to what was done above, one can check that Λ3 ̸= 0. We deduce from
Matveev’s theorem that

log |Λ3| > −1.4× 306 × 34.5 × 62(1 + log 6)(1 + log 4𝑚)× 6.24× 0.58× 2.65

> −1.39× 1014 × (1 + log 4𝑚).

The last inequality together with (5.2) leads to

𝑚 < 1.57× 1014(1 + log 4𝑚).

Thus, we solve the above inequality to obtain

𝑚 < 6.1× 1015. (5.3)

Now, we will use Lemma 2.3 to reduce the upper bound (5.3) on 𝑚.
Define

Γ3 = 𝑛 log𝛼−𝑚 log 𝛿 + log(2
√
2).

Like above, we use Γ3 to obtain

0 <
⃒⃒
⃒𝑛(− log𝛼) +𝑚 log 𝛿 − log(2

√
2)
⃒⃒
⃒ < 13.36 exp(−0.88×𝑚)

Inequality (5.3) implies 𝑋0 := 2.44× 1016. Now, we take

𝑐 := 13.36, 𝜇 := 0.88, 𝜓 := − log(2
√
2)

log𝜇
,

𝜗 :=
log𝛼

log 𝛿
, 𝜗1 := − log𝛼, 𝜗2 := log 𝛿, 𝛽 := − log(2

√
2).

We use Maple to see that

𝑞28 = 153529568750401532

satisfies the hypotheses of Lemma 2.3. Applying Lemma 2.3, we get

𝑚 <
1

0.88
log

(︂
1535295687504015322 × 13.36

log 𝛿 × 2.44× 1016

)︂
≤ 51.

This contradicts the assumption that 𝑛 > 55. Therefore, This completes the proof
of Theorem 5.1.
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6. Perrin numbers which are Pell-Lucas numbers

In this section, we will state and prove our last main result.

Theorem 6.1. The only solutions of the Diophantine equation

𝐸𝑛 = 𝑄𝑚 (6.1)

in positive integers 𝑚 and 𝑛 are

(𝑛,𝑚) ∈ {(2, 0), (2, 1), (4, 0), (4, 1)}.

Hence, we see that 𝐸 ∩𝑄 = {2}.

Proof. A quick computation with Maple in the interval [0, 50] gives the solutions
of Diophantine equation (6.1) cited in Theorem 6.1.

We suppose that 𝑛 > 50, then by (2.7) and (2.11), we have

𝛼𝑛−2 < 𝛿𝑚+1 and 𝛿𝑚−1 < 𝛼𝑛+1.

Thus, we get

(𝑛− 2)𝑐1 − 1 < 𝑚 < (𝑛+ 1)𝑐1 + 1, where 𝑐1 := log𝛼/ log 𝛿.

Particularly, we have 𝑛 < 4𝑚. So to solve equation (6.1), We will find a good upper
bound on 𝑚.

By using (2.5) and (2.9), one can see that equation (6.1) can be rewritten as

𝛼𝑛 − 𝛿𝑚 = −𝛽𝑛 − 𝛾𝑛 − 𝛿𝑚.

We deduce that
|𝛼𝑛 − 𝛿𝑚| ≤ 2 |𝛽𝑛|+ 1 < 3.

Dividing both sides by 𝛿𝑚, we get
⃒⃒
𝛼𝑛𝛿−𝑚 − 1

⃒⃒
< 3𝛿−𝑚. (6.2)

To apply Matveev’s theorem to

Λ4 = 𝛼𝑛𝛿−𝑚 − 1,

we take

𝜂1 := 𝛼, 𝜂2 := 𝛿, 𝑑1 := 𝑛, 𝑑2 := −𝑚, 𝐷 = 4𝑚, 𝐴1 = 0.58 and 𝐴2 = 2.65.

Moreover, one can show that Λ4 ̸= 0. Thus, we apply Matveev’s theorem to obtain

log |Λ4| > −1.4× 305 × 24.5 × 62(1 + log 6)(1 + log 4𝑚)× 0.58× 2.65

> −1.19× 1011(1 + log 4𝑚).
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The last inequality together with (6.2) implies

𝑚 < 1.35× 1011(1 + log 4𝑚).

Thus, we obtain
𝑚 < 4.19× 1012. (6.3)

Now, we will use Lemma 2.2 to reduce the upper bound (6.3) on 𝑚.
Put

Γ4 = 𝑛 log𝛼−𝑚 log 𝛿.

We proceed as above and use Γ4 to obtain

0 < |𝑛(− log𝛼) +𝑚 log 𝛿| < 6 exp(−0.88×𝑚).

From inequality (6.3), we take 𝑋0 := 1.68 × 1013. So, we have 𝑌 := 63.95005 . . ..
Moreover, we choose

𝑐 := 6, 𝜇 := 0.88, 𝜗 :=
log𝛼

log𝜇
, 𝜗1 := − log𝛼, 𝜗2 := log𝜇.

With the help of Maple, we find that

max
0≤𝑘≤64

𝑎𝑘+1 = 1029.

So, Lemma 2.2 gives

𝑚 <
1

0.88
log

(︂
6× 1031× 1.68× 1013

log 𝛿

)︂
≤ 45.

This contradicts the assumption that 𝑛 > 50. Therefore, Theorem 6.1 is completely
proved.

Acknowledgements. The authors are grateful to the referee for the useful com-
ments that help to improve the quality of the paper.
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Abstract

Let 𝐷𝑛 be the dihedral group of order 𝑛. The structure of the unit group
𝑈(𝐹 (𝐶3 × 𝐷10)) of the group algebra 𝐹 (𝐶3 × 𝐷10) over a finite field 𝐹 of
characteristic 3 is given in [10]. In this article, the structure of 𝑈(𝐹 (𝐶3×𝐷10))
is obtained over any finite field 𝐹 of characteristic 𝑝 ̸= 3.

Keywords: Group rings, unit groups, dihedral groups, cyclic groups

AMS Subject Classification: 16U60, 20C05

1. Introduction

Let 𝑈(𝐹𝐺) be the group of invertible elements of the group algebra 𝐹𝐺 of a group
𝐺 over a field 𝐹 . The study of units and their properties is one of the most
challenging problems in the theory of group rings. Explicit calculations in 𝑈(𝐹𝐺)
are usually difficult, even when 𝐺 is fairly small and 𝐹 is a finite field. The results
obtained in this direction are also useful for the investigation of the Lie properties
of group rings, the isomorphism problem and other open questions in this area,
see [2].
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For a normal subgroup 𝐻 of 𝐺, the natural homomorphism 𝐺 → 𝐺/𝐻 can
be extended to an 𝐹 -algebra homomorphism from 𝐹𝐺 → 𝐹 (𝐺/𝐻) defined by∑︀

𝑔∈𝐺 𝑎𝑔𝑔 ↦→
∑︀

𝑔∈𝐺 𝑎𝑔𝑔𝐻, 𝑎𝑔 ∈ 𝐹 . The kernel of this homomorphism, denoted by
∆(𝐺,𝐻), is the ideal generated by {ℎ − 1 : ℎ ∈ 𝐻} in 𝐹𝐺 and 𝐹𝐺/∆(𝐺,𝐻) ∼=
𝐹 (𝐺/𝐻).

Let 𝐽(𝐹𝐺) be the Jacobson radical of 𝐹𝐺 and let 𝑉 = 1 + 𝐽(𝐹𝐺). The 𝐹 -
algebra 𝐹𝐺/𝐽(𝐹𝐺) is semisimple whenever 𝐺 is a finite group. It is known from
the Wedderburn structure theorem that

𝐹𝐺/𝐽(𝐹𝐺) ∼=
𝑟⨁︁

𝑖=1

𝑀(𝑛𝑖,𝐾𝑖)

where 𝑟 is the number of non-isomorphic irreducible 𝐹𝐺 modules, 𝑛𝑖 ∈ N and
𝐾𝑖’s are finite dimensional division algebras over 𝐹 . In this context two results by
Ferraz [3, Theorem 1.3 and Prop 1.2] (stated at the end of this section) are very
useful in determining the Wedderburn decomposition of 𝐹𝐺/𝐽(𝐹𝐺).

If 𝐹𝐺 is semisimple, then 𝐽(𝐹𝐺) = 0 and by [8, Prop 3.6.11],

𝐹𝐺 ∼= 𝐹 (𝐺/𝐺′)⊕∆(𝐺,𝐺′)

where 𝐹 (𝐺/𝐺′) is the sum of all the commutative simple components of 𝐹𝐺,
whereas ∆(𝐺,𝐺′) is the sum of all the non-commutative simple components of
𝐹𝐺. We conclude that, if 𝐹𝐺 is semisimple, then

𝐹𝐺 ∼= 𝐹 (𝐺/𝐺′)⊕
𝑙⨁︁

𝑖=1

𝑀(𝑛𝑖,𝐾𝑖).

Now, if dim𝐹 (𝑍(𝐹𝐺)) = 𝑟 and if the number of commutative simple components
is 𝑠, then 𝑙 ≤ 𝑟 − 𝑠.

In what follows, 𝐷𝑛 is the dihedral group of order 𝑛, 𝐶𝑛 is the cyclic group of
order 𝑛, 𝐹𝑛 is the direct sum of 𝑛 copies of 𝐹 , 𝐹𝑛 is the extension of 𝐹 of degree 𝑛,
𝑀(𝑛, 𝐹 ) is the algebra of all 𝑛× 𝑛 matrices over 𝐹 , 𝐺𝐿(𝑛, 𝐹 ) is the general linear
group of degree 𝑛 over 𝐹 , 𝑍(𝐹𝐺) is the center of 𝐹𝐺, [𝑔] is the conjugacy class of
𝑔 ∈ 𝐺 and 𝑇𝑝 is the set of all 𝑝-elements of 𝐺 including 1.

Let 𝐹 be a field of characteristic 𝑝 > 0 and let 𝐺 be a finite group. An element
𝑔 ∈ 𝐺 is 𝑝-regular, if 𝑝 ∤ 𝑜(𝑔). Let 𝑡 be the l.c.m. of the orders of 𝑝-regular elements
of 𝐺 and let 𝜔 be a primitive 𝑡-th root of unity over the field 𝐹 . Then

𝐴 = {𝑟 | 𝜔 → 𝜔𝑟 is an automorphism of 𝐹 (𝜔) over 𝐹}.

Let 𝛾𝑔 be the sum of all conjugates of 𝑔 ∈ 𝐺. If 𝑔 is a 𝑝-regular element, then
the cyclotomic 𝐹 -class of 𝛾𝑔 is

𝑆𝐹 (𝛾𝑔) = {𝛾𝑔𝑟 | 𝑟 ∈ 𝐴}.

Many authors [1, 4, 5, 7, 9–12] have studied the structure of 𝑈(𝐹𝐺) for a finite
group 𝐺 and for a finite field 𝐹 . The structure of 𝑈(𝐹 (𝐶3 × 𝐷10)) for 𝑝 = 3 is
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given in [10]. In this article, we provide an explicit description for the Wedderburn
decomposition of 𝐹𝐺/𝐽(𝐹𝐺), 𝐺 = 𝐶3 ×𝐷10 and 𝐹 a finite field of characteristic
𝑝 ̸= 3, using the theory developed by Ferraz [3] and with the help of this description
we obtain the structure of 𝑈(𝐹 (𝐶3 ×𝐷10)).

Lemma 1.1 ([3, Proposition 1.2]). Let 𝐾 be a field and let 𝐺 be a finite group. The
number of simple components of 𝐾𝐺/𝐽(𝐾𝐺) is equal to the number of cyclotomic
𝐾-classes in 𝐺.

Lemma 1.2 ([3, Theorem 1.3]). Let 𝐾 be a field and let 𝐺 be a finite group. Sup-
pose that 𝐺𝑎𝑙(𝐾(𝜔)/𝐾) is cyclic. Let 𝑠 be the number of cyclotomic 𝐾-classes in 𝐺.
If 𝑅1, 𝑅2, . . . , 𝑅𝑠 are the simple components of 𝑍(𝐾𝐺/𝐽(𝐾𝐺)) and 𝑃1, 𝑃2, . . . , 𝑃𝑠

are the cyclotomic 𝐾-classes of 𝐺, then with a suitable re-ordering of indices,
|𝑃𝑖| = [𝑅𝑖 : 𝐾].

2. Structure of 𝑈(𝐹 (𝐶3 × 𝐷10))

Theorem 2.1. Let 𝐹 be a finite field of characteristic 𝑝 with |𝐹 | = 𝑞 = 𝑝𝑛 and let
𝐺 = 𝐶3 ×𝐷10.

1. If 𝑝 = 2, then 𝑈(𝐹𝐺) ∼={︃
𝐶3𝑛

2 ⋊
(︀
𝐶3

2𝑛−1 ×𝐺𝐿(2, 𝐹 )6
)︀
, if 𝑞 ≡ 1, 4 mod 15;

𝐶3𝑛
2 ⋊

(︀
𝐶2𝑛−1 × 𝐶22𝑛−1 ×𝐺𝐿(2, 𝐹2)

3
)︀
, if 𝑞 ≡ 2,−7 mod 15.

2. If 𝑝 = 5, then

𝑈(𝐹𝐺) ∼= 𝑉 ⋊

{︃
𝐶6

5𝑛−1, if 𝑞 ≡ 1 mod 6;

𝐶2
5𝑛−1 × 𝐶2

52𝑛−1, if 𝑞 ≡ −1 mod 6.

where 𝑉 ∼= (𝐶15𝑛
5 ⋊ 𝐶6𝑛

5 )⋊ 𝐶3𝑛
5 and 𝑍(𝑉 ) ∼= 𝐶9𝑛

5 .

3. If 𝑝 > 5, then 𝑈(𝐹𝐺) ∼=
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

𝐶6
𝑝𝑛−1 ×𝐺𝐿(2, 𝐹 )6, if 𝑞 ≡ 1,−11 mod 30;

𝐶2
𝑝𝑛−1 × 𝐶2

𝑝2𝑛−1 ×𝐺𝐿(2, 𝐹 )2 ×𝐺𝐿(2, 𝐹2)
2, if 𝑞 ≡ −1, 11 mod 30;

𝐶6
𝑝𝑛−1 ×𝐺𝐿(2, 𝐹2)

3, if 𝑞 ≡ 7, 13 mod 30;
𝐶2

𝑝𝑛−1 × 𝐶2
𝑝2𝑛−1 ×𝐺𝐿(2, 𝐹2)

3, if 𝑞 ≡ −7,−13 mod 30.

Proof. Let 𝐺 = ⟨𝑥, 𝑦, 𝑧 | 𝑥2 = 𝑦5 = 𝑧3 = 1, 𝑥𝑦 = 𝑦4𝑥, 𝑥𝑧 = 𝑧𝑥, 𝑦𝑧 = 𝑧𝑦⟩. The
conjugacy classes in 𝐺 are:

[𝑧𝑖] = {𝑧𝑖} for 𝑖 = 0, 1, 2;

[𝑦𝑧𝑖] = {𝑦±1𝑧𝑖} for 𝑖 = 0, 1, 2;

[𝑦2𝑧𝑖] = {𝑦±2𝑧𝑖} for 𝑖 = 0, 1, 2;

[𝑥𝑧𝑖] = {𝑥𝑧𝑖, 𝑥𝑦±1𝑧𝑖, 𝑥𝑦±2𝑧𝑖} for 𝑖 = 0, 1, 2.
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1. 𝑝 = 2. Clearly, ̂︁𝑇2 = 1 + 𝑥̂︀𝑦.
Let 𝛼 =

∑︀1
𝑘=0

∑︀2
𝑗=0

∑︀5(𝑗+3𝑘)+4
𝑖=5(𝑗+3𝑘) 𝑎𝑖𝑥

𝑘𝑦𝑖−5(𝑗+3𝑘)𝑧𝑗 . If 𝛼̂︁𝑇2 = 0, then we have

𝛼+
1∑︁

𝑘=0

2∑︁

𝑗=0

5(𝑗+3𝑘)+4∑︁

𝑖=5(𝑗+3𝑘)

𝑎𝑖𝑥
𝑘+1̂︀𝑦𝑧𝑗 = 0.

For 𝑘 = 0, 1, 2 and 𝑖 = 0, 1, 2, 3, 4 this yields the following equations:

𝑎5𝑘+𝑖 +
4∑︁

𝑗=0

𝑎5𝑘+𝑗+15 = 0,

𝑎5𝑘+15+𝑖 +

4∑︁

𝑗=0

𝑎5𝑘+𝑗 = 0.

After simplification we get, 𝑎5𝑘 = 𝑎5𝑘+𝑖 = 𝑎5𝑘+𝑖+15 for 𝑖 = 0, 1, 2, 3, 4 and
𝑘 = 0, 1, 2. Hence

Ann(̂︁𝑇2) =
{︂ 2∑︁

𝑖=0

𝛽𝑖(1 + 𝑥)̂︀𝑦𝑧𝑖 | 𝛽𝑖 ∈ 𝐹
}︂
.

Since 𝑧, ̂︀𝑦 ∈ 𝑍(𝐹𝐺), Ann2(̂︁𝑇2) = 0 and Ann(̂︁𝑇2) ⊆ 𝐽(𝐹𝐺). Thus by [12,
Lemma 2.2], 𝐽(𝐹𝐺) = Ann(̂︁𝑇2) and dim𝐹 (𝐽(𝐹𝐺)) = 3. Hence 𝑉 ∼= 𝐶3𝑛

2 and
by [6, Lemma 2.1],

𝑈(𝐹𝐺) ∼= 𝐶3𝑛
2 ⋊ 𝑈(𝐹𝐺/𝐽(𝐹𝐺)).

Now it only remains to find the Wedderburn decomposition of 𝐹𝐺/𝐽(𝐹𝐺).

As [1], [𝑦], [𝑦2], [𝑧], [𝑧2], [𝑦𝑧], [𝑦𝑧2], [𝑦2𝑧], and [𝑦2𝑧2] are the 2-regular con-
jugacy classes of 𝐺, 𝑡 = 15 and dim𝐹 (𝐹𝐺/𝐽(𝐹𝐺)) = 27. Now the following
cases occur:

(a) If 𝑞 ≡ 1, 4 mod 15, then |𝑆𝐹 (𝛾𝑔)| = 1 for 𝑔 = 1, 𝑦, 𝑦2, 𝑧, 𝑧2, 𝑦𝑧, 𝑦𝑧2,
𝑦2𝑧, 𝑦2𝑧2. Consquently, [3, Theorem 1.3], yields nine components in the
decomposition of 𝐹𝐺/𝐽(𝐹𝐺). In view of the dimension requirements,
the only possibility is:

𝐹𝐺/𝐽(𝐹𝐺) ∼= 𝐹 3 ⊕𝑀(2, 𝐹 )6.

(b) If 𝑞 ≡ 2,−7 mod 15, then |𝑆𝐹 (𝛾𝑔)| = 1 for 𝑔 = 1 and |𝑆𝐹 (𝛾𝑔)| = 2 for
𝑔 = 𝑦, 𝑧, 𝑦𝑧, 𝑦𝑧2. So, due to the dimension restrictions, we have

𝐹𝐺/𝐽(𝐹𝐺) ∼= 𝐹 ⊕ 𝐹2 ⊕𝑀(2, 𝐹2)
3.
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2. 𝑝 = 5. If 𝐾 = ⟨𝑦⟩, then 𝐺/𝐾 ∼= 𝐻 ∼= ⟨𝑥, 𝑧⟩ ∼= 𝐶6. Thus from the ring
epimorphism 𝜂 : 𝐹𝐺→ 𝐹𝐻, given by

𝜂

(︂ 2∑︁

𝑗=0

4∑︁

𝑖=0

𝑦𝑖𝑧𝑗(𝑎𝑖+5𝑗 + 𝑎𝑖+5𝑗+15𝑥)

)︂
=

2∑︁

𝑗=0

4∑︁

𝑖=0

𝑧𝑗(𝑎𝑖+5𝑗 + 𝑎𝑖+5𝑗+15𝑥),

we get a group epimorphism 𝜑 : 𝑈(𝐹𝐺)→ 𝑈(𝐹𝐻) and ker𝜑 ∼= 1+ 𝐽(𝐹𝐺) =
𝑉 . Further, we have the inclusion map 𝑖 : 𝑈(𝐹𝐻) → 𝑈(𝐹𝐺) such that 𝜑𝑖 =
1𝑈(𝐹𝐻). Thus 𝑈(𝐹𝐺) ∼= 𝑉 ⋊ 𝑈(𝐹𝐶6).
The structure of 𝑈(𝐹𝐶6) is given in [11, Theorem 4.1].

If 𝑣 =
∑︀2

𝑗=0

∑︀4
𝑖=0 𝑦

𝑖𝑧𝑗(𝑎𝑖+5𝑗 + 𝑎𝑖+5𝑗+15𝑥) ∈ 𝑈(𝐹𝐺), then 𝑣 ∈ 𝑉 if and only
if
∑︀4

𝑖=0 𝑎𝑖 = 1 and
∑︀4

𝑖=0 𝑎𝑖+5𝑘 = 0 for 𝑘 = 1, 2, 3, 4, 5. Hence

𝑉 =

{︂
1 +

2∑︁

𝑗=0

4∑︁

𝑖=1

(𝑦𝑖 − 1)𝑧𝑗(𝑏𝑖+4𝑗 + 𝑏𝑖+4𝑗+12𝑥) | 𝑏𝑖 ∈ 𝐹
}︂

and |𝑉 | = 524𝑛. Since, 𝐽(𝐹𝐺)5 = 0, 𝑉 5 = 1.
Now we show that 𝑉 ∼= (𝐶15𝑛

5 ⋊ 𝐶6𝑛
5 ) ⋊ 𝐶3𝑛

5 . The proof is split into the
following steps:
Step 1: Let 𝑅 = {1 + 𝑎𝑦(1− 𝑦)3𝑥 | 𝑎 ∈ 𝐹} ⊆ 𝑉 . Then 𝑅 ∼= 𝐶𝑛

5 .
If

𝑟1 = 1 + 𝑎𝑦(1− 𝑦)3𝑥 ∈ 𝑅
and

𝑟2 = 1 + 𝑏𝑦(1− 𝑦)3𝑥 ∈ 𝑅
where 𝑎, 𝑏 ∈ 𝐹 , then

𝑟1𝑟2 = 1 + (𝑎+ 𝑏)𝑦(1− 𝑦)3𝑥 ∈ 𝑅.
Therefore, 𝑅 is an abelian subgroup of 𝑉 of order 5𝑛. Hence 𝑅 ∼= 𝐶𝑛

5 .
Step 2: |𝐶𝑉 (𝑅)| = 521𝑛, where 𝐶𝑉 (𝑅) = {𝑣 ∈ 𝑉 | 𝑟𝑣 = 𝑟 for all 𝑟 ∈ 𝑅}.
Let

𝑟 = 1 + 𝑎𝑦(1− 𝑦)3𝑥 ∈ 𝑅
and

𝑣 = 1 +
2∑︁

𝑗=0

4∑︁

𝑖=1

(𝑦𝑖 − 1)𝑧𝑗(𝑏𝑖+4𝑗 + 𝑏𝑖+4𝑗+12𝑥) ∈ 𝑉

where 𝑎, 𝑏𝑖 ∈ 𝐹 . Then 𝑣 = 1 + 𝑣1 + 𝑣2𝑥, 𝑣1 =
∑︀2

𝑗=0

∑︀4
𝑖=1 𝑏𝑖+4𝑗(𝑦

𝑖 − 1)𝑧𝑗

and 𝑣2 =
∑︀2

𝑗=0

∑︀4
𝑖=1 𝑏𝑖+4𝑗+12(𝑦

𝑖 − 1)𝑧𝑗 . So 𝑣−1 = 𝑣4 = 1 + 4𝑣1 + 4𝑣2𝑥 mod
(𝑦 − 1)2𝐹𝐺. Thus

𝑟𝑣 = 1 + 𝑣−1𝑎𝑦(1− 𝑦)3𝑥𝑣 = 𝑟 + 2𝑎̂︀𝑦
2∑︁

𝑗=0

4∑︁

𝑖=1

𝑖𝑏𝑖+4𝑗𝑧
𝑗𝑥.
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Thus 𝑟𝑣 = 𝑟 if and only if
∑︀4

𝑖=1 𝑖𝑏𝑖+4𝑗 = 0 for 𝑗 = 0, 1, 2. Hence

𝐶𝑉 (𝑅) =

{︂
1 +

2∑︁

𝑗=0

3∑︁

𝑖=1

[(𝑦𝑖 − 1) + 𝑖(𝑦4 − 1)]𝑐𝑖+3𝑗𝑧
𝑗

+

2∑︁

𝑗=0

4∑︁

𝑖=1

(𝑦𝑖 − 1)𝑐𝑖+4𝑗+9𝑧
𝑗𝑥 | 𝑐𝑖 ∈ 𝐹

}︂

and |𝐶𝑉 (𝑅)| = 521𝑛.

Step 3: 𝐶𝑉 (𝑅) ∼= 𝐶15𝑛
5 ⋊ 𝐶6𝑛

5 .

Consider the sets

𝑆 = {1 + 𝑦3(𝑦 − 1)2[𝑦𝑏1 + 𝑦(𝑦 + 2)𝑏2 + 𝑏3 + (𝑦𝑏4 + (𝑦 + 1)2𝑏5)𝑥]}

and

𝑇 = {1 + 𝑦3(𝑦 − 1)[(𝑦 − 1)(𝑦𝑐1 + (𝑦 + 1)2𝑐2) + (𝑦𝑐3 + (𝑦2 + 𝑦 + 1)𝑐4)𝑥]}

where 𝑏1+𝑗 =
∑︀2

𝑖=0 𝑝𝑖+3𝑗𝑧
𝑖 for 𝑗 = 0, 1, 2, 3, 4 and 𝑐1+𝑗 =

∑︀2
𝑖=0 𝑞𝑖+3𝑗𝑧

𝑖 for
𝑗 = 0, 1, 2, 3. With some computation it can be shown that 𝑆 and 𝑇 are
abelian subgroups of 𝐶𝑉 (𝑅). So 𝑆 ∼= 𝐶15𝑛

5 and 𝑇 ∼= 𝐶12𝑛
5 .

Now, let

𝑠 = 1 + 𝑦3(𝑦 − 1)2[𝑦𝑏1 + 𝑦(𝑦 + 2)𝑏2 + 𝑏3 + (𝑦𝑏4 + (𝑦 + 1)2𝑏5)𝑥] ∈ 𝑆

and

𝑡 = 1 + 𝑦3(𝑦 − 1)[(𝑦 − 1)(𝑦𝑐1 + (𝑦 + 1)2𝑐2) + (𝑦𝑐3 + (𝑦2 + 𝑦 + 1)𝑐4)𝑥] ∈ 𝑇.

Then

𝑠𝑡 = 1 + 𝑦3(𝑦 − 1)2{𝑦𝑏1 + 𝑦(𝑦 + 2)𝑏2 + 𝑏3 + 𝑘1𝑦
3(1− 𝑦)

+ [𝑦𝑏4 + (𝑦 + 1)2𝑏5 + (𝑦 − 1)2(𝑘2 + 𝑘3)]𝑥} ∈ 𝑆

where

𝑘1 = (𝑐4 + 2𝑐3)(𝑏4 − 𝑏5), 𝑘2 = (𝑐4 + 2𝑐3)(𝑏2 − 𝑏3)
𝑘3 = 2(𝑐24 − 𝑐3𝑐4 − 𝑐23)(𝑏4 − 𝑏5).

Let
𝑈 = 𝑆 ∩ 𝑇 = {1 + 𝑦3(𝑦 − 1)2[𝑦𝑐1 + (𝑦 + 1)2𝑐2]}

where 𝑐1+𝑗 =
∑︀2

𝑖=0 𝑞𝑖+3𝑗𝑧
𝑖 for 𝑗 = 0, 1. Thus 𝑈 ∼= 𝐶6𝑛

5 . So for some subgroup
𝑊 ∼= 𝐶6𝑛

5 of 𝑇 , 𝑇 = 𝑈 ×𝑊 and 𝑊 ∩ 𝑆 = 1. Hence 𝐶𝑉 (𝑅) ∼= 𝑆 ⋊𝑊 ∼=
𝐶15𝑛

5 ⋊ 𝐶6𝑛
5 .
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Step 4: Let 𝑀 = {1+∑︀2
𝑗=0 𝑟𝑗𝑧

𝑗𝑦(𝑦+1)2(1−𝑦)(1+𝑥) | 𝑟𝑖 ∈ 𝐹} ⊆ 𝑉 . Then
𝑀 ∼= 𝐶3𝑛

5 .

Let

𝑚1 = 1 +
2∑︁

𝑗=0

𝑟𝑗𝑧
𝑗𝑦(𝑦 + 1)2(1− 𝑦)(1 + 𝑥) ∈𝑀

and

𝑚2 = 1 +

2∑︁

𝑗=0

𝑠𝑗𝑧
𝑗𝑦(𝑦 + 1)2(1− 𝑦)(1 + 𝑥) ∈𝑀

where 𝑟𝑗 , 𝑠𝑗 ∈ 𝐹 . Then

𝑚1𝑚2 = 1 +

2∑︁

𝑗=0

(𝑟𝑗 + 𝑠𝑗)𝑧
𝑗𝑦(𝑦 + 1)2(1− 𝑦)(1 + 𝑥) ∈𝑀.

Therefore, 𝑀 is an abelian subgroup of 𝑉 of order 53𝑛. Hence, 𝑀 ∼= 𝐶3𝑛
5 .

Step 5: 𝑉 ∼= 𝐶𝑉 (𝑅)⋊𝑀 .

Let

𝑎 = 1 +
2∑︁

𝑗=0

3∑︁

𝑖=1

[(𝑦𝑖 − 1) + 𝑖(𝑦4 − 1)]𝑐𝑖+3𝑗𝑧
𝑗

+
2∑︁

𝑗=0

4∑︁

𝑖=1

(𝑦𝑖 − 1)𝑐𝑖+4𝑗+9𝑧
𝑗𝑥 ∈ 𝐶𝑉 (𝑅)

and let

𝑏 = 1 +
2∑︁

𝑗=0

𝑟𝑗𝑧
𝑗𝑦(𝑦 + 1)2(1− 𝑦)(1 + 𝑥) ∈𝑀

where 𝑐𝑖, 𝑟𝑖 ∈ 𝐹 . Then

𝑎𝑏 = 1 +
2∑︁

𝑗=0

3∑︁

𝑖=1

[(𝑦𝑖 − 1) + 𝑖(𝑦4 − 1)]𝑐𝑖+3𝑗𝑧
𝑗

+

2∑︁

𝑗=0

4∑︁

𝑖=1

(𝑦𝑖 − 1)𝑐𝑖+4𝑗+9𝑧
𝑗𝑥+ (𝑘1 + 𝑘2𝑥) ∈ 𝐶𝑉 (𝑅)

where

𝑘1 =
2∑︁

𝑗=0

𝑟𝑗𝑧
𝑗{

2∑︁

𝑘=0

(𝑐10+4𝑘 − 𝑐11+4𝑘 − 𝑐12+4𝑘 + 𝑐13+4𝑘)𝑧
𝑘

+ 3

2∑︁

𝑗=0

𝑟𝑗𝑧
𝑗

4∑︁

𝑖=1

2∑︁

𝑘=0

𝑖(𝑐𝑖+4𝑘+9𝑧
𝑘)}𝑦(1− 𝑦)3
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and

𝑘2 = 2
2∑︁

𝑗=0

𝑟𝑗𝑧
𝑗{

2∑︁

𝑘=0

(𝑐2+3𝑘 − 𝑐3+3𝑘)𝑧
𝑘(1− 𝑦)

−
2∑︁

𝑗=0

𝑟𝑗𝑧
𝑗

4∑︁

𝑖=1

2∑︁

𝑘=0

𝑖𝑐𝑖+4𝑘+9𝑧
𝑘}𝑦(1− 𝑦)3 − 2

2∑︁

𝑗=0

𝑟𝑗𝑧
𝑗

4∑︁

𝑖=0

𝑑𝑖𝑦
𝑖

with

𝑑0 =
2∑︁

𝑗=0

(4𝑐10+4𝑗 + 4𝑐11+4𝑗 + 𝑐12+4𝑗 + 𝑐13+4𝑗)𝑧
𝑗 ,

𝑑1 =

2∑︁

𝑗=0

(4𝑐10+4𝑗 + 3𝑐11+4𝑗 + 3𝑐12+4𝑗)𝑧
𝑗 ,

𝑑2 =

2∑︁

𝑗=0

(4𝑐11+4𝑗 + 3𝑐12+4𝑗 + 3𝑐13+4𝑗)𝑧
𝑗 ,

𝑑3 =
2∑︁

𝑗=0

(2𝑐10+4𝑗 + 2𝑐11+4𝑗 + 𝑐12+4𝑗)𝑧
𝑗 ,

𝑑4 =
2∑︁

𝑗=0

(2𝑐11+4𝑗 + 2𝑐12+4𝑗 + 𝑐13+4𝑗)𝑧
𝑗 .

Clearly, 𝐶𝑉 (𝑅) ∩𝑀 = 1. Therefore, 𝑉 = 𝐶𝑉 (𝑅)⋊𝑀 .

In the sequel, we show that 𝑍(𝑉 ) ∼= 𝐶9𝑛
5 .

If 𝑣 = 1+
∑︀2

𝑗=0

∑︀4
𝑖=1(𝑦

𝑖 − 1)𝑧𝑗(𝑏𝑖+4𝑗 + 𝑏𝑖+4𝑗+12𝑥) ∈ 𝐶𝑉 (𝑦) = {𝑣 ∈ 𝑉 | 𝑣𝑦 =
𝑦𝑣}, then

𝑣𝑦 − 𝑦𝑣 =

4∑︁

𝑖=1

2∑︁

𝑗=0

𝑦(1− 𝑦𝑖)(𝑦3 − 1)𝑏𝑖+4𝑗+12𝑧
𝑗𝑥.

Thus 𝑣 ∈ 𝐶𝑉 (𝑦) if and only if 𝑏𝑖 = 𝑏𝑖+𝑗 for 𝑗 = 1, 2, 3 and 𝑖 = 13, 17, 21.
Hence

𝐶𝑉 (𝑦) =

{︂
1 +

2∑︁

𝑗=0

4∑︁

𝑖=1

(𝑦𝑖 − 1)𝑐𝑖+4𝑗𝑧
𝑗 + ̂︀𝑦

2∑︁

𝑗=0

𝑐𝑗+13𝑧
𝑗𝑥 | 𝑐𝑖 ∈ 𝐹

}︂
.

Since 𝑍(𝑉 ) ⊆ 𝐶𝑉 (𝑦),

𝑍(𝑉 ) = {𝑠 ∈ 𝐶𝑉 (𝑦) | 𝑠𝑣 = 𝑣𝑠 for all 𝑣 ∈ 𝑉 }.
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Let 𝑢 = 1 +
∑︀2

𝑗=0

∑︀4
𝑖=1(𝑦

𝑖 − 1)𝑐𝑖+4𝑗𝑧
𝑗 + ̂︀𝑦𝑥∑︀2

𝑗=0 𝑐𝑗+13𝑧
𝑗 ∈ 𝐶𝑉 (𝑦). Since

𝑣 = 1 + (𝑦 − 1)𝑧𝑥 ∈ 𝑉 and ̂︀𝑦 ∈ 𝑍(𝐹𝐺), 𝑣𝑢− 𝑢𝑣 = 0 yields

(𝑦 − 1)
4∑︁

𝑖=1

2∑︁

𝑗=0

(𝑦𝑖 − 𝑦−𝑖)𝑐𝑖+4𝑗𝑧
𝑗+1𝑥 = 0.

Thus 𝑐𝑖 = 𝑐𝑖+3 for 𝑖 = 1, 5, 9 and 𝑐𝑗 = 𝑐𝑗+1 for 𝑗 = 2, 6, 10 and 𝑢 = 1 +

𝑦4(𝑦− 1)2
∑︀2

𝑗=0 𝑑1+𝑗𝑧
𝑗 + 𝑦3(𝑦2− 1)2

∑︀2
𝑗=0 𝑑4+𝑗𝑧

𝑗 + ̂︀𝑦∑︀2
𝑗=0 𝑑7+𝑗𝑧

𝑗𝑥. Clearly
𝑢 ∈ 𝑍(𝑉 ).

We conclude that𝑍(𝑉 )= {1+𝑦4(𝑦−1)2∑︀2
𝑗=0 𝑑1+𝑗𝑧

𝑗+𝑦3(𝑦2−1)2∑︀2
𝑗=0𝑑4+𝑗𝑧

𝑗

+ ̂︀𝑦∑︀2
𝑗=0 𝑑7+𝑗𝑧

𝑗𝑥 | 𝑑𝑖 ∈ 𝐹} ∼= 𝐶9𝑛
5 .

3. If 𝑝 > 5, then 𝐽(𝐹𝐺) = 0. Thus 𝐹𝐺 is semisimple and 𝑡 = 30. As 𝐺/𝐺′ ∼= 𝐶6,
we have

𝐹𝐺 ∼= 𝐹𝐶6 ⊕
𝑙⨁︁

𝑖=1

𝑀(𝑛𝑖,𝐾𝑖).

Since dim𝐹 (𝑍(𝐹𝐺)) = 12, 𝑙 ≤ 6. Now we have the following cases:

(a) If 𝑞 ≡ 1,−11 mod 30, then |𝑆𝐹 (𝛾𝑔)| = 1 for all 𝑔 ∈ 𝐺. Therefore by [11,
Theorem 4.1] and [3, Prop 1.2 and Theorem 1.3],

𝐹𝐺 ∼= 𝐹 6 ⊕
6⨁︁

𝑖=1

𝑀(𝑛𝑖, 𝐹 )

and
∑︀6

𝑖=1 𝑛
2
𝑖 = 24. Clearly 𝑛𝑖 = 2 for 𝑖 ∈ {1, 2, 3, 4, 5, 6}. Hence,

𝐹𝐺 ∼= 𝐹 6 ⊕𝑀(2, 𝐹 )6.

(b) If 𝑞 ≡ −1, 11 mod 30, then |𝑆𝐹 (𝛾𝑔)| = 1 for 𝑔 = 1, 𝑥, 𝑦, 𝑦2 and |𝑆𝐹 (𝛾𝑔)| =
2 for 𝑔 = 𝑧, 𝑥𝑧, 𝑦𝑧, 𝑦2𝑧. In this case 𝐹𝐶6

∼= 𝐹 2 ⊕ 𝐹 2
2 , thus dimension

constraints yield
𝑛21 + 𝑛22 + 2𝑛23 + 2𝑛24 = 24.

We get 𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 2. Hence,

𝐹𝐺 ∼= 𝐹 2 ⊕ 𝐹 2
2 ⊕𝑀(2, 𝐹 )2 ⊕𝑀(2, 𝐹2)

2.

(c) If 𝑞 ≡ 7, 13 mod 30, then 𝑇 = {1, 7, 13, 19} mod 30. Thus |𝑆𝐹 (𝛾𝑔)| = 1
for 𝑔 = 1, 𝑥, 𝑧, 𝑧2, 𝑥𝑧, 𝑥𝑧2 and |𝑆𝐹 (𝛾𝑔)| = 2 for 𝑔 = 𝑦, 𝑦𝑧, 𝑦𝑧2. Therefore,

2(𝑛21 + 𝑛22 + 𝑛23) = 24.

We get 𝑛1 = 𝑛2 = 𝑛3 = 2. Hence,

𝐹𝐺 ∼= 𝐹 6 ⊕𝑀(2, 𝐹2)
3.

(d) If 𝑞 ≡ −7,−13 mod 30, then 𝑇 = {1, 17, 19, 23}mod 30. Thus |𝑆𝐹 (𝛾𝑔)| =
1 for 𝑔 = 1, 𝑥 and |𝑆𝐹 (𝛾𝑔)| = 2 for 𝑔 = 𝑦, 𝑧, 𝑥𝑧, 𝑦𝑧, 𝑦𝑧2. Hence,

𝐹𝐺 ∼= 𝐹 2 ⊕ 𝐹 2
2 ⊕𝑀(2, 𝐹2)

3.
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Abstract

The Taylor expansion [19] is used in many applications for a value es-
timation of scalar functions of one or two variables in the neighbour point.
Usually, only the first two elements of the Taylor expansion are used, i.e. a
value in the given point and derivatives estimation. The Taylor expansion
can be also used for vector functions, too. The usual formulae are well known,
but if the second element of the expansion, i.e. with the second derivatives are
to be used, mathematical formulations are getting too complex for efficient
programming, as it leads to the use of multi-dimensional matrices.

This contribution describes a new form of the Taylor expansion for mul-
tidimensional vector functions. The proposed approach uses “standard” for-
malism of linear algebra, i.e. using vectors and matrices, which is simple, easy
to implement. It leads to efficient computation on the GPU in the three di-
mensional case, as the GPU offers fast vector-vector computation and many
parts can be done in parallel.
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1. Introduction

The Taylor expansion was introduced by the English mathematician Brook Taylor
in 1715. However, closely related methods were given by Madhava of Sangam-
agrama in the 14th century [19]. It is used in many applications and used to
approximate evaluation of many functions. In particular, the first two elements
of the Taylor expansion are used as a linearization of a function behaviour at the
given point and its surroundings [20]. The Taylor expansion is used in solutions
of partial differential equations (PDE) [1, 7, 17], ordinary differential equations
(ODE) [2, 6, 21] , integral equations (IE) integro-differential equations (IDE) [1,
11], approximation of inverse functions (AIF) [8], control theory [4], fluid flow vi-
sualization of 3D flow using radial basis functions [12, 13, 15], computer vision [5,
18], in statistical mechanics [10], antenna design [6, 9], operator theory [3], etc.

2. Taylor expansion of scalar functions

The Taylor expansion of a scalar function is defined as successive derivatives, gen-
erally called tensors. In the one-dimensional case, i.e. scalar functions, the first
derivative is actually the gradient ∇𝑓(𝑥), the second derivative has the form of a
Hessian matrix, the third form leads to three-dimensional matrix H(𝑥), i.e. triples
of vectors etc. In the following, the Taylor expansion for scalar and for a vector
functions are described.

2.1. One-dimensional case
The Taylor expansion of a continuous scalar function of a one dimensional variable
is given as

𝑓(𝑥) = 𝑓(𝑥0) +
∞∑︁

𝑘=1

1

𝑘!

𝜕𝑘𝑓(𝑥0)

𝜕𝑥𝑘
(𝑥− 𝑥0)𝑘,

or as

𝑓(𝑥) = 𝑓(𝑥0) +
∞∑︁

𝑘=0

1

𝑘!

𝜕𝑘𝑓(𝑥0)

𝜕𝑥𝑘
△𝑘,

where △ = 𝑥− 𝑥0. Generally, the Taylor expansion can be described as

𝑓(𝑥) = 𝑇0 + 𝑇1 + 𝑇2 + 𝑇3 + . . . ,

where 𝑇𝑘 can be expressed as

𝑇𝑘 =
1

𝑘!

𝜕𝑘𝑓(𝑥0)

𝜕𝑥𝑘
△𝑘.

It can be seen, that the Taylor expansion of a scalar function of a one dimensional
variable can be described as

𝑓(𝑥) = 𝑓(𝑥0) +
𝜕1𝑓(𝑥0)

𝜕𝑥
△+

1

2

𝜕2𝑓(𝑥0)

𝜕𝑥2
△2 +

1

6

𝜕3𝑓(𝑥0)

𝜕𝑥3
△3 + . . . .
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However, the Taylor expansion is also used for a scalar function of 𝑚-dimensional
variables, i.e. 𝑓(x) = 𝑓(𝑥1, . . . , 𝑥𝑚). In this case, the expanded version of the
Taylor expansion gets a little bit more complicated.

2.2. Multi-dimensional case
In the case of the scalar function with the multidimensional argument, i.e. 𝑓(x) =
𝑓(𝑥1, . . . , 𝑥𝑚), the Taylor expansion is more complicated as

𝑓(x) = 𝑇0 + 𝑇1 + 𝑇2 + 𝑇3 + . . . ,

where 𝑇𝑘 can be expressed as

𝑇𝑘 =
1

𝑘!
[𝐷𝑘𝑓(x0)][△𝑘],

where

𝐷𝑘𝑓(x) =
𝜕𝑘𝑓(x)

𝜕𝑥𝑘1
1 · · · 𝜕𝑥𝑘𝑚

𝑚

, [△𝑘] = [△𝑘1
1 , . . . ,△𝑘𝑚

𝑚 ]𝑇 ,

𝑘 =
𝑚∑︁

𝑖=1

𝑘𝑖, 𝑘𝑖 ≥ 0.

Now, the Taylor expansion is defined as

𝑓(x) = 𝑓(x0) +∇𝑓(x0)(x− x0) +
1

2
(x− x0)

𝑇H(x0)(x− x0) + 𝑇3 + . . . ,

or as
𝑓(x) = 𝑓(x0) +∇𝑓(x0)

[︀
△𝑖

]︀
+

1

2

[︀
△𝑖

]︀𝑇
H(x0)

[︀
△𝑖

]︀
+ 𝑇3 + . . . , (2.1)

where [△𝑖] = [△1, . . . ,△𝑚]𝑇 , ∇𝑓(x0) is a gradient of the function 𝑓(x) at the point
x0, H(x0) is the Hessian matrix of the given function, i.e.

H(x0) =
[︁
𝜕2𝑓(x0)
𝜕𝑥𝑖𝜕𝑥𝑗

]︁
, 𝑖, 𝑗 = 1, . . . ,𝑚. (2.2)

In the majority of cases

𝜕2𝑓(x0)

𝜕𝑥𝑖𝜕𝑥𝑗
=
𝜕2𝑓(x0)

𝜕𝑥𝑗𝜕𝑥𝑖
, 𝑖, 𝑗 = 1, . . . ,𝑚. (2.3)

The element 𝑇3 of the Taylor expansion for a scalar function of 𝑚-dimensional
variable is

𝑇3 =
1

6

𝑚,𝑚,𝑚∑︁

𝑖,𝑗,𝑘=1,1,1

𝜕3𝑓(x0)

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘
△𝑖△𝑗△𝑘. (2.4)

This is quite complex form leading to higher computational requirements. Similarly
to the case of the Hessian matrix, it can be expected that the order of the function
derivations is independent.
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It can be seen that the element 𝑇3 of the Taylor expansion consists of a “three
dimensional matrix”. It leads to the tensor notation, which is usually not part of
the engineering education. If this notation is used directly in a program implemen-
tation, it leads to redundant computations due to the symmetry of higher order
partial derivatives, see (2.2) and (2.3). Also handling with indexes might be too
complicated.

Furthermore, in the physically oriented applications, it is necessary to use the
Taylor expansion also for vector functions, i.e. for 𝑛-dimensional functions with
𝑚-dimensional arguments, in general.

3. Taylor expansion of vector functions

Vector functions are used in many physically oriented computations, e.g. fluid me-
chanics, electromagnetic field computation etc. The Taylor expansion for vector
functions is more complicated.

Let us consider a vector function

f(x) =

⎡
⎢⎣
𝑓1(x)

...
𝑓𝑛(x)

⎤
⎥⎦ , x =

[︀
𝑥1, . . . , 𝑥𝑚

]︀
.

The Taylor expansion of a vector function can be expressed as

f(x) =

∞∑︁

𝑖=0

T𝑖(x0),

where T𝑖(x0) are vectors, now. Explicitly, it is possible to write

f(x) = f(x0) + J(x0)
[︀
△𝑖

]︀
+

1

2

⎡
⎢⎢⎣

[︀
△𝑖

]︀𝑇
H1(x0)

[︀
△𝑖

]︀
...[︀

△𝑖

]︀𝑇
H𝑛(x0)

[︀
△𝑖

]︀

⎤
⎥⎥⎦+T3 + . . . ,

where J(x0) =
[︁
𝜕𝑓𝑖(x0)
𝜕𝑥𝑗

]︁
is the Jacobi matrix (𝑛×𝑚) and H𝑘(x0) are the Hessian

matrices (𝑚 ×𝑚) with the second derivatives of the function 𝑓𝑘(x), 𝑘 = 1, . . . , 𝑛,
in general.

It can be seen, that the element T2 of the Taylor expansion is not expressed
by standard linear algebra formalism as its result must be a vector, i.e. a “three-
dimensional matrix” would have to be used containing elements

[︁
𝜕𝑓2

𝑖 (x0)
𝜕𝑥𝑗𝜕𝑥𝑘

]︁
. Also, it

is necessary to point out that memory requirements can be estimated as 𝑂(𝑛𝑚2),
as the matrix H𝑘 is of the size (𝑚×𝑚) and 𝑘 = 1, . . . , 𝑛.
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4. Re-formulation of the Taylor expansion

A short summaries of the Taylor expansion for scalar and vector functions have
been given in sections 2 and 3. If higher degree elements than the linear ones are
to be used, e.g. 𝑇2 or 𝑇3, the efficient representation and implementation gets more
complex and computationally time consuming.

In the following, a modification of the Taylor expansion for the case 𝑛 = 𝑚 = 3
is presented. It uses only standard matrix-vector multiplication and also allows
simpler symbolic manipulation of it. However, the given approach can be extended
for higher dimensions, i.e. 𝑛 > 3 and 𝑚 > 3.

4.1. Scalar functions
In the case of a scalar function with a multidimensional argument the Taylor ex-
pansion is defined as

𝑓(x) = 𝑓(x0) +∇𝑓(x0)
[︀
△𝑖

]︀
+

1

2

[︀
△𝑖

]︀𝑇
H(x0)

[︀
△𝑖

]︀
+ 𝑇3 + . . . ,

where
[︀
△𝑖

]︀
=
[︀
△1, . . . ,△𝑚

]︀𝑇 ,
[︀
△2

𝑖

]︀
=
[︀
△2

1, . . . ,△2
𝑚

]︀𝑇 and △𝑖 = 𝑥𝑖 − 𝑥𝑖0 , 𝑖 =
1, . . . ,𝑚.

The 𝑇2 element is formed by a quadratic form and the 𝑇3 element is formed
by a three-dimensional matrix, see (2.1). It causes several complications in formal
manipulation and implementation as well. However, in the majority of cases

𝜕2𝑓(x0)

𝜕𝑥𝑖𝜕𝑥𝑗
=
𝜕2𝑓(x0)

𝜕𝑥𝑗𝜕𝑥𝑖
, 𝑖, 𝑗 = 1, . . . ,𝑚.

Therefore only 𝑚(𝑚+1)/2 values are needed for evaluation of the 𝑇2 element of the
Taylor expansion. It means that the 𝑇2 element of the Taylor expansion, i.e. the
element with the Hessian matrix, can be split to two parts using the inner product
(dot product) as follows

𝑇2 =
1

2

[︁
𝜕2𝑓(x0)
(𝜕𝑥𝑖)2

]︁ [︀
△2

𝑖

]︀
+

𝑚,𝑚∑︁

𝑖,𝑗&𝑖>𝑗

𝜕2𝑓(x0)

𝜕𝑥𝑖𝜕𝑥𝑗

[︀
△𝑖△𝑗

]︀
,

where
[︀
△
]︀
=
[︀
△1, . . . ,△𝑚

]︀𝑇 and
[︀
△2
]︀
=
[︀
△2

1, . . . ,△2
𝑚

]︀𝑇 , in general.
It means, that in the three-dimensional case, i.e. 𝑓(x) = 𝑓(𝑥1, . . . , 𝑥3), the

Taylor expansion gets quite simple as the element 𝑇2 has the form

𝑇2 =
1

2
∇2𝑓(x0)

⎡
⎣
△2

1

△2
2

△2
3

⎤
⎦+

[︁
𝜕2𝑓(x0)
𝜕𝑥1𝜕𝑥2

𝜕2𝑓(x0)
𝜕𝑥2𝜕𝑥3

𝜕2𝑓(x0)
𝜕𝑥3𝜕𝑥1

]︁
⎡
⎣
△1△2

△2△3

△3△1

⎤
⎦ .

Now, using the matrix notation, the Taylor expansion can be rewritten as

𝑓(x) = 𝑓(x0) +∇𝑓(x0)
[︀
△𝑖

]︀
+

1

2
D
[︀
△2

𝑖

]︀
+R

[︀
△𝑖△𝑗

]︀
+ 𝑇3 + . . . ,
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where

D =
[︁
𝜕2𝑓(x0)
(𝜕𝑥𝑖)2

]︁𝑇
, R =

[︁
𝜕2𝑓(x0)
𝜕𝑥𝑖𝜕𝑥𝑗

]︁
, 𝑖 ̸= 𝑗,

and D is a vector, R is a matrix.
The above given formulation uses just inner products (dot products) instead of

matrix multiplications, which leads to significantly faster computation especially
on GPU (requires just only one clock) or if SSE instructions are used.

In some cases, it is useful to use the element 𝑇3 of the Taylor expansion, as it
enables to represent “inflections” of a function and increase precision of approxima-
tion. It leads to a necessity to replace “three-dimensional matrix” used in the 𝑇3
element, see (2.4) by more simple formulation. Originally, the 3D matrix contains
27 values of partial derivatives. However, using the algebraic operations the 𝑇3
element can be expressed as

𝑇3 =
1

6

{︃
3∑︁

𝑖=1

𝜕3𝑓(x0)

𝜕𝑥3𝑖
△3

𝑖 + 6
𝜕3𝑓(x0)

𝜕𝑥1𝜕𝑥2𝜕𝑥3
△1△2△3

+ 3
𝜕3𝑓(x0)

𝜕𝑥21𝜕𝑥2
△2

1△2 + 3
𝜕3𝑓(x0)

𝜕𝑥21𝜕𝑥3
△2

1△3

+ 3
𝜕3𝑓(x0)

𝜕𝑥1𝜕𝑥23
△1△2

3 + 3
𝜕3𝑓(x0)

𝜕𝑥1𝜕𝑥22
△1△2

2

+ 3
𝜕3𝑓(x0)

𝜕𝑥2𝜕𝑥23
△2△2

3 + 3
𝜕3𝑓(x0)

𝜕𝑥22𝜕𝑥3
△2

2△3

}︃
.

It means, that in the case of a scalar function of three dimensional variables,
the 𝑇3 term can be easily evaluated as only 10 values of partial derivatives are
computed instead of 27 in the original formulation.

The 𝑇3 element can be formally expressed as

𝑇3 =
𝜕3𝑓(x0)

𝜕𝑥1𝜕𝑥2𝜕𝑥3
△1△2△3 +

1

6

3∑︁

𝑖=1

𝜕3𝑓(x0)

𝜕𝑥3𝑖
△3

𝑖

+
1

2

{︂
𝜕3𝑓(x0)

𝜕𝑥21𝜕𝑥2
△2

1△2 +
𝜕3𝑓(x0)

𝜕𝑥21𝜕𝑥3
△2

1△3

+
𝜕3𝑓(x0)

𝜕𝑥1𝜕𝑥23
△1△2

3 +
𝜕3𝑓(x0)

𝜕𝑥1𝜕𝑥22
△1△2

2

+
𝜕3𝑓(x0)

𝜕𝑥2𝜕𝑥23
△2△2

3 +
𝜕3𝑓(x0)

𝜕𝑥22𝜕𝑥3
△2

2△3

}︂
.

However, in physically oriented applications, it is necessary to use the Taylor
expansion also for vector functions, i.e. 𝑛-dimensional functions with𝑚-dimensional
arguments.

For the vector-vector operations, i.e. if GPU or SSE instructions are used, the
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𝑇3 element can be expressed as

𝑇3 =
𝜕3𝑓(x0)

𝜕𝑥1𝜕𝑥2𝜕𝑥3
△𝑖△2△3

+
1

6

[︁
𝜕3𝑓(x0)

𝜕𝑥3
1

𝜕3𝑓(x0)
𝜕𝑥3

2

𝜕3𝑓(x0)
𝜕𝑥3

3

]︁
⎡
⎣
△3

1

△3
2

△3
3

⎤
⎦

+
1

2

[︁
𝜕3𝑓(x0)
𝜕𝑥2

1𝜕𝑥2

𝜕3𝑓(x0)
𝜕𝑥2

1𝜕𝑥3

𝜕3𝑓(x0)
𝜕𝑥1𝜕𝑥2

3

𝜕3𝑓(x0)
𝜕𝑥1𝜕𝑥2

2

𝜕3𝑓(x0)
𝜕𝑥2𝜕𝑥2

3

𝜕3𝑓(x0)
𝜕𝑥2

2𝜕𝑥3

]︁

⎡
⎢⎢⎢⎢⎢⎢⎣

△2
1△2

△2
1△3

△1△2
3

△1△2
2

△2△2
3

△2
2△3

⎤
⎥⎥⎥⎥⎥⎥⎦
.

It means, that the 𝑇3 element of the Taylor expansion can be implemented using
the inner product (dot product) and therefore, it is possible to extend this approach
for the Taylor expansion of vector functions.

4.2. Vector functions
The Taylor expansion can be easily extended for vector functions, i.e.

f(x) = [𝑓1(𝑥1, . . . , 𝑥𝑚), . . . , 𝑓𝑛(𝑥1, . . . , 𝑥𝑚)]𝑇 .

However, the formulae get more complex in the general case. As there are many
applications using three-dimensional representation, i.e. 𝑛 = 𝑚 = 3, the re-formula-
tion of the Taylor expansion can be simplified using the analogy of the Taylor
expansion for scalar functions as follows

f(x) =
∞∑︁

𝑖=0

T𝑖(x0),

where T𝑖(x0) are vectors, now. Using the explicit notation

f(x) = f(x0) + J(x0)
[︀
△𝑖

]︀
+

1

2
D
[︀
△2

𝑖

]︀
+R

[︀
△𝑖△𝑗

]︀
+ 𝑇3 + . . .

where
⎡
⎢⎣
𝑓1(x)

...
𝑓3(x)

⎤
⎥⎦ =

⎡
⎢⎣
𝑓1(x0)

...
𝑓3(x0)

⎤
⎥⎦+

⎡
⎢⎢⎣

𝜕𝑓1(x0)
𝜕𝑥1

. . . 𝜕𝑓1(x0)
𝜕𝑥3

...
. . .

...
𝜕𝑓3(x0)

𝜕𝑥1
. . . 𝜕𝑓3(x0)

𝜕𝑥3

⎤
⎥⎥⎦

⎡
⎢⎣
△1

...
△3

⎤
⎥⎦

+
1

2

⎡
⎢⎢⎣

𝜕2𝑓1(x0)
𝜕𝑥2

1
. . . 𝜕

2𝑓1(x0)
𝜕𝑥2

3

...
. . .

...
𝜕2𝑓3(x0)

𝜕𝑥2
1

. . . 𝜕
2𝑓3(x0)
𝜕𝑥2

3

⎤
⎥⎥⎦

⎡
⎢⎣
△2

1
...
△2

3

⎤
⎥⎦
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+

⎡
⎢⎣

𝜕2𝑓1(x0)
𝜕𝑥1𝜕𝑥2

𝜕2𝑓1(x0)
𝜕𝑥2𝜕𝑥3

𝜕2𝑓1(x0)
𝜕𝑥3𝜕𝑥1

𝜕2𝑓2(x0)
𝜕𝑥1𝜕𝑥2

𝜕2𝑓2(x0)
𝜕𝑥2𝜕𝑥3

𝜕2𝑓2(x0)
𝜕𝑥3𝜕𝑥1

𝜕2𝑓3(x0)
𝜕𝑥1𝜕𝑥2

𝜕2𝑓3(x0)
𝜕𝑥2𝜕𝑥3

𝜕2𝑓3(x0)
𝜕𝑥3𝜕𝑥1

⎤
⎥⎦

⎡
⎣
△1△2

△2△3

△3△1

⎤
⎦+ 𝑇3 + . . . ,

where
[︀
△𝑖

]︀
=
[︀
△1, . . . ,△𝑚

]︀𝑇 and
[︀
△2

𝑖

]︀
=
[︀
△2

1, . . . ,△2
𝑚

]︀𝑇 .
Now, similar approach can be taken as in the Taylor expansion for scalar func-

tions. It means, that in the three-dimensional case, i.e. 𝑓(x) = 𝑓(𝑥1, . . . , 𝑥3), the
Taylor expansion gets quite simple as the element T2, which is a vector, has the
form

T2 =
1

2

⎡
⎣
∇2𝑓1(x0)
∇2𝑓2(x0)
∇2𝑓3(x0)

⎤
⎦
⎡
⎣
△2

1

△2
2

△2
3

⎤
⎦ +

⎡
⎢⎣

𝜕2𝑓1(x0)
𝜕𝑥1𝜕𝑥2

𝜕2𝑓1(x0)
𝜕𝑥2𝜕𝑥3

𝜕2𝑓1(x0)
𝜕𝑥3𝜕𝑥1

𝜕2𝑓2(x0)
𝜕𝑥1𝜕𝑥2

𝜕2𝑓2(x0)
𝜕𝑥2𝜕𝑥3

𝜕2𝑓2(x0)
𝜕𝑥3𝜕𝑥1

𝜕2𝑓3(x0)
𝜕𝑥1𝜕𝑥2

𝜕2𝑓3(x0)
𝜕𝑥2𝜕𝑥3

𝜕2𝑓3(x0)
𝜕𝑥3𝜕𝑥1

⎤
⎥⎦

⎡
⎣
△1△2

△2△3

△3△1

⎤
⎦ .

The above given formulation uses just three inner products (dot products) in-
stead of matrix multiplications, which leads to significantly faster computation
especially on GPU (requires just only one clock) or if SSE instructions are used.

In some cases, it is useful to use the element T3 of the Taylor expansion, as
it enables to represent “inflections” of a function and increase precision of approx-
imation. It leads to a necessity to replace “three-dimensional matrix” used in the
T3 element, see (2.4) by simpler formulation. In the original formulation, the 3D
matrix contains 27 values of partial derivatives.

However, using the algebraic operations the T3, which is a vector, the 𝑘𝑡ℎ

element, 𝑘 = 1, . . . , 3 can be expressed as

𝑇3𝑘 =
1

6

{︃
3∑︁

𝑖=1

𝜕3𝑓𝑘(x0)

𝜕𝑥3𝑖
△3

𝑖 + 6
𝜕3𝑓𝑘(x0)

𝜕𝑥1𝜕𝑥2𝜕𝑥3
△1△2△3

+ 3
𝜕3𝑓𝑘(x0)

𝜕𝑥21𝜕𝑥2
△2

1△2 + 3
𝜕3𝑓𝑘(x0)

𝜕𝑥21𝜕𝑥3
△2

1△3

+ 3
𝜕3𝑓𝑘(x0)

𝜕𝑥1𝜕𝑥23
△1△2

3 + 3
𝜕3𝑓𝑘(x0)

𝜕𝑥1𝜕𝑥22
△1△2

2

+ 3
𝜕3𝑓𝑘(x0)

𝜕𝑥2𝜕𝑥23
△2△2

3 + 3
𝜕3𝑓𝑘(x0)

𝜕𝑥22𝜕𝑥3
△2

2△3

}︃
.

In the case of a vector function of three dimensional variables, the T3 term can be
easily evaluated as only 3 × 10 values of partial derivatives are computed instead
of 3× 27 in the original formulation.

The 𝑘𝑡ℎ element, 𝑘 = 1, . . . , 3, of the T3 vector element can be formally ex-
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pressed as

𝑇3𝑘 =
𝜕3𝑓𝑘(x0)

𝜕𝑥1𝜕𝑥2𝜕𝑥3
△𝑖△2△3 +

1

6

3∑︁

𝑖=1

𝜕3𝑓𝑘(x0)

𝜕𝑥3𝑖
△3

𝑖

+
1

2

{︂
𝜕3𝑓𝑘(x0)

𝜕𝑥21𝜕𝑥2
△2

1△2 +
𝜕3𝑓𝑘(x0)

𝜕𝑥21𝜕𝑥3
△2

1△3

+
𝜕3𝑓𝑘(x0)

𝜕𝑥1𝜕𝑥23
△1△2

3 +
𝜕3𝑓𝑘(x0)

𝜕𝑥1𝜕𝑥22
△1△2

2

+
𝜕3𝑓𝑘(x0)

𝜕𝑥2𝜕𝑥23
△2△2

3 +
𝜕3𝑓𝑘(x0)

𝜕𝑥22𝜕𝑥3
△2

2△3

}︂
.

The vector T3 of the Taylor expansion can be expressed using standard linear
algebra notation, instead of using three dimensional matrix notation, as

T3 =
[︁

𝜕3𝑓1(x0)
𝜕𝑥1𝜕𝑥2𝜕𝑥3

𝜕3𝑓2(x0)
𝜕𝑥1𝜕𝑥2𝜕𝑥3

𝜕3𝑓3(x0)
𝜕𝑥1𝜕𝑥2𝜕𝑥3

]︁
△1△2△3

+
1

6

⎡
⎢⎢⎣

𝜕3𝑓1(x0)
𝜕𝑥3

1

𝜕3𝑓1(x0)
𝜕𝑥3

2

𝜕3𝑓1(x0)
𝜕𝑥3

3
𝜕3𝑓2(x0)

𝜕𝑥3
1

𝜕3𝑓2(x0)
𝜕𝑥3

2

𝜕3𝑓2(x0)
𝜕𝑥3

3
𝜕3𝑓3(x0)

𝜕𝑥3
1

𝜕3𝑓3(x0)
𝜕𝑥3

2

𝜕3𝑓3(x0)
𝜕𝑥3

3

⎤
⎥⎥⎦

⎡
⎣
△3

1

△3
2

△3
3

⎤
⎦

+
1

2

⎡
⎢⎢⎣

𝜕3𝑓1(x0)
𝜕𝑥2

1𝜕𝑥2

𝜕3𝑓1(x0)
𝜕𝑥2

1𝜕𝑥3

𝜕3𝑓1(x0)
𝜕𝑥1𝜕𝑥2

3

𝜕3𝑓1(x0)
𝜕𝑥1𝜕𝑥2

2

𝜕3𝑓1(x0)
𝜕𝑥2𝜕𝑥2

3

𝜕3𝑓1(x0)
𝜕𝑥2

2𝜕𝑥3

𝜕3𝑓2(x0)
𝜕𝑥2

1𝜕𝑥2

𝜕3𝑓2(x0)
𝜕𝑥2

1𝜕𝑥3

𝜕3𝑓2(x0)
𝜕𝑥1𝜕𝑥2

3

𝜕3𝑓2(x0)
𝜕𝑥1𝜕𝑥2

2

𝜕3𝑓2(x0)
𝜕𝑥2𝜕𝑥2

3

𝜕3𝑓2(x0)
𝜕𝑥2

2𝜕𝑥3

𝜕3𝑓3(x0)
𝜕𝑥2

1𝜕𝑥2

𝜕3𝑓3(x0)
𝜕𝑥2

1𝜕𝑥3

𝜕3𝑓3(x0)
𝜕𝑥1𝜕𝑥2

3

𝜕3𝑓3(x0)
𝜕𝑥1𝜕𝑥2

2

𝜕3𝑓3(x0)
𝜕𝑥2𝜕𝑥2

3

𝜕3𝑓3(x0)
𝜕𝑥2

2𝜕𝑥3

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

△2
1△2

△2
1△3

△1△2
3

△1△2
2

△2△2
3

△2
2△3

⎤
⎥⎥⎥⎥⎥⎥⎦
.

If matrix notation is used, the T3 element can be expressed as

T3 = U (△1△2△3) +V

⎡
⎣
△3

1

△3
2

△3
3

⎤
⎦+W

⎡
⎢⎢⎢⎢⎢⎢⎣

△2
1△2

△2
1△3

△1△2
3

△1△2
2

△2△2
3

△2
2△3

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where

U =
[︁

𝜕3𝑓1(x0)
𝜕𝑥1𝜕𝑥2𝜕𝑥3

𝜕3𝑓2(x0)
𝜕𝑥1𝜕𝑥2𝜕𝑥3

𝜕3𝑓3(x0)
𝜕𝑥1𝜕𝑥2𝜕𝑥3

]︁
,

V =

⎡
⎢⎢⎣

𝜕3𝑓1(x0)
𝜕𝑥3

1

𝜕3𝑓1(x0)
𝜕𝑥3

2

𝜕3𝑓1(x0)
𝜕𝑥3

3
𝜕3𝑓2(x0)

𝜕𝑥3
1

𝜕3𝑓2(x0)
𝜕𝑥3

2

𝜕3𝑓2(x0)
𝜕𝑥3

3
𝜕3𝑓3(x0)

𝜕𝑥3
1

𝜕3𝑓3(x0)
𝜕𝑥3

2

𝜕3𝑓3(x0)
𝜕𝑥3

3

⎤
⎥⎥⎦ ,
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W =

⎡
⎢⎢⎣

𝜕3𝑓1(x0)
𝜕𝑥2

1𝜕𝑥2

𝜕3𝑓1(x0)
𝜕𝑥2

1𝜕𝑥3

𝜕3𝑓1(x0)
𝜕𝑥1𝜕𝑥2

3

𝜕3𝑓1(x0)
𝜕𝑥1𝜕𝑥2

2

𝜕3𝑓1(x0)
𝜕𝑥2𝜕𝑥2

3

𝜕3𝑓1(x0)
𝜕𝑥2

2𝜕𝑥3

𝜕3𝑓2(x0)
𝜕𝑥2

1𝜕𝑥2

𝜕3𝑓2(x0)
𝜕𝑥2

1𝜕𝑥3

𝜕3𝑓2(x0)
𝜕𝑥1𝜕𝑥2

3

𝜕3𝑓2(x0)
𝜕𝑥1𝜕𝑥2

2

𝜕3𝑓2(x0)
𝜕𝑥2𝜕𝑥2

3

𝜕3𝑓2(x0)
𝜕𝑥2

2𝜕𝑥3

𝜕3𝑓3(x0)
𝜕𝑥2

1𝜕𝑥2

𝜕3𝑓3(x0)
𝜕𝑥2

1𝜕𝑥3

𝜕3𝑓3(x0)
𝜕𝑥1𝜕𝑥2

3

𝜕3𝑓3(x0)
𝜕𝑥1𝜕𝑥2

2

𝜕3𝑓3(x0)
𝜕𝑥2𝜕𝑥2

3

𝜕3𝑓3(x0)
𝜕𝑥2

2𝜕𝑥3

⎤
⎥⎥⎦ .

It means, that the Taylor expansion can be written in the form containing only
vectors and matrices.

f(x) = f(x0) + J(x0)
[︀
△𝑖

]︀
# linear case

+
1

2
D
[︀
△2

𝑖

]︀
+R

[︀
△𝑖△𝑗

]︀
# quadratic case

+U (△1△2△3) +V

⎡
⎣
△3

1

△3
2

△3
3

⎤
⎦+W

⎡
⎢⎢⎢⎢⎢⎢⎣

△2
1△2

△2
1△3

△1△2
3

△1△2
2

△2△2
3

△2
2△3

⎤
⎥⎥⎥⎥⎥⎥⎦

# cubic case + . . . .

It can be seen, that the above given formulae are simple, easy to implement
efficiently, especially if GPU or SSE instructions are used. The presented approach
can be applied also for the case, when 𝑛 ̸= 𝑚, in general. However, it should be
noted that size of some vectors and matrices grows quadratic.

5. Application

Visualization of 3D vector fields, i.e. fluid flow and electromagnetic fields, uses
the Taylor expansion to approximate acquired data (measured or obtained from a
simulation). If the data are large, the approximation is also used for data reduction,
while keeping the important features of the vector data [14]. If the Taylor expansion
is used with Radial Basis Functions (RBF) [12], it is possible to obtain analytical
function describing the given vector field data respecting critical points, vector field
second derivatives [13, 15].

The Taylor expansion was used for radial basis function (RBF) approximation
of the EF5 Tornado data1 using second derivatives of the Taylor expansion [16].
This led to high compression ratio, see illustrative images in the Figure 1 [16], and
analytical form describing the tornado fluid flow in the analytical form for the flow
speed as v = f(x).

As the second derivatives were used, the proposed new formulation of the Tay-
lor expansion offers simple formal structure, efficient computation and significant
speed-up of computation. The formulation is convenient for GPU implementation
which offers high speed-up due to parallelism available.

1Data set of EF5 tornado courtesy of Leigh Orf from Cooperative Institute for Meteorological
Satellite Studies, University of Wisconsin, Madison, WI, USA.
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Original data Approximated data
compression ratio 7.103 : 1

Figure 1. Tornado data and its approximation using second
derivatives (taken from [16]).

6. Conclusion

This paper describes a new re-formulation of the Taylor expansion for scalar and
vector functions for the multidimensional case and its optimization for the 3D case.
This new re-formulation enables representation of the third order of approximation
using standard linear algebra formalism, without tensor notation use. The proposed
approach leads to significant speed-up of computation, see chapter 4. In the case of
the GPU or SSE implementation additional speed up can be expected, especially
due to fast vector-vector operations and native parallelism on GPU. Specialized
version for the three dimensional case is presented, which is simple to implement
as well.

The presented approach can be directly applied to 3D flow or electromagnetic
fields computation and simulation. It can be extended to higher dimensions, how-
ever, the complexity of formulae grows quadratic. However, the expected speed up
will grow with a dimension against “standard ” implementation.

The influence of the second derivations was explored in [16]. It led to significant
improvements for vector fields approximation, i.e. compression ratio and precision.
In future, the influence of the cubic part of the Taylor expansion is to be studied,
as inclusion of points of inflections and curvatures of vector fields should lead to
higher compression ratio.
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Abstract
In this paper, we introduce a new type of the Vieta polynomial, which is

Vieta–Fibonacci-like polynomial. After that, we establish the Binet formula,
the generating function, the well-known identities, and the sum formula of
this polynomial. Finally, we present the relationship between this polynomial
and the previous well-known Vieta polynomials.
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1. Introduction

In 2002, Horadam [1] introduced the new types of second order recursive sequences
of polynomials which are called Vieta–Fibonacci and Vieta–Lucas polynomials re-
spectively. The definition of Vieta–Fibonacci and Vieta–Lucas polynomials are
defined as follows:
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Definition 1.1 ([1]). For any natural number 𝑛 the Vieta–Fibonacci polynomials
sequence {𝑉𝑛(𝑥)}∞𝑛=0 and the Vieta–Lucas polynomials sequence {𝑣𝑛(𝑥)}∞𝑛=0 are
defined by

𝑉𝑛(𝑥) = 𝑥𝑉𝑛−1(𝑥)− 𝑉𝑛−2(𝑥), for 𝑛 ≥ 2,

𝑣𝑛(𝑥) = 𝑥𝑣𝑛−1(𝑥)− 𝑣𝑛−2(𝑥), for 𝑛 ≥ 2,

respectively, where 𝑉0(𝑥) = 0, 𝑉1(𝑥) = 1 and 𝑣0(𝑥) = 2, 𝑣1(𝑥) = 𝑥.

The first few terms of the Vieta–Fibonacci polynomials sequence are 0, 1, 𝑥, 𝑥2−
1, 𝑥3 − 2𝑥, 𝑥4 − 3𝑥2 + 1 and the first few terms of the Vieta–Lucas polynomials
sequence are 2, 𝑥, 𝑥2 − 2, 𝑥3 − 3𝑥, 𝑥4 − 4𝑥2 + 2, 𝑥5 − 5𝑥3 + 5𝑥. The Binet formulas
of the Vieta–Fibonacci and Vieta–Lucas polynomials are given by

𝑉𝑛(𝑥) =
𝛼𝑛(𝑥)− 𝛽𝑛(𝑥)

𝛼(𝑥)− 𝛽(𝑥) ,

𝑣𝑛(𝑥) = 𝛼𝑛(𝑥) + 𝛽𝑛(𝑥),

respectively. Where 𝛼(𝑥) = 𝑥+
√
𝑥2−4
2 and 𝛽(𝑥) = 𝑥−

√
𝑥2−4
2 are the roots the char-

acteristic equation 𝑟2−𝑥𝑟+1 = 0.We also note that 𝛼(𝑥)+𝛽(𝑥) = 𝑥, 𝛼(𝑥)𝛽(𝑥) = 1,
and 𝛼(𝑥)− 𝛽(𝑥) =

√
𝑥2 − 4.

Recall that the Chebyshev polynomials are a sequence of orthogonal polyno-
mials which can be defined recursively. The 𝑛𝑡ℎ Chebyshev polynomials of the
first and second kinds are denoted by {𝑇𝑛(𝑥)}∞𝑛=0 and {𝑈𝑛(𝑥)}∞𝑛=0 and are defined
respectively by 𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥, 𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥), for 𝑛 ≥ 2,
and 𝑈0(𝑥) = 1, 𝑈1(𝑥) = 2𝑥, 𝑈𝑛(𝑥) = 2𝑥𝑈𝑛−1(𝑥) − 𝑈𝑛−2(𝑥), for 𝑛 ≥ 2. These
polynomials are of great importance in many areas of mathematics, particularly
approximation theory. It is well known that the Chebyshev polynomials of the
first kind and second kind are closely related to Vieta–Fibonacci and Vieta–Lucas
polynomials. So, in [4] Vitula and Slota redefined Vieta polynomials as modified
Chebyshev polynomials. The related features of Vieta and Chebyshev polynomials
are given as 𝑉𝑛(𝑥) = 𝑈𝑛

(︀
1
2𝑥
)︀

and 𝑣𝑛(𝑥) = 2𝑇𝑛
(︀
1
2𝑥
)︀

(see [1, 2, 5]).
In 2013, Tasci and Yalcin [6] introduced the recurrence relation of Vieta–Pell

and Vieta–Pell–Lucas polynomials as follows:

Definition 1.2 ([6]). For |𝑥| > 1 and for any natural number 𝑛 the Vieta–Pell
polynomials sequence {𝑡𝑛(𝑥)}∞𝑛=0 and the Vieta–Pell–Lucas polynomials sequence
{𝑠𝑛(𝑥)}∞𝑛=0 are defined by

𝑡𝑛(𝑥) = 2𝑥𝑡𝑛−1(𝑥)− 𝑡𝑛−2(𝑥), for 𝑛 ≥ 2,

𝑠𝑛(𝑥) = 2𝑥𝑠𝑛−1(𝑥)− 𝑠𝑛−2(𝑥), for 𝑛 ≥ 2.

respectively, where 𝑡0(𝑥) = 0, 𝑡1(𝑥) = 1 and 𝑠0(𝑥) = 2, 𝑠1(𝑥) = 2𝑥.

The 𝑡𝑛(𝑥) and 𝑠𝑛(𝑥) are called the 𝑛th Vieta–Pell polynomial and the 𝑛th Vieta–
Pell–Lucas polynomial respectively. Tasci and Yalcin [6] obtained the Binet form
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and generating functions of Vieta–Pell and Vieta–Pell–Lucas polynomials. Also,
they obtained some differentiation rules and the finite summation formulas. More-
over, the following relations are obtained

𝑠𝑛(𝑥) = 2𝑇𝑛(𝑥), and 𝑡𝑛+1(𝑥) = 𝑈𝑛(𝑥).

In 2015, Yalcin et al. [8], introduced and studied the Vieta–Jacobsthal and
Vieta–Jacobsthal–Lucas polynomials which defined as follows:

Definition 1.3 ([8]). For any natural number 𝑛 the Vieta–Jacobsthal polynomi-
als sequence {𝐺𝑛(𝑥)}∞𝑛=0 and the Vieta–Jacobsthal-Lucas polynomials sequence
{𝑔𝑛(𝑥)}∞𝑛=0 are defined by

𝐺𝑛(𝑥) = 𝐺𝑛−1(𝑥)− 2𝑥𝐺𝑛−2(𝑥), for 𝑛 ≥ 2,

𝑔𝑛(𝑥) = 𝑔𝑛−1(𝑥)− 2𝑥𝑔𝑛−2(𝑥), for 𝑛 ≥ 2,

respectively, where 𝐺0(𝑥) = 0, 𝐺1(𝑥) = 1 and 𝑔0(𝑥) = 2, 𝑔1(𝑥) = 1.

Moreover, for any nonnegative integer 𝑘 with 1−2𝑘+2𝑥 ̸= 0, Yalcin et al. [8] also
considered the generalized Vieta–Jacobsthal polynomials sequences {𝐺𝑘,𝑛(𝑥)}∞𝑛=0

and Vieta–Jacobsthal–Lucas polynomials sequences {𝑔𝑘,𝑛(𝑥)}∞𝑛=0 by the following
recurrence relations

𝐺𝑘,𝑛(𝑥) = 𝐺𝑘,𝑛−1(𝑥)− 2𝑘𝑥𝐺𝑘,𝑛−2(𝑥), for 𝑛 ≥ 2,

𝑔𝑘,𝑛(𝑥) = 𝑔𝑘,𝑛−1(𝑥)− 2𝑘𝑥𝑔𝑘,𝑛−2(𝑥), for 𝑛 ≥ 2,

respectively, where 𝐺𝑘,0(𝑥) = 0, 𝐺𝑘,1(𝑥) = 1 and 𝑔𝑘,0(𝑥) = 2, 𝑔𝑘,1(𝑥) = 1. If 𝑘 = 1,
then 𝐺1,𝑛(𝑥) = 𝐺𝑛(𝑥) and 𝑔1,𝑛(𝑥) = 𝑔𝑛(𝑥). In [8], the Binet form and generating
functions for these polynomials are derived. Furthermore, some special cases of the
results are presented.

Recently, the generalization of Vieta–Fibonacci, Vieta–Lucas, Vieta–Pell, Vieta–
Pell–Lucas, Vieta–Jacobsthal, and Vieta–Jacobsthal–Lucas polynomials have been
studied by many authors.

In 2016 Kocer [3], considered the bivariate Vieta–Fibonacci and bivariate Vieta–
Lucas polynomials which are generalized of Vieta–Fibonacci, Vieta–Lucas, Vieta–
Pell, Vieta–Pell–Lucas polynomials. She also gave some properties. Afterward, she
obtained some identities for the bivariate Vieta–Fibonacci and bivariate Vieta–
Lucas polynomials by using the known properties of bivariate Vieta–Fibonacci and
bivariate Vieta–Lucas polynomials.

In 2020 Uygun et al. [7], introduced the generalized Vieta–Pell and Vieta–
Pell–Lucas polynomial sequences. They also gave the Binet formula, generating
functions, sum formulas, differentiation rules, and some important properties for
these sequences. And then they generated a matrix whose elements are of gen-
eralized Vieta–Pell terms. By using this matrix they derived some properties for
generalized Vieta–Pell and generalized Vieta–Pell–Lucas polynomial sequences.

Inspired by the research going on in this direction, in this paper, we introduce
a new type of Vieta polynomial, which is called Vieta–Fibonacci-like polynomial.
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We also give the Binet form, the generating function, the well-known identities,
and the sum formula for this polynomial. Furthermore, the relationship between
this polynomial and the previous well-known Vieta polynomials are given in this
study.

2. Vieta–Fibonacci-like polynomials

In this section, we introduce a new type of Vieta polynomial, called the Vieta–
Fibonacci-like polynomials, as the following definition.

Definition 2.1. For any natural number 𝑛 the Vieta–Fibonacci-like polynomials
sequence {𝑆𝑛(𝑥)}∞𝑛=0 is defined by

𝑆𝑛(𝑥) = 𝑥𝑆𝑛−1(𝑥)− 𝑆𝑛−2(𝑥), for 𝑛 ≥ 2, (2.1)

with the initial conditions 𝑆0(𝑥) = 2 and 𝑆1(𝑥) = 2𝑥.

The first few terms of {𝑆𝑛(𝑥)}∞𝑛=0 are 2, 2𝑥, 2𝑥2 − 2, 2𝑥3 − 4𝑥, 2𝑥4 − 6𝑥2 +
2, 2𝑥5 − 8𝑥3 + 6𝑥, 2𝑥6 − 10𝑥4 + 12𝑥2 − 2, 2𝑥7 − 12𝑥5 + 20𝑥3 − 8𝑥 and so on. The
𝑛𝑡ℎ terms of this sequence are called Vieta–Fibonacci-like polynomials.

First, we give the generating function for the Vieta–Fibonacci-like polynomials
as follows.

Theorem 2.2 (The generating function). The generating function of the Vieta–
Fibonacci-like polynomials sequence is given by

𝑔(𝑥, 𝑡) =
2

1− 𝑥𝑡+ 𝑡2
.

Proof. The generating function 𝑔(𝑥, 𝑡) can be written as 𝑔(𝑥, 𝑡) =
∑︀∞

𝑛=0 𝑆𝑛(𝑥)𝑡
𝑛.

Consider,

𝑔(𝑥, 𝑡) =
∞∑︁

𝑛=0

𝑆𝑛(𝑥)𝑡
𝑛 = 𝑆0(𝑥) + 𝑆1(𝑥)𝑡+ 𝑆2(𝑥)𝑡

2 + · · ·+ 𝑆𝑛(𝑥)𝑡
𝑛 + . . . .

Then, we get

−𝑥𝑡𝑔(𝑥, 𝑡) = −𝑥𝑆0(𝑥)𝑡− 𝑥𝑆1(𝑥)𝑡
2 − 𝑥𝑆2(𝑥)𝑡

3 − · · · − 𝑥𝑆𝑛−1(𝑥)𝑡
𝑛 − . . .

𝑡2𝑔(𝑥, 𝑡) = 𝑆0(𝑥)𝑡
2 + 𝑆1(𝑥)𝑡

3 + 𝑆2(𝑥)𝑡
4 + · · ·+ 𝑆𝑛−2(𝑥)𝑡

𝑛 + . . . .

Thus,

𝑔(𝑥, 𝑡)(1− 𝑥𝑡+ 𝑡2) = 𝑆0(𝑥) + (𝑆1(𝑥)− 𝑥𝑆0(𝑥))𝑡

+
∞∑︁

𝑛=2

(𝑆𝑛(𝑥)− 𝑥𝑆𝑛−1(𝑥) + 𝑆𝑛−2(𝑥))𝑡
𝑛

= 2,
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𝑔(𝑥, 𝑡) =
2

1− 𝑥𝑡+ 𝑡2
.

This completes the proof.

Next, we give the explicit formula for the 𝑛𝑡ℎ Vieta–Fibonacci-like polynomials.

Theorem 2.3 (Binet’s formula). Let {𝑆𝑛(𝑥)}∞𝑛=0 be the sequence ofVieta–Fibonac-
ci-like polynomials, then

𝑆𝑛(𝑥) = 𝐴𝛼𝑛(𝑥) +𝐵𝛽𝑛(𝑥), (2.2)

where 𝐴 = 2(𝑥−𝛽(𝑥))
𝛼(𝑥)−𝛽(𝑥) , 𝐵 = 2(𝛼(𝑥)−𝑥)

𝛼(𝑥)−𝛽(𝑥) and 𝛼(𝑥) = 𝑥+
√
𝑥2−4
2 , 𝛽(𝑥) = 𝑥−

√
𝑥2−4
2 are

the roots of the characteristic equation 𝑟2 − 𝑥𝑟 + 1 = 0.

Proof. The characteristic equation of the recurrence relation (2.1) is 𝑟2−𝑥𝑟+1 = 0

and the roots of this equation are 𝛼(𝑥) = 𝑥+
√
𝑥2−4
2 and 𝛽(𝑥) = 𝑥−

√
𝑥2−4
2 .

It follows that
𝑆𝑛(𝑥) = 𝑑1𝛼

𝑛(𝑥) + 𝑑2𝛽
𝑛(𝑥),

for some real numbers 𝑑1 and 𝑑2. Putting 𝑛 = 0, 𝑛 = 1, and then solving the
system of linear equations, we obtain that

𝑆𝑛(𝑥) =
2(𝑥− 𝛽(𝑥))
𝛼(𝑥)− 𝛽(𝑥)𝛼

𝑛(𝑥) +
2(𝛼(𝑥)− 𝑥)
𝛼(𝑥)− 𝛽(𝑥)𝛽

𝑛(𝑥).

Setting 𝐴 = 2(𝑥−𝛽(𝑥))
𝛼(𝑥)−𝛽(𝑥) and 𝐵 = 2(𝛼(𝑥)−𝑥)

𝛼(𝑥)−𝛽(𝑥) , we get

𝑆𝑛(𝑥) = 𝐴𝛼𝑛(𝑥) +𝐵𝛽𝑛(𝑥).

This completes the proof.

We note that 𝐴+𝐵 = 2, 𝐴𝐵 = − 4
(𝛼(𝑥)−𝛽(𝑥))2 , and 𝐴𝛽(𝑥) +𝐵𝛼(𝑥) = 0.

The other explicit forms of Vieta–Fibonacci-like polynomials are given in the
following two theorems.

Theorem 2.4 (Explicit form). Let {𝑆𝑛(𝑥)}∞𝑛=0 be the sequence of Vieta–Fibonacci-
like polynomials. Then

𝑆𝑛(𝑥) = 2

⌊𝑛
2 ⌋∑︁

𝑖=0

(−1)𝑖
(︂
𝑛− 𝑖
𝑖

)︂
𝑥𝑛−2𝑖, for 𝑛 ≥ 1.

Proof. From Theorem 2.2, we obtain
∞∑︁

𝑛=0

𝑆𝑛(𝑥)𝑡
𝑛 =

2

1− (𝑥𝑡− 𝑡2)

= 2
∞∑︁

𝑛=0

(𝑥𝑡− 𝑡2)𝑛
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= 2
∞∑︁

𝑛=0

𝑛∑︁

𝑖=0

(︂
𝑛

𝑖

)︂
(𝑥𝑡)𝑛−𝑖(−𝑡2)𝑖

= 2
∞∑︁

𝑛=0

𝑛∑︁

𝑖=0

(︂
𝑛

𝑖

)︂
(−1)𝑖𝑥𝑛−𝑖𝑡𝑛+𝑖

=
∞∑︁

𝑛=0

⎡
⎣2

⌊𝑛
2 ⌋∑︁

𝑖=0

(−1)𝑖
(︂
𝑛− 𝑖
𝑖

)︂
𝑥𝑛−2𝑖

⎤
⎦ 𝑡𝑛.

From the equality of both sides, the desired result is obtained. This complete the
proof.

Theorem 2.5 (Explicit form). Let {𝑆𝑛(𝑥)}∞𝑛=0 be the sequence of Vieta–Fibonacci-
like polynomials. Then

𝑆𝑛(𝑥) = 2−𝑛+1

⌊𝑛
2 ⌋∑︁

𝑖=0

(−1)𝑖
(︂
𝑛+ 1

2𝑖+ 1

)︂
𝑥𝑛−2𝑖(𝑥2 − 4)𝑖, for 𝑛 ≥ 1.

Proof. Consider,

𝛼𝑛+1(𝑥)− 𝛽𝑛+1(𝑥) = 2−(𝑛+1)[(𝑥+
√︀
𝑥2 − 4)𝑛+1 − (𝑥−

√︀
𝑥2 − 4)𝑛+1]

= 2−(𝑛+1)

[︂ 𝑛+1∑︁

𝑖=0

(︂
𝑛+ 1

𝑖

)︂
𝑥𝑛−𝑖+1(

√︀
𝑥2 − 4)𝑖

−
𝑛+1∑︁

𝑖=0

(︂
𝑛+ 1

𝑖

)︂
𝑥𝑛−𝑖+1(−

√︀
𝑥2 − 4)𝑖

]︂

= 2−𝑛

[︂ ⌊𝑛
2 ⌋∑︁

𝑖=0

(︂
𝑛+ 1

2𝑖+ 1

)︂
𝑥𝑛−2𝑖(

√︀
𝑥2 − 4)2𝑖+1

]︂
.

Thus,

𝑆𝑛(𝑥) = 𝐴𝛼𝑛(𝑥) +𝐵𝛽𝑛(𝑥)

= 2
𝛼𝑛+1(𝑥)− 𝛽𝑛+1(𝑥)

𝛼(𝑥)− 𝛽(𝑥)

= 2
𝛼𝑛+1(𝑥)− 𝛽𝑛+1(𝑥)√

𝑥2 − 4

= 2−𝑛+1

⌊𝑛
2 ⌋∑︁

𝑖=0

(︂
𝑛+ 1

2𝑖+ 1

)︂
𝑥𝑛−2𝑖(𝑥2 − 4)𝑖.

This completes the proof.
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Theorem 2.6 (Sum formula). Let {𝑆𝑛(𝑥)}∞𝑛=0 be the sequence of Vieta–Fibonacci-
like polynomials. Then

𝑛−1∑︁

𝑘=0

𝑆𝑘(𝑥) =
2− 𝑆𝑛(𝑥) + 𝑆𝑛−1(𝑥)

2− 𝑥 , for 𝑛 ≥ 1.

Proof. By using Binet formula (2.2), we get

𝑛−1∑︁

𝑘=0

𝑆𝑘(𝑥) =
𝑛−1∑︁

𝑘=0

(︀
𝐴𝛼𝑘(𝑥) +𝐵𝛽𝑘(𝑥)

)︀

= 𝐴
1− 𝛼𝑛(𝑥)

1− 𝛼(𝑥) +𝐵
1− 𝛽𝑛(𝑥)

1− 𝛽(𝑥)

=
𝐴+𝐵 − (𝐴𝛽(𝑥) +𝐵𝛼(𝑥))− (𝐴𝛼𝑛(𝑥) +𝐵𝛽𝑛(𝑥))

1− 𝑥+ 1

+
𝐴𝛼𝑛−1(𝑥) +𝐵𝛽𝑛−1(𝑥)

1− 𝑥+ 1

=
2− 𝑆𝑛(𝑥) + 𝑆𝑛−1(𝑥)

2− 𝑥 .

This completes the proof.

Since the derivative of the polynomials is always exists, we can give the following
formula.

Theorem 2.7 (Differentiation formula). The derivative of 𝑆𝑛(𝑥) is obtained as
the follows.

d

d𝑥
𝑆𝑛(𝑥) =

(𝑛+ 1)𝑣𝑛+1(𝑥)− 𝑥𝑉𝑛+1(𝑥)

2(𝑥2 − 4)
,

where 𝑉𝑛(𝑥) and 𝑣𝑛(𝑥) are the 𝑛𝑡ℎ Vieta–Fibonacci and Vieta–Lucas polynomials,
respectively.

Proof. The result is obtained by using Binet formula (2.2).

Again, by using Binet formula (2.2), we obtain some well-known identities as
follows.

Theorem 2.8 (Catalan’s identity or Simson identities). Let {𝑆𝑛(𝑥)}∞𝑛=0 be the
sequence of Vieta–Fibonacci-like polynomials. Then

𝑆2
𝑛(𝑥)− 𝑆𝑛+𝑟(𝑥)𝑆𝑛−𝑟(𝑥) = 𝑆2

𝑟−1(𝑥), for 𝑛 ≥ 𝑟 ≥ 1. (2.3)

Proof. By using Binet formula (2.2), we obtain

𝑆2
𝑛(𝑥)− 𝑆𝑛+𝑟(𝑥)𝑆𝑛−𝑟(𝑥)

= (𝐴𝛼𝑛(𝑥) +𝐵𝛽𝑛(𝑥))
2 −

(︀
𝐴𝛼𝑛+𝑟(𝑥) +𝐵𝛽𝑛+𝑟(𝑥)

)︀ (︀
𝐴𝛼𝑛−𝑟(𝑥) +𝐵𝛽𝑛−𝑟(𝑥)

)︀
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= −𝐴𝐵 (𝛼(𝑥)𝛽(𝑥))
𝑛−𝑟 (︀

𝛼2𝑟(𝑥)− 2 (𝛼(𝑥)𝛽(𝑥))
𝑟
+ 𝛽2𝑟(𝑥)

)︀

=
4

(𝛼(𝑥)− 𝛽(𝑥))2 (𝛼𝑟(𝑥)− 𝛽𝑟(𝑥))
2

= (𝐴𝛼𝑟−1(𝑥) +𝐵𝛽𝑟−1(𝑥))2

= 𝑆2
𝑟−1(𝑥).

Thus,
𝑆2
𝑛(𝑥)− 𝑆𝑛+𝑟(𝑥)𝑆𝑛−𝑟(𝑥) = 𝑆2

𝑟−1(𝑥).

This completes the proof.

Take 𝑟 = 1 in Catalan’s identity (2.3), then we get the following corollary.

Corollary 2.9 (Cassini’s identity). Let {𝑆𝑛(𝑥)}∞𝑛=0 be the sequence of Vieta–Fibo-
nacci-like polynomials. Then

𝑆2
𝑛(𝑥)− 𝑆𝑛+1(𝑥)𝑆𝑛−1(𝑥) = 4, for 𝑛 ≥ 1.

Theorem 2.10 (d’ Ocagne’s identity). Let {𝑆𝑛(𝑥)}∞𝑛=0 be the sequence of Vieta–
Fibonacci-like polynomials. Then

𝑆𝑚(𝑥)𝑆𝑛+1(𝑥)− 𝑆𝑚+1(𝑥)𝑆𝑛(𝑥) = 2𝑆𝑚−𝑛−1(𝑥), for 𝑚 ≥ 𝑛 ≥ 1. (2.4)

Proof. We will prove d’ Ocagne’s identity (2.4) by using Binet formula (2.2). Con-
sider,

𝑆𝑚(𝑥)𝑆𝑛+1(𝑥)− 𝑆𝑚+1(𝑥)𝑆𝑛(𝑥)

= (𝐴𝛼𝑚(𝑥) +𝐵𝛽𝑚(𝑥))
(︀
𝐴𝛼𝑛+1(𝑥) +𝐵𝛽𝑛+1(𝑥)

)︀

−
(︀
𝐴𝛼𝑚+1(𝑥) +𝐵𝛽𝑚+1(𝑥)

)︀
(𝐴𝛼𝑛(𝑥) +𝐵𝛽𝑛(𝑥))

= −𝐴𝐵 (𝛼(𝑥)𝛽(𝑥))
𝑛
(𝛼(𝑥)− 𝛽(𝑥))

(︀
𝛼𝑚−𝑛(𝑥)− 𝛽𝑚−𝑛(𝑥)

)︀

=
4

(𝛼(𝑥)− 𝛽(𝑥))2
(𝛼(𝑥)− 𝛽(𝑥))

(︀
𝛼𝑚−𝑛(𝑥)− 𝛽𝑚−𝑛(𝑥)

)︀

= 2(𝐴𝛼𝑚−𝑛−1(𝑥) +𝐵𝛽𝑚−𝑛−1(𝑥))

= 2𝑆𝑚−𝑛−1(𝑥).

This completes the proof.

Theorem 2.11 (Honsberger identity). Let {𝑆𝑛(𝑥)}∞𝑛=0 be the sequence of Vieta–
Fibonacci-like polynomials. Then

𝑆𝑚+1(𝑥)𝑆𝑛+1(𝑥) + 𝑆𝑚(𝑥)𝑆𝑛(𝑥) =
4𝑥𝑣𝑚+𝑛+3(𝑥)− 8𝑣𝑚−𝑛(𝑥)

𝑥2 − 4
, for 𝑚 ≥ 𝑛 ≥ 1,

where 𝑣𝑛(𝑥) is the 𝑛𝑡ℎ Vieta–Lucas polynomials.
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Proof. By using Binet formula (2.2), we obtain

𝑆𝑚+1(𝑥)𝑆𝑛+1(𝑥) + 𝑆𝑚(𝑥)𝑆𝑛(𝑥)

=
(︀
𝐴𝛼𝑚+1(𝑥) +𝐵𝛽𝑚+1(𝑥)

)︀ (︀
𝐴𝛼𝑛+1(𝑥) +𝐵𝛽𝑛+1(𝑥)

)︀

+ (𝐴𝛼𝑚(𝑥) +𝐵𝛽𝑚(𝑥)) (𝐴𝛼𝑛(𝑥) +𝐵𝛽𝑛(𝑥))

= 𝑥𝐴2𝛼𝑚+𝑛+1(𝑥) + 𝑥𝐵2𝛽𝑚+𝑛+1(𝑥) + 2𝐴𝐵(𝛼𝑚−𝑛(𝑥) + 𝛽𝑚−𝑛(𝑥))

=
4𝑥(𝛼𝑚+𝑛+3(𝑥) + 𝛽𝑚+𝑛+3(𝑥))− 8(𝛼𝑚−𝑛(𝑥) + 𝛽𝑚−𝑛(𝑥))

(𝛼(𝑥)− 𝛽(𝑥))2

=
4𝑥𝑣𝑚+𝑛+3(𝑥)− 8𝑣𝑚−𝑛(𝑥)

𝑥2 − 4
.

This completes the proof.

In the next theorem, we obtain the relation between the Vieta–Fibonacci-like,
Vieta–Fibonacci and the Vieta–Lucas polynomials by using Binet formula (2.2).

Theorem 2.12. Let {𝑆𝑛(𝑥)}∞𝑛=0, {𝑉𝑛(𝑥)}∞𝑛=0 and {𝑣𝑛(𝑥)}∞𝑛=0 be the sequences of
Vieta–Fibonacci-like, Vieta–Fibonacci and Vieta–Lucas polynomials, respectively.
Then

(1) 𝑆𝑛(𝑥) = 2𝑉𝑛+1(𝑥), for 𝑛 ≥ 0,

(2) 𝑆𝑛(𝑥) = 𝑣𝑛(𝑥) + 𝑥𝑉𝑛(𝑥), for 𝑛 ≥ 0,

(3) 𝑆𝑛(𝑥)𝑣𝑛+1(𝑥) = 2𝑉2𝑛+2(𝑥), for 𝑛 ≥ 0,

(4) 𝑆𝑛+1(𝑥) + 𝑆𝑛−1(𝑥) = 2𝑥𝑉𝑛+1(𝑥), for 𝑛 ≥ 1,

(5) 𝑆𝑛+1(𝑥)− 𝑆𝑛−1(𝑥) = 2𝑣𝑛+1(𝑥), for 𝑛 ≥ 1,

(6) 𝑆2
𝑛+2(𝑥)− 𝑆2

𝑛−1(𝑥) = 4𝑥𝑉2𝑛+2(𝑥), for 𝑛 ≥ 1,

(7) 2𝑆𝑛(𝑥)− 𝑥𝑆𝑛−1(𝑥) = 2𝑣𝑛(𝑥), for 𝑛 ≥ 1,

(8) 𝑆𝑛+2(𝑥) + 𝑆𝑛−2(𝑥) = (2𝑥2 − 4)𝑉𝑛+1(𝑥), for 𝑛 ≥ 2,

(9) 𝑆2
𝑛+2(𝑥)− 𝑆2

𝑛−2(𝑥) = 4𝑥(𝑥2 − 2)𝑉2𝑛+2(𝑥), for 𝑛 ≥ 2,

(10) 𝑣𝑛+1(𝑥)− 𝑣𝑛(𝑥) = 1
2 (𝑥

2 − 4)𝑆𝑛−1(𝑥), for 𝑛 ≥ 1,

(11) 2𝑣𝑛+1(𝑥)− 𝑥𝑣𝑛(𝑥) = 1
2 (𝑥

2 − 4)𝑆𝑛−1(𝑥), for 𝑛 ≥ 1,

(12) 4𝑣2𝑛(𝑥) + (𝑥2 − 4)𝑆2
𝑛−1(𝑥) = 8𝑣𝑛(𝑥), for 𝑛 ≥ 1,

(13) 4𝑣2𝑛(𝑥)− (𝑥2 − 4)𝑆2
𝑛−1(𝑥) = 16, for 𝑛 ≥ 1.

Proof. The results (1)–(13) are easily obtained by using Binet formula (2.2).

Vieta–Fibonacci-like polynomials and some identities 105



3. Matrix Form of Vieta–Fibonacci-like polynomials

In this section, we establish some identities of Vieta–Fibonacci-like and Vieta–
Fibonacci polynomials by using elementary matrix methods.

Let 𝑄𝑠 be 2× 2 matrix defined by

𝑄𝑆 =

[︂
2𝑥2 − 2 2𝑥
−2𝑥 −2

]︂
. (3.1)

Then by using this matrix we can deduce some identities of Vieta–Fibonacci-like
and Vieta–Fibonacci polynomials.

Theorem 3.1. Let {𝑆𝑛(𝑥)}∞𝑛=0 be the sequence of Vieta–Fibonacci-like polynomials
and 𝑄𝑠 be 2× 2 matrix defined by (3.1). Then

𝑄𝑛
𝑆 = 2𝑛−1

[︂
𝑆2𝑛(𝑥) 𝑆2𝑛−1(𝑥)
−𝑆2𝑛−1(𝑥) −𝑆2𝑛−2(𝑥)

]︂
, for 𝑛 ≥ 1.

Proof. For the proof, mathematical induction method is used. It obvious that the
statement is true for 𝑛 = 1. Suppose that the result is true for any positive integer
𝑘, then we also have the result is true for 𝑘 + 1. Because

𝑄𝑘+1
𝑆 = 𝑄𝑘

𝑆 ·𝑄𝑆

= 2𝑘−1

[︂
𝑆2𝑘(𝑥) 𝑆2𝑘−1(𝑥)
−𝑆2𝑘−1(𝑥) −𝑆2𝑘−2(𝑥)

]︂ [︂
2𝑥2 − 2 2𝑥
−2𝑥 −2

]︂

= 2(𝑘+1)−1

[︂
𝑆2(𝑘+1)(𝑥) 𝑆2(𝑘+1)−1(𝑥)
−𝑆2(𝑘+1)−1(𝑥) −𝑆2(𝑘+1)−2(𝑥)

]︂
.

By Mathematical induction, we have that the result is true for each 𝑛 ∈ N, that is

𝑄𝑛
𝑆 = 2𝑛−1

[︂
𝑆2𝑛(𝑥) 𝑆2𝑛−1(𝑥)
−𝑆2𝑛−1(𝑥) −𝑆2𝑛−2(𝑥)

]︂
, for 𝑛 ≥ 1.

Theorem 3.2. Let {𝑆𝑛(𝑥)}∞𝑛=0 be the sequence of Vieta–Fibonacci-like polynomi-
als. Then for all integers 𝑚 ≥ 1, 𝑛 ≥ 1, the following statements hold.

(1) 2𝑆2(𝑚+𝑛)(𝑥) = 𝑆2𝑚(𝑥)𝑆2𝑛(𝑥)− 𝑆2𝑚−1(𝑥)𝑆2𝑛−1(𝑥),

(2) 2𝑆2(𝑚+𝑛)−1(𝑥) = 𝑆2𝑚(𝑥)𝑆2𝑛−1(𝑥)− 𝑆2𝑚−1(𝑥)𝑆2𝑛−2(𝑥),

(3) 2𝑆2(𝑚+𝑛)−1(𝑥) = 𝑆2𝑚−1(𝑥)𝑆2𝑛(𝑥)− 𝑆2𝑚−2(𝑥)𝑆2𝑛−1(𝑥),

(4) 2𝑆2(𝑚+𝑛)−2(𝑥) = 𝑆2𝑚−1(𝑥)𝑆2𝑛−1(𝑥)− 𝑆2𝑚−2(𝑥)𝑆2𝑛−2(𝑥).

Proof. By Theorem 3.1 and the property of power matrix 𝑄𝑚+𝑛
𝑠 = 𝑄𝑚

𝑠 ·𝑄𝑛
𝑠 , then

we obtained the results.

By Theorem 3.1 and 𝑆𝑛(𝑥) = 2𝑉𝑛+1(𝑥), we get the following Corollary.
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Corollary 3.3. Let {𝑉𝑛(𝑥)}∞𝑛=0 be the sequence of Vieta–Fibonacci polynomials
and 𝑄𝑠 be 2× 2 matrix defined by (3.1). Then

𝑄𝑛
𝑆 = 2𝑛

[︂
𝑉2𝑛+1(𝑥) 𝑉2𝑛(𝑥)
−𝑉2𝑛(𝑥) −𝑉2𝑛−1(𝑥)

]︂
, for 𝑛 ≥ 1.

Proof. From Theorem 3.1, we get

𝑄𝑛
𝑆 = 2𝑛−1

[︂
𝑆2𝑛(𝑥) 𝑆2𝑛−1(𝑥)
−𝑆2𝑛−1(𝑥) −𝑆2𝑛−2(𝑥)

]︂
, for 𝑛 ≥ 1.

Since 𝑆𝑛(𝑥) = 2𝑉𝑛+1(𝑥), we get that

𝑄𝑛
𝑆 = 2𝑛−1

[︂
2𝑉2𝑛+1(𝑥) 2𝑉2𝑛(𝑥)
−2𝑉2𝑛(𝑥) −2𝑉2𝑛−1(𝑥)

]︂

= 2𝑛
[︂
𝑉2𝑛+1(𝑥) 𝑉2𝑛(𝑥)
−𝑉2𝑛(𝑥) −𝑉2𝑛−1(𝑥)

]︂
, for 𝑛 ≥ 1.

This completes the proof.

By Theorem 3.2 and 𝑆𝑛(𝑥) = 2𝑉𝑛+1(𝑥), we get the following Corollary.

Corollary 3.4. Let {𝑉𝑛(𝑥)}∞𝑛=0 be the sequence of Vieta–Fibonacci polynomials.
Then for all integers 𝑚 ≥ 1, 𝑛 ≥ 1, the following statements hold.

(1) 𝑉2(𝑚+𝑛)+1(𝑥) = 𝑉2𝑚+1(𝑥)𝑉2𝑛+1(𝑥)− 𝑉2𝑚(𝑥)𝑉2𝑛(𝑥),

(2) 𝑉2(𝑚+𝑛)(𝑥) = 𝑉2𝑚+1(𝑥)𝑉2𝑛(𝑥)− 𝑉2𝑚(𝑥)𝑉2𝑛−1(𝑥),

(3) 𝑉2(𝑚+𝑛)(𝑥) = 𝑉2𝑚(𝑥)𝑉2𝑛+1(𝑥)− 𝑉2𝑚−1(𝑥)𝑉2𝑛(𝑥),

(4) 𝑉2(𝑚+𝑛)−1(𝑥) = 𝑉2𝑚(𝑥)𝑉2𝑛(𝑥)− 𝑉2𝑚−1(𝑥)𝑉2𝑛−1(𝑥).

Proof. From Theorem 3.2 and 𝑆𝑛(𝑥) = 2𝑉𝑛+1(𝑥), we get that

𝑉2(𝑚+𝑛)+1(𝑥) =
1

2
𝑆2(𝑚+𝑛)(𝑥)

=
1

4
(𝑆2𝑚(𝑥)𝑆2𝑛(𝑥)− 𝑆2𝑚−1(𝑥)𝑆2𝑛−1(𝑥))

=
1

4
(2𝑉2𝑚+1(𝑥)2𝑉2𝑛+1(𝑥)− 2𝑉2𝑚(𝑥)2𝑉2𝑛(𝑥))

= 𝑉2𝑚+1(𝑥)𝑉2𝑛+1(𝑥)− 𝑉2𝑚(𝑥)𝑉2𝑛(𝑥).

Thus, we get that (1) holds. By the same argument as above, we get that (2), (3),
and (4) holds. This completes the proof.

By Corollary 3.4 and 𝑆𝑛(𝑥) = 2𝑉𝑛+1(𝑥), we get the following corollary.

Corollary 3.5. Let {𝑆𝑛(𝑥)}∞𝑛=0 and {𝑉𝑛(𝑥)}∞𝑛=0 be the sequences ofVieta–Fibonac-
ci-like polynomials and Vieta–Fibonacci polynomials, respectively. Then for all in-
tegers 𝑚 ≥ 1, 𝑛 ≥ 1, the following statements hold.
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(1) 𝑆2(𝑚+𝑛)(𝑥) = 2 (𝑉2𝑚+1(𝑥)𝑉2𝑛+1(𝑥)− 𝑉2𝑚(𝑥)𝑉2𝑛(𝑥)) ,

(2) 𝑆2(𝑚+𝑛)−1(𝑥) = 2 (𝑉2𝑚+1(𝑥)𝑉2𝑛(𝑥)− 𝑉2𝑚(𝑥)𝑉2𝑛−1(𝑥)) ,

(3) 𝑆2(𝑚+𝑛)−1(𝑥) = 2 (𝑉2𝑚(𝑥)𝑉2𝑛+1(𝑥) + 𝑉2𝑚−1(𝑥)𝑉2𝑛(𝑥)) ,

(4) 𝑆2(𝑚+𝑛)−2(𝑥) = 2 (𝑉2𝑚(𝑥)𝑉2𝑛(𝑥) + 𝑉2𝑚−1(𝑥)𝑉2𝑛−1(𝑥)) .

Proof. From Corollary 3.4 and 𝑆𝑛(𝑥) = 2𝑉𝑛+1(𝑥), we get that

𝑆2(𝑚+𝑛)(𝑥) = 2𝑉2(𝑚+𝑛)+1(𝑥)

= 2 (𝑉2𝑚+1(𝑥)𝑉2𝑛+1(𝑥)− 𝑉2𝑚(𝑥)𝑉2𝑛(𝑥)) .

Thus, we get that (1) holds. By the same argument as above, we get that (2), (3),
and (4) holds. This completes the proof.
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Abstract

Let 0 ≤ 𝑞 ≤ 1 and N denotes the set of all positive integers. In this
paper we will be interested in the family 𝒰(𝑥𝑞) of all regularly distributed
set 𝑋 ⊂ N whose ratio block sequence is asymptotically distributed with
distribution function 𝑔(𝑥) = 𝑥𝑞; 𝑥 ∈ (0, 1], and we will study the structure
of this family with respect to the union.

Keywords: Ideals of sets of positive integers, distribution functions, block
sequences, exponent of convergence
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1. Introduction

In the whole paper we assume 𝑋 = {𝑥1 < 𝑥2 < · · · < 𝑥𝑛 < · · · } ⊂ N where N
denotes the set of all positive integers.

The following sequence derived from 𝑋

𝑥1
𝑥1
,
𝑥1
𝑥2
,
𝑥2
𝑥2
,
𝑥1
𝑥3
,
𝑥2
𝑥3
,
𝑥3
𝑥3
, . . . ,

𝑥1
𝑥𝑛
,
𝑥2
𝑥𝑛
, . . . ,

𝑥𝑛
𝑥𝑛
, . . . (1.1)
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is called the ratio block sequence of the set (sequence) 𝑋.
It is formed by the blocks 𝑋1, 𝑋2, . . . , 𝑋𝑛, . . . where

𝑋𝑛 =

(︂
𝑥1
𝑥𝑛
,
𝑥2
𝑥𝑛
, . . . ,

𝑥𝑛
𝑥𝑛

)︂
, 𝑛 = 1, 2, . . .

is called the 𝑛-th block. This kind of block sequences was introduced by O. Strauch
and J. T. Tóth [12] and they studied the set 𝐺(𝑋𝑛) of its distribution functions.
Further, we will be interested in ratio block sequences of type (1.1) possessing an
asymptotic distribution function, i.e. 𝐺(𝑋𝑛) is a singleton (see definitions in the
next section).

By means of these distribution functions in [13] was defined the next families
of subsets of N. For 0 ≤ 𝑞 ≤ 1 we denote 𝒰(𝑥𝑞) the family of all regularly dis-
tributed set 𝑋 ⊂ N whose ratio block sequence is asymptotically distributed with
distribution function 𝑔(𝑥) = 𝑥𝑞; 𝑥 ∈ (0, 1].

Further in [13] the following interesting results can be seen, that 𝜆 the expo-
nent of convergence is closely related to distributional properties of sets of positive
integers. More precisely, for each 𝑞 ∈ [0, 1] the family ℐ≤𝑞 of all sets 𝐴 ⊂ N such
that 𝜆(𝐴) ≤ 𝑞 is identical with the family ℐ(𝑥𝑞) of all sets 𝐴 ⊂ N which are covered
by some regularly distributed set 𝑋 ∈ 𝒰(𝑥𝑞).

The exponent of convergence of a set 𝐴 ⊂ N is defined by

𝜆(𝐴) = inf
{︁
𝑠 ∈ (0,∞) :

∑︁

𝑛∈N
𝑎−𝑠
𝑛 <∞

}︁
,

where 𝐴 = {𝑎1 < 𝑎2 < · · · } ⊂ N.
In this paper we will be interested in the family 𝒰(𝑥𝑞) and study the structure

of this family respect to the union.
The rest of our paper is organized as follows. In Section 2 and Section 3 we

recall some known definitions, notations and theorems, which will be used and
extended. In Section 4 our new results are presented.

2. Definitions

The following basic definitions are from papers [9, 12, 14].

• For each 𝑛 ∈ N consider the step distribution function

𝐹 (𝑋𝑛, 𝑥) =
#{𝑖 ≤ 𝑛; 𝑥𝑖

𝑥𝑛
< 𝑥}

𝑛
,

for 𝑥 ∈ [0, 1), and for 𝑥 = 1 we define 𝐹 (𝑋𝑛, 1) = 1.

• A non-decreasing function 𝑔 : [0, 1] → [0, 1], 𝑔(0) = 0, 𝑔(1) = 1 is called
a distribution function (abbreviated d.f.). We shall identify any two d.f.s
coinciding at common points of continuity.
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• A d.f. 𝑔(𝑥) is a d.f. of the sequence of blocks 𝑋𝑛, 𝑛 = 1, 2, . . . , if there exists
an increasing sequence 𝑛1 < 𝑛2 < · · · of positive integers such that

lim
𝑘→∞

𝐹 (𝑋𝑛𝑘
, 𝑥) = 𝑔(𝑥)

a.e. on [0, 1]. This is equivalent to the weak convergence, i.e., the preceding
limit holds for every point 𝑥 ∈ [0, 1] of continuity of 𝑔(𝑥).

• Denote by 𝐺(𝑋𝑛) the set of all d.f.s of 𝑋𝑛, 𝑛 = 1, 2, . . . . The set of distribu-
tion functions of ratio block sequences was studied in [1–7, 9–12].
If 𝐺(𝑋𝑛) = {𝑔(𝑥)} is a singleton, the d.f. 𝑔(𝑥) is also called the asymptotic
distribution function of 𝑋𝑛.

• Let 𝜆 be the convergence exponent function on the power set 2N of N, i.e. for
𝐴 ⊂ N put

𝜆(𝐴) = inf
{︁
𝑡 > 0 :

∑︁

𝑎∈𝐴

1

𝑎𝑡
<∞

}︁
.

If 𝑞 > 𝜆(𝐴) then
∑︀

𝑎∈𝐴
1
𝑎𝑞 < ∞ and if 𝑞 < 𝜆(𝐴) then

∑︀
𝑎∈𝐴

1
𝑎𝑞 = ∞. In

the case when 𝑞 = 𝜆(𝐴), the series
∑︀

𝑎∈𝐴
1
𝑎𝑞 can be either convergent or

divergent.
From [8, p. 26, Exercises 113, 114], it follows that the set of all possible
values of 𝜆 forms the whole interval [0, 1], i.e. {𝜆(𝐴) : 𝐴 ⊂ N} = [0, 1] and if
𝐴 = {𝑎1 < 𝑎2 < · · · < 𝑎𝑛 < · · · } then 𝜆(𝐴) can be calculated by

𝜆(𝐴) = lim sup
𝑛→∞

log 𝑛

log 𝑎𝑛
.

Evidently the exponent of convergence 𝜆 is a monotone set function, i.e.
𝜆(𝐴) ≤ 𝜆(𝐵) for 𝐴 ⊂ 𝐵 ⊂ N and also 𝜆(𝐴 ∪ 𝐵) = max{𝜆(𝐴), 𝜆(𝐵)} holds
for all 𝐴,𝐵 ⊂ N.

• By means of 𝜆 the following sets were defined (see [14]):

ℐ<𝑞 = {𝐴 ⊂ N : 𝜆(𝐴) < 𝑞} for 0 < 𝑞 ≤ 1,

ℐ≤𝑞 = {𝐴 ⊂ N : 𝜆(𝐴) ≤ 𝑞} for 0 ≤ 𝑞 ≤ 1 and
ℐ0 = {𝐴 ⊂ N : 𝜆(𝐴) = 0}.

Obviously ℐ≤0 = ℐ0 and ℐ≤1 = 2N.
For a finite set 𝐴 ⊂ N we have 𝜆(𝐴) = 0. Consequently, ℱ𝑖𝑛 = {𝐴 ⊂
N : 𝐴 is finite} ⊂ ℐ0. Families ℐ<𝑞, ℐ≤𝑞 are related for 0 < 𝑞 < 𝑞′ < 1 by
following inclusions (see [14, Theorem 1]),

ℱ𝑖𝑛 ⊊ ℐ0 ⊊ ℐ<𝑞 ⊊ ℐ≤𝑞 ⊊ ℐ<𝑞′ ⊊ ℐ<1,

and the difference of successive sets is infinite, so equality does not hold in
any of the inclusions.
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• Let ℐ ⊂ 2N. Then ℐ is called an ideal of subsets of positive integers, if ℐ is
additive (if 𝐴,𝐵 ∈ ℐ then 𝐴 ∪𝐵 ∈ ℐ), hereditary (if 𝐴 ∈ ℐ and 𝐵 ⊂ 𝐴 then
𝐵 ∈ ℐ), ℐ ⊇ ℱ𝑖𝑛 and N /∈ ℐ.

3. Overwiew of known results

In this section we mention known results related to the topic of this paper and some
other ones we use in the proofs of our theorems. In the whole part in (S1)–(S7) we
assume 𝑋 = {𝑥1 < 𝑥2 < · · · < 𝑥𝑛 < · · · } ⊂ N.

(S1) We will use step function

𝑐0(𝑥) =

{︃
0, if 𝑥 = 0,

1, if 0 < 𝑥 ≤ 1.

Assume that 𝐺(𝑋𝑛) is singleton, i.e., 𝐺(𝑋𝑛) = {𝑔(𝑥)}. Then either 𝑔(𝑥) =
𝑐0(𝑥) for 𝑥 ∈ [0, 1]; or 𝑔(𝑥) = 𝑥𝑞 for 𝑥 ∈ [0, 1] and some fixed 0 < 𝑞 ≤ 1.

[12, Theorem 8.2]

The result (S1) provides motivation to introduce the following families of
subsets of N( see [13]):

𝒰(𝑐0(𝑥)) = {𝑋 ⊂ N : 𝐺(𝑋𝑛) = {𝑐0(𝑥)}},
ℐ(𝑐0(𝑥)) = {𝐴 ⊂ N : ∃𝑋 ∈ 𝒰(𝑐0(𝑥)), 𝐴 ⊂ 𝑋},

and for 0 < 𝑞 ≤ 1

𝒰(𝑥𝑞) = {𝑋 ⊂ N : 𝐺(𝑋𝑛) = {𝑥𝑞}},
ℐ(𝑥𝑞) = {𝐴 ⊂ N : ∃𝑋 ∈ 𝒰(𝑥𝑞), 𝐴 ⊂ 𝑋}.

Obviously,
𝒰(𝑐0(𝑥)) ⊊ ℐ(𝑐0(𝑥)), 𝒰(𝑥𝑞) ⊊ ℐ(𝑥𝑞).

Sets 𝑋 from 𝒰(𝑐0(𝑥)) are characterized by (S4) and sets belonging to 𝒰(𝑥𝑞)
are characterized by (S2) and (S5). In [13, Theorem 1 and Example 1] is
proved that the family 𝒰(𝑐0(𝑥)) is additive, i.e. it is closed with respect to
finite unions and does not form an ideal as it is not hereditary, i.e. there exists
sets 𝐶 ∈ 𝒰(𝑐0(𝑥)) and 𝐵 ⊂ 𝐶 such that 𝐵 /∈ 𝒰(𝑐0(𝑥)). On the other hand
the family ℐ(𝑐0(𝑥)) is an ideal (see [13, Theorem 2]). For these families the
following statements hold.

(S2) Let 0 < 𝑞 ≤ 1 be a real number. Then

𝑋 ∈ 𝒰(𝑥𝑞) ⇐⇒ ∀ 𝑘 ∈ N : lim
𝑛→∞

𝑥𝑘𝑛
𝑥𝑛

= 𝑘
1
𝑞 .

[6, Theorem 1]
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(S3) Let 0 < 𝑞 ≤ 1 be a real number and 𝑋 ∈ 𝒰(𝑥𝑞). Then

lim
𝑛→∞

𝑥𝑛+1

𝑥𝑛
= 1.

[4, Remark 3]

(S4) We have

𝑋 ∈ 𝒰(𝑐0(𝑥)) ⇐⇒ lim
𝑛→∞

1

𝑛𝑥𝑛

𝑛∑︁

𝑖=1

𝑥𝑖 = 0.

[12, Theorem 7.1]

(S5) Let 0 < 𝑞 ≤ 1 be a real number. Then

𝑋 ∈ 𝒰(𝑥𝑞) ⇐⇒ lim
𝑛→∞

1

𝑛𝑥𝑛

𝑛∑︁

𝑖=1

𝑥𝑖 =
𝑞

𝑞 + 1
.

[3, Theorem 1]

(S6) Let 𝑋 ∈ 𝒰(𝑐0(𝑥)). Then

lim
𝑛→∞

log 𝑛

log 𝑥𝑛
= 0 (i.e. 𝜆(𝑋) = 0).

[3, Theorem 2]

(S7) Let 0 < 𝑞 ≤ 1 be a real number and 𝑋 ∈ 𝒰(𝑥𝑞). Then

lim
𝑛→∞

log 𝑛

log 𝑥𝑛
= 𝑞 (therefore 𝜆(𝑋) = 𝑞).

[3, Theorem 3]

(S8) Let 0 < 𝑞 ≤ 1. Then each of the families ℐ0, ℐ<𝑞 and ℐ≤𝑞 forms an admissible
ideal, except for ℐ≤1.
[14, Theorem 1]

(S9) Let 0 < 𝑞 ≤ 1. Then each of the families ℐ(𝑐0(𝑥)), ℐ(𝑥𝑞) forms an admissible
ideal and ℐ(𝑐0(𝑥)) = ℐ0, ℐ(𝑥𝑞) = ℐ≤𝑞.
[13, Theorem 5 and Theorem 7]
Given 𝑡 ≥ 1, define the counting function of 𝑋 ⊂ N as

𝑋(𝑡) = #{𝑥 ≤ 𝑡 : 𝑥 ∈ 𝑋}.

(S10) Let 0 < 𝑞 ≤ 1, 𝑋 = {𝑥1 < 𝑥2 < · · · } ⊂ N and 𝑌 = {𝑦1 < 𝑦2 < · · · } ⊂ N.
Let 𝑔(𝑥) ∈ {𝑐0(𝑥), 𝑥𝑞} be fixed and assume that

𝑌 ∈ 𝒰(𝑔(𝑥)) and lim
𝑡→∞

𝑋(𝑡)

𝑌 (𝑡)
= 0.

Then
𝑋 ∪ 𝑌 ∈ 𝒰(𝑔(𝑥)).

[13, Theorem 4]
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4. Results

In this section we will study the structure of the family 𝒰(𝑥𝑞) respect to the union of
its elements. We show that there exist such sets 𝑋,𝑌 ∈ 𝒰(𝑥𝑞) that 𝑋 ∪𝑌 /∈ 𝒰(𝑥𝑞),
but on the other hand, if 𝑋,𝑌 ∈ 𝒰(𝑥𝑞) (hence 𝜆(𝑋) = 𝑞 and 𝜆(𝑌 ) = 𝑞) then
necessary 𝜆(𝑋 ∪ 𝑌 ) = 𝑞, thus

𝑋 ∪ 𝑌 ∈ ℐ≤𝑞 ∖ ℐ<𝑞 = ℐ(𝑥𝑞) ∖ ℐ<𝑞 ⊊ ℐ(𝑥𝑞).

This follows from the (S7), (S9) and the fact that 𝜆(𝑋 ∪ 𝑌 ) = max{𝜆(𝑋), 𝜆(𝑌 )}.
Theorem 4.1. Let 0 < 𝑞 ≤ 1. Then the family 𝒰(𝑥𝑞) does not form an ideal as it
is not additive, i.e. it is not closed with respect to finite unions.

Proof. It is sufficent to show that there exist sets 𝑋,𝑌 ∈ 𝒰(𝑥𝑞) such that 𝑋 ∪𝑌 /∈
𝒰(𝑥𝑞). Let 0 < 𝑞 ≤ 1 and 𝑋 = {𝑥1 < 𝑥2 < · · · < 𝑥𝑛 < · · · } ⊂ N be such that
𝑥𝑛+1 > 𝑥𝑛 + 1 for every 𝑛 ∈ N and 𝑋 ∈ 𝒰(𝑥𝑞). For example, it will be like that
𝑥𝑛 = ⌊2𝑛 1

𝑞 ⌋ (as usual, ⌊𝑥⌋ is the integer part of the real 𝑥). From (S2) it is clear
that 𝑋 ∈ 𝒰(𝑥𝑞).

Then 𝑥𝑛 = 2𝑛
1
𝑞 − 𝜀(𝑛) for some 0 ≤ 𝜀(𝑛) < 1, and by Lagrange’s Mean Value

Theorem for 𝑓(𝑥) = 2𝑥
1
𝑞 on [𝑛, 𝑛+ 1] we get that 𝑥𝑛+1 > 𝑥𝑛 + 1 for all 𝑛.

Define the set 𝑌 = {𝑦1 < 𝑦2 < · · · < 𝑦𝑛 < · · · } such that 𝑦1 = 𝑥1 and for 𝑛 ≥ 2

𝑦𝑛 =

{︃
𝑥𝑛 − 1, if 𝑛 ∈ (22𝑘, 22𝑘+1] , 𝑘 = 0, 1, 2, . . . ,

𝑥𝑛, if 𝑛 ∈ (22𝑘+1, 22𝑘+2] , 𝑘 = 0, 1, 2, . . . .

We show that 𝑌 ∈ 𝒰(𝑥𝑞). Since 𝑥𝑛 − 1 ≤ 𝑦𝑛 ≤ 𝑥𝑛 then for every 𝑘 ∈ N

𝑥𝑘𝑛 − 1

𝑥𝑘𝑛

𝑥𝑘𝑛
𝑥𝑛

=
𝑥𝑘𝑛 − 1

𝑥𝑛
≤ 𝑦𝑘𝑛

𝑦𝑛
≤ 𝑥𝑘𝑛
𝑥𝑛 − 1

=
𝑥𝑛

𝑥𝑛 − 1

𝑥𝑘𝑛
𝑥𝑛

.

From this according to (S2) for each 𝑘 ∈ N we have

lim
𝑛→∞

𝑦𝑘𝑛
𝑦𝑛

= lim
𝑛→∞

𝑥𝑘𝑛
𝑥𝑛

= 𝑘
1
𝑞 ,

thus 𝑌 ∈ 𝒰(𝑥𝑞).
Further let

𝑋 ∪ 𝑌 = {𝑧1 < 𝑧2 < · · · < 𝑧𝑛 < · · · }.
We now show that 𝑋 ∪ 𝑌 /∈ 𝒰(𝑥𝑞), i.e. according to (S5)

lim
𝑛→∞

1

𝑛𝑧𝑛

𝑛∑︁

𝑖=1

𝑧𝑖 ̸=
𝑞

𝑞 + 1
.

Let 𝑛𝑘 (𝑘 = 1, 2, . . . ) be such that 𝑧𝑛𝑘
= 𝑥22𝑘+1 . Then

𝑛𝑘 = 22𝑘+1 +

𝑘∑︁

𝑖=0

(22𝑖+1 − 22𝑖) = 22𝑘+1 +

𝑘∑︁

𝑖=0

22𝑖
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= 22𝑘+1 +
22𝑘+2 − 1

22 − 1
=

5

3
22𝑘+1 − 1

3
. (4.1)

We estimate the following means

1

𝑛𝑘𝑧𝑛𝑘

𝑛𝑘∑︁

𝑖=1

𝑧𝑖 ≥
1

𝑛𝑘𝑧𝑛𝑘

(︃
22𝑘+1∑︁

𝑖=1

𝑥𝑖 +
22𝑘+1∑︁

𝑖=22𝑘+1

𝑦𝑖

)︃

=
1

𝑛𝑘𝑥22𝑘+1

(︃
22𝑘+1∑︁

𝑖=1

𝑥𝑖 +
22𝑘+1∑︁

𝑖=1

𝑦𝑖 −
22𝑘∑︁

𝑖=1

𝑦𝑖

)︃

=
22𝑘+1

𝑛𝑘

1

22𝑘+1𝑥22𝑘+1

22𝑘+1∑︁

𝑖=1

𝑥𝑖

+
22𝑘+1

𝑛𝑘

𝑦22𝑘+1

𝑥22𝑘+1

1

22𝑘+1𝑦22𝑘+1

22𝑘+1∑︁

𝑖=1

𝑦𝑖

− 22𝑘

𝑛𝑘

𝑦22𝑘

𝑥22𝑘+1

1

22𝑘𝑦22𝑘

22𝑘∑︁

𝑖=1

𝑦𝑖. (4.2)

Since 𝑋,𝑌 ∈ 𝒰(𝑥𝑞) then by (S5) we give

lim
𝑘→∞

1

22𝑘+1𝑥22𝑘+1

22𝑘+1∑︁

𝑖=1

𝑥𝑖 = lim
𝑘→∞

1

22𝑘+1𝑦22𝑘+1

22𝑘+1∑︁

𝑖=1

𝑦𝑖

= lim
𝑘→∞

1

22𝑘𝑦22𝑘

22𝑘∑︁

𝑖=1

𝑦𝑖 =
𝑞

𝑞 + 1
.

From definition of the set 𝑌 and (S2) it follows

lim
𝑘→∞

𝑦22𝑘

𝑥22𝑘+1

= lim
𝑘→∞

𝑥22𝑘

𝑥22𝑘+1

= lim
𝑘→∞

𝑥22𝑘

𝑥2.22𝑘
=

1

2
1
𝑞

≤ 1

2
.

Furthermore we have

lim
𝑘→∞

𝑦22𝑘+1

𝑥22𝑘+1

= lim
𝑘→∞

𝑥22𝑘+1−1

𝑥22𝑘+1

= 1,

and (4.1) implies

lim
𝑘→∞

22𝑘+1

𝑛𝑘
=

3

5
, lim

𝑘→∞
22𝑘

𝑛𝑘
=

3

10
.

Then from estimation (4.2) by previously statements we obtain

lim inf
𝑘→∞

1

𝑛𝑘𝑧𝑛𝑘

𝑛𝑘∑︁

𝑖=1

𝑧𝑖 ≥
(︁3
5
+

3

5
· 1− 3

10
· 1
2

)︁ 𝑞

𝑞 + 1
=

21

20

𝑞

𝑞 + 1
>

𝑞

𝑞 + 1
,

which it means that 𝑋 ∪ 𝑌 /∈ 𝒰(𝑥𝑞).
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However, if we choose such sets 𝑋,𝑌 ∈ 𝒰(𝑥𝑞) that 𝑋 ∩ 𝑌 ∈ ℐ0, then holds
already the following.

Theorem 4.2. Let 0 < 𝑞 ≤ 1 and sets 𝑋,𝑌 ∈ 𝒰(𝑥𝑞) are such that 𝑋 ∩ 𝑌 ∈ ℐ0.
Then 𝑋 ∪ 𝑌 ∈ 𝒰(𝑥𝑞).
Proof. Let 0 < 𝑞 ≤ 1, 𝑋 = {𝑥1 < 𝑥2 < · · · } ⊂ N, 𝑌 = {𝑦1 < 𝑦2 < · · · } ⊂ N.
Assume that 𝑋,𝑌 ∈ 𝒰(𝑥𝑞). According to (S5) and (S3) we have

1

𝑛𝑥𝑛

𝑛∑︁

𝑖=1

𝑥𝑖 →
𝑞

𝑞 + 1
and

1

𝑛𝑦𝑛

𝑛∑︁

𝑖=1

𝑦𝑖 →
𝑞

𝑞 + 1
as 𝑛→∞, (4.3)

and
𝑥𝑘+1

𝑥𝑘
→ 1 and

𝑦𝑘+1

𝑦𝑘
→ 1 as 𝑛→∞. (4.4)

Let 𝑋 ∩ 𝑌 = {𝑦𝑖1 , 𝑦𝑖2 , . . . , 𝑦𝑖𝑛 , . . . }. We denote

𝐴(𝑋 ∩ 𝑌, 𝑦𝑛) =
∑︁

𝑦𝑛𝑖
∈[1,𝑦𝑛]

𝑦𝑛𝑖
.

Further, let 𝑋 ∪ 𝑌 = {𝑧1 < 𝑧2 < · · · < 𝑧𝑚 < · · · } and choose sufficiently large
𝑚 ∈ N. Let 𝑧𝑚 ∈ 𝑋 ∪ 𝑌 . If 𝑧𝑚 = 𝑦𝑛 then

𝑥𝑘 ≤ 𝑦𝑛 < 𝑥𝑘+1 and 𝑦𝑖𝑙 ≤ 𝑦𝑛 < 𝑦𝑖𝑙+1
,

for some 𝑘, 𝑙 ∈ N.
Thus 𝑚 = 𝑋 ∪ 𝑌 (𝑦𝑛), 𝑋 ∩ 𝑌 (𝑦𝑛) = 𝑙 and 𝑚 = 𝑘+𝑛− 𝑙. Then we estimate the

value

1

𝑚𝑧𝑚

𝑚∑︁

𝑖=1

𝑧𝑖 =
1

𝑘 + 𝑛− 𝑙
1

𝑦𝑛

(︃
𝑛∑︁

𝑖=1

𝑦𝑖 +
𝑘∑︁

𝑖=1

𝑥𝑖 −𝐴(𝑋 ∩ 𝑌, 𝑦𝑛)
)︃

(4.5)

=
𝑛

𝑘 + 𝑛− 𝑙
1

𝑛𝑦𝑛

𝑛∑︁

𝑖=1

𝑦𝑖 +
𝑘

𝑘 + 𝑛− 𝑙
𝑥𝑘
𝑦𝑛

1

𝑘𝑥𝑘

𝑘∑︁

𝑖=1

𝑥𝑖 −
𝐴(𝑋 ∩ 𝑌, 𝑦𝑛)
(𝑘 + 𝑛− 𝑙)𝑦𝑛

=
𝑘 + 𝑛

𝑘 + 𝑛− 𝑙
1

𝑛𝑦𝑛

𝑛∑︁

𝑖=1

𝑦𝑖 +
𝑘

𝑘 + 𝑛− 𝑙

(︃
𝑥𝑘
𝑦𝑛

1

𝑘𝑥𝑘

𝑘∑︁

𝑖=1

𝑥𝑖 −
1

𝑛𝑦𝑛

𝑛∑︁

𝑖=1

𝑦𝑖

)︃
− 𝐴(𝑋 ∩ 𝑌, 𝑦𝑛)

(𝑘 + 𝑛− 𝑙)𝑦𝑛
.

On the other hand

𝑘 + 𝑛

𝑘 + 𝑛− 𝑙 = 1− 𝑋 ∩ 𝑌 (𝑦𝑛)

𝑋 ∪ 𝑌 (𝑦𝑛)
,

0 ≤ 𝐴(𝑋 ∩ 𝑌, 𝑦𝑛)
(𝑘 + 𝑛− 𝑙)𝑦𝑛

≤ 𝑋 ∩ 𝑌 (𝑦𝑛).𝑦𝑛
(𝑘 + 𝑛− 𝑙)𝑦𝑛

=
𝑋 ∩ 𝑌 (𝑦𝑛)

𝑋 ∪ 𝑌 (𝑦𝑛)
≤ 𝑋 ∩ 𝑌 (𝑦𝑛)

𝑋(𝑦𝑛)
,

and as 𝑚→∞, also 𝑘 →∞ and 𝑛→∞. Since from Theorem 4.3 we have

𝑋 ∩ 𝑌 (𝑛)

𝑋(𝑛)
→ 0 as 𝑛→∞,
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then holds
𝑘 + 𝑛

𝑘 + 𝑛− 𝑙 → 1,
𝐴(𝑋 ∩ 𝑌, 𝑦𝑛)
(𝑘 + 𝑛− 𝑙)𝑦𝑛

→ 0 as 𝑚→∞.

Furthermore from (4.4) and condition 𝑥𝑘 ≤ 𝑦𝑛 < 𝑥𝑘+1 we obtain

𝑥𝑘
𝑦𝑛
→ 1 as 𝑚→∞.

Then by (4.3), (4.5) and from the fact, that 𝑘
𝑘+𝑛−𝑙 is bounded we have

1

𝑚𝑧𝑚

𝑚∑︁

𝑖=1

𝑧𝑖 →
𝑞

𝑞 + 1
as 𝑚→∞,

thus 𝑋 ∪ 𝑌 ∈ 𝒰(𝑥𝑞).
The proof in the case 𝑧𝑚 = 𝑥𝑘 and 𝑦𝑛 ≤ 𝑥𝑘 ≤ 𝑦𝑛+1 is similar.

In the following theorems we will deal with sets X, Y for which 𝑋 ∈ 𝒰(𝑔1(𝑥))
𝑌 ∈ 𝒰(𝑔2(𝑥)) where 𝑔1(𝑥) ̸= 𝑔2(𝑥) and 𝑔1(𝑥), 𝑔2(𝑥) ∈ {𝑐0(𝑥), 𝑥𝑞}.

Theorem 4.3. Let 0 < 𝑞 ≤ 1 and sets 𝑋 ∈ 𝒰(𝑐0(𝑥))(it can also be 𝑋 ∈ ℐ0),
𝑌 ∈ 𝒰(𝑥𝑞). Then

lim
𝑛→∞

𝑋(𝑛)

𝑌 (𝑛)
= 0.

Proof. Let 0 < 𝑞 ≤ 1, 𝑋 = {𝑥1 < 𝑥2 < · · · } ⊂ N, 𝑌 = {𝑦1 < 𝑦2 < · · · } ⊂ N.
Assume that 𝑋 ∈ 𝒰(𝑐0(𝑥)) and 𝑌 ∈ 𝒰(𝑥𝑞). Then by (S6) and (S7) for sufficiently
large 𝑘 ∈ N there exists 𝑛0 ∈ N such that for every 𝑛 ≥ 𝑛0 we have

𝑥𝑛 > 𝑛𝑘 and 𝑦𝑛 < 𝑛
1
𝑞+

1
𝑘 .

Therefore

0 ≤ 𝑋(𝑛)

𝑌 (𝑛)
<

𝑛
1
𝑘

𝑛
𝑞𝑘

𝑞+𝑘

= 𝑛
1
𝑘− 𝑞𝑘

𝑞+𝑘 ,

where the exponent for sufficiently large 𝑘 is negative, since 1
𝑘 −

𝑞𝑘
𝑞+𝑘 → −𝑞 as

𝑘 →∞. From this and previous estimation follows 𝑋(𝑛)
𝑌 (𝑛) → 0 as 𝑛→∞.

Note that the previous Theorem 4.3 holds even if for the sets 𝑋 = {𝑥1 < 𝑥2 <
· · · } ⊂ N, 𝑌 = {𝑦1 < 𝑦2 < · · · } ⊂ N we assume that

lim
𝑛→∞

log 𝑛

log 𝑥𝑛
= 0 (i.e. 𝑋 ∈ ℐ0) and lim

𝑛→∞
log 𝑛

log 𝑦𝑛
= 𝑞.

On the other hand we have.

Corollary 4.4. Let 0 < 𝑞 ≤ 1 and sets 𝑋 ∈ 𝒰(𝑐0(𝑥)), 𝑌 ∈ 𝒰(𝑥𝑞). Then

𝑋 ∪ 𝑌 ∈ 𝒰(𝑥𝑞).
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Proof. This is a direct corollary of Theorem 4.3 and (S10).

Theorem 4.5. Let 0 < 𝑞1 < 𝑞2 ≤ 1 and sets 𝑋 ∈ 𝒰(𝑥𝑞1), 𝑌 ∈ 𝒰(𝑥𝑞2). Then

lim
𝑛→∞

𝑋(𝑛)

𝑌 (𝑛)
= 0.

Proof. Let 0 < 𝑞1 < 𝑞2 ≤ 1, 𝑋 = {𝑥1 < 𝑥2 < · · · } ⊂ N, 𝑌 = {𝑦1 < 𝑦2 < · · · } ⊂ N.
Assume that 𝑋 ∈ 𝒰(𝑥𝑞1) and 𝑌 ∈ 𝒰(𝑥𝑞2). Then by (S7) for sufficiently large 𝑘 ∈ N
there exists 𝑛0 ∈ N such that for every 𝑛 ≥ 𝑛0 we have

𝑥𝑛 > 𝑛
1
𝑞1

− 1
𝑘 and 𝑦𝑛 < 𝑛

1
𝑞2

+ 1
𝑘 .

Therefore

0 ≤ 𝑋(𝑛)

𝑌 (𝑛)
<
𝑛

𝑞1𝑘
𝑞1+𝑘

𝑛
𝑞2𝑘

𝑞2+𝑘

= 𝑛
𝑞1𝑘

𝑞1+𝑘− 𝑞2𝑘
𝑞2+𝑘 ,

where the exponent for sufficiently large 𝑘 is negative, since 𝑞1𝑘
𝑞1+𝑘 −

𝑞2𝑘
𝑞2+𝑘 → 𝑞1− 𝑞2

as 𝑘 →∞. From this and previous estimation follows 𝑋(𝑛)
𝑌 (𝑛) → 0 as 𝑛→∞.

Note that the previous Theorem 4.5 holds even if for the sets 𝑋 = {𝑥1 < 𝑥2 <
· · · } ⊂ N, 𝑌 = {𝑦1 < 𝑦2 < · · · } ⊂ N we assume that

lim
𝑛→∞

log 𝑛

log 𝑥𝑛
= 𝑞1 and lim

𝑛→∞
log 𝑛

log 𝑦𝑛
= 𝑞2.

Corollary 4.6. Let 0 < 𝑞1 < 𝑞2 ≤ 1 and sets 𝑋 ∈ 𝒰(𝑥𝑞1), 𝑌 ∈ 𝒰(𝑥𝑞2). Then

𝑋 ∪ 𝑌 ∈ 𝒰(𝑥𝑞2).

Proof. This is a direct corollary of Theorem 4.5 and result (S10).
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Abstract
We investigate the Diophantine equation 𝑥2 +3𝑎 · 5𝑏 · 11𝑐 · 19𝑑 = 4𝑦𝑛 with

𝑛 ≥ 3, 𝑥, 𝑦, 𝑎, 𝑏, 𝑐, 𝑑 ∈ N, 𝑥, 𝑦 > 0, and gcd(𝑥, 𝑦) = 1.

Keywords: Diophantine equations, Lesbegue–Ramanujan–Nagell equations,
primitive divisors of Lucas numbers

AMS Subject Classification: 11D61, 11D72

1. Introduction

Let 𝐷 be a positive integer. The equation

𝑥2 +𝐷 = 4𝑦𝑛 (1.1)

is called a Lesbgue-Ramanujan-Nagell equation. It has been studied by several
authors. Luca, Tengely, and Togbé [7] studied (1.1) when 1 ≤ 𝐷 ≤ 100 and 𝐷 ̸≡ 1
(mod 4), 𝐷 = 7𝑎 · 11𝑏, or 𝐷 = 7𝑎 · 13𝑏, where 𝑎, 𝑏 ∈ N. Bhatter, Hoque, and
Sharma [1] studied (1.1) when 𝐷 = 192𝑘+1, where 𝑘 ∈ N. Chakraborty, Hoque,
and Sharma [4] studied (1.1) when 𝐷 = 𝑝𝑚, where 𝑝 ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}
and 𝑚 ∈ N. For a comprehensive survey of equation (1.1) and other Lebesgue-
Ramanunjan-Nagell type equations, see Le and Soydan [6] with over 350 references.
In this paper, we study (1.1) when 𝐷 = 3𝑎 ·5𝑏 ·11𝑐 ·19𝑑. It can be deduced from our
work all solutions to (1.1) when the set of prime divisors of 𝐷 is a proper subset
of {3, 5, 11, 19}. The main result is the following.
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Theorem 1.1. All integer solutions (𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦) to the equation

𝑥2 + 3𝑎 · 5𝑏 · 11𝑐 · 19𝑑 = 4𝑦𝑛

with

(i) 𝑛 ≥ 3, 𝑎, 𝑏, 𝑐, 𝑑 ≥ 0, 𝑥, 𝑦 > 0, gcd(𝑥, 𝑦) = 1,

(ii) (𝑎, 𝑏, 𝑐, 𝑑) ̸≡ (1, 1, 1, 1) (mod 2) if 5 | 𝑛,

are given in Tables 1, 4, 5, 7, and 8.

Our main tool is the so-called primitive divisor theorem of Lucas numbers by
Bilu, Hanrot, and Voutier [2].

2. Preliminaries

Let 𝛼 and 𝛽 be two algebraic integers such that 𝛼+𝛽 and 𝛼𝛽 are nonzero coprime
integers, and 𝛼

𝛽 is not a root of unity. The Lucas sequence (𝐿𝑛)𝑛≥1 is defined by

𝐿𝑛 =
𝛼𝑛 − 𝛽𝑛

𝛼− 𝛽 for all 𝑛 ≥ 1.

A prime number 𝑝 is called a primitive divisor of 𝐿𝑛 if

𝑝 | 𝐿𝑛 but 𝑝 ∤ (𝛼− 𝛽)2𝐿1 · · ·𝐿𝑛−1.

From the work of Bilu, Hanrot, and Voutier’s [2] we know

(i) if 𝑞 is a primitive divisor of 𝐿𝑛, then 𝑛 | 𝑞 −
(︁

(𝛼−𝛽)2

𝑞

)︁
,

(ii) if 𝑛 > 30, then 𝐿𝑛 has a primitive divisor,

(iii) for all 4 < 𝑛 ≤ 30, if 𝐿𝑛 does not have a primitive divisor, then (𝑛, 𝛼, 𝛽) can
be derived from Table 1 in [2].

3. Proof of Theorem 1.1

From
𝑥2 + 3𝑎 · 5𝑏 · 11𝑐 · 19𝑑 = 4𝑦𝑛 (3.1)

we have 2 ∤ 𝑥. Reducing (3.1) mod 4 gives 1 + (−1)𝑎+𝑐+𝑑 ≡ 0 (mod 4). Hence, 2 ∤
𝑎+𝑐+𝑑. Note that 𝑥, 𝑦 > 0, gcd(𝑥, 𝑦) = 1, and 𝑛 ≥ 3. Write 3𝑎 ·5𝑏 ·11𝑐 ·19𝑑 = 𝐴𝐵2,
where 𝐴,𝐵 ∈ Z+ and 𝐴 is square-free. Here 𝐴 ∈ {3, 11, 15, 19, 55, 95, 627, 3135}.
Let 𝐾 = Q(

√
−𝐴). Let ℎ(𝐾) and 𝒪𝐾 be the class number and the ring of integers

of 𝐾 respectively. Then ℎ(𝐾) ∈ {1, 2, 4, 8, 40} and 𝐾 = Z
[︁
1+

√
−𝐴

2

]︁
.
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Assume now that 𝑛 is an odd prime not dividing ℎ(𝐾). Then
(︂
𝑥+𝐵

√
−𝐴

2

)︂(︂
𝑥−𝐵

√
−𝐴

2

)︂
= (𝑦)𝑛. (3.2)

Since 𝑥 and 𝐴𝐵2 are odd, the two ideals
(︁

𝑥+𝐵
√
−𝐴

2

)︁
and

(︁
𝑥−𝐵

√
−𝐴

2

)︁
are coprime.

We also have 𝑛 ∤ ℎ(𝐴), so (3.2) implies that

𝑥+𝐵
√
−𝐴

2
= 𝑢𝛼𝑛, (3.3)

where 𝑢 is a unit in 𝒪𝐾 and 𝛼 ∈ 𝒪𝐾 . Since the order of the unit group of 𝒪𝐾

is a power of 2, it is coprime to 𝑛. Therefore, in (3.3) 𝑢 can be absorbed into 𝛼.
So we can assume 𝑢 = 1. Let 𝛼 = 𝑟+𝑠

√
−𝐴

2 and 𝛽 = 𝑟−𝑠
√
−𝐴

2 , where 𝑟, 𝑠 ∈ Z and
𝑟 ≡ 𝑠 (mod 2). We claim 𝑟 and 𝑠 are coprime odd integers. If 𝑟 and 𝑠 are even, let
𝑟1 = 𝑟

2 and 𝑠1 = 𝑠
2 . Then

𝑥 =
𝛼𝑛 + 𝛽𝑛

2
= 2

𝑛−1
2∑︁

𝑘=0

(︂
𝑛

2𝑘

)︂
𝑟𝑛−2𝑘
1 (−𝐴)𝑘𝑠2𝑘1 ,

impossible since 2 ∤ 𝑥. Therefore 𝑟 and 𝑠 are odd. Then

𝑥 =

𝑛−1
2∑︁

𝑘=0

(︂
𝑛

2𝑘

)︂
𝑟𝑛−2𝑘(−𝐴)𝑘𝑠2𝑘.

Let 𝑙 = gcd(𝑟, 𝑠). Then 𝑙 | 𝑥 and 𝑙 | 𝑟2+𝐴𝑠2

4 . Hence, 𝑙 | gcd(𝑥, 𝑦). Therefore 𝑙 = 1.
So gcd(𝑟, 𝑠) = 1. Let 𝑞 = gcd(𝑟,𝐴). Since |𝑦| = 𝑟2+𝐴𝑠2

4 , we have 𝑞 | 𝑦. Since
𝑥2 + 𝐴𝐵2 = 4𝑦𝑛, we have 𝑞 | 𝑥2. Since gcd(𝑥, 𝑦) = 1, we have 𝑞 = 1. Since
𝛼+ 𝛽 = 𝑟 and 𝛼𝛽 = 𝑟2+𝐴𝑠2

4 , we have 𝛼+ 𝛽 and 𝛼𝛽 are coprime integers.
The proof of Theorem 1.1 is now achieved by means of the following four lem-

mas. We only require the condition (𝑎, 𝑏, 𝑐, 𝑑) ̸≡ (1, 1, 1, 1) (mod 2) in the Lemma
3.5. So Lemmas 3.1, 3.2, 3.3, 3.4 give all solutions to (1.1) in each case of 𝑛 with
gcd(𝑥, 𝑦) = 1.

Lemma 3.1. All solutions (𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦) to (3.1) with 𝑛 = 3 are given in Ta-
ble 1.

Table 1. Solutions to (3.1) with 𝑛 = 3 and gcd(𝑥, 𝑦) = 1.

(𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦) (𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦)
(3, 1, 0, 0, 0, 1, 1) (3, 1, 0, 0, 0, 37, 7)
(3, 1, 0, 0, 2, 17, 7) (3, 1, 0, 0, 4, 719, 61)
(3, 7, 1, 0, 4, 19307, 766) (3, 7, 1, 2, 0, 15599, 394)
(3, 7, 1, 4, 2, 111946687, 146326) (3, 7, 3, 1, 2, 2043331, 10144)
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(3, 7, 3, 4, 0, 2073287, 10246) (3, 7, 3, 4, 2, 2495189, 12424)
(3, 3, 1, 0, 0, 11, 4) (3, 3, 1, 6, 0, 96433, 1336)
(3, 9, 1, 0, 2, 443531, 3664) (3, 3, 1, 2, 0, 7, 16)
(3, 3, 7, 14, 2, 380377270937, 47690296) (3, 3, 1, 2, 2, 5771, 214)
(3, 3, 9, 1, 2, 2, 397447, 3436) (3, 3, 1, 2, 2, 28267, 586)
(3, 3, 1, 2, 2, 154757, 1816) (3, 3, 7, 2, 2, 43847521, 78334)
(3, 3, 3, 0, 0, 2761, 124) (3, 3, 3, 0, 2, 1883, 106)
(3, 3, 3, 2, 0, 3107, 136) (3, 3, 3, 2, 2, 1271, 334)
(3, 3, 5, 0, 4, 271051, 2764) (3, 27, 5, 1, 1, 1291606603, 1184566)
(3, 3, 5, 10, 2, 10684962781, 3063094) (3, 4, 1, 0, 1, 9673, 286)
(3, 5, 1, 0, 0, 623, 46) (3, 5, 1, 0, 2, 781, 64)
(3, 11, 1, 1, 1, 74333, 1126) (3, 5, 1, 1, 1, 1824473, 9406)
(3, 5, 1, 2, 0, 101, 34) (3, 11, 1, 2, 0, 11877401, 32794)
(3, 5, 1, 2, 4, 873907, 5806) (3, 5, 7, 2, 4, 1169073209, 699154)
(3, 5, 1, 4, 0, 713, 166) (3, 11, 1, 4, 6, 1399486399, 862744)
(3, 5, 3, 0, 6, 778921, 7984) (3, 5, 3, 2, 2, 41803, 916)
(3, 5, 5, 6, 0, 8694731, 26794)

Proof. Write 𝑎 = 6𝑎1 + 𝜖1, 𝑏 = 6𝑏1 + 𝜖2, 𝑐 = 6𝑐1 + 𝜖3, and 𝑑 = 6𝑑1 + 𝜖4, where
𝑎1, 𝑏1, 𝑐1, 𝑑1 ∈ N and 𝜖1, 𝜖2, 𝜖3, 𝜖4 ∈ {0, 1, . . . , 5}. Let 𝐷1 = 3𝜖1 · 5𝜖2 · 11𝜖3 · 19𝜖4 .
From (3.1) we have

𝑌 2 = 𝑋3 − 16𝐷1, (3.4)

where 𝑋 = 4𝑦
32𝑎1 ·52𝑏1 ·112𝑐1 ·192𝑑1 and 𝑌 = 4𝑥

33𝑎1 ·53𝑏1 ·113𝑐1 ·193𝑑1 . Since 2 ∤ 𝑎+ 𝑐+ 𝑑, we
have 2 ∤ 𝜖1 + 𝜖3 + 𝜖4. We use Magma [3] to search for 𝑆-integral points on (3.4),
where 𝑆 = {3, 5, 11, 19}. Solutions to (3.1) deduced from these 𝑆-integral points
are listed in Table 1. We are able to find 𝑆- integral points on (3.4) for all but the
cases of (𝜖1, 𝜖2, 𝜖3, 𝜖4) listed in Table 2.

Table 2

(𝜖1, 𝜖2, 𝜖3, 𝜖4) (𝜖1, 𝜖2, 𝜖3, 𝜖4) (𝜖1, 𝜖2, 𝜖3, 𝜖4) (𝜖1, 𝜖2, 𝜖3, 𝜖4)
(0, 1, 5, 4) (0, 4, 5, 4) (1, 1, 5, 5) (1, 2, 1, 5)
(1, 2, 3, 5) (1, 2, 5, 3) (1, 2, 5, 5) (1, 3, 3, 5)
(1, 3, 5, 3) (1, 3, 5, 5) (1, 4, 1, 5) (1, 4, 3, 5)
(1, 4, 5, 1) (1, 4, 5, 5) (1, 5, 3, 3) (1, 5, 5, 3)
(1, 5, 5, 5) (3, 1, 5, 3) (3, 1, 5, 5) (3, 3, 1, 5)
(3, 3, 5, 3) (3, 4, 5, 3) (3, 5, 3, 5) (4, 1, 3, 4)
(4, 1, 5, 4) (4, 3, 5, 4) (4, 4, 4, 5) (4, 5, 1, 4)
(4, 5, 3, 4) (4, 5, 4, 5) (4, 5, 5, 2) (4, 5, 5, 4)
(5, 0, 3, 5) (5, 0, 5, 5)

We will show that (3.1) has no solutions for these cases of (𝜖1, 𝜖2, 𝜖3, 𝜖4). Since
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3 ∤ ℎ(𝐾), there exist coprime odd integers 𝑟, 𝑠 such that

𝑥+𝐵
√
−𝐴

2
=

(︂
𝑟 + 𝑠

√
−𝐴

2

)︂3

.

Comparing the imaginary parts gives

4𝐵 = 𝑠(3𝑟2 −𝐴𝑠2). (3.5)

Notice that 𝐵 = 33𝑎1+𝑢1 · 53𝑏1+𝑢2 · 113𝑐1+𝑢3 · 193𝑑1+𝑢4 , where 𝑢𝑖 = ⌊ 𝜖𝑖2 ⌋ for 𝑖 =
1, 2, 3, 4. Hence,

4 · 33𝑎1+𝑢1 · 53𝑏1+𝑢2 · 113𝑐1+𝑢3 · 193𝑑1+𝑢4 = 𝑠(3𝑟2 −𝐴𝑠2). (3.6)

Case 1: 𝐴 = 11. Then (𝜖1, 𝜖2, 𝜖3, 𝜖4) = (0, 4, 5, 4). Hence, (3.6) reduces to

4 · 33𝑎1 · 53𝑏1+2 · 113𝑐1+2 · 193𝑑1+2 = 𝑠(3𝑟2 − 11𝑠2). (3.7)

If 11 | 𝑟, then 11 ∤ 𝑠. Hence, 112 ∤ 𝑠(3𝑟2−11𝑠2). Thus, (3.7) is impossible. So 11 ∤ 𝑟.
Hence, 113𝑐1+2 | 𝑠. Since

(︀
3·11
5

)︀
= −1 and gcd(𝑟, 𝑠) = 1, we have 5 ∤ 3𝑟2 − 11𝑠2.

Hence, 53𝑏1+2 | 𝑠. Since
(︀
3·11
19

)︀
= −1, we have 19 ∤ 3𝑟2−11𝑠2. Therefore 193𝑑1+2 | 𝑠.

Case 1.1: 𝑎1 > 0. Reducing (3.7) mod 3 gives 3 | 𝑠. Hence, 33𝑎1 | 𝑠. Since
2 ∤ 𝑠, we have 𝑠 = 33𝑎1−1 · 53𝑏1+2 · 113𝑐1+2 · 193𝑑1+2 · 𝑠1, where 𝑠1 ∈ {±1}. Then
(3.7) reduces to

4 = 𝑠1(𝑟
2 − 36𝑎1−3 · 56𝑏1+4 · 116𝑐1+5 · 196𝑑1+4). (3.8)

Since 𝑎1 > 0, we have 6𝑎1−3 > 0. Reducing (3.8) mod 3 shows 𝑠1 = 1. Then (3.8)
reduces to

4 = 𝑟2 − 36𝑎1−3 · 56𝑏1+4 · 116𝑐1+5 · 196𝑑1+4. (3.9)

Reducing mod 7 shows
4 ≡ 𝑟2 − 6 (mod 7),

impossible mod 7 since
(︀
10
7

)︀
= −1.

Case 1.2: 𝑎1 = 0. Since 2 ∤ 𝑠, we have 𝑠 = ±53𝑏1+2 · 113𝑐1+2 · 193𝑑1+2. Then
(3.7) reduces to

4 = ±(3𝑟2 − 11𝑠2),

impossible mod 5 since 5 | 𝑠, 5 ∤ 𝑟, and
(︀±3

5

)︀
= −1.

Case 2: 𝐴 = 19. Then (𝜖1, 𝜖2, 𝜖3, 𝜖4) = (4, 4, 4, 5). Hence, (3.6) reduces to

4 · 33𝑎1+2 · 53𝑏1+2 · 113𝑐1+2 · 193𝑑1+2 = 𝑠(3𝑟2 − 19𝑠2). (3.10)

If 19 | 𝑟, then 19 ∤ 𝑠. Hence, 192 ∤ 𝑠(3𝑟2 − 19𝑠2), so (3.8) is impossible mod
192. Therefore 19 ∤ 𝑟. Hence, 193𝑑1+2 | 𝑠. Since

(︀
3·19
5

)︀
=
(︀
3·19
11

)︀
= −1, we have

5 ∤ 3𝑟2−19𝑠2 and 11 ∤ 3𝑟2−19𝑠2. Hence, 53𝑏1+2 ·113𝑐1+2 | 𝑠. Reducing (3.8) mod 3
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shows that 3 | 𝑠. Hence, 33𝑎1+1 | 𝑠. Therefore 𝑠 = 33𝑎1+1·53𝑏1+2·113𝑐1+2·193𝑑1+2·𝑠1,
where 𝑠1 ∈ {±1}. Then (3.10) reduces to

4 = 𝑠1(𝑟
2 − 36𝑎1+1 · 56𝑏1+2 · 116𝑐1+4 · 196𝑑1+5 · 𝑠21). (3.11)

Reducing (3.11) mod 3 shows 𝑠1 ≡ 1 (mod 3). Hence, 𝑠1 = 1. Then

4 = 𝑟2 − 36𝑎1+1 · 56𝑏1+2 · 116𝑐1+4 · 196𝑑1+5. (3.12)

Write (3.12) as
4 = 𝑌 2 − 3 · 52 · 11 · 192 ·𝑋3, (3.13)

where 𝑌 = 𝑟 and 𝑋 = 32𝑎1 · 52𝑏1+1 · 112𝑐1+1 · 192𝑑1+1.
Magma [3] shows (3.13) only has integer solutions (𝑋,𝑌 ) = (0,±2). Hence,

(3.12) has no solutions.
Case 3: 𝐴 = 55. Then (𝜖1, 𝜖2, 𝜖3, 𝜖4) = (0, 1, 5, 4), (4, 1, 3, 4), (4, 5, 3, 4),

(4, 5, 5, 2), (4, 5, 5, 4). Equation (3.6) reduces to

4 · 33𝑎1+𝑢1 · 53𝑏1+𝑢2 · 113𝑐1+𝑢3 · 193𝑑1+𝑢4 = 𝑠(3𝑟2 − 55𝑠2). (3.14)

Since
(︀
3·55
19

)︀
= −1, we have 19 ∤ 3𝑟2 − 55𝑠2.

Case 3.1: (𝜖1, 𝜖2, 𝜖3, 𝜖4) = (0, 1, 5, 4). Equation (3.14) reduces to

4 · ·53𝑏1 · 113𝑐1+2 · 193𝑑1+2 = 𝑠(3𝑟2 − 55𝑠2). (3.15)

Since 3𝑏1 = 0 or 3𝑏1 ≥ 3, from (3.15) have 53𝑏1 | 𝑠. From (3.15) we also have
113𝑐1+2 | 𝑠. Therefore 𝑠 = 53𝑏1 · 113𝑐1+2 · 193𝑑1+2𝑠1, where 𝑠1 ∈ {±1}. Equation
(3.15) reduces to

4 = ±3𝑟2 − 55𝑠2,

impossible mod 5 since 5 ∤ 𝑟 and
(︀±3

5

)︀
= −1.

Case 3.2: 3𝑎1 + 𝑢1 > 0.
Case 3.2.1: (𝜖1, 𝜖2, 𝜖3, 𝜖4) = (4, 1, 3, 4). Then (3.14) reduces to

4 · 33𝑎1+2 · 53𝑏1 · 113𝑐1+1 · 193𝑑1+2 = 𝑠(3𝑟2 − 55𝑠2). (3.16)

Reducing (3.16) mod 3 gives 3 | 𝑠. Hence, 33𝑎1+1 | 𝑠. If 5 | 𝑟, then 5 ∤ 𝑠. Hence,
52 ∤ 𝑠(3𝑟2 − 55𝑠2). Therefore, (3.16) is impossible mod 53𝑏1 . Hence, 5 ∤ 𝑟. Thus
53𝑏1 | 𝑠.
∙ 11 ∤ 𝑠. Then 11 | 𝑟. Hence, 112 ∤ 𝑠(3𝑟2 − 55𝑠2). From (3.16) we have

3𝑐1 + 1 = 1. Let 𝑠 = 33𝑎1+1 · 53𝑏1 · 193𝑑1+𝑢4𝑠1, where 𝑠1 ∈ Z and 𝑟 = 11𝑟1, where
𝑟1 ∈ Z. Then (3.16) reduces to

4 = 𝑠2(11𝑟
2
1 − 36𝑎1+2 · 56𝑏1+1 · 196𝑑1+4 · 𝑠21). (3.17)

Reducing (3.17) mod 3 shows that 𝑠1 ≡ −1 (mod 3). Hence, 𝑠1 = −1. Then (3.17)
reduces to

4 = 36𝑎1+2 · 56𝑏1+1 · 196𝑑1+4 − 11𝑟22,
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impossible mod 19 since
(︀−11

19

)︀
= −1.

∙ 11 | 𝑠. Then 113𝑐1+1 | 𝑠. Let 𝑠 = 33𝑎1+2 · 53𝑏1 · 113𝑐1+1 · 193𝑑1+2 · 𝑠1, where
𝑠1 ∈ {±1}. Then (3.16) reduces to

4 = 𝑠1(𝑟
2 − 36𝑎1+3 · 56𝑏1+1 · 116𝑐1+1 · 196𝑑1+4 · 𝑠21). (3.18)

Reducing (3.18) mod 3 gives 𝑠1 ≡ 1 (mod 3). Hence, 𝑠1 = 1. Then (3.18) reduces
to

4 = 𝑟2 − 36𝑎1+3 · 56𝑏1+1 · 116𝑐1+1 · 196𝑑1+4. (3.19)

Reducing mod 13 shows
4 ≡ 𝑟2 − 1 (mod 13)

impossible since
(︀

5
13

)︀
= −1.

Case 3.3.2: (𝜖1, 𝜖2, 𝜖3, 𝜖4) = (4, 5, 3, 4), (4, 5, 5, 2), (4, 5, 5, 4). Then (3.16)
reduces to

4 · 33𝑎1+2 · 53𝑏1+2 · 113𝑐1+𝑢3 · 193𝑑1+𝑢4 = 𝑠(3𝑟2 − 55𝑠2). (3.20)

Then 33𝑎1+1 · 53𝑏1+2 · 193𝑑1+𝑢4 | 𝑠.
∙ 11 | 𝑠. Then 113𝑐1+𝑢3 | 𝑠. Hence, 𝑠 = 33𝑎1+1 · 53𝑏1+2 · 113𝑐1+𝑢3 · 193𝑑1+𝑢4 · 𝑠1,

where 𝑠1 ∈ Z. Then (3.20) reduces to

4 = 𝑠1(𝑟
2 − 36𝑎1+1 · 56𝑏1+4 · 116𝑐1+2𝑢3+1 · 196𝑑1+2𝑢4 · 𝑠21). (3.21)

Reducing (3.21) mod 3 gives 𝑠1 ≡ 1 (mod 3). Hence, 𝑠1 = 1. Then

4 = 𝑟2 − 36𝑎1+1 · 56𝑏1+4 · 116𝑐1+𝜖3 · 196𝑑1+𝜖4). (3.22)

Write (3.22) as a cubic

𝑌 2 = 4 + 3 · 5 · 11𝑣1 · 19𝑣2 ·𝑋3, (3.23)

where 𝑌 = 𝑟, 𝑋 only has prime divisors 5, 11, 19, and (𝑣1, 𝑣2) = (0, 1), (2, 2), (2, 1).
Equation (3.23) only has integer solutions (𝑋,𝑌 ) = (0,±2), (1, 17) as

22 = 4 + 3 · 5 · 11𝑣1 · 19𝑣2 · 03,
172 = 4 + 3 · 5 · 19 · 12.

None of these solutions gives solutions to (3.22).
∙ 11 ∤ 𝑠. Reducing (3.20) mod 11 shows 11 | 𝑟. Since 112 ∤ 𝑠(3𝑟2 − 55𝑠2), in

(3.20) we must have 3𝑐1 + 𝑢3 = 1. Hence, (𝜖1, 𝜖2, 𝜖3) = (4, 5, 3, 4). Then (3.16)
reduces to

4 · 33𝑎1+2 · 53𝑏1+2 · 11 · 193𝑑1+2 = 𝑠(3𝑟2 − 55𝑠2). (3.24)

Let 𝑠 = 33𝑎1+1 · 53𝑏1+2 · 193𝑑1+2 · 𝑠1 and 𝑟 = 11𝑟1, where 𝑠1, 𝑟1 ∈ Z. Then (3.24)
reduces to

4 = 𝑠2(11𝑟
2
1 − 36𝑎1+1 · 56𝑏1+4 · 196𝑑1+4 · 𝑠22). (3.25)
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Reducing (3.25) mod 3 shows 𝑠2 ≡ −1 (mod 3). Hence, 𝑠2 = −1. Therefore

4 = 36𝑎1+1 · 56𝑏1+4 · 196𝑑1+4 · 𝑠22 − 11𝑟21,

impossible mod 19 since
(︀−11

19

)︀
= −1.

Case 4: 𝐴 = 95. Then (𝜖1, 𝜖2, 𝜖3, 𝜖4) = (4, 5, 4, 5). Then (3.16) reduces to

4 · 33𝑎1+2 · 53𝑏1+2 · 113𝑐1+2 · 193𝑑1+2 = 𝑠(3𝑟2 − 95𝑠2). (3.26)

Then 33𝑎1+1 | 𝑠, 53𝑏1+2 | 𝑠, 193𝑑1+2 | 𝑠. Since
(︀
3·93
11

)︀
= −1, (3.26) implies 113𝑐1+2 |

𝑠. Let 𝑠 = 33𝑎1+1 ·53𝑏1+2 ·113𝑐1+2 ·193𝑑1+2 ·𝑠1, where 𝑠1 = ±1. Then (3.26) reduces
to

4 = 𝑠1(𝑟
2 − 36𝑎1+1 · 56𝑏1+5 · 116𝑐1+4 · 196𝑑1+5 · 𝑠21).

Reducing mid 3 shows 𝑠1 ≡ 1 (mod 3). Hence, 𝑠1 = 1. Then

4 = 𝑟2 − 36𝑎1+1 · 56𝑏1+5 · 116𝑐1+4 · 196𝑑1+5. (3.27)

Write (3.27) as a cubic curve

𝑌 2 = 4 + 3 · 52 · 11 · 192 ·𝑋3, (3.28)

where 𝑌 = 𝑟 and 𝑋 = 32𝑎1 · 52𝑏1+1 · 112𝑐1+1 · 192𝑑1+1. Magma shows that equation
(3.28) only has integer solutions (𝑋,𝑌 ) = (0,±2). Hence, (3.27) has no solutions.

Case 5: 𝐴 = 3 · 11 · 19. Then (𝜖1, 𝜖2, 𝜖3, 𝜖4) = (1, 2, 1, 5), (1, 2, 3, 5), (1, 2, 5, 3),
(1, 2, 5, 5), (1, 4, 1, 5), (1, 4, 3, 5), (1, 4, 5, 1), (1, 4, 5, 5), (3, 4, 5, 3), (5, 0, 3, 5),
(5, 0, 5, 5). Then (3.16) reduces to

4 · 33𝑎1+𝑢1−1 · 53𝑏1+𝑢2 · 113𝑐1+𝑢3 · 193𝑑1+𝑢4 = 𝑠(𝑟2 − 209𝑠2). (3.29)

Since 𝑟 and 𝑠 is odd, we have 8 | 𝑟2−209𝑠2. Therefore equation (3.29) is impossible
mod 8.

Case 6: 𝐴 = 3 ·5 ·11 ·19. Then (𝜖1, 𝜖2, 𝜖3, 𝜖4) = (1, 1, 1, 5), (1, 3, 3, 5), (1, 3, 5, 3),
(1, 3, 5, 5), (1, 5, 3, 3), (1, 5, 5, 3), (1, 5, 5, 5), (3, 1, 5, 3), (3, 1, 5, 5), (3, 3, 1, 5),
(3, 3, 5, 3), (3, 5, 3, 5). Hence, (3.16) reduces to

4 · 33𝑎1+𝑢1−1 · 53𝑏1+𝑢2 · 113𝑐1+𝑢3 · 193𝑑1+𝑢4 = 𝑠(𝑟2 − 5 · 11 · 19 · 𝑠2). (3.30)

Notice that 𝑠 can only have prime factors 3, 5, 11, 19. Dividing both sides of (3.30)
by 𝑠3 gives a quartic equation of the form

𝑌 2 = 5 · 11 · 19 + 4 · 3𝛾1 · 5𝑢2 · 11𝑢3 · 19𝑢4 ·𝑋3, (3.31)

where 𝑌 = 𝑟
𝑠 , 𝑋 can only have prime factors 3, 5, 11, 19, and 𝛾1 = 𝑢1 if 𝑢1 ≥ 1,

𝛾1 = 2 if 𝑢1 = 0. We use Magma to search for 𝑆-integral points on (3.31), where
𝑆 = {3, 5, 11, 19}. The result is given in Table 4, where UD means Magma is not
able to find 𝑆-integral points.
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Table 3. Solutions to (3.31).

(𝜖1, 𝜖2, 𝜖3, 𝜖4) (𝛾1, 𝑢2, 𝑢3, 𝑢4) (𝑋,𝑌 )
(1, 1, 1, 5) (2, 0, 0, 2) ∅
(1, 3, 3, 5) (2, 1, 1, 2) ∅
(1, 3, 5, 3) (2, 1, 2, 1) ∅
(1, 3, 5, 5) (2, 1, 2, 2) UD
(1, 5, 3, 3) (2, 2, 1, 1) ∅
(1, 5, 5, 3) (2, 2, 2, 1) UD
(1, 5, 5, 5) (2, 2, 2, 2) UD
(3, 1, 5, 3) (0, 0, 2, 1) ∅
(3, 1, 5, 5) (0, 0, 2, 2) ∅
(3, 3, 1, 5) (0, 1, 0, 2) ∅
(3, 3, 5, 3) (0, 1, 2, 1) ∅
(3, 5, 3, 5) (0, 2, 1, 2) UD

Case 6.1: (𝜖1, 𝜖2, 𝜖3, 𝜖4) = (3, 5, 3, 5). Equation (3.16) reduces to

4 · 33𝑎1 · 53𝑏1+2 · 113𝑐1+1 · 193𝑑1+2 = 𝑠(𝑟2 − 5 · 11 · 19 · 𝑠2). (3.32)

Case 6.1.1: 11 | 𝑟. Then 3𝑐1+1 = 1. Let 𝑟 = 11𝑟1 and 𝑠 = 53𝑏1+2 ·193𝑑1+2 ·𝑠1,
where 𝑟1, 𝑠1 ∈ Z. Then (3.32) reduces to

4 · 33𝑎1 = 𝑠1(11𝑟
2
1 − 56𝑏1+5 · 196𝑑1+5 · 𝑠21). (3.33)

∙ 𝑠1 = 1. Then (3.33) reduces to

4 · 33𝑎1 = 11𝑟21 − 56𝑏1+5 · 196𝑑1+5.

Since
(︀

3
19

)︀
= −1 and

(︀
11
19

)︀
= 1, we have 2 | 3𝑎1. Let 𝑎1 = 2𝑎2, where 𝑎2 ∈ N. Then

4 · 36𝑎1 = 11𝑟21 − 56𝑏1+5 · 196𝑑1+5.

Reducing mod 7 gives
4 ≡ 4𝑟21 − 2 (mod 7),

impossible mod 7 since
(︀
6
7

)︀
= −1.

∙ 𝑠1 = −1. Then (3.33) reduces to

4 · 33𝑎1 = 11𝑟21 − 56𝑏1+5 · 196𝑑1+5.

Since
(︀

3
19

)︀
=
(︀−11

19

)︀
= −1, we have 3 ∤ 𝑎1. Hence, 𝑎1 = 2𝑎2 + 1, where 𝑎2 ∈ N.

Then

4 · 36𝑎1+3 = 11𝑟21 − 56𝑏1+5 · 196𝑑1+5.

Reducing mod 7 gives
3 ≡ 4𝑟21 − 2 (mod 7),
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impossible mod 7 since
(︀
5
7

)︀
= −1.

Case 6.1.2: 11 | 𝑠. Then 113𝑐1+1 | 𝑠. Let 𝑠 = 53𝑏1+2 · 113𝑐1+1 · 193𝑑1+2 · 𝑠1,
where 𝑠1 ∈ Z. Then (3.33) reduces to

4 · 33𝑎1 = 𝑠1(𝑟
2 − 56𝑏1+5 · 116𝑐1+3 · 196𝑑1+5 · 𝑠21). (3.34)

∙ 3 ∤ 𝑠1. Since 11 ∤ 𝑟 and
(︀

3
11

)︀
= 1, from (3.34) we have

(︁ 𝑠1
11

)︁
=

(︂
𝑠1𝑟

2

11

)︂
=

(︂
4 · 33𝑎1

11

)︂
= 1.

Since 𝑠1 ∈ {−1, 1}, we have 𝑠1 = 1. Then (3.34) reduces to

4 · 33𝑎1 = 𝑟2 − 56𝑏1+5 · 116𝑐1+3 · 196𝑑1+5.

Hence,
(︁

4·33𝑎1

19

)︁
= 1. Since

(︀−3
19

)︀
= −1, we have 2 | 𝑎1. Let 𝑎1 = 2𝑎2, where

𝑎2 ∈ N. Then
4 · 36𝑎2 = 𝑟2 − 56𝑏1+5 · 116𝑐1+3 · 196𝑑1+5.

Reducing mod 7 gives
4 ≡ 𝑟2 − 2 (mod 7),

impossible since
(︀
6
7

)︀
= −1.

Case 6.2: (𝜖1, 𝜖2, 𝜖3, 𝜖4) = (1, 3, 5, 5). Then (3.33) reduces to

4 · 33𝑎1−1 · 53𝑏1+1 · 113𝑑1+2 · 193𝑑1+2 = 𝑠(𝑟2 − 5 · 11 · 19 · 𝑠2). (3.35)

Case 6.2.1: 5 | 𝑟. Since 52 ∤ 𝑠(𝑟2 − 5 · 11 · 19 · 𝑠2), we have 3𝑏1 + 1 = 1. Let
𝑟 = 5𝑟1 and 𝑠 = 113𝑐1+2 · 193𝑑1+2 · 𝑠1, where 𝑟1, 𝑠1 ∈ Z. Then (3.35) reduces to

4 · 33𝑎1−1 = 𝑠1(5𝑟
2
1 − 116𝑐1+5 · 196𝑑1+5 · 𝑠21). (3.36)

Notice that
(︀

3
11

)︀
=
(︀

5
11

)︀
= 1. Hence, (3.36) gives

(︀
𝑠1
11

)︀
= 1.

∙ 3 ∤ 𝑠1. Since
(︀−1
11

)︀
= −1, we have 𝑠1 = 1. Then (3.36) reduces to

4 · 33𝑎1−1 = 5𝑟21 − 116𝑐1+5 · 196𝑑1+5.

Hence, (︂
4 · 33𝑎1−1

19

)︂
=

(︂
5𝑟21
19

)︂
= 1.

Since
(︀

3
19

)︀
= −1, we have 2 | 3𝑎1 − 1. Hence„ 2 ∤ 𝑎1. Let 𝑎1 = 2𝑎2 + 1, where

𝑎2 ∈ N. Then
4 · 36𝑎2+2 = 5𝑟21 − 116𝑐1+5 · 196𝑑1+5.

Reducing mod 5 gives 4(−1)3𝑎2+1 ≡ 1 (mod 5). Hence, 2 | 𝑎2. Let 𝑎2 = 2𝑎3, where
𝑎3 ∈ N. Then

4 · 312𝑎3+2 = 5𝑟21 − 116𝑐1+5 · 196𝑑1+5. (3.37)
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Let 𝑐1 = 2𝑐2 + 𝑖1 and 𝑑1 = 2𝑑2 + 𝑖2 where 𝑖1, 𝑖2 ∈ {0, 1}. From (3.37) we have

𝑌 2 = 𝑋(𝑋2 + 53 · 64 · 115+6𝑖1 · 195+6𝑖2), (3.38)

where 𝑋 = 20·36𝑎1+2

116𝑐2 ·196𝑑2 , 𝑌 = 100·33𝑎1+2·𝑟1
1112𝑐2 ·1912𝑑2 . Magma [3] shows that the only {11, 19}-

integral point on (3.38) is (0, 0). Hence, (3.37) has no solutions.
∙ 3 | 𝑠1. Since

(︀
𝑠1
11

)︀
= 1, we have 𝑠1 = 33𝑎1−1, then (3.36) reduces to

4 = 5𝑟21 − 36𝑎1−2 · 116𝑐1+5 · 196𝑑1+5,

impossible mod 3 since
(︀
5
3

)︀
= −1.

Case 6.2.2: 5 | 𝑠. Then 𝑠 = 53𝑏1+1 · 113𝑐1+2 · 193𝑑1+2 · 𝑠1, where 𝑠1 ∈ Z. Then
(3.35) reduces to

4 · 33𝑎1−1 = 𝑠1(𝑟
2 − 56𝑏1+3 · 116𝑐1+5 · 196𝑑1+5 · 𝑠21). (3.39)

∙ 3 ∤ 𝑠1. If 𝑠1 = 1, then (3.39) reduces to

4 · 33𝑎1−1 = 𝑟2 − 56𝑏1+3 · 116𝑐1+5 · 196𝑑1+5. (3.40)

Hence,
(︁

4·33𝑎1−1

19

)︁
=
(︁

𝑟2

19

)︁
= 1. Since

(︀
3
19

)︀
= −1, we have 2 | 3𝑎1 − 1. Let

𝑎1 = 2𝑎2 + 1, where 𝑎2 ∈ N. Then (3.40) reduces to

4 · 36𝑎2+2 = 𝑟2 − 56𝑏1+3 · 116𝑐1+5 · 196𝑑1+5.

Reducing mod 13 gives
10 ≡ 𝑟2 − 8 (mod 13),

impossible since
(︀
18
13

)︀
= −1.

If 𝑠1 = −1, then (3.39) reduces to

4 · 33𝑎1−1 = 56𝑏1+3 · 116𝑐1+5 · 196𝑑1+5 − 𝑟2. (3.41)

Hence,
(︁

4·33𝑎1−1

19

)︁
=
(︀−1
19

)︀
= −1. Since

(︀
3
19

)︀
= −1, we have 2 ∤ 3𝑎1 − 1. Let

𝑎1 = 2𝑎2, where 𝑎2 ∈ N. Then (3.41) reduces to

4 · 36𝑎1−1 = 56𝑏1+3 · 116𝑐1+5 · 196𝑑1+5 − 𝑟2,

impossible mod 5 since
(︀−3

5

)︀
= −1.

∙ 3 | 𝑠1. Then 𝑠1 = 33𝑎1−1 · 𝑠2, where 𝑠2 ∈ Z. Hence, (3.39) reduces to

4 = 𝑠2(𝑟
2 − 36𝑎1−2 · 56𝑏1+3 · 116𝑐1+5 · 196𝑑1+5 · 𝑠22).

Hence, 𝑠2𝑟2 ≡ 4 (mod 19). Therefore
(︀
𝑠2
19

)︀
= 1. Thus, 𝑠2 = 1. Then

4 = 𝑟2 − 36𝑎1−2 · 56𝑏1+3 · 116𝑐1+5 · 196𝑑1+5.

Reducing mod 13 gives
4 ≡ 𝑟2 − 11 (mod 13),
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impossible since
(︀
15
13

)︀
= −1.

Case 6.3: (𝜖1, 𝜖2, 𝜖3, 𝜖4) = (1, 5, 5, 3). Then (3.33) reduces to

4 · 33𝑎1−1 · 53𝑏1+2 · 113𝑐1+2 · 193𝑑1+1 = 𝑠(𝑟2 − 5 · 11 · 19 · 𝑠2). (3.42)

Case 6.3.1: 19 | 𝑟. Then 19 ∤ 𝑠. Thus, 192 ∤ 𝑠(𝑟2 − 5 · 11 · 19 · 𝑠2). Thus, in
(3.42), we must have 𝑑1 = 0. So (3.42) reduces to

4 · 33𝑎1−1 = 𝑠1(19𝑟
2
1 − 56𝑏1+5 · 116𝑐1+5). (3.43)

Since
(︀

3
11

)︀
= 1 and

(︀
19
11

)︀
= −1, we have from (3.43) that

(︀
𝑠1
11

)︀
= −1.

∙ 3 ∤ 𝑠1. Then 𝑠1 ∈ {±1}. Since
(︀
𝑠1
11

)︀
= −1, we have 𝑠1 = −1. Therefore (3.43)

reduces to
4 · 33𝑎1−1 = 56𝑏1+5 · 116𝑐1+5 − 19 · 𝑟21. (3.44)

Thus,
(︁

4·33𝑎1−1

19

)︁
=
(︀
5·11
19

)︀
= 1. Since

(︀
3
19

)︀
= −1, we have 2 | 3𝑎1 − 1. Thus,

𝑎1 = 2𝑎2 + 1, where 𝑎2 ∈ N. Then (3.44) reduces to

4 · 36𝑎1+2 = 56𝑏1+5 · 116𝑐1+5 − 19 · 𝑟21.

Reducing mod 13 gives
10 ≡ 9− 6 · 𝑟21 (mod 13),

impossible since
(︀−6
13

)︀
= −1

∙ 3 | 𝑠1. Then 𝑠1 ∈ {±33𝑎1+1}. Since
(︀
𝑠1
11

)︀
= −1, we have 𝑠1 = −33𝑎1+1.

Therefore (3.42) reduces to

4 = 36𝑎1−2 · 56𝑏1+5 · 116𝑐1+5 − 19 · 𝑟21,

impossible mod 3 since
(︀−19

3

)︀
= −1.

Case 6.3.2: 19 | 𝑠. Then 𝑠 = 53𝑏1+2 · 113𝑏1+2 · 193𝑑1+1 · 𝑠1, where 𝑠1 ∈ Z. Then
(3.42) reduces to

4 · 33𝑎1−1 = 𝑠1(𝑟
2 − 56𝑏1+5 · 116𝑐1+5 · 196𝑑1+5 · 𝑠21). (3.45)

Since
(︀

3
11

)︀
= 1, we have

(︀
𝑠1
11

)︀
= 1.

∙ 3 ∤ 𝑠1. Then 𝑠1 = 1. Hence, (3.45) reduces to

4 · 33𝑎1−1 = 𝑟2 − 56𝑏1+5 · 116𝑐1+5 · 196𝑑1+5.

Since
(︀

3
19

)︀
= −1, we have 2 | 3𝑎1 − 1. Let 𝑎1 = 2𝑎2 + 1, where 𝑎2 ∈ N. Then

4 · 36𝑎2+2 = 𝑟2 − 56𝑏1+5 · 116𝑐1+5 · 196𝑑1+5.

Reducing mod 7 gives
1 ≡ 𝑟2 − 4 (mod 7),

impossible mod 7 since
(︀
5
7

)︀
= −1.

∙ 3 | 𝑠1. Then 𝑠1 = 33𝑎1−1. Hence, (3.45) reduces to
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4 = 𝑟2 − 36𝑎1−2 · 56𝑏1+5 · 116𝑐1+5 · 196𝑑1+5.

Reducing mod 7 gives
4 ≡ 𝑟2 − 2 (mod 7),

impossible since
(︀
6
7

)︀
= −1

Case 6.4: (𝜖1, 𝜖2, 𝜖3, 𝜖4) = (1, 5, 5, 5). Then (3.33) reduces to

4 · 33𝑎1−1 · 53𝑏1+2 · 113𝑐1+2 · 193𝑑1+2 = 𝑠(𝑟2 − 5 · 11 · 19 · 𝑠2). (3.46)

Thus, 𝑠 = 53𝑏1+2 · 113𝑐1+2 · 193𝑑1+2 · 𝑠1, where 𝑠1 ∈ Z. Therefore

4 · 33𝑎1−1 = 𝑠1(𝑟
2 − 56𝑏1+5 · 116𝑐1+5 · 196𝑑1+5 · 𝑠21). (3.47)

Since
(︀

3
11

)︀
= 1, we have

(︀
𝑠1
11

)︀
= 1. Notice that

(︀−1
11

)︀
= −1.

∙ 3 ∤ 𝑠1. Then 𝑠1 = 1. Hence, (3.47) reduces to

4 · 33𝑎1−1 = 𝑟2 − 56𝑏1+5 · 116𝑐1+5 · 196𝑑1+5.

Reducing mod 7 gives

(−1)1+𝑎1 ≡ 𝑟2 − 4 (mod 7),

impossible since
(︀
4±1
7

)︀
= −1.

∙ 3 | 𝑠1. Then 𝑠1 = 33𝑎1−1. Hence, (3.47) reduces to

4 = 𝑟2 − 36𝑎1−2 · 56𝑏1+5 · 116𝑐1+5 · 196𝑑1+5.

Reducing mod 7 gives
4 ≡ 𝑟2 − 2 (mod 7),

impossible since
(︀
6
7

)︀
= −1.

Lemma 3.2. All solutions (𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦) with 3 | 𝑛 and 𝑛 > 3 to (3.1) are given
in Table 4.

Table 4. Solutions to (3.1) with 3 | 𝑛, 𝑛 > 3, and gcd(𝑥, 𝑦) = 1.

(𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦)
(𝑛, 1, 0, 0, 0, 1, 1)
(6, 3, 1, 0, 0, 11, 2)
(6, 3, 1, 2, 0, 7, 4)
(12, 3, 1, 2, 0, 7, 2)
(6, 5, 1, 0, 2, 781, 8)
(9, 5, 1, 0, 2, 781, 4)
(18, 5, 1, 0, 2, 781, 2)

The Diophantine equation x2 + 3a · 5b · 11c · 19d = 4yn 133



Proof. Let 𝑛 = 3𝑘, where 𝑘 ∈ Z+ and 𝑘 > 1. Let 𝑦1 = 𝑦𝑘. Then (3.1) reduces to

𝑥2 + 3𝑎 · 5𝑏 · 11𝑐 · 19𝑑 = 4𝑦31 . (3.48)

We apply Lemma 3.1 to equation (3.48). Notice that solutions in Table 2 are
deduced from solutions in Table 1. For example, solution

(𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦) = (3, 3, 1, 0, 0, 11, 4)

from Table 1 gives us a solution

(𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦) = (6, 3, 1, 0, 0, 11, 2)

in Table 2.

Lemma 3.3. All solutions (𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦) to (3.1) with 𝑛 = 4 are list in Table 5.

Table 5. Solutions to (3.1) with 𝑛 = 4.

(𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦) (𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦) (𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦) (𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦)
(4, 4, 0, 0, 1, 31, 5) (4, 4, 8, 3, 0, 141407, 353) (4, 0, 1, 1, 0, 3, 2) (4, 0, 5, 1, 0, 1557, 28)
(4, 4, 1, 2, 1, 947, 26) (4, 0, 1, 2, 1, 1147, 24) (4, 0, 1, 3, 2, 237, 28) (4, 0, 1, 1, 0, 7, 3)
(4, 8, 3, 4, 1, 270973, 524) (4, 0, 3, 0, 1, 53, 6) (4, 0, 3, 1, 2, 1923, 32) (4, 1, 0, 0, 0, 1, 1)
(4, 5, 0, 4, 0, 7199, 61) (4, 1, 4, 1, 1, 195937, 313) (4, 1, 0, 2, 2, 65521, 181) (4, 1, 1, 0, 0, 7, 2)
(4, 1, 2, 2, 0, 23, 7) (4, 2, 0, 1, 0, 49, 5) (4, 2, 4, 2, 1, 10033, 73) (4, 2, 1, 0, 1, 13, 4)
(4, 2, 1, 1, 0, 23, 4) (4, 6, 1, 1, , 0, 337, 14) (4, 2, 2, 0, 1, 73, 7) (4, 2, 2, 0, 1, 233, 11)
(4, 2, 3, 1, 2, 937, 34) (4, 3, 1, 2, 0, 7, 8) (4, 3, 2, 0, 0, 337, 13)

Proof. Let 𝑎 = 4𝑎1+𝑖1, 𝑏 = 4𝑏1+𝑖2, 𝑐 = 4𝑐1+𝑖3, 𝑑 = 4𝑑1+𝑖4, where 𝑎1, 𝑏1, 𝑐1, 𝑑1 ∈
N and 0 ≤ 𝑖1, 𝑖1, 𝑖3, 𝑖4 ≤ 3. From (3.1) we have

𝑌 2 = 4𝑋4 − 3𝑖1 · 5𝑖2 · 11𝑖3 · 19𝑖4 , (3.49)

where 𝑋 = 𝑦
3𝑎1 ·5𝑏1 ·11𝑐1 ·19𝑑1 , 𝑌 = 𝑥

32𝑎1 ·52𝑏1 ·112𝑐1 ·192𝑑1 , 𝑎1, 𝑏1, 𝑐1, 𝑑1 ∈ N,
0 ≤ 𝑖1, 𝑖2, 𝑖3, 𝑖4 ≤ 3, and 2 ∤ 𝑖1 + 𝑖3 + 𝑖4. Magma [3] is able to find 𝑆-integral points
on (3.49) for all but the case (𝑖1, 𝑖2, 𝑖3, 𝑖4) = (3, 3, 3, 3), where 𝑆 = {3, 5, 11, 19}.
We list all cases of (𝑖1, 𝑖2, 𝑖3, 𝑖4) where (3.49) has solutions in Table 6, the case
(𝑖1, 𝑖2, 𝑖3, 𝑖4) = (3, 3, 3, 3) is undetermined (or UD).

Table 6. Solutions to (3.49).

(𝑖1, 𝑖2, 𝑖3, 𝑖4) (𝑋,𝑌 ) (𝑛, 𝑎, 𝑏, 𝑐, 𝑥, 𝑦)
(0, 0, 0, 1) (±5/3,±31/9) (4, 4, 0, 0, 1, 31, 5)
(0, 0, 3, 0) (±353/75,±141407/5625) (4, 4, 8, 3, 0, 141407, 353)
(0, 1, 1, 0) (±2,±3) (4, 0, 1, 1, 0, 3, 2)
(0, 1, 1, 0) (±28/5,±1557/25) (4, 0, 5, 1, 0, 1557, 28)
(0, 1, 2, 1) (±22/3,±77/9) ∅
(0, 1, 2, 1, ) (±26/3,±947/9) (4, 4, 1, 2, 1, 947, 26)
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(0, 1, 2, 1) (±24,±1147) (4, 0, 1, 2, 1, 1147, 24)
(0, 1, 3, 2) (±28,±237) (4, 0, 1, 3, 2, 237, 28)
(0, 2, 0, 1) (±5,±45) ∅
(0, 2, 1, 0) (±3,±7) (4, 0, 2, 1, 0, 7, 3)
(0, 2, 2, 1) (±11,±33) ∅
(0, 3, 0, 1) (±524/99,±270973/9801) (4, 8, 3, 4, 1, 270973, 524)
(0, 3, 0, 1) (±6,±53) (4, 0, 3, 0, 1, 53, 6)
(0, 3, 1, 2) (±32,±1923) (4, 0, 3, 1, 2, 1923, 32)
(1, 0, 0, 0) (±1,±1) (4, 1, 0, 0, 0, 1, 1)
(1, 0, 0, 0) (±61/33,±7199/1089) (4, 5, 0, 4, 0, 7199, 61)
(1, 0, 1, 1) (±313/5,±195937/25) (4, 1, 4, 1, 1, 195937, 313)
(1, 0, 2, 2) (±181,±65521) (4, 1, 0, 2, 2, 65521, 181)
(1, 1, 0, 0) (±2,±7) (4, 1, 1, 0, 0, 7, 2)
(1, 1, 0, 2) (±76/3,±11533/9) ∅
(1, 1, 1, 1) (±28,±1567) ∅
(1, 2, 0, 2) (±19,±703) ∅
(1, 2, 2, 0) (±7,±23) (4, 1, 2, 2, 0, 23, 7)
(2, 0, 1, 0) (±3,±15) ∅
(2, 0, 1, 0) (±5,±49) (4, 2, 0, 1, 0, 49, 5)
(2, 0, 2, 1) (±73/5,±10033/25) (4, 2, 4, 2, 1, 10033, 73)
(2, 1, 0, 1) (±4,±13) (4, 2, 1, 0, 1, 13, 4)
(2, 1, 1, 0) (±4,±23) (4, 2, 1, 1, 0, 23, 4)
(2, 1, 0, 1) (±14/3,±337/9) (4, 6, 1, 1, 0, 337, 14)
(2, 1, 2, 1) (±22,±913) ∅
(2, 2, 0, 1) (±7,±73) (4, 2, 2, 0, 1, 73, 7)
(2, 2, 0, 1) (±11,±233) (4, 2, 2, 0, 1, 233, 11)
(2, 2, 1, 0) (±5,±5) ∅
(2, 2, 3, 2) (±575/3,±654595/9) ∅
(2, 2, 3, 2) (±775,±1201205) ∅
(2, 3, 1, 2) (±34,±937) (4, 2, 3, 1, 2, 937, 34)
(3, 1, 2, 0) (±8,±7) (4, 3, 1, 2, 0, 7, 8)
(3, 2, 0, 0) (±13,±337) (4, 3, 2, 0, 0, 337, 13)
(3, 3, 3, 3) UD UD

We consider the case (𝑖1, 𝑖2, 𝑖3, 𝑖4) = (3, 3, 3, 3). Then (3.1) reduces to

(2𝑦2 − 𝑥)(2𝑦2 + 𝑥) = 34𝑎1+3 · 54𝑏1+3 · 114𝑐1+3 · 194𝑑1+3.

Hence,
4𝑦2 = 𝐴1 +𝐵1, (3.50)

where 𝐴1, 𝐵1 ∈ Z+ ad 𝐴1𝐵1 = 34𝑎1+3 · 54𝑏1+3 · 114𝑐1+3 · 194𝑑1+3. Without loss of
generality, we can assume that 3 | 𝐴1.

Case 1: 3 | 𝐴1 and 19 | 𝐵1. Then 34𝑎1+3 | 𝐴1. Since
(︀

5
19

)︀
=
(︀
11
19

)︀
= 1 and(︀

3
19

)︀
= −1, we have

(︀
𝐴1

19

)︀
= −1. Hence, equation (3.50) is impossible mod 19.
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Case 2: 3 · 19 | 𝐴1 and 5 | 𝐵1. Since 34𝑎1+3 · 194𝑏1+3 | 𝐴1,
(︀
11
5

)︀
=
(︀
19
5

)︀
= 1

and
(︀
3
5

)︀
= −1, we have

(︀
𝐴1

5

)︀
= −1, impossible since we deduce from (3.50) that
(︂
𝐴1

5

)︂
=

(︂
4𝑦2

5

)︂
= 1.

Case 3: 3 · 5 · 19 | 𝐴1 and 11 | 𝐵1. Then 𝐴1 = 33𝑎1+3 · 53𝑏1+3 · 193𝑑1+3 and
𝐵1 = 113𝑏1+3. Equation (3.50) becomes

4𝑦2 = 34𝑎1+3 · 54𝑏1+3 · 194𝑑1+3 + 114𝑐1+3,

impossible mod 11 since
(︀
19
11

)︀
= −1 and

(︀
3
11

)︀
=
(︀

5
11

)︀
= 1.

Case 4: 3 · 5 · 11 · 19 | 𝐴1. Then 𝐴1 = 34𝑎1+3 · 54𝑏1+3 · 114𝑐1+3 · 194𝑑1+3 and
𝐵1 = 1. Equation (3.50) reduces to

4𝑦2 = 1 + 34𝑎1+3 · 54𝑏1+3 · 114𝑐1+3 · 194𝑑1+3.

Then (2𝑦, 32𝑎1+1 · 52𝑏1+1 · 112𝑐1+1 · 192𝑑1+1) is a solution to the Pell equation

𝑋2 − 3 · 5 · 11 · 19 · 𝑌 2 = 1. (3.51)

The fundamental solution to (3.51) is (𝑋,𝑌 ) = (56, 1). We look for 𝑘 ∈ Z+ such
that

32𝑎1+1 · 52𝑏1+1 · 112𝑐1+1 · 192𝑑1+1 = 𝑌𝑘 =
𝜆𝑘1 − 𝜆𝑘2
𝜆1 − 𝜆2

, (3.52)

where 𝜆1 = 56 +
√
3135 and 𝜆2 = 56−

√
3135.

If 𝑘 > 30, then from the work of Bilu, Hanrot, and Voutier [2] we know that
𝑌𝑘 has a primitive divisor 𝑞 such that 𝑘 | 𝑞 −

(︁
(𝜆1−𝜆2)

2

𝑞

)︁
, impossible since 𝑞 ∈

{3, 5, 11, 19} and 𝑘 > 30.
Therefore 𝑘 ≤ 30. Checking the values of 𝑘 in the range 1 ≤ 𝑘 ≤ 30 shows that

(3.52) is impossible for all 1 ≤ 𝑘 ≤ 30.
We conclude that all solutions to (3.1) with 𝑛 = 4 is given in Table 5.

Lemma 3.4. Solutions (𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦) to (3.1) with 4 | 𝑛 and 𝑛 > 4 are listed in
Table 7.

Table 7. Solutions to (3.1) with 𝑛4 | 𝑛, 𝑛 > 4, and gcd(𝑥, 𝑦) = 1.

(𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦)
(𝑛, 10, 0, 0, 1, 1)
(8, 2, 1, 0, 1, 13, 2)
(8, 2, 1, 1, 0, 23, 2)
(12, 3, 1, 2, 0, 7, 2)

Proof. Let 𝑛 = 4𝑘, where 𝑘 ∈ Z+ and 𝑘 > 1. Let 𝑦1 = 𝑦𝑘. Then

𝑥2 + 3𝑎 · 5𝑏 · 11𝑐 · 19𝑑 = 4𝑦41 . (3.53)

We use Table 5 in Lemma 3.3 to find solutions to (3.53) and get Table 7.
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Lemma 3.5. All solutions to (3.1) with 𝑛 ≥ 5, 3 ∤ 𝑛, 4 ∤ 𝑛, (𝑎, 𝑏, 𝑐, 𝑑) ̸= (1, 1, 1, 1)
(mod 2), and gcd(𝑥, 𝑦) = 1 are given in Table 8.

Table 8. Solutions to (3.1) with 𝑛 ≥ 5, 3 ∤ 𝑛, 4 ∤ 𝑛, and
gcd(𝑥, 𝑦) = 1.

(𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦)
(𝑛, 1, 0, 0, 0, 1, 1)
(5, 2, 0, 5, 2, 38599, 55)
(5, 0, 4, 5, 2, 41261, 99)
(5, 0, 3, 5, 0, 25289, 44)

Proof. We can assume that 𝑛 is an odd prime ≥ 5. Then

𝑥+𝐵
√
−𝐴

2
=

(︂
𝑟 + 𝑠

√
−𝐴

2

)︂𝑛

,

where 𝑟, 𝑠 are odd coprime integers. Therefore

𝐵

𝑠
=
𝛼𝑛 − 𝛽𝑛

𝛼− 𝛽 = 𝐿𝑛,

where 𝛼 = 𝑟+𝑠
√
−𝐴

2 and 𝛽 = 𝑟−
√
−𝐴

2 . If 𝛼
𝛽 is a root of unity, then 𝛼

𝛽 = 𝜁𝑚, a
primitive 𝑚-root of unity. Since |Q(𝜁𝑚) : Q| = 𝜑(𝑚) and Q(𝛼𝛽 ) = 2, we have

𝜑(𝑚) = 2. Therefore 𝑚 ∈ {3, 4}. Hence, 𝜁𝑚 ∈
{︁
±
√
−1, ±1±√−3

2

}︁
. Therefore

𝐴 = 3 and 𝛼 = ± 1±√−3
2 . Hence, 𝑦 = 1. We deduce that (𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦) =

(𝑛, 1, 0, 0, 0, 1, 1).
We consider the case 𝛼

𝛽 is not a root of unity. If 𝐿𝑛 has a primitive divisor 𝑞, then

𝑛 | 𝑞−
(︁

(𝛼−𝛽)2

𝑞

)︁
. Since 𝑞 ∈ {3, 5, 11, 19} and 𝑛 ≥ 5, we deduce that 𝑛 = 5, 𝑞 = 19,

and
(︁

(𝛼−𝛽)2

𝑞

)︁
= −1. Since (𝛼 − 𝛽)2 = −𝐴𝑠2, we have

(︀−𝐴
19

)︀
= −1. Since 19 ∤ 𝐴

and 𝐴 ∈ {3, 11, 15, 19, 55, 95, 627}, we have 𝐴 ∈ {11, 55}. Let 𝐵 = 3𝑖 · 5𝑗 · 11𝑘 · 19𝑙,
where 𝑖, 𝑗, 𝑘, 𝑙 ∈ N. Since

𝐵 =
𝛼5 − 𝛽5

√
−𝐴 ,

we have
16𝐵 = 𝑠(5𝑟4 − 10𝐴𝑟2𝑠2 +𝐴2𝑠4). (3.54)

Notice that 𝑠 | 𝐵, so 𝑠 only has prime divisors 3, 5, 11, 19. Dividing both sides of
(3.54) by 𝑠5 gives a quartic curve

𝛾𝑌 2 = 5𝑋4 − 10𝐴𝑋2 +𝐴2, (3.55)

where 𝛾 = ±3𝑖1 · 5𝑖2 · 11𝑖3 · 19𝑖4 , 𝑖1, 𝑖2, 𝑖3, 𝑖4 ∈ {0, 1}, 𝑋 = 𝑟
𝑠 , 𝑌 ∈ Q and 𝑌 only has

prime divisors 3, 5, 11, 19. We use Magma to search for 𝑆-integral points on (3.55),
where 𝑆 = {3, 5, 11, 19}. We list the value of 𝛾 where (3.55) has 𝑆-integral points
and the corresponding tuples (𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦) in Table 9.
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Table 9. Solutions to (3.55).

𝐴 (3.55) (𝑋,𝑌 ) (𝑟, 𝑠) (𝑛, 𝑎, 𝑏, 𝑐, 𝑑, 𝑥, 𝑦)
11 −19𝑌 2 = 5𝑋4 − 110𝑋2 + 121 (±11/3,±44/9) (±11,±3) (5, 2, 0, 5, 2, 38599, 55)
11 −95𝑌 2 = 5𝑋4 − 110𝑋2 + 121 (±78/25,±1399/625) (±78,±25) ∅

(±11/5,±44/25) (±11,±5) (5, 0, 4, 5, 2, 41261, 99)
(±8/5,±29/25) (±8,±5) ∅

55 𝑌 2 = 𝑋4 − 110𝑋2 + 605 (±11,±40) (±11,±1) (5, 0, 3, 5, 0, 25289, 44)

Remark 3.6. We need the condition 5 ∤ ℎ(Q(
√
−𝐴)) in the proof of Lemma 3.5.

Since the class number of Q(
√
−3 · 5 · 11 · 19) is 40, the condition (𝑎, 𝑏, 𝑐, 𝑑) ̸≡

(1, 1, 1, 1) (mod 2) in Lemma 3.5 and Theorem 1.1 is indispensable.
When (𝑎, 𝑏, 𝑐, 𝑑) = (1, 1, 1, 1) (mod 2), then 𝑎 = 10𝑎1 + 𝑖1, 𝑏 = 10𝑏1 + 𝑖2, 𝑐 =

10𝑐1+ 𝑖3, and 𝑑 = 10𝑑1+ 𝑖4, where 𝑎1, 𝑏1, 𝑐1, 𝑑1 ∈ N and 𝑖1, 𝑖2, 𝑖3, 𝑖4 ∈ {1, 3, 5, 7, 9}.
Then (3.1) reduces to

𝑌 2 = 4𝑋5 + 3𝑖1 · 5𝑖2 · 11𝑖3 · 19𝑖4 , (3.56)

where

𝑌 =
𝑥

35𝑖1 · 55𝑖2 · 115𝑖3 · 195𝑖4 and 𝑋 =
𝑦

32𝑖1 · 52𝑖2 · 112𝑖3 · 192𝑖4 .

Equation (3.56) represents a curve of genus 2, and we need to find {3, 5, 11, 19}-
integral points on this curve. It might be possible to attack (3.56) using the method
in [5] but the author of this paper has not been able to proceed in this way.
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Abstract
This paper shows that the equation in the title does not have positive

integer solutions when 𝑛 is divisible by 4. This gives a partial answer to a
question by Melvyn Knight. The proof is a mixture of elementary 𝑝-adic
analysis and elliptic curve theory.
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1. Introduction

According to Bremner, Guy, and Nowakowski [1], Melvyn Knight asked what inte-
gers 𝑛 can be represented in the form

𝑛 = (𝑥+ 𝑦 + 𝑧)

(︂
1

𝑥
+

1

𝑦
+

1

𝑧

)︂
, (1.1)

where 𝑥, 𝑦, 𝑧 are integers. In the same paper [1], the authors made an extension
study of (1.1) in integers when 𝑛 is in the range |𝑛| ≤ 1000. Integer solutions are
found except for 99 values of 𝑛. The question becomes more interesting if we ask
for positive integer solutions, which was also briefly discussed in [1, Section 2]. In
this paper, we will prove the following theorem:
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Theorem 1.1. Let 𝑛 be a positive integer. Then equation

(𝑥+ 𝑦 + 𝑧)

(︂
1

𝑥
+

1

𝑦
+

1

𝑧

)︂
= 𝑛

does not have positive integer solutions if 4 | 𝑛.
This theorem gives the first parametric family when (1.1) does not have positive

integer solutions. The proof technique is a nice combination of 𝑝-adic analysis and
elliptic curve theory, which was successfully applied to prove the insolubility of the
equation

(𝑥+ 𝑦 + 𝑧 + 𝑤)

(︂
1

𝑥
+

1

𝑦
+

1

𝑧
+

1

𝑤

)︂
= 𝑛

for the families 𝑛 = 4𝑚2, 4𝑚2 + 4, 𝑚 ∈ Z and 𝑚 ̸≡ 2 (mod 4), see [2].

2. The Hilbert symbol

Let 𝑝 be a prime number, and let 𝑎, 𝑏 ∈ Q𝑝. The Hilbert symbol (𝑎, 𝑏)𝑝 is defined
as

(𝑎, 𝑏)𝑝 =

⎧
⎪⎨
⎪⎩

1, if the equation 𝑎𝑋2 + 𝑏𝑌 2 = 𝑍2 has a solution
(𝑋,𝑌, 𝑍) ̸= (0, 0, 0) in Q3

𝑝,
−1, otherwise.

The symbol (𝑎, 𝑏)∞ is defined similarly but Q𝑝 is replaced by R. The following
properties of the Hilbert symbol are true, see Serre [3, Chapter III]:

(i) For all 𝑎, 𝑏, and 𝑐 in Q*
𝑝, then

(𝑎, 𝑏𝑐)𝑝 = (𝑎, 𝑏)𝑝(𝑎, 𝑐)𝑝,

(𝑎, 𝑏2)𝑝 = 1.

(ii) For all 𝑎 and 𝑏 in Q*
𝑝, then

(𝑎, 𝑏)∞
∏︁

𝑝 prime

(𝑎, 𝑏)𝑝 = 1.

(iii) Let 𝑝 be a prime number, and let 𝑎 and 𝑏 in Q*
𝑝. Write 𝑎 = 𝑝𝛼𝑢 and 𝑏 = 𝑝𝛽𝑣,

where 𝛼 = 𝑣𝑝(𝑎) and 𝛽 = 𝑣𝑝(𝑏). Then

(𝑎, 𝑏)𝑝 = (−1)
𝛼𝛽(𝑝−1)

2

(︂
𝑢

𝑝

)︂𝛽 (︂
𝑣

𝑝

)︂𝛼

if 𝑝 ̸= 2,

(𝑎, 𝑏)𝑝 = (−1)
(𝑢−1)(𝑣−1)

4 +
𝛼(𝑣2−1)

8 +
𝛽(𝑢2−1)

8 if 𝑝 = 2,

where
(︂
𝑢

𝑝

)︂
denotes the Legendre symbol.
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3. A main theorem

Theorem 3.1. Let 𝑛 be a positive integer divisible by 4. Let 𝑢 and 𝑣 be nonzero
rational numbers such that

𝑣2 = 𝑢(𝑢2 + (𝑛2 − 6𝑛− 3)𝑢+ 16𝑛).

Then
𝑢 > 0.

Let 𝐴 = 𝑛2 − 6𝑛− 3, 𝐵 = 16𝑛 and 𝐷 = 𝑛− 1. Then

𝐴2 − 4𝐵 = (𝑛− 9)(𝑛− 1)2.

Now
𝑣2 = 𝑢(𝑢2 +𝐴𝑢+𝐵). (3.1)

The proof of Theorem 3.1 is achieved by means of the following three lemmas.

Lemma 3.2. If 𝑝 is an odd prime number, then

(𝑢,−𝐷)𝑝 = 1.

Proof. Let 𝑟 = 𝑣𝑝(𝑢). Then 𝑢 = 𝑝𝑟𝑠, where 𝑠 ∈ Z𝑝, and 𝑝 ∤ 𝑠.
Case 1: 𝑟 < 0. Then from (3.1), we have

𝑣2 = 𝑝3𝑟𝑠(𝑠2 + 𝑝−𝑟𝐴+𝐵𝑝−2𝑟).

Therefore 2𝑣𝑝(𝑣) = 3𝑟, hence 2 | 𝑟. Now

(𝑝−3𝑟/2𝑣)2 = 𝑠(𝑠2 + 𝑝−𝑟𝐴+𝐵𝑝−2𝑟). (3.2)

Note that 𝑝 ∤ 𝑠. Taking (3.2) modulo 𝑝 gives 𝑠 is a square modulo 𝑝. Hence 𝑠 ∈ Z2
𝑝.

We also have 2 | 𝑟, so 𝑢 = 2𝑟𝑠 ∈ Q2
𝑝. Therefore (𝑢,−𝐷)𝑝 = 1.

Case 2: 𝑟 = 0.
If 𝑝 ∤ 𝐷, then both 𝑢 and −𝐷 are units in Z𝑝. Therefore (𝑢,−𝐷)𝑝 = 1.
If 𝑝 | 𝐷, then 𝑛 ≡ 1 (mod 𝑝). Hence 𝐴 = 𝑛2 − 6𝑛 − 3 ≡ −8 (mod 𝑝) and

𝐵 = 16𝑛 ≡ 16 (mod 𝑝). Thus

𝑣2 ≡ 𝑢(𝑢2 − 8𝑢+ 16) (mod 𝑝)

≡ 𝑢(𝑢− 4)2 (mod 𝑝).
(3.3)

If 𝑢 ≡ 4 (mod 𝑝), then 𝑢 ∈ Z2
𝑝. Hence (𝑢,−𝐷)𝑝 = 1. If 𝑢 ̸≡ 4 (mod 𝑝), then

from (3.3), we have

𝑢 ≡
(︂

𝑣

𝑢− 4

)︂2

(mod 𝑝).

Therefore 𝑢 ∈ Z2
𝑝. Hence (𝑢,−𝐷)𝑝 = 1.
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Case 3: 𝑟 > 0. Then (3.1) becomes

𝑣2 = 𝑝𝑟𝑠(𝑝2𝑟𝑠2 +𝐴𝑝𝑟𝑠+𝐵). (3.4)

If 𝑝 | 𝐵, then 𝑝 | 𝑛. Therefore −𝐷 = 1 − 𝑛 ≡ 1 (mod 𝑝). Hence −𝐷 ∈ Z2
𝑝. Thus

(𝑢,−𝐷)𝑝 = 1.
If 𝑝 ∤ 𝐵, then from (3.4) we have 𝑟 = 2𝑣𝑝(𝑣). Thus 2 | 𝑟.

If 𝑝 ∤ 𝐷, then both 𝑠 and −𝐷 are units in Z𝑝. Therefore (𝑠,−𝐷)𝑝 = 1. Hence

(𝑢,−𝐷)𝑝 = (𝑝𝑟𝑠,−𝐷)𝑝 = (𝑠,−𝐷)𝑝 = 1.

If 𝑝 | 𝐷, then 𝑛 ≡ 1 (mod 𝑝). Therefore 𝐴 = 𝑛2 − 6𝑛 − 3 ≡ −8 (mod 𝑝) and

𝐵 = 16𝑛 ≡ 16 (mod 𝑝). Let 𝜔 = 𝑝
−𝑟
2 𝑣. Because 𝑟 = 2𝑣𝑝(𝑣), we have 𝑝 ∤ 𝜔. From

(3.4) we have
𝜔2 ≡ 𝑠(𝑝2𝑟𝑠2 − 8𝑝𝑟𝑠+ 16) ≡ 16𝑠 (mod 𝑝),

so that
𝑠 ≡ (𝜔/4)2 (mod 𝑝).

Thus 𝑠 ∈ Z2
𝑝. Hence (𝑠,−𝐷)𝑝=1. Note that 2 | 𝑟, therefore

(𝑢,−𝐷)𝑝 = (𝑝𝑟𝑠,−𝐷)𝑝 = (𝑠,−𝐷)𝑝 = 1.

Lemma 3.3. We have
(𝑢,−𝐷)2 = 1.

Proof. Let 𝑛 = 4𝑘, where 𝑘 ∈ Z+.
If 2 | 𝑘, then −𝐷 = 1− 4𝑘 ≡ 1(mod 8). Therefore −𝐷 ∈ Z2

2. Hence (𝑢,−𝐷)2 =
1. So we only need to consider the case 2 ∤ 𝑘. Let 𝑟 = 𝑣2(𝑢). Then 𝑢 = 2𝑟𝑠, where
2 ∤ 𝑠.

Case 1: 2 | 𝑟. Then

(𝑢,−𝐷)2 = (2𝑟𝑠, 1− 4𝑘)2

= (𝑠, 1− 4𝑘)2

= (−1)
(𝑠−1)(1−4𝑘−1)

4

= 1.

Case 2: 2 ∤ 𝑟. We show that this case is not possible.
If 𝑟 < 0, then from (3.1), we have

𝑣2 = 23𝑟𝑠(𝑠2 + 2−𝑟𝐴𝑠+ 2−2𝑟𝐵).

Therefore 3𝑟 = 2𝑣2(𝑣). Hence 2 | 𝑟, a contradiction.
If 𝑟 ≥ 0, then (3.1) becomes

𝑣2 = 2𝑟𝑠(22𝑟𝑠2 + 2𝑟(16𝑘2 − 24𝑘 − 3)𝑠+ 26𝑘). (3.5)
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If 𝑟 ≥ 7, then

𝑣2 = 2𝑟+6𝑠(22𝑟−6𝑠2 + (16𝑘2 − 24𝑘 − 3)2𝑟−6𝑠+ 𝑘).

Therefore 𝑟 + 6 = 2𝑣2(𝑣). Hence 2 | 𝑟, a contradiction.
If 𝑟 < 7, then 𝑟 ≤ 5. Let 𝜑 = 𝑣

2𝑟 . Then from (3.5), we have

𝜑2 = 𝑠(2𝑟𝑠2 + (16𝑘2 − 24𝑘 − 3)𝑠+ 26−𝑟𝑘). (3.6)

If 𝑟 = 5, then taking (3.6) modulo 8 gives 𝜑2 ≡ 𝑠(−3𝑠 + 2𝑘) (mod 8). Hence
2𝑠𝑘 ≡ 𝜑2 + 3𝑠2 ≡ 4 (mod 8), which is not possible because 2 ∤ 𝑠𝑘.

If 𝑟 = 3, then taking (3.6) modulo 8 gives 𝜑2 ≡ −3𝑠2 (mod 8). Hence 0 ≡
𝜑2 + 3𝑠2 ≡ 4 (mod 8), a contradiction.

If 𝑟 = 1, then taking (3.6) modulo 8 gives 𝜑2 ≡ 𝑠(2 − 3𝑠) (mod 8). So 2𝑠 ≡
3𝑠2 + 𝜑2 ≡ 4 (mod 8), which is not possible because 2 ∤ 𝑠.

Lemma 3.4.
(𝑢,−𝐷)∞ = 1.

Proof. From the product formula for the Hilbert symbol, we have

(𝑢,−𝐷)∞
∏︁

𝑝 prime, 𝑝 < ∞
(𝑢,−𝐷)𝑝 = 1. (3.7)

By Lemma 3.2, Lemma 3.3, and (3.7), we have (𝑢,−𝐷)∞ = 1.

To complete the proof of Theorem 3.1, we see that Lemma 3.4 shows that the
equation 𝑢𝑋2 + (1− 𝑛)𝑌 2 = 𝑍2 has a solution (𝑋,𝑌, 𝑍) ̸= (0, 0, 0) in R3. Because
1− 𝑛 < 0, we have 𝑢 > 0. Hence Theorem 3.1 is proved.

4. A proof of Theorem 1.1

We follow [1, Section 2]. Write (1.1) as

𝑥2(𝑦 + 𝑧) + 𝑥(𝑦2 + (3− 𝑛)𝑦𝑧 + 𝑧2) + 𝑦𝑧 = 0. (4.1)

Hence

𝑥 =
−𝑦2 + (𝑛− 3)𝑦𝑧 − 𝑧2 ±∆

2(𝑦 + 𝑧)
,

where ∆ satisfies

∆2 = 𝑦4 − 2(𝑛− 1)𝑦𝑧(𝑦2 + 𝑧2) + (𝑛2 − 6𝑛− 3)𝑦2𝑧2 + 𝑧4. (4.2)

Then (4.2) is birationally equivalent to the elliptic curve

𝑣2 = 𝑢(𝑢2 + (𝑛2 − 6𝑛− 3)𝑢+ 16𝑛), (4.3)

What positive integers n can be presented in the form . . . 145



and we can write out the maps between (4.1) and (4.3):

𝑢 =
−4(𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥)

𝑧2
, 𝑣 =

2(𝑢− 4𝑛)𝑦

𝑧
− (𝑛− 1)𝑢,

and
𝑥, 𝑦

𝑧
=
±𝑣 − (𝑛− 1)𝑢

2(4𝑛− 𝑢) .

Then the following is true.

Proposition 4.1. The necessary and sufficient conditions for (4.1) to have positive
integer solutions (𝑥, 𝑦, 𝑧) are 𝑛 > 0 and 𝑢 < 0.

Proof. See Bremner, Guy, and Nowakowski [1, Section 2].

Now, let 𝑛 = 4𝑘, where 𝑘 ∈ Z+. Assume there exists a positive integer solution
(𝑥, 𝑦, 𝑧) to (1.1). Then Proposition 4.1 shows that 𝑢 < 0. If 𝑣 = 0, then (4.3) implies
𝑢2+(𝑛2−6𝑛−3)𝑢+16𝑛 = 0. Therefore (𝑛−9)(𝑛−1)3 = (𝑛2−6𝑛−3)2−4×16𝑛 is
a perfect square. Hence (𝑛−9)(𝑛−1) is a perfect square. Let (𝑛−9)(𝑛−1) = 𝑚2.
Then (𝑛− 5)2 − 16 = 𝑚2. The equation 𝑋2 − 16 = 𝑌 2 only has integer solutions
(𝑋,𝑌 ) = (±5,±3). Thus 𝑛− 5 = ±5, giving no solutions 𝑛 = 4𝑘. Therefore 𝑣 ̸= 0.
Hence 𝑢, 𝑣 ̸= 0. From Theorem 3.1, we have 𝑢 > 0, contradicting Proposition 4.1.
Hence (1.1) does not have solutions in positive integers.

Acknowledgement. The author would like to thank the referee for his careful
reading and valuable comments.
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Abstract
This paper presents a possible generation process how to efficiently model,

export and render resources of Mental Cutting Test exercises with the use of
Blender.
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1. Introduction

The spatial availability of people can be measured by using different types of tests
such as Mental Cutting Test and Mental Rotation Test. Offering exercises of Mental
Cutting Test (MCT) is a widely used method in which people have to determine
the shape of the intersection of a 3D shape and a plane. The test was introduced in
the USA in the late 1930s [4], while researches still deal with this topic nowadays
[12]. Virtual Reality (VR) has become a widely supported and popular method to
extend our reality. During the last decade, researchers started developing VR aided
applications to extend the functionality of classic MCT exercises [7]. On the other
hand, the use of VR requires head gears which results in strong limitations on the
researches. In the meantime, Augmented Reality (AR) has also become a popular
way to extend our reality and interact with the users in a more efficient way without
any investments – we only need to use the camera of our mobile devices to place
objects onto any surfaces. While this paper focuses on the technical description
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of a recently designed, efficient procedure to generate MCT exercises, we have to
mention that many Hungarian and East European researchers deal with various
approaches of developing spatial skills [1, 10, 11, 14, 15]. Thus, the proposed
procedure has the opportunity to enhance the methods of a popular and actively
researched topic both in national and international scientific context.

In 2019 the development of a new mobile application has started at the Faculty
of Informatics, University of Debrecen with the aim of improving the spatial skills
of its users by offering MCT exercises [16]. The exercises are derived from the
classic MCT, but Augmented Reality and the principle of gamification [8] are also
being used to support, engage and motivate the users.

1.1. Terminology

Another important key of a practicing application is the number of different ex-
ercises. To efficiently construct the dataset, three abstraction levels have been
introduced (see Figure 1).

1. Scenarios: A scenario consists of the basic resources that are needed to rep-
resent an exercise: the isometric projection of a 3D shape that is intersected
by a 2D plane (so called 2D model), and the shape of their intersection (so
called answer or shape of intersection). To support the users with the AR
function, a new component has been introduced (so called 3D model) which
is a 3D object both containing the 3D shape and a 3D frame that describes
the intersection plane (so called intersection).

2. Exercise: Classic MCT exercises contain four additional shapes as wrong
aswers. Thus, we must construct alternative answers to form a real exercise.
In our terminology, an exercise is a composition of a scenario and answers
of another scenarios. Thus, multiple exercises can be constructed of a sce-
nario by permutating the wrong answers. The method of choosing the wrong
answers can depend on several factors: to form a practice exercise for begin-
ner users, we should minimize the similarity between the alternatives; on the
other hand, MCT exercises that are used to measure skills usually contain
very similar alternatives.

3. Assignment: An assignment is an instance of an exercise that is assigned
to a user. Each assignment is generated from the exercises that are defined
by the instructor – thus, the users’ choices and spatial skills can be easily
compared by processing the assignments.

Files that are rendered or exported from Blender [5] and used to display or post-
process assignments (2D models, 3D models and intersections) are called resources.

1.2. Resources

As we described in Section 1.1, to form a scenario three resources are required:
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Figure 1. Entities and resources that form an assignment.

1. A 2D image that contains the 3D shape and the 2D plane applying the special
isometric projection of MCT exercises.

2. A 3D model that contains the 3D shape and the 2D plane and can be in-
stanced and displayed with the AR function.

3. A 2D image that contains the shape of the intersection of the 3D shape
and the intersection plane. This resource is the solution of the classic MCT
exercises.

Several file formats can be selected for these resources. Two requirements have
been constructed towards the file formats:

1. Image format should be scalable.

2. The size of the resources must be minimized .

To fulfil the requirements, SVG [3] was chosen for image resources, while GLB
[9]) was chosen for 3D models. On the other hand, a rastergraphic input format is
also needed for post-processing methods. For that purpose, PNG [2] files are used.
GLB models can be exported and PNG images can be rendered in Blender without
any add-ons, while FreeStyle and its FreeStyle SVG Exporter are used to render
SVG files.

1.3. Scenarios
As the focus is on the generation of assignments, further sections will describe this
process. The aim is to give a well detailed description of the methods that are used
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to prepare, render and postprocess all the resources that are needed to construct a
scenario. During this research, Blender is used to design our models, then generate
the required output files in SVG and GLB formats as well as additional PNG
images are also being generated to support the image processing that is used to
determine similarity between the shapes of intersection. Blender provides various
methods to design and manipulate models while it also offers a well-detailed API
in Python language [6]. Thus, a library has been designed and implemented that
supports the instructor through the steps of the scenario development. As a result,
multiple scenarios can be generated starting from a single 3D shape by applying
rotation vectors and predefined intersection planes. However, the steps still need
some human contribution and configuration that can be given in JSON markup
language.

1.4. The process
Based on the API of Blender an iterative workflow of development was designed to
generate the required resources from the modeller software. The algorithm contains
the following steps:

1. Prepare scenarios.

(a) Design 3D shapes.

(b) Design intersection planes.

(c) Rotate shapes.

2. Render and export resources.

(a) Render 2D models.

(b) Export 3D models.

(c) Create and render the shapes and intersections.

3. Post-process scenarios.

(a) Filter scenarios.

(b) Substitute answers.

(c) Rotate and scale answers.

(d) Edit, compress and style SVG resources.

2. Preparation

2.1. Design 3D shapes
MCT exercises consist of various models, but two basic approaches can be used to
design them:
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1. Start with a basic shape, then transform its vertices, edges and faces (mostly
with subdivision and extradition).

2. Start with multiple basic shapes, then construct compositions of them by
calculating their unions, intersections or differences. This method can be
supported by Blender’s boolean modifier. However, the limitations of this
operation will be described in Section 3.3.

We have to keep in mind that only the 2D projection of the model is displayed in
classic MCT exercises to the users and they can only examine three faces of the
shape without limitations. Thus, most of the details should be concentrated into
these sides – otherwise people will not be able to determine the shape of all the
intersections.

All shapes that are scaled to have a maximum size of 2 in each dimensions.
Thus, the size of shapes are uniformed and they fill the viewport of the camera
that is being used to render 2D models.

2.2. Design intersection planes

Due to the previously mentioned limitations of the applied projection, most of the
MCT exercises only use a few intersection planes. However, our goal is to offer
various scenarios. Thus, one pillar of the permutation is the various usage of inter-
section planes. Table 1 shows the 19 planes can be used in the generation process,
mostly resulting a non-empty intersection. Each intersection plane is described
with vectors 𝐶, 𝑁 and 𝑅 (𝐶,𝑁,𝑅 ∈ ℛ3), where 𝐶 contains the coordinates of a
point that is on the plane, 𝑁 is the normal of the intersection plane, while 𝑅 is a
rotation vector and will be used in the further transformations.

Consider a cube with dimensions (2, 2, 2) which geometry origin is in loca-
tion (0, 0, 0). Intersections 0-9 are parallel with one of the faces of the shape,
intersections 10-15 contain the diagonals of the faces, while intersections 16-19
contain the diagonals of the shape.

2.3. Rotate shapes

Scenarios can be permuted easily by applying rotation on the shapes around their
origins while intersection planes are still the same. This method has two advan-
tages:

1. Firstly, multiple scenarios containing the same shape and intersection plane
can be constructed whose intersection is still the same. As a result, users can
practice on the same scenarios using different perspectives.

2. Secondly, the shape of the intersection also depends on the features of the 3D
shape. Thus, different types of intersections can be generated by just simply
rotating the object and still using the same intersection planes.
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Table 1. Intersection planes with their 𝐶, 𝑁 and 𝑅 vectors demon-
strated with the cube.

ID Example Features ID Example Features

01
C=(0, 0, 0)
N=(0, 0, 1)
R=(0, 0, 0)

10
C=(0, 0, 0)
N=(0, 1, -1)
R=(-45, 0, 0)

02
C=(0, 0, -0.8)
N=(0, 0, 1)
R=(0, 0, 0)

11
C=(0, 0, 0)

N=(-1, 0, -1)
R=(0, -45, 0)

03
C=(0, 0, 0.8)
N=(0, 0, 1)
R=(0, 0, 0)

12
C=(0, 0, 0)

N=(0, -1, -1)
R=(45, 0, 0)

04
C=(0, 0, 0)
N=(0, 1, 0)
R=(90, 0, 0)

13
C=(0, 0, 0)
N=(1, 0, -1)
R=(0, 45, 0)

05
C=(0, 0.8, 0)
N=(0, 1, 0)
R=(90, 0, 0)

14
C=(0, 0, 0)
N=(1, 1, 0)

R=(90, 0, 45)

06
C=(0, -0.8, 0)
N=(0, 1, 0)
R=(90, 0, 0)

15
C=(0, 0, 0)
N=(1, -1, 0)
R=(0, 90, 45)

07
C=(0, 0, 0)
N=(1, 0, 0)
R=(0, 90, 0)

16
C=(0, 0, 0)

N=(-0.5, 0.5, 1)
R=(0, -35, -135)

08
C=(-0.8, 0, 0)
N=(1, 0, 0)
R=(0, 90, 0)

17
C=(0, 0, 0)

N=(-0.5, -0.5, 1)
R=(0, -35, -225)

09
C=(0.8, 0, 0)
N=(1, 0, 0)
R=(0, 90, 0)

18
C=(0, 0, 0)

N=(0.5, -0.5, 1)
R=(0, -35, -315)

19
C=(0, 0, 0)

N=(0.5, 0.5, 1)
R=(0, -35, -45)

The number of possible rotations – consequently the number of different permu-
tations – depends on the features of the shape. Table 2 shows the five orientations
that can be used in most of the cases.
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Table 2. A shape with its intersection plane, rotated by different
𝑅 vectors.

(0, 0, 0) (0, 0, 270) (0, 0, 90) (270, 0, 0) (270, 0, 270)

3. Generate resources

3.1. 2D model
The camera that is used to render 2D models is created with ortographic projection
at location (3.3, -1.25, 1.4), rotation (68.5, 0, 72), scale (1.0, 0.772,
1.0) and ortographic scale 4.50. These properties result the same isometric per-
spective as the classic MCT exercises. The algorithm of the rendering contains the
following steps:

1. The shape is moved into location (0, 0, 0) (see Figure 3).

2. The frame which represents the intersection plane is displayed. All 19 frames
are pre-modelled and subdivided into 200 * 200 subfaces in its local 𝑋 and 𝑌
dimensions. Also, the outer edges of the frame are marked as FreeStyle edges.

3. The SVG resource is being rendered with FreeStyle by selecting all the contour
and FreeStyle edges. The output will be modified and styled in the post-
processing steps.

3.2. 3D model
Secondly, the 3D model is being exported in GLB format. Thus, a white material
is applied to the shapes, while one of the 19 thick black frames is also added to
represent the intersection planes. The model is exported with Blender’s export
function.

3.3. Intersection
Thirdly, the most complex step of the rendering process is to create and render the
shape of the intersection.

In the first phase of the research, sample scenarios have been designed by using
the boolean modifier with its intersection option [17]. However, several issues could
be found. As the operator deals with non-zero volume meshes, the intersection
planes were created with constant, non-zero heights (values were chosen from range
[0.001, 0.02]). To render the shape of intersection, a camera was added to location
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Figure 2. The shape with its frame rep-
resenting the intersection plane with the
camera that is used to render 2D models.

Figure 3. A thick black frame is being
exported with the 3D model.

(0, 0, 3.2) with rotation (0, 0, 90) and the shapes were moved to location (0,
0, 0). Contour edges were marked as FreeStyle edges and the scene was rendered
with FreeStyle. Unfortunately, the operator regularly miscalculated the edges of
the shapes by adding extra edges and vertices the shape. As the documentation
points out, only manifold meshes are guaranteed to give proper results, as well as
we should also avoid any co-planar faces or co-linear edges of shapes. The first
criterion can be avoided in most of the scenarios, but the second criterion cannot
be satisfied since most of the MCT scenarios contain co-linear edges. Thus, we
could not use this modifier anymore because extra vertices and edges were added
in various cases which were not detectable with a deterministic algorithm.

After that, the usage of Blender’s bisection operator started. This operator is
accessible from the user interface, while it is also supported by the Python API.
The algorithm is the following:

1. Create an independent duplicate of the 3D shape, then clear its FreeStyle
edges.

2. Bisect the shape by applying the bisect() function. The plane is described
by coordinate 𝐶, and normal 𝑁 of the selected intersection, described in
Table 1.

3. The edges of the object that are in the intersection plane are automatically
selected by the bisect function. Flip the selection and delete all the unse-
lected vertices and edges to eliminate all the features except the intersection.
Mark the border edges of the intersection as Freestyle edges.

4. Apply a global rotation on the shape that is described by vector 𝑅 of the
intersection plane to flatten it. Now the 𝑍 coordinates of all vertices and
edges are 0. Calculate the geometry origin, and move the intersection to
location (0, 0, 0).
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5. Determine the dimensions of the intersection and scale the object to fill the
viewport of the camera with the maximum size of (2, 2, 0).

6. Render the SVG and PNG resources that contain the shape of the intersec-
tion. The SVG file is being used as the output resource, while the PNG
format supports the post-processing.

Figure 4. The shape of the answer under the camera being used
to render the resource files.

4. Post-processing

The steps of the modelling process and the resource files that are needed to con-
struct a scenario have already been presented. In this section the post-processing
steps that are used to improve the quality of our resources as well as can be used
to modify the configuration file of the scenario will be described.

4.1. Filter scenarios
As all the required combinations of shapes, rotations and intersection planes have
been generated, at this point the generated resources must be examined. Differ-
ent combinations of objects, rotations and intersection planes can result unusable
scenarios. Consider the following cases:

1. The intersection plane and the 3D shape do not have an intersection. Thus,
the intersections are empty.

2. An important detail of the shape is hidden from the actual perspective, thus
users cannot give deterministic answer.

3. Two or more rotations result the same scenario because of the symmetry of
the object.

In all cases, the scenario should be omitted from the database and be skipped
in the further executions of rendering. Case (1) and (3) could be determined auto-
matically by processing the PNG formats of intersections and 2D models. However,
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case (2) should be detected by the instructor. In the current implementation, case
(1) is detected automatically. Our configuration file will store all the combinations
that should not be applied anymore.

4.2. Substitute answers

Of course, two or more scenarios can result the same shape of intersection. Further-
more, in many cases they only differ from each other in their rotation. Thus, all the
similarities must be discovered and the same shapes must be substituted with only
one, uniformed instance. Thus, a simple image processing algorithm was developed
which reads and compares the PNG resources of intersections by determining the
ratio of their common pixels. This algorithm can easily discover that intersections
are the same except their rotation by rotating them around the Z axis with 90,
180 and 270 degrees. On the other hand, we can flip the images both vertically
and horizontally to transform them into the same state. Similarities that are de-
tected by this algorithm are added to the configuration file. Of course, there are
several cases in which this solution cannot determine the similarity (e.g. one shape
is rotated with 45 degrees). Thus, feature detection and pairing algorithms were
applied to the resources such as OpenCV’s SIFT and ORB [13]. Unfortunately,
intersections are very simple shapes that do not have enough features. Thus, these
algorithms cannot determine similarities with acceptable precision, the instructor
must detect and configure these similarities manually.

4.3. Rotate and scale answers

As all the different shapes of intersections have been selected and the mapping has
been defined between them, the selected shapes must be uniformed. The instructor
can extend the configuration by describing a rotation that should be performed on
the shape of intersection using axis Z. Then, all the intersections will be rotated and
automatically scaled to the uniform size during further executions of the rendering
script.

4.4. Edit, compress and style SVG resources

The SVG format which is being generated by the FreeStyle SVG plugin can be
transformed into a more optimized format. The plugin generates unnecessary at-
tributes (e. g. attributes of the Inkscape namespace), inline style attributes and
adds unnecessary points on the edges of the shapes. Thus, the intersections are
being manipulated using the Python minidom package to transform our vector
graphics into a more compressed format without any loss of important data. Based
on the features of SVG files, we can easily compress sizes by applying the following
steps:

1. Dissolve all the points of paths if their neighbors are on the same line.
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2. Merge or bisect g elements to better organize the path elements and make
them able to apply CSS rules easier.

3. Replace the inline style attributes with CSS rules.

4. Remove redundant or unnecessary white spaces and commas from the docu-
ment (e. g. from the attribute values of path elements and the indentation).

Unfortunately, several processors are not able to correctly cascade CSS rules
to elements even though the recommendation supports this feature. As the An-
droid package Pixplicitly’s Sharp being used during this research does not support
cascading, we must skip step (3).

Table 3. An intersection in its original (a), transformed (b) and
filled (c) state.

a b c

Table 4. A 2D scenario (a), its intersection (b) with rendering
all of the edges, and its intersection (c) with rendering only border
edges. The post-processing algorithm joins the separated paths (d)

and the shapes are being filled (e).

a b c d e

On the other hand, path elements should be modified in this step. Of course,
some of the operations (e.g. to fill the path elements) could be done by the FreeStyle
plugin in most of the cases, but an independent method is preferred to in-built so-
lutions of Blender and several glitches can be caused by FreeStyle. Table 4 shows
a scenario in which a hole is cut into a cube, which contains a prism. The bisect
function subdivides the intersection, which results non-border edges. They can
be skipped easily by marking only the border edges as FreeStyle edges. The SVG
should contain three shapes: a square with a nested circle and another square. Un-
fortunately, FreeStyle constructs three paths instead of one, representing correctly
the outer square.

Thus, the non-looped edges are collected by the post-processing algorithm and
joined into a loop which correctly form a shape. Then, the paths of intersections are
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filled with black or white color alternately, depending on whether a path forms an
outer shape or contained in a black or white shape. Thus, holes in the intersections
are handled by the algorithm.

Table 5. Original and post-processed SVG resources with their
sizes in bytes, compressed with 𝜀 = 0.2.

Original Post-processed
Shape Size Shape Size

27 739 1 401
(5 %)

31 490 2 876
(9 %)

1 751 467
(26 %)

2 212 532
(24 %)

5. Configuration file

As all the important steps of the generation algorithm have already been described,
the schema of the configuration file can be introduced. The goal was to design a
lightweight document that can contain all the needed metadata that should be used
in any step of the generation process (see Figure 5):

1. rotations: The array of rotation vectors that can be applied to the 3D shape
during the rendering.

2. skip: The array of scenario IDs (containing the ID of intersection plane and
rotation). These combinations should be skipped due to any issue, e.g. empty
intersection, or invisible details of the 3D shape.

3. compress-ratio: The value of 𝜀 that is used during the elimination of inner
points of edges.
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4. similarity-ratio: The value of 𝜀 that is used during the detection of similar
answers.

5. answers: The list of objects that describes intersections selected as uniformed
answers. Each instance is described by its scenario ID, rotation and the
assigned id.

6. substitutes: The mapping between the original and the uniformed, replace-
ment intersections.

{
"rotations": [

[0, 0, 0], [0, 0, 270], [0, 0, 90],
[270, 0, 0], [270, 0, 270]

],
"skip": ["17.300", "17.303"],
"compression-ratio": 0.2,
"similarity-ratio": 0.9,
"answers": [

{ "scenario": "01.000", "rotation": 35, "id": "01"},
{ "scenario": "01.100", "rotation": -90, "id": "02"}
...

],
"substitutes": {

"01.000": "01",
"01.003": "01",
"01.100": "02",
"01.300": "02"
...

}
}

Figure 5. A sample configuration.

Configuration files can be manually edited as well as the values of properties
skip, answers and substitutions can be automatically created or modified. As
a result, configurations can be iterated during multiple executions of the process.
Thus, further executions can be executed without any manual contributions. The
interpretation of the configuration of Figure 5:

1. Permute scenarios with five rotations, skipping the combination of intersec-
tion plane with rotation (270, 0, 0), then intersection plane 17 with rota-
tion (270, 0, 270).

2. Use 𝜀 = 0.2 in the compression of SVGs, and 0.9 to discover similar intersec-
tions.
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3. Rotate intersection of scenario 01.000 with 35 degrees as uniformed answer
01, intersection of scenario 01.100 with -90 degrees as uniformed answer 02.

4. Map the answers of scenarios 01.000 and 01.003 to uniformed answer 01,
and answers of scenarios 01.100 and 01.300 to uniformed answer 02.

6. Conclusion

This paper presented a script-aided process that was designed to support the design
and rendering process of MCT exercises with the use of Blender and its Python
API. With the combination of different intersection planes and rotations, almost
100 scenarios can be generated from a single model in most of the cases. The
large number of scenarios lets us offer practicing exercises to improve the spatial
skills of people. The shapes of intersections are being generated correctly in most
cases; only the combination of overlapping intersection planes and faces can lead
to non-deterministic results.
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Abstract

GTFS (General Transit Feed Specification) is a standard of Google for
public transportation schedules. The specification describes stops, routes,
dates, trips, etc. of one or more public transportation company for a city
or a country. Examining a GTFS feed it can be considered as a graph. In
addition in the last decades new database management systems was born in
order to support the big data era and/or help to write program codes. Their
collective name is the NoSQL databases, which covers many types of database
systems. One type of them is the graph databases, from which the Neo4j is
the most widespread. In this paper I try to find the answer for the question
how the Neo4j can support the usage of the GTFS. The most obvious usage
of the GTFS is the route planning for which the Neo4j offers some algorithms.
I built some storage structures on which the tools provided by Neo4j can be
effectively used to plan routes on GTFS data.

Keywords: Graph database, GTFS, route planning

AMS Subject Classification: 68-04, 68P20

1. Introduction

Nowadays the smart city concept is very fashionable. Despite the fact that it is not
well defined, it can be said that smart city concept appears when some technologies
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are used to develop the life quality of the citizens who inhabit in the cities which
populations are increasing [4, 5]. The smart city concept addresses many domains
like transport, health, homes, buildings and environment. The focus of this paper
is on the public transport of a city, in the narrow sense on the route planning for
public transport.

There are a lot of working solutions to support the route planning for public
transport in a big town, for example Google Maps Transit1 for many towns around
the world; Traveline2 for Great Britain; BKK Futár3 for Budapest, Hungary; Jour-
ney Planner of Public Transport Victoria4 for Victoria, Australia; Rejseplanen5 for
Danmark and Journey Planner of Transport for London6 for London. Tuaycharoen
[18] also introduced one in his paper.

These information can be reached by web applications or mobile applications,
but on the back-end side there are comprehensive solutions to store the schedule,
run the necessary algorithms and delivers the information about the planned routes.
Regarding the well-known 3-tier architecture [7], we can suppose that each of these
applications comprises 3 parts: presentation tier, logic tier and data tier. The pre-
sentation tier interacts with the users, gets the departure and arrival information,
shows the maps, and the resulted routes. The data tier stores the schedule informa-
tion and provides access to the database. And the logic tier calculates the routes
itself from the database and deliver the resulted information to the presentation
tier.

The database world has had a big change in the last few years, namely beside
the relational database systems a lot of new database management systems have
been born to answer the problems of the big data and the application development
where the in-memory data structures did not fit to the relational data model [17].
The collective name of these databases is NoSQL and it comprises many types, like
key-value, document, graph and column-family.

The well-known and world-wide used source of the public transport schedule is
the GTFS databases [10]. Examining a GTFS feed it can be found that it is a graph.
My goal is put the content of GTFS sources into a graph database. Considering
the database ranking [6] the Neo4j database system is the most popular graph
database.

In this paper my goal is to analyse how the Neo4j as a database management
system can support the route planning systems for public transport based on GTFS
sources. In the paper I didn’t consider the presentation tier, only the database and
the logic tier. Additioanlly I examine only the tools and opportunities of the Neo4j
for both the storage and the algorithm.

1https://www.google.com/transit
2traveline.info
3http://futar.bkk.hu
4https://www.ptv.vic.gov.au/journey
5https://journeyplanner.dk/
6https://tfl.gov.uk/plan-a-journey/
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Figure 1. Model of GTFS.

2. GTFS

“The General Transit Feed Specification defines a common format for public trans-
portation schedules and associated geographic information. GTFS ‘feeds’ let public
transit agencies publish their transit data and allow developers write applications
that consume the data in an interoperable way.” [10] It was introduced by Google
in 2005. [9]

The GTFS contains 15 text files in which the fields are separated by commas.
The Figure 1 shows a diagram of the GTFS. I modelled it with Oracle SQL Devel-
oper Data Modeller, at the same time it is known that the GTFS is not satisfies
the relational requirements. [20, 21]

5 files of the 15 are compulsory: agency, routes, trips, stop_times and stops.
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Additionally at least one file is required out of the calendar_dates and calendar.
Many GTFS feeds can be downloaded from various websites. I preferred the

https://transitfeeds.com/ website, where the GTFS feeds are organized based
on their location. During my work I recognized that I need local knowledge, and as
I live in Debrecen I asked the local GTFS feed from Debrecen Regional Transport
Association7.

3. Neo4j

The first version of Neo4j was developed in 2002 [15]. Neo4j is a graph database
management system, it can store and manage property graphs, which means that
the database contains nodes and directed relationships, additionally each node and
relationship can have some properties. Each node can have labels which show the
roles of the nodes in the database. The relationships can have type, and each of
them connects the start node to the end node. [15]

Beside the structure it is very important what kind of tools a database manage-
ment system can offer for searching data in the database. The Neo4j documentation
[15] states “Neo4j was built to efficiently store, handle, and query highly-connected
data in your data model” and “accessing nodes and relationships in a native graph
database is an efficient, constant-time operation and allows you to quickly traverse
millions of connections per second per core.” So I supposed that searching routes
in a graph database contained data from a GTFS feed using built-in tools of Neo4j
will be very easy.

4. Related work

There are research papers about storing and/or managing GTFS feed data in graph
database with more or less success. In the following paragraphs I introduce a few
important of them.

Fortin [9] analysed transit networks. They used GTFS feeds as source informa-
tion and loaded the data into a Neo4j database. They found that their structure
didn’t support the route planning with Neo4j tools so in their future research they
need to change the structure or use other tools for route planning.

Miler [13] stated that “graph database management systems are not routing
engines and are not suitable for full graph traversal, which is used in the shortest
path calculations”. They also said that “if the memory is not an issue, then graph
database is the right choice for the shortest path calculation.”

Kaltenrieder [12] also worked with Neo4j but they enhanced it with their own
program code to realize route planning. Falco [8] used Neo4j to store GTFS data
but they didn’t apply route planning in their system, they provide only transport
information to their users. Similary Abbeyquaye [2] employed Neo4j database to
store GTFS data, but he built his route engine in JavaScipt.

7www.derke.hu
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Gao [11] found that their relational approach for graph search queries such as
the shortest path discovery is more efficient than the algorithms of Neo4j on large
graphs.

All in all, many researchers wanted to store the GTFS data in Neo4j. And as
you see, it is not easy to apply the Neo4j tools for route planning on this data.

5. Load GTFS into Neo4j

My initial idea was to load GTFS data into the Neo4j as I can in the easiest way.
My goal was to write a common loader which can process any GTFS feeds.

I wrote a Python program to load the data. First I used py2neo8, but it turned
out very early that it doesn’t support my work, so I had to change to Neo4j Bolt
Driver for Python9.

The agency, stop, route, trip and stop_times files were load into the database
a way that each row of a file become a node in the database. The labels of the
nodes showed from which file they come, moreover the values in the rows became
the properties of the nodes, where the optional attributes were not loaded into the
database. I used the headlines of the files to name the properties of the nodes. I
worked the same way on the optional files paying attention that they are optional.
The optional files are: level, shape, fare_attributes, fare_rules, frequencies, trans-
fers, pathways and feed_info. In Neo4j I followed the name convention of the Neo4j
[15], so I used Camel case, beginning with an upper-case character and I didn’t use
plural for the nodes.

I created relationships between nodes based on the relationships between the
files introduced on Figure 1. So I created the relationship listed in Table 1. When a
relationship was made I deleted the appropriate property of the node which stored
the connection information. The names of the relationship were followed the name
convention of Neo4j, all of them are upper case, using underscore to separate words.
I named the relationships in a way that I used the labels of the start and end nodes,
supplementing with other information (like to or from) if it is needed.

In the shapes file many lines with the same shape_id describe a shape. So I
created a ShapeID node for each shape_id and I created relationships between the
Shape nodes and the ShapeID nodes, and between Trip and ShapeID. See Table 2
for the new relationships.

I found a similar problem with block_id in the case of Trip, where more than one
trips can have the same block_id. So I created Block nodes, and made relationships
between Trip and Block with block_id. See Table 2 for the new relationship.

The last problem was caused by the calendar and calendar_dates. I decided
that I use preprocessing for these two files, so I generated a new calendar_tmp file
to assign dates to service_ids. First I went through the calendar file and from the
start_date to the end_date I generated all adequate dates to the service_id. Then,
I went through on the calendar_dates and I deleted or inserted the {service_id,

8https://py2neo.org/v4/
9https://neo4j.com/docs/api/python-driver/current/
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date pair} from the calendar_tmp if a row of calendar_dates showed it. Finally I
created Service and Date labelled nodes based on the calendar_tmp and made the
relationships between them.

Then I created the relationship between Trip and Service nodes with the ser-
vice_ids of the Trip.

Table 1. Additional relationships of nodes in Neo4j.

Relationship
name

From
node

To node Source
GTFS file

Column
name in
GTFS file

SHAPE_SHAPEID Shape ShapeID shapes shape_id
TRIP_SHAPEID Trip ShapeID trips shape_id
TRIP_BLOCK Trip Block trips block_id
SERVICE_DATE Service Date calendar_tmp date
TRIP_SERVICE Trip Service trips service_id

At this point I loaded every information of the GTFS structure to the Neo4j
and the loaded data structure follows the logic of the GTFS structure. Now I have
a graph structure on which I can try out the route planning tools of the Neo4j. See
the model of the loaded data structure drawn in Neo4j at Figure 2.

I tested my data loader with the GTFS feeds for Debrecen10; Budapest, Debre-
cen, Miskolc, Pécs, Tampere and Szeged11; and the sample feed provided by the
Google12. I found that there are many GTFS feeds which don’t contain all optional
files of the GTFS.

6. Route planning tasks

In route planning the traveller wants to reach another place if they are in a given
place additionally they want to leave now, so the time and the date is also impor-
tant. As my goal was to examine how the Neo4j route planning tools work with
GTFS data loaded into the Neo4j, it was simpler if I used stops instead of GPS
coordinates. With the Harvesine formula [3] I can easily find the near stops to a
given place of which the GPS coordinates are given.

The easiest routing task is to find a route between two stops if it is exists, I
mean when the traveller doesn’t need to change the line.

A more difficult task is when the stops are not on the same route, so the traveller
should change the route. The problem can be easier if the traveller can change the
route only in the stop. More difficult solution if the transfers and the pathways of
the GTFS should be used. Since the GTFS feeds that I used miss these optional

10derke.hu
11transitfeeds.com/
12developers.google.com/transit/gtfs/examples/gtfs-feed
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Figure 2. Model of the loaded data strucure drawn in Neo4j.

files, I didn’t consider this case. I didn’t consider the parent station relationship
also to make the problem easier.

The most route planning algorithms offer some modes which set of routes the
traveller needs: all, the shortest, the k-shortest and the applications can offer some
other modes also. Of course the first that I need is the shortest, but as I use the
public transport in Debrecen with the help of an app by Szincsák [19, 20], I see
that it is not enough. The buses are late many times, so I prefer choosing a more
frequent line with more walking than the shortest route. All routes is also not the
good choice, since it will contain the routes which goes first time to the border of
the city, than comes back so it takes 2 hours instead of the 10 minutes which is
offered by the shortest path. So I prefer the k-shortest path. Another idea to limit
the route changes in a way since nobody wants to change routes many times.
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7. Introduction Neo4j opportunities for route plan-
ning on the loaded data structure

Neo4j uses the Cypher graph query language to query the graph. Its basic tool is
the MATCH clause with WHERE and RETURN clauses with which the developer
can find nodes and relationships in the graph.

To find the route between two stops without changing the line, the following
Cypher statement can be executed:

match p= (startStop:Stop)-[:STOPTIME_STOP]-(st1:StopTime)-
[:STOPTIME_TRIP]-(t:Trip)-[:STOPTIME_TRIP]-(st2:StopTime)-
[:STOPTIME_STOP]-(endStop:Stop)

where endStop.stop_name=’"Laktanya utca"’
and startStop.stop_name=’"Vezér utca"’
and toInt(st1.stop_sequence)<toInt(st2.stop_sequence)

return p;

Figure 2 helps to follow the names of nodes and relationships. In this first
Cypher statement I didn’t use time and date for the searching, so the result contains
many path between the startStop and endStop. Since the direction is important
and the traveller cannot travel to the opposite direction than the vehicle goes, I
should put the condition about the stop_sequence to the statement.

If I consider the date and the time also and if I want to show the route infor-
mation, the following Cypher statement can be used:

match p= (startStop:Stop)-[:STOPTIME_STOP]-(st1:StopTime) -
[:STOPTIME_TRIP]-(t:Trip)-[:STOPTIME_TRIP]-(st2:StopTime)-
[:STOPTIME_STOP]-(endStop:Stop),

p2=(t:Trip)-[:TRIP_ROUTE]-(r:Route),
p3=(t:Trip)-[:TRIP_SERVICE]-(ser:Service)-[:SERVICE_DATE]-(d:Date)
where endStop.stop_name=’"Laktanya utca"’

and startStop.stop_name=’"Vezér utca"’
and toInt(st1.stop_sequence)<toInt(st2.stop_sequence)
and d.date=" 20190503"
and st1.departure_time>’10:00:00’
and st1.departure_time<’11:00:00’
and st2.arrival_time<’12:00:00’

return p,p2,p3;

On the Debrecen data this Cypher query works well.
In the case when the traveller should change the route, and they have this oppor-

tunity only in Stops, based on Figure 2 you can see that in the statement we should
start from a Stop, than go to a StopTime as in the previous case and we should
end again with a StopTime and a Stop. Between the starting StopTime and end-
ing StopTime we should move on the STOPTIME_TRIP or STOPTIME_STOP
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relationships several times. If I want to get back all solutions, a Cypher statement
can be used which is a modified version of the previous one, namely I have put an
asterisk to the proper relationship, like this:

match p= (startStop:Stop)-[:STOPTIME_STOP]-(st1:StopTime)-
[:STOPTIME_TRIP]-(t:Trip)-[:STOPTIME_TRIP|:STOPTIME_STOP*]-
(st2:StopTime) - [:STOPTIME_STOP]-(endStop:Stop)

where endStop.stop_name=’"Laktanya utca"’
and startStop.stop_name=’"Gyepusor utca"’
and toInt(st1.stop_sequence)<toInt(st2.stop_sequence)
and st1.departure_time>’10:00:00’
and st1.departure_time<’11:00:00’
and st2.arrival_time<’12:00:00’

with p, nodes(p) as nodes
where all(x in nodes where not(labels(x)=’Trip’)

or exists((x)-[:TRIP_SERVICE]-(:Service)-
[:SERVICE_DATE]-(:Date{date:" 20190503"}) ))

return p;

The query stores the time and date information. I solved the date information
a way that every Trip in the path should run on the given day.

On the Debrecen data this Cypher query doesn’t work, it causes out of memory
error. I could change the memory size for the Neo4j, but to find all routes with
line changes between two stops is so many solutions that it is not worth to search.

If I want to limit the route changes, the previous Cypher statement can be
changed a way, that [:STOPTIME_TRIP|:STOPTIME_STOP*] part gets a limit.
Following Figure 2 I found that the multiplication number of the relationships can
be calculated the following way: (changes+1)*4-3. With 0 changes this number is
1, with 5 changes this number is 21. I tried out with more numbers from 5 to 21:

match p= (startStop:Stop)-[:STOPTIME_STOP]-(st1:StopTime)-
[:STOPTIME_TRIP]-(t:Trip)-[:STOPTIME_TRIP|:STOPTIME_STOP*1..21]-
(st2:StopTime)-[:STOPTIME_STOP]-(endStop:Stop)

where endStop.stop_name=’"Laktanya utca"’
and startStop.stop_name=’"Gyepusor utca"’
and st1.departure_time>’10:00:00’
and st1.departure_time<’11:00:00’
and st2.arrival_time<’12:00:00’

with p, nodes(p) as nodes
where all(x in nodes where not(labels(x)=’Trip’)

or exists((x)-[:TRIP_SERVICE]-(:Service)-
[:SERVICE_DATE]-(:Date{date:" 20190503"}) ))

return p;

In all cases the execution time of this query is very long, I don’t think that it
could be used in an application. Moreover, in the where clause there is a complex
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condition, and we should use more complex conditions than this to find the routes
that we need. I tried to give hints to the execution plan, but it didn’t help the
query.

Then, I considered the built-in functions of Neo4j which support the route
planning. Neo4j offers path finding algorithm, namely Minimum Weight Spanning
Tree, Shortest Path, Single Source Shortest Path, All Pairs Shortest Path, A*,
Yen’s K-shortest paths and Random Walk [15].

In my work the startStop and the endStop are known, so the Minimum Weight
Spanning Tree is useless for this problem. Similarly, the the All Pairs Shortest
Path is not the solution at this situation since it find the shortest paths between
all pairs of nodes. Than as well the Single Source Shortest Path (SSSP) algorithm
is not useful in this situation as it calculates the shortest (weighted) path from a
node to all other nodes in the graph. The Random Walk provides random paths
in a graph, but in my case the route is not random.

The Shortest Path algorithm uses Dijkstra algorithm. To see the nodes of the
route between the startStop and endStop its stream version should be used.

match p=(startStop:Stop{stop_name:’"Laktanya utca"’}),
(endStop:Stop{stop_name:’"Gyepusor utca"’} )

call algo.shortestPath.stream(startStop, endStop)
yield nodeId
return algo.getNodeById(nodeId);

The function and so the statements works well, and its execution time is also
good. However, the travel wants to move in a given date and time, so some re-
strictions is needed for the statement. The function doesn’t offer such conditions
in this form.

The next algorithm is the Yen’s K-shortest paths algorithm, which computes
single-source k-shortest loopless paths for a graph with non-negative relationship
weights.

match (startStop:Stop{stop_name:’"Laktanya utca"’}),
(endStop:Stop{stop_name:’"Gyepusor utca"’})

call algo.kShortestPaths.stream(startStop, endStop, 5, ’cost’ ,{})
yield index, nodeIds, costs
return algo.getNodesById(nodeIds)

Similarly as the shortestPath function, the kShortestPath function and so the
statements works well, the execution time is also good, but the problems are also
similar as in the case of the shortestPath algorithm, namely some restrictions is
needed because of the date and time.

The A* algorithm improves the shortest path algorithm that way that the user
can add some information to the algorithm in order that the algorithm could make
better choices over which paths to take through the graph. The syntax and the
usage of the algorithm can be read in the documentation of the Neo4j [15]. It needs
a kind of heuristic, the weight is compulsory, which can be the time between the
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stops, but we don’t have in our data structure. The algorithm also needs longitude
and latitude, which are given in the Stop but for the other nodes they are not
given, so we cannot use this algorithm in this form on our structure.

To sum up this section the data structure introduced on Figure 2 is very good
to store the data but it doesn’t support the route planning in the given city. So in
the next chapter I modified it to support the route planning.

8. The modified version of the data structure

Pyrga [16] compared the time-expanded and the time-dependent graphs for trans-
port information and they find that the time-dependent graph was more compact
and offers a clearly better performance. The time-expanded approach means that
every event at a station is modelled as a node in the graph. In my data structure
the events are modelled as StopTimes, so my data structure corresponds in some
features of the time-expanded approach. The time-dependent approach means that
the graph contain only one node per station and there is an edge between two sta-
tions if there is an elementary connection from the one station to the other.

Following the ideas of the time-dependent graph approach to build simpler
routes in the graph, I should connect the Stops in the graph, and I should equip
the relationships with information in order to find the routes easier.

I made a REACH relationship from a start node to an end node if there is
a route with which a traveller can reach the end stop from the start stop. This
means that if a route goes from A Stop to D Stop and between the two stops the
route stops in B and C stops, I created the relationships which are introduced in
Figure 3, so D can be reached from A, B and C, C can be reached from A and B,
and B can be reached from A.

Figure 3. Routes between A and D.

Additionally I stored some information on the relationships: the route_id,
the minimum and maximum duration, max_shape_distance_traveled_diff and
min_shape_distance_traveled_diff, max_stop_sequence_diff and
min_stop_sequence_diff. I wanted to store the trip_id list also, but the Neo4j
doesn’t allowed it since the list was too long.

I calculated the minimum and maximum duration based on the arrival and de-
parture times of the StopTimes. Similarly the StopTimes stores
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shape_distance_traveled information, so the shape_distance_traveled_diff is the
difference of the shape_distance_traveled of the two Stops. I calculated similarly
the stop_sequence_diff from the stop_sequence property of the StopTimes.

A REACH relationship refers one route and not a trip. A StopTime be-
long to a Trip, but I wanted to make as simple the relationship as I can, so I
wanted to store information for a Route. Since a Route covers many Trips, I used
the maximum and the minimum values of each calculated properties. There are
only a few REACH relationships for Debrecen where the min and the max for
shape_distance_traveled_diff is not the same. The duration depends on the time
of the day, so there are many REACH relationships where they are not the same.
And finally the min and max of stop_sequence_diff-s are equal in the case of all
REACH relationships for Debrecen.

With this data structure first I wanted to find the route between two stops
without changing the line. It’s an easy Cypher statement:

match (sf:Stop)-[:REACH]->(st:Stop)
where sf.stop_name=’"Laktanya utca"’

and st.stop_name=’"Segner tér"’
return sf, st

This statement is to find all route opportunity between the two stops without
any limitations, so it would run for a long time, and we know that the result would
be so much that it is not worth to work with it. The following statement is for one
line change:

match p=(sf:Stop)-[:REACH*1..2]->(st:Stop)
where sf.stop_name=’"Laktanya utca"’

and st.stop_name=’"Segner tér"’
return p

In the result there are many Stops, since between the start and end stop there
are many stops where the traveller can change the “line”. If you sit on a bus, you
don’t want to get off and get on again, so we need to filter the result. In the filter
I tried to write down that the route_id is distinct during a solution. I tried it a
way that the number of the relationships in the path is the same as the number of
the distinct route_ids. Since the route_id is a property of a relationship the Neo4j
doesn’t allow to write such a statement, additionally the count also doesn’t work
in this conditions. Then I tried the all predictive function in the where condition,
but it doesn’t allow to put two variable before its where part.

The next opportunity to use the graph algorithms of Neo4j. The first is the
shortestPath algorithm. In this case the REACH relationship can be used, and
the direction can be given. Moreover it is important to use a weight, since a
REACH relationship can mean only 1 sec or even 1 hour. The first time I used the
max_duration as weight. My first trying was the following:

match p= (startStop:Stop{stop_name:’"Laktanya utca"’}),
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(endStop:Stop{stop_name:’"Gyepusor utca"’} )
call algo.shortestPath.stream( startStop, endStop, ’max_duration’,

{relationshipQuery:’REACH’,direction:’OUTGOING’})
yield nodeId
return algo.getNodeById(nodeId)

The algorithm works well, but in this form the statement doesn’t know anything
about the time and date. So the resulted shortest path may not exist in the neces-
sary time interval. The same problem arises if I use the max_shape_dist_traveled
as weight.

The next examined algorithm is the A* algorithm:

match (startStop:Stop{stop_name:’"Laktanya utca"’}),
(endStop:Stop{stop_name:’"Gyepusor utca"’})
call algo.shortestPath.astar.stream(startStop, endStop,

’max_duration’,’flat’, ’flon’,
{nodequery:’Stop’,relationshipQuery:’REACH’,

direction:’OUTGOING’, defaultValue:1.0})
yield nodeId, cost
return algo.getNodeById(nodeId)

It works well, but it also gives back only one solution which is not consider the
date and the time, so we may not find route in a given time to reach our goal.

The last algorithm is the k shortest path algorithm:

match
(startStop:Stop{stop_name:’"Laktanya utca"’,stop_id: ’2400205’}),
(endStop:Stop{stop_name:’"Gyepusor utca"’, stop_id: ’2300507’})

call algo.kShortestPaths.stream(startStop, endStop,
10, ’max_duration2’,
{nodequery:’Stop’, relationshipQuery:’REACH’,

direction:’OUTGOING’})
yield index, nodeIds, costs
return index, nodeIds, costs

As we get a lot of solution, this algorithm can be useful to plan route between
two stops.

I also used the shape_distance_diff as the weight to find the k-shortest path,
but the function give back out of memory error. Since the previous statement
worked well, at this point I changed the memory size from 0.5 GB to 4GB (the
size of the database was 0.5GB), but the result was the same. I tried out with the
max_duration as a weight, and it was surprising to me, since with the other weight
the algorithm worked well. Additionally this weight would be better for the route
planning.

I worked further with the kshortest path using the max_duration, since it
works. I examined each routes whether they have appropriate date and time. If
yes, it is a solution, if no, we can through this route away.
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The following code is an example how we can examine the route. This statement
results only a travelling between two stops without change the line. We should
examine all the route, each of which are in the route list resulted the kshortest
path. Since the statement was slow, I used some hints to make faster, so the speed
can be acceptable.

match (s1:Stop{stop_id:"2400205"})-[rch:REACH]->
(s2:Stop{stop_id:"1001605"}),
(r:Route)-[]-(t:Trip),
(t)-[]-(st1:StopTime)-[]-(s1),
(t)-[]-(st2:StopTime)-[]-(s2),
(t)-[]-(se:Service)-[]-(d:Date)

using join on s1,s2
where id(r)=rch.route_id

and st1.departure_time>"16:00:00"
and st1.departure_time<"18:00:00"
and d.date=" 20190510"

return r,t,d, se, s1,s2,st1,st2

So the kShortestPath algorithm on this data structure with post processing to
filter the date and time can be used for route planning in Neo4j on GTFS data,
but as we see here, it gives error for some circumstances.

9. Other data structures

It is obvious that the stop should be nodes in the Neo4j. Additionally nodes and/or
relationships should be put between two stops if the end stop can be reached from
the start stop somehow. The modified structure was the one extremity where
there is a relationship between two nodes if there is a route between them. The
basic structure first was the other extremity, two stops are connected through the
stop_times and trips. Between these two extremity I tried more opportunity, I
connected the stop_times if there is a trip between them, then I connected the
stops if there is a trip between them, I connected only the neighbour stops or
stop_times, where the neighbour means that there are no other stops between the
neighbour stops in a route or a trip. I found the same problems everywhere: I
cannot write statements which can find the routes that I need, or I find something,
but it doesn’t work since out of memory error, or it is very slow and I cannot tune
the query to be good.

10. Conclusion

Several researchers find that Neo4j doesn’t support the route planning for transit
transport [9, 13]. Others used Neo4j only to store transit data [2, 8, 12]. But
Miller [14] states that a graph database is “the best solution if there is a need for
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a dynamic data model that represents highly connected data”. Abay [1] says that
“the graph database model is particularly useful when data connectivity of the data
is as important as the data itself”.

In my work I loaded GTFS data into the Neo4j and then I tried to apply the
route planning algorithms or statements of Neo4j on it. I used the match-where-
return cypher statements, than the shortest path, the k-shortest path and the A*
algorithm. I changed the data structure to support the route planning. Finally I
found a solution with the kShortestPath built-in function, but this function cause
out of memory error in some cases.

Despite these facts I liked to work with Neo4j, it offers a browser, which can
effortlesly be used, the cypher statements can easily be understood, the Neo4j Bolt
Driver for Python can be used simply. But I found that the documentation doesn’t
contain complex examples, I had to browse the internet for many solutions, and as
I found it at the kShortestPath algorithm it contains some programming mistakes.

The Neo4j is about 17 years old, and the goal of this database management
system was not the route planning. Even so I nearly found a solution for route
planning on GTFS. I hope that Neo4j will be improved and after a few years it can
be used also for route planning on GTFS data also.
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Abstract

In this paper, we study the possibility of building a learning path that
allows students to develop trigonometric knowledge and skills by the end of
Grade 10 of secondary science-based schools. In particular, we describe an
action research experiment, in part done through distance learning, aimed
at incorporating all trigonometry topics within the framework of the study
of Euclidean geometry. The inquiry-based learning methodology and the
support of dynamic geometry software with a laboratory teaching approach
were used. The learning path is based on several “visual/dynamic proof” and
is explained by an example lesson on the Cosines Law.

The experiment could be extended by teachers into physical/virtual class-
rooms and could offer practical strategies and tools for teaching trigonometry.

Keywords: Trigonometric path, Euclidean geometry, trigonometric relation-
ships, visual proofs

AMS Subject Classification: 97G10, 97G60

1. Introduction

The multiple applications of trigonometry have made it a fundamental milestone
in the training of students, which has led many governments to introduce the study
of this topic since the first year of secondary science-based schools. This practice
can be seen, for example, in Canada ([13, 14]), France ([8–10]), Hungary ([6]),
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Italy ([11]), the UK ([5]), and the USA ([1]). However, the study of trigonom-
etry is performed mainly in the third and fourth years, probably because some
trigonometric reasoning seems too abstract for 14- to 15-year-old students. More-
over, as highlighted in [2], the learning of trigonometry is a highly difficult area of
mathematics for both students and teachers. Furthermore, learning outcomes are
strongly influenced by the teaching approach, which in some cases points towards
the application of trigonometric relations, almost entirely omitting proofs, and in
other cases, in contrast, emphasizes algebraic-formal aspects at the risk of losing
students’ attention. In the following, without neglecting these two important as-
pects of trigonometry training, we present a geometric path that allows to develop
the applications of trigonometry without overlooking the educational potential of
the proofs. The core idea, which is developed in the following, consists of incorpo-
rating trigonometry into the elementary geometry path, replacing the classic formal
arguments with visual and dynamic proofs, which are simpler to build, especially
in distance learning. This is in order to improve students’ demonstrative skills,
since, as pointed out in [18] and [7], even students who are particularly talented in
mathematics, they still have difficulty in solving problems that require proof.

The experiment, in part done through distance learning, was built on the
inquiry-based learning (IBL) methodology (see [4] for a literature review). The
use of educational technologies in the teaching of trigonometry has been analyzed
by Ross et al. [16] and can provide decisive help to teachers. Therefore, in the devel-
opment of the path, dynamic geometry software (GDS) with a laboratory teaching
approach was used. The construction of mathematical ideas is based upon real
problems and follows the different phases of inquiry until students’ knowledge is
deeply rooted through the relevant proofs.

2. The didactic project

Since the IBL is founded on concrete problems and stimulates questions and ac-
tions to solve them, it seemed as the most suitable methodology to use in order
to implement an innovative learning activity for students in G9–G10. The fun-
damental ideas of IBL can be found in Dewey’s thought [3]. According to him,
students build their knowledge and skills through a sequence of research stages, in
which they formulate hypothesis, verify them and discuss the results of their in-
vestigations [17]. The IBL activities are based on a workshop format: the teacher
acts as a facilitator by guiding students’ development and exchange of ideas by
asking them appropriate questions; students work in small groups and take active
part in their learning process [15]. In the teaching of geometry, we start from a
concrete problem and, after having identified its essence, we search for its solution.
In the activity that we describe, the basic idea consists of making students ob-
serve and manipulate through GDS some geometric constructions which had been
appropriately prepared, and then gradually direct students towards the discovery
of the formulas and trigonometric theorems. In the next phase, the teacher raises
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students’ awareness to the need to prove the relations that have been discovered,
and guides them to the search of the proofs. Later, in order to establish the ef-
fectiveness of the activity, the initial problem from which the activity started is
solved by using the discovered properties. In the course of the didactic activities,
we have tried to chain the evolution of geometric knowledge and students’ gratifi-
cation in the awareness of their mutual influence. In particular, efforts have been
made to concatenate the two aspects in order to trigger a virtuous circle in the
learning process. In fact, we believe that the possibility of discovering “something
new” provides pupils with a “motivational lever” that can be decisive for the devel-
opment of skills. What is presented in Table 1 is the path that incorporates the
study of trigonometry in the development of geometry, thus valuing also this part
of Mathematics that is considered by many authors fundamental in the training of
students’ logical abilities. The trigonometry Units are developed in greater detail
in Table 2.

Table 1. Units, General outcomes and Chapters.

Unit General Outcome Chapter

Isometry Solve problems involving con- Congruences
G9 gruence between polygons, us- Triangles

ing both measurements and ge- Quadrilaterals
ometric proofs Circles

Similarity Solve problems involving simi- Similarities
G9 litude between polygons, using Triangles

both measurements and Circle
geometric proofs

Trigonometry 1 Solve triangles using trigono- Trigonometric Ratios
G9 metric theorems Right Triangles

Any Triangles

Equivalence Solve problems using trigono- Equivalences
G10 metric theorems Triangles and Trapezoids

Special 𝑛-gons
Euclidean Theorems

Trigonometry 2 Solve problems involving trigo- Trigonometric Functions
G10 nometric functions using trigo- Trigonometric Identities

nometric identities and trigo- Equations and Problems
nometric equations
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Table 2. Detail of the Trigonometry Chapters.

Unit Chapter Lesson

Trigonometry 1 Trigonometric Ratios Sine, Cosine, Tangent ratio
Basic trigonometric identities
The ratio of 30∘, 60∘ and 45∘

Right Triangle Pythagoren Theorem
Right Triangle Theorems
Solving rigth triangles

Any Triangle Triangle Area Formula
Length of a cord, Sines Law
Cosines Law
Solving any triangles

Trigonometry 2 Trigonometric Functions Graph of Trigonometric
Functions
Periodicity of trigonometric
functions
Associated angles relations

Trigonometric Identities Ptolemy’s identities
Double angle formulas
Half angle formulas
Product-sum identities
Parametric formulas

Equations and Problems Basic equations
Some non linear equation
Application problems

3. A lesson plan on the Cosines Law

In this section, we describe an example lesson on Cosines Law directed to G9
students. In particular, we get an overview of how students discovered the cosine
law while using dynamic geometry software in the classroom.

The activity, which lasts approximately 90 minutes, is conceived as a DGS lab
and entailed the use of worksheets to guide the students to start the inquiry.

Objectives:

• Discover the Cosines Law.

• Proof Cosines Law.

• Solve problems using Cosines Law.
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For this activity it seemed appropriate to give students many suggestions in
order to guide their search in the right direction. Instead, for the activities that
followed, suggestions were gradually reduced in order to make students become
more and more autonomous in the management of the inquiry.

If we get an overview of how students discovered the cosine law while using
dynamic geometry software in the classroom, there is no need to mention the test.

Step 1. Problem posing

Everyone knows the Pythagorean Theorem and how it allows to solve problems
related to right triangles. But what happens when the problem concerns non-right
triangles? I.e. consider the following text:

“An aircraft tracking station determines the distance from a common point 𝑂 to
each aircraft and the angle between the aircraft. If angle 𝑂 between two aircraft
is equal to 49∘ and the distances from point 𝑂 to the two aircraft are 50 km and
72 km, find distance between the two aircraft (round answers to 1 decimal place).”

Figure 1. Sketch of the problem.

After a few minutes of reflection followed by a teacher-led discussion, the stu-
dents propose two possible solution strategies. The first starts by drawing a per-
pendicular line from point 𝐴1 to 𝑂𝐴2 and applies the Pythagorean formula twice.
The second one starts from the GDS construction of a triangle 𝐵1𝑃𝐵2 (similar to
𝐴1𝑂𝐴2), with 𝐵1𝑃 = 5 cm, 𝑃𝐵2 = 7.2 cm and 𝐵1

̂︀𝑃𝐵2 = 49∘ and find the distance
between the two aircraft multiplying the length of 𝐵1𝐵2 for the ratio 106. The
teacher points out that both strategies are valid and general. However, a formula
that expresses the length of one side of a triangle as a function of the other sides
and the angle between them would make it possible to solve the problem more ef-
fectively. Therefore the teacher invites the students to reflect and discuss to answer
the following questions.
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Question 1. In principle, could there be a general formula that expresses the length
of one side of a triangle as a function of the other sides and the angle between them?

Some students point out that two sides and the angle between them uniquely de-
termine all the triangle’s elements, so they concur that such a formula might exist.
Then, the teacher propose an investigation aimed at an extension of Pythagoras’
theorem that would be useful to solve the aircraft problem.

Step 2. Working with DGS

The search for the formula involves several stages. The first phase is aimed at
discovering the role played by the angle and, in particular, at understanding which
of the functions sin𝛼 and cos𝛼 could intervene in the formula. The teacher invites
students to work on a file suitably prepared with DGS (see Figure 2) so that they
can change the width of the angle 𝐵 ̂︀𝐶𝐴 by acting on the slider, while 𝐵𝐶 and 𝐷𝐶
are segments with a given length equal to 10 cm.

Figure 2. Working with isosceles triangles.

Using the slider, students immediately realize that increasing the width of the
angle 𝐵 ̂︀𝐶𝐴 also increases the length of 𝐴𝐵. Then the teacher guides them through
the following questions and the related discussion.

Question 2. How does the value of 𝐴𝐵2 change as the sine and cosine of the
angle 𝛼?

To answer this question, the teacher invites the students to note down on a
worksheet the sine and cosine values of the 30∘, 45∘, 60∘, 90∘, 120∘, 150∘ angles
and the corresponding values of 𝐴𝐵2.
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Table 3. Relations between sin𝛼, cos𝛼 and 𝐴𝐵2.

𝛼 sin𝛼 cos𝛼 𝐴𝐵2

30∘ 0.5 0.866 · · ·
45∘ · · · · · · · · ·
60∘ 0.866 0.5 14.13 cm
90∘ · · · · · · · · ·
120∘ · · · · · · · · ·
150∘ · · · · · · · · ·

Comparing the relationships shown in the table, the students note that the
value of the cosine constantly decreases as the angle increases. Instead that of the
sine increases for 0∘ < 𝛼 ≤ 90∘ while it decreases for 90∘ ≤ 𝛼 < 180∘. Therefore
the length of 𝐴𝐵 does not seem to be related to sin𝛼.

Moreover, they observe that as 𝛼 increases, the quantity − cos𝛼 increases, and
so does the length of 𝐴𝐵.

Therefore the teacher advises students to look for the more simple formula
verifying the conditions that emerged with the use of the DSG. Then, since the
relation sought must extend the Pythagorean theorem, it guides them through the
following questions and related discussion.

Question 3. Can the formula be obtained from the Pythagorean relation by sub-
tracting an appropriate quantity that depends on cos𝛼?

The teacher leads the discussion to obtain 𝐴𝐵2 by subtracting a term propor-
tional to cos𝛼 from 𝐵𝐶2 + 𝐴𝐶2. Then he invites the students to calculate the
proportionality factor in various cases using DGS from Figure 2, to answer the
following question.

Question 4. What is the relationship between 𝐴𝐵2 and 𝛼 in the previous cases?

The teacher checks that students, by calculating the quantities (𝐴𝐵2 −𝐴𝐶2 −
𝐵𝐶2)/ cos𝛼, always get the value 200, as 𝛼 changes. Then it check to see if students
really discover that 𝐴𝐵2 = 100 + 100− 2 · 100 cos𝛼.

Therefore, the teacher invites students to modify the length of 𝐴𝐶 and 𝐵𝐶 to
check if the above relation can be extended to other isosceles triangles. By carrying
out these tests, students discover the formula 𝐴𝐵2 = 𝐴𝐶2+𝐵𝐶2−2·𝐴𝐵 ·𝐵𝐶 ·cos𝛼
for isosceles triangles.

In the next phase, the teacher makes the students check if the formula they have
just found can be extended to the scalene triangle 𝐵𝐶𝐷 in Figure 3. The related
file has been prepared so that the students can change both the width of the angle
𝐵 ̂︀𝐶𝐷 and the length of 𝐵𝐶 and 𝐷𝐶, using the dynamism of the software. As for
isosceles triangles, the teacher leads the discussion to obtain 𝐵𝐷2 by subtracting
from 𝐵𝐶2 + 𝐶𝐷2 a term proportional to cos𝛼. Then, he invites the students to
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calculate the proportionality factor in various cases through DGS to answer the
following question.

Figure 3. Working with scalene triangles.

Question 5. Is the above relation still valid for the triangle 𝐵𝐶𝐷 in Figure 3?

Students verify that as 𝛼 changes, the amount (𝐵𝐷2 − 𝐵𝐶2 − 𝐶𝐷2)/ cos𝛼
is constant. Then the teacher invites them to identify the algebraic relationship
between 𝐴𝐵, 𝐵𝐶 and this factor, and check to see if students really discover that
𝐴𝐵2 = 36 + 64 − 2 · 6 · 8 cos𝛼. At this point, the teacher invites the students to
modify the length of sides 𝐴𝐶 and 𝐵𝐶 using the related sliders, to extend to any
scalene triangles the relationship between the proportionality constant and their
lengths. In this way the students discover that the above formula could hold for
every triangle.

Step 3. Formulating a conjecture

The teacher proposes to students to build more triangles, using the prepared DGS
file, to test the formula we seem to have discovered. The questions posed by the
teacher guide the students in formulating the conjecture.

Question 6. Is the above relation still valid for any triangle, in particular for
obtuse triangles?

Question 7. At this point, can we formulate a conjecture to generalize the Pythago-
rean Theorem?

From the previous observations the students obtain the formula

𝐴𝐵2 = 𝐴𝐶2 +𝐵𝐶2 − 2 ·𝐴𝐵 ·𝐵𝐶 · cos𝛼.
Through the next question and the peer discussion that follows, the teacher lets
emerge the need for a proof.

Question 8. Can we be sure that the previous formula holds for all triangles?
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Step 4. Proving the law

Since the formula to prove is an extension of Pythagorean Theorem, the teacher
proposes to prove it by trying to generalize a proof of this Theorem. In particular,
he suggests starting from the recently studied proof, which showed in the left of
Figure 4, based on Tangent-Secant Theorem.

Question 9. Can the reasoning showed in the left side of Figure 4 be extended to
non-right triangles?

If necessary, the teacher suggests to use the Two Secant Theorem, since it nat-
urally extends the Tangent-Secant Theorem, and guide students in understanding
proof. In the right side of the Figure 4 we show a sketch of the proof, that will
only be shown to pupils if they can’t find out for themselves.

Figure 4. In the left we have (𝑎 + 𝑏) : 𝑐 = 𝑐 : (𝑎 − 𝑏), i.e. the
Pythagorean Theorem. In the right we have (𝑎+ 𝑏) : 𝑐 = 𝑑 : (𝑎− 𝑏)

and 𝑐− 𝑑 = 2𝑏 · cos𝛼, hence the Cosines Law.

Step 5. Solving the problem

At this point the teacher points out to the students that they have the tools to
solve the initial problem and asks them to find the solution. He also invites them
to reflect and discuss by asking the following questions.

Question 10. What kind of problems can we solve by using the Cosines Law?

Question 11. Can we find another way to solve the aircraft problem?

Question 12. Can we find another way to prove the Cosines Law?

4. Conclusions

The experimentation of the path that we have presented involved approximately
100 pupils from different geographical and socio-cultural backgrounds. At the end
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of each unit the efficiency of the activity was assessed by considering the following
aspects:

• students’ ability to complete the research path by discovering and formulating
the theorems that have been studied, and in particular the trigonometric
relations;

• students’ ability to use the acquired knowledge to solve applied problems.

The data collection was of an exploratory research; therefore, it could be con-
sidered only as a prelude to a more in-depth research plan aimed at comparing
the results obtained using more traditional teaching approaches. In particular, we
consider it appropriate to analyze the levels reached by students, according to van
Hiele classification [19].

With this work we want also to highlight the importance of geometric reasoning
in the didactic field, also due to the fact that in the last decade the teaching of
Euclidean geometry in secondary schools seems to have lost its vigor. Yet, this part
of mathematics is considered fundamental in the development of students’ logical
abilities by many authors [12].

While taking into account the limitations of our research, the initial results
obtained by the students, if confirmed by further and more in-depth experiments,
seem to indicate the achievement of the objectives of the experimentation. In
particular, the visual/dynamic proofs seemed to be useful in the DL, where it
is more difficult to maintain students’ attention on long formal argumentations,
whereas it would be more effective to stimulate them to think about geometric
figures.

References

[1] Common Core State Standards Initiative: Mathematics Standards for Mathematics,
Common Core State Standards Initiative, 2020,
url: http://www.corestandards.org/Math/.

[2] A. T. Delice, T. Roper: Implications of a comparative study for mathematics education
in the English education system, Teaching Mathematics and its applications 25.3 (2006),
pp. 64–72,
doi: https://doi.org/10.1145/1073204.1073229.

[3] J. Dewey: Experience and education, New York: Macmillan, 1983,
doi: https://doi.org/10.1007/978-3-642-56432-1.

[4] J. Dreye, D. M. Larsen, M. D. Hjelmborg, C. Michelsen, M. Misfeldtand: Inquiry-
based learning in mathematics education: important themes in the literature. In Research
of Department of Mathematics and Science Education, Stockholm: Stockholm University,
2016,
doi: https://doi.org/10.1007/978-3-642-56432-1.

[5] English Department for Education: Mathematics GCSE subject content and assessment
objectives. 2013, London: Department for Education, 2013,
url: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/
attachment_data/file/254441/GCSE_mathematics_subject_content_and_assessment_
objectives.pdf.

192 F. Laudano



[6] Government of Hungary: The Hungarian National Core Curriculum, Magyar közlöny
(official journal of Hungary): Government of Hungary, 2014,
url: https://ofi.oh.gov.hu/sites/default/files/ofipast/2014/04/NAT_2012_EN_
final_2014marc14.pdf.

[7] Á. Győry, E. Kónyab: Proving skills in geometry of secondary grammar school leavers
specialized in mathematics, Annales Mathematicae et Informaticae 50 (2019), pp. 217–236,
doi: https://doi.org/10.33039/ami.2019.11.003.

[8] Ministère de l’Éducation nationale et de la Jeunesse: Bulletin officiel nº,30 du 26-
7-2018 - Cycle 4. 2018, Paris: Ministère de l’Éducation nationale et de la Jeunesse, 2018,
url: https://cache.media.eduscol.education.fr/file/30/62/8/ensel169_annexe3_
985628.pdf.

[9] Ministère de l’Éducation nationale et de la Jeunesse: Programme de mathématiques
de première générale, Paris: Department for Education, 2019,
url: https://cache.media.education.gouv.fr/file/SP1-MEN-22-1-2019/16/8/spe632_
annexe_1063168.pdf.

[10] Ministère de l’Éducation nationale et de la Jeunesse: Programme de mathématiques
de seconde générale et technologique, Paris: Department for Education, 2019,
url: https://cache.media.education.gouv.fr/file/SP1-MEN-22-1-2019/95/7/spe631_
annexe_1062957.pdf.

[11] Ministero dell’Istruzione dell’Università e della Ricerca: Schema di regolamento
recante ’Indicazioni nazionali riguardanti gli obiettivi specifici di apprendimento concernenti
le attivita’ e gli insegnamenti compresi nei piani degli studi previsti per i percorsi liceali,
Roma: Ministero dell’Istruzione dell’Università e della Ricerca, 2010,
url: https://www.gazzettaufficiale.it/eli/id/2010/12/14/010G0232/sg.

[12] E. E. Moise: The meaning of Euclidean Geometry in school Mathematics, The Mathematics
Teacher 68.6 (1975), pp. 472–477.

[13] Ontario Ministry of Education: The Ontario Curriculum Grades 11 and 12 Mathemat-
ics 2007, Toronto: Queen’s Printer for Ontario, 2007,
url: http://www.edu.gov.on.ca/eng/curriculum/secondary/math1112currb.pdf.

[14] Ontario Ministry of Education: The Ontario Curriculum Grades 9 and 10 Mathematics
2005, Toronto: Queen’s Printer for Ontario, 2005,
url: http://www.edu.gov.on.ca/eng/curriculum/secondary/math910curr.pdf.

[15] C. Rasmussen, K. Marrongelle, O. N. Kwon, A. Hodge: Four goal for instructors
using inquiry-based learning, Not Am Math Soc. 64.11 (2017), pp. 1308–1311.

[16] J. A. Ross, C. D. Bruce, T. M. Sibbald: Sequencing computer-assisted learning of trans-
formations of trigonometric functions, Teaching Mathematics and its applications 30 (2011),
pp. 120–137,
doi: https://doi.org/10.1080/0020739X.2019.1565453.

[17] M. Santos-Trigo: An inquiry approach to construct instructional trajectories based on the
use of digital technologies, Eurasia J Math Sci Technol Educ. 4.4 (2008), pp. 347–357,
doi: https://doi.org/10.12973/ejmste/75361.

[18] C. Szabó, C. Bereczky-Zámbó, A. Muzsnay, J. Szeibert: Students’ non-development
in high school geometry, Annales Mathematicae et Informaticae 52 (2020), pp. 309–319,
doi: https://doi.org/10.33039/ami.2020.12.004.

[19] Z. Usiskin: Van Hiele Levels and Achievement in Secondary School Geometry. CDASSG
Project, Chicago, Illinois: Chicago University, 1982.

Visual argumentations in teaching trigonometry 193





Teaching numeral systems based on history
in high school

Zoltán Matosa, Eszter Kónyab

aElementary and Grammar School of University of Szeged
matos@freemail.hu

bUniversity of Debrecen, Institute of Mathematics
eszter.konya@science.unideb.hu

Submitted: June 7, 2021
Accepted: August 19, 2021

Published online: August 23, 2021

Abstract

In the first decade after the turn of the millennium, previous doubts about
the inclusion of the history of mathematics in education also received more
attention. Several researchers point to the difficulties of teachers enthusias-
tic on the topic, to the research methodological difficulties of such studies,
and the need to increase the number of empirical researches. In addition to
increasing the amount of such empirical evidence, this paper seeks to con-
tribute to the continuously developing answers to the basic questions (what
and how?) of integrating the history of mathematics into public education in
the recent decades by presenting a given topic, the teaching of numeral sys-
tems based on history, and the results of the related surveys. In the course of
our research, we examined the question of whether the use of the history of
mathematics as a tool, as opposed to teaching by focusing solely on routine
tasks, helps to fix the curriculum into the long-term memory.

Keywords: History of mathematics, teaching of numeral systems

AMS Subject Classification: 97A30, 97F30

1. Introduction

From the beginning of the 1960s, more and more researchers have turned to the use
of the history of mathematics in education. In 1972, at the second International
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Congress on Mathematical Education (ICME) in Exeter, an international research
group, The international study group on the relationship between History and
Pedagogy of Mathematics (HPM), was set up on the subject, which has regularly
organized international conferences and published since then.

Research on the use of the history of mathematics in education has gained new
momentum since the 1990s, and more and more researchers have given arguments
about incorporating the history of mathematics into education (e.g., [2]). Although
Lefebvre warns in his article summarizing this topic that “all forms of categoriza-
tion carry risky and arbitrary parts” ([7], p. 24), by the 1990s, intensified efforts
could be noticed regarding answering the questions why and how and categorizing
the answers. For example, Fried [3] grouped the 15 arguments about the history of
mathematics given by Fauvel [1] around a total of three themes: (1) making math-
ematics more human; (2) making mathematics more interesting, understandable,
and approachable; (3) to allow a deeper insight into problems and problem-solving.

Jankvist’s [5] article, written on this topic and quoted extensively, seeks to cat-
egorize the used methods (the how) and, separated from them, the arguments for
use (the why). He classified the methods into three categories: the illumination
approach, the modules approach, and the history-based approach. The first tries
to spice up mathematics teaching mostly with isolated stories and anecdotes. This
includes pictures that appear in the margins of textbooks as well as stories at the
beginning or end of the chapters. The second category includes, for example, the
study of a problem based on a topic in the history of mathematics and thus the way
in which numeral systems are introduced in this paper. The third category means
the presentation of the development, progression of the mathematical material cov-
ering a given part of the curriculum. Jankvist divided the answers to the question
why into two categories. On the one hand, motivational factors that aid teaching
and learning, on the other hand, tools that display the “soul” and development of
mathematics, allowing the student not to see mathematics as a finished thing that
“descended from heaven” in its perfection, axiomatically constructed.

In the first decade after the turn of the millennium, previous doubts about the
inclusion of the history of mathematics in education also received more attention.
Several researchers point to the difficulties of teachers enthusiastic on the topic
(e.g., Fried [3]; Siu [9]), to the research methodological difficulties of such studies
(e.g., Guillemette [4]), and the need to increase the number of empirical researches
(e.g., Jankvist [6]).

In addition to increasing the amount of such empirical evidence, this paper
seeks to contribute to the continuously developing answers to the basic questions
(what and how?) of integrating the history of mathematics into public education
in the recent decades by presenting a given topic, the teaching of numeral systems
based on history, and the results of the related surveys.
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2. The circumstances of the teaching experiment and
the research question

The teaching experiment took place in Hungary, where public education is divided
into two parts: an eight-grade primary school, after which students can continue
their studies in a 3-year vocational school, a 4-year vocational grammar school
teaching vocational and general subjects, finishing by graduation, or a 4-year gram-
mar school (5-year for bilingual classes) teaching only general subjects, finishing
by graduation, preparing for higher education. In high school, a class often has a
profile of some kind, i.e., it studies the subjects related to that profile in a higher
number of hours. During the admission procedure, most secondary schools select
from the applying students on the basis of the admission points obtained on the
uniform mathematics and Hungarian aptitude test worksheet.

The teaching experiment and then the related surveys took place in a grammar
school in a big city in two consecutive school years in the ninth grade, in the first
year in three groups of different profiles, and in the second year in two groups of
the same profile.

During the experiment, the topic of numeral systems was taught to one group
based on the history of mathematics, while to the control group, by focusing only
on routine tasks, both studied for the same amount of time. This topic was not
completely unknown to any of the groups. In primary school, all students had
already learned about it in connection with the notion of sign-value and place-
value notation when writing numbers.

In the course of our research, we examined the question of whether the use of
the history of mathematics as a tool, as opposed to teaching by focusing solely on
routine tasks, helps to fix the curriculum into the long-term memory.

Accordingly, we formulated the following principles for the curriculum con-
structed for the experimental groups:

• the inclusion of the history of mathematics in the classroom serves to teach
the compulsory curriculum,

• as far as possible, the history of mathematics should be included in the teach-
ing lesson as an integral part of the curriculum and not as a separate unit (for
example, in the form of a student presentation or as mentioning interesting
facts at the end of the lesson).

Following these principles, the lessons of the experimental group were about:

E1 To introduce the topic, to raise awareness, to describe that there are peoples
(such as the Piraha of Amazon) whose language lacks the concept of numbers.
And the question was, although numbers are important, whether it matters
how we describe them?

E2 Introduction of the two characteristics of the numeral system we most com-
monly use, the decimal base and the place-value notation, by examples (see
Figure 1).
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Figure 1. Our numeral system and the Egyptian numeral system
(from the notebook of one of the students).

E3 A counterexample to one of these qualities: the ancient Egyptian numeral
system is decimal but not place-valued. After a few examples, a description
of addition and multiplication performed on integers. In the meantime, we
highlight the following two problems: in theory, infinitely many different
characters are needed to describe numbers, and sometimes a large number of
characters are needed to describe numbers that are used in everyday life. The
teacher examples presented were always followed by shorter or longer student
work, so students had to independently multiply 14 by 15 in an Egyptian
way (see Figure 1, “a mi számírásunk – our numeral system”, “egyiptomi
számírás – Egyptian numeral system”, “tízes alapú – decimal”. “helyiértékes
– place-value”).

E4 Example of the non-decimal and non-place-value numeral system: Roman
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numerals. This type of numeral system, while solving the previous two prob-
lems, raises another issue of the basic operations. Although students had
already learned Roman numerals in the lower grades of elementary school,
the number of knots and the logic of the system structure were revived.

E5 An example of the non-decimal but place-value numeral system. Noticing
that the number of characters usable here is finite, and depending on the base
number of the numeral system, a given number can be written in a longer or
shorter form. Converting back and forth between decimal and other numeral
systems having other bases. Adding in the non-decimal numeral system.

E6 Traces of numeral systems having other bases in our lives (watch, angles,
notation of numbers in foreign languages.)

During the lesson, the teacher tried to guide the students to the key points by
questions (e.g., How many characters are needed in the Egyptian numeral system
to describe the number 798? Answer: 24.) or to bring to the surface the students’
existing knowledge on this topic. (Are they familiar with any numeral system that
is neither decimal nor place-value? Answer: Roman numeral system.) Because of
the time constraints of the lessons, the teacher did not make the students rediscover
the customs of other ages but introduced them (e.g., How did Egyptians multiply
two integers?), thus maintaining their traditional “source of knowledge” role. The
teacher in the control group viewed their own role as a teacher similarly.

In contrast, the lesson of the control group consisted of the following main
sections.

K1 The two basic features of our numeral system are decimal and place-value,
recalling the concepts learned in primary school (place value, sign value).
(K1=E2)

K2 Examining what if the place values are not the powers of 10 but those of
other positive integers other than 1. Converting back and forth between
decimal and numeral systems having other bases. (See Figure 2) (This part
corresponded to E5.)

Figure 2. Converting between numeral system (from the notebook
of a student from the control group).
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3. Findings

The two teaching methods, followed by the related survey, were conducted in three
groups with different profiles in the first year. Two of them had an experimental
role, integrating historical elements, and the third was a control group. Among the
experimental groups, group A consisted of students with a similar profile and similar
ability to the control group; the other experimental group B consisted of students
significantly different from the control group, with a weaker ability in mathematics.
The latter group studied mathematics in French as a French bilingual group. The
difference in their math skills is indicated by the average score on the high school
admission. The data for the groups are given in Table 1. The lessons were held in
a good atmosphere in all three groups; most students understood the curriculum,
and no students indicated a problem during the homework check of the next lesson.

Table 1. Groups in the first experiment.

Experimental
group A

Experimental
group B

Control
group

Orientation
of the group Physics French bilingual Biology-Physics-

Chemistry
Number of students
in the group 14 13 14

Number of
lessons in Math 4 per week 3 per week 4 per week

Average points on
high school Math admission
(50 points maximum)

37.00 31.00 35.56

The final tests written two to three weeks after the experimental lesson in-
cluded a conversion task between numeral systems (“in both directions”) for all
three groups. In the case of these tests, there was no significant difference regard-
ing the results of the students, at least 80% of the students in all three groups
solved the task correctly.

However, two months after the experimental classes (including the two-week
winter break in the meantime), at the beginning of a math class, students from
all three groups were “unexpectedly” asked to answer the following two questions
anonymously:

1. Write the five-digit form of 473.

2. Write the decimal form of 4316.

The following statistics were compiled on the students’ answers to the two tasks
(Table 2). For Question 1, students in both experimental groups had more than
20% higher rates of correct answers than students in the control group. In Ques-
tion 2, the proportion of correct respondents was 50% higher among the students
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of group A and 25% higher among the students of group B than in the control
group.

Table 2. Summary of the students’ answers (first experiment).

Experimental
group A

Experimental
group B

Control
group

From base 10
to base 5

Number of
correct answers 13 12 10

Number of
incorrect answers 1 1 4

From base 6
to base 10

Number of
correct answers 11 6 3

Number of
incorrect answers 3 7 11

In the second school year, we repeated the above experiment in groups with the
same profile as the first year’s control group (biology-chemistry-physics). In the
experimental group, the average of the results of the 8th-grade math ability test
was 35.06, while in the control group, it was 36.53, i.e., there was no significant
difference between the math skills of the two groups.

As in the previous year, there was no problem either in the lessons or with the
homework: More than 80% of the students solved the conversion tasks in a final
survey written two weeks after the experimental lesson. As in the previous school
year, both groups were “unexpectedly” given the next task two months after the
experimental lesson at the beginning of a math class, which had to be answered
anonymously:

1. Write the binary form of 345.

2. Write the decimal form of 12213.

The results of the two groups are summarized in Table 3. Question 1 had a
35%, Question 2 has 55% higher rate of correct answers among students in the
experimental group than in the control group.

Table 3. Summary of the students’ answers (second experiment).

Experimental group Control group

From base 10
to base 2

Number of
correct answers 12 5

Number of
incorrect answers 5 9

From base 3
to base 10

Number of
correct answers 13 3

Number of
incorrect answers 4 11
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The percentage distribution of the summary of the responses of the students
participating in the experiment during the two academic years two months after
the lesson is shown in Table 4 by task type.

Table 4. Summary of the responses of the students participating
in the two experiments.

Experimental groups
(44 students)

Control group
(28 students)

Converting
from decimal
numeral system

Proportion of
correct answers 84.10% 53.57%

Proportion of
incorrect answers 15.90% 46.43%

Converting
to decimal
numeral system

Proportion of
correct answers 68.18% 21.43%

Proportion of
incorrect answers 31.82% 78.57%

4. Conclusion

At the beginning of our research, we sought to answer the question of whether
teaching numeral systems in a historical framework is more helpful to fix informa-
tion into the long-term memory than teaching focusing solely on solving routine
tasks.

In response, we can state that although the control and experimental groups
spent the same amount of time studying numeral systems in both school years,
students who did not merely practice the same type of task again and again but
learned about the topic more comprehensively, embedded in history, the tests writ-
ten two months later definitely showed better results. It is in line with Revuz’s
idea, who stated as early as in the 1970s, “In the initial period of teaching, the most
serious, almost irreparable damage can be done by replacing the true understanding
with the mechanical practice of what has been learned”. ([8], p. 14.)

Examining the reasons, the question should be asked: what role did the history
of mathematics play in the classes of the experimental groups?

• It provided a framework for the lesson that roughly followed the stations
through which humanity came to the decimal, place-value numeral system
used today.

• It provided a logical transition between the different numeral systems (e.g.,
the Roman numeral system addresses the problem of the number of characters
required to describe numbers in the Egyptian numeral system).

• Mobilized the student’s pre-existing knowledge (e.g., Roman numerals).
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• In several cases, it gave a counterexample (e.g., decimal but not place-value
system).

• It made numeral systems interesting and related to everyday life, while the
other group mastered routine procedures that were impractical to life.

• It highlighted the fact that it is not the base number but the place-value
notation that is important when performing basic operations (e.g., in the
Egyptian decimal numeral system addition was completely different, but in
the three-based place-value notation the principle of written addition does
not differ from the decimal system), so this is the key concept of this topic.
This was also manifested in the fact that during the surveys, the place value
chart appears in the work of the students of the experimental groups, even in
the case of the incorrect respondents (as shown in Figure 3 of the notebook
of one of the students of the second-year experimental group).

Figure 3. Appearance of the place-value chart in the incorrect
answer.

The occurrence of all these may explain why the students of the experimental
groups were able to recall what they had learned even after two months.
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Abstract
The paper presents original methods of calculating integrals of selected

trigonometric rational functions.
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1. Introduction

The aim of this work is to present an “original” methods of determining the integrals
of the form ∫︁

𝑝 sin2 𝑥+ 𝑞 sin𝑥 cos𝑥+ 𝑟 cos2 𝑥(︀
𝑎 sin𝑥+ 𝑏 cos𝑥

)︀𝑛 d𝑥, (1.1)

where 𝑝, 𝑞, 𝑟, 𝑎, 𝑏 ∈ R, 𝑛 ∈ N. Presented methods are useful for manual as well as
machine symbolic calculations.

∗Marcin Jochlik is a first-year undergraduate student.
†Adrian Smuda is a first-year graduate student.
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In the era of omnipotent and, above all, commonly available symbolic calcu-
lations, including integration, this article may seem archaic. But the reason for
creating this paper is neither complicated nor artificial. The article was initiated
during classes in mathematical analysis in the second semester of undergraduate
studies in mathematics, which were led by the third author in the March of this
year. The way from a simple task – a special case of the integral described by (1.1)
– to creative and gripping generalizations turned out to be easy and very fast. It
resulted in the presented article that is an effect of pure creative passion.

Let us emphasize that from the very beginning we were looking for alternative
sources of the presented methods and computational techniques [1–5]. Only in [5]
a solution was found, rather a run-of-the-mill solution, for a certain special case
of integral (1.1). Besides, we did not come across any at least promising traces
of similar or comparable methods. Therefore, we can confidently say that the
proving methods and technical tricks presented in the paper are original. It is
worth pointing out that the obtained formulae, e.g. (5.10) and (5.12), may be used
in both numerical and symbolic applications.

Notation. We will denote by 𝛼 × (𝑘) ± 𝛽 × (𝑙), over all numbered identities (𝑘),
(𝑙) in this paper, the following operation: identity (𝑘) is multiplied by 𝛼, identity
(𝑙) is multiplied by 𝛽 and then the obtained identities are summed (substracted,
respectively).

First, we describe the method for the simple case of 𝑛 = 1 basing on a 3-step
reduction in computation.

2. The first step of the method

We reduce the numerator in (1.1) to

𝑝 sin2 𝑥+ 𝑞 sin𝑥 cos𝑥+ 𝑟 cos2 𝑥 = 𝛼𝑓(𝑥) + 𝛽𝑔(𝑥) + 𝛾ℎ(𝑥), (2.1)

where
𝑓(𝑥) =

(︀
𝑀(𝑥)

)︀2
, 𝑔(𝑥) =𝑀(𝑥)𝑀 ′(𝑥), ℎ(𝑥) = sin𝑥 cos𝑥,

and 𝑀(𝑥) denotes denominator in (1.1) in the case 𝑛 = 1, i.e.

𝑀(𝑥) := 𝑎 sin𝑥+ 𝑏 cos𝑥. (2.2)

By solving the appropriate system of equations (created by comparing the coeffi-
cients at cos2 𝑥, sin2 𝑥 and sin𝑥 cos𝑥)

⎧
⎪⎨
⎪⎩

𝛼𝑏2 + 𝛽𝑎𝑏 = 𝑟,

𝛼𝑎2 − 𝛽𝑎𝑏 = 𝑝,

(𝑎2 − 𝑏2)𝛽 + 2𝑎𝑏𝛼+ 𝛾 = 𝑞,

we get

𝛼 =
𝑝+ 𝑟

𝑎2 + 𝑏2
, 𝛽 =

−𝑏2𝑝+ 𝑎2𝑟

𝑎𝑏(𝑎2 + 𝑏2)
, 𝛾 = 𝑞 − 𝑏

𝑎
𝑝− 𝑎

𝑏
𝑟.
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Then integral (1.1) takes the form

∫︁
𝑝 sin2 𝑥+ 𝑞 sin𝑥 cos𝑥+ 𝑟 cos2 𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
d𝑥

= 𝛼

∫︁
𝑀(𝑥) d𝑥+ 𝛽

∫︁
𝑀 ′(𝑥) d𝑥+ 𝛾

∫︁
sin𝑥 cos𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
d𝑥.

We only need to calculate the integral
∫︁

sin𝑥 cos𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
d𝑥.

3. The second step of the method

Integrating by parts in two ways, we find
∫︁

sin𝑥 cos𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
d𝑥 =

∫︁
(sin𝑥)′

sin𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
d𝑥

=
sin2 𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
−
∫︁

𝑏 sin𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)2
d𝑥 (3.1)

and
∫︁

sin𝑥 cos𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
d𝑥 =

∫︁
(− cos𝑥)′

cos𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
d𝑥

=
− cos2 𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
−
∫︁

𝑎 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)2
d𝑥. (3.2)

Moreover, by 𝑎2

𝑎2+𝑏2 × (3.1) + 𝑏2

𝑎2+𝑏2 × (3.2), we obtain

∫︁
sin𝑥 cos𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
d𝑥

=
1

𝑎2 + 𝑏2
· 𝑎

2 sin2 𝑥− 𝑏2 cos2 𝑥
𝑎 sin𝑥+ 𝑏 cos𝑥

− 𝑎𝑏

𝑎2 + 𝑏2

∫︁
𝑎 sin𝑥+ 𝑏 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)2
d𝑥

=
1

𝑎2 + 𝑏2
(𝑎 sin𝑥− 𝑏 cos𝑥)− 𝑎𝑏

𝑎2 + 𝑏2

∫︁
d𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
. (3.3)

Moreover, from (3.1) and (3.2), we get

∫︁
sin𝑥 cos𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
d𝑥 =

𝑣 sin2 𝑥− 𝑢 cos2 𝑥
𝑎 sin𝑥+ 𝑏 cos𝑥

−
∫︁

𝑎𝑢 cos𝑥+ 𝑏𝑣 sin𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)2
d𝑥 (3.4)

whenever 𝑢, 𝑣 ∈ R, 𝑢+ 𝑣 = 1.
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4. The third step of the method (supplementary re-
minder)

We still have to determine the integral
∫︀

d𝑥
𝑎 sin 𝑥+𝑏 cos 𝑥 . We calculate it as follows

∫︁
d𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
=

∫︁
d𝑥√

𝑎2 + 𝑏2 sin(𝑥+ 𝜙)
=

⃒⃒
⃒⃒
⃒⃒
⃒

where
cos𝜙 = 𝑎√

𝑎2+𝑏2

sin𝜙 = 𝑏√
𝑎2+𝑏2

⃒⃒
⃒⃒
⃒⃒
⃒

=
1√

𝑎2 + 𝑏2

∫︁
d𝑥

2 cos2 𝑥+𝜙
2 tan 𝑥+𝜙

2

=
1√

𝑎2 + 𝑏2
ln

⃒⃒
⃒⃒tan 𝑥+ 𝜙

2

⃒⃒
⃒⃒+ 𝐶,

where, after applying the identity

tan
𝑥+ 𝜙

2
=

cos 𝜙
2 sin 𝑥

2 + sin 𝜙
2 cos 𝑥

2

cos 𝜙
2 cos 𝑥

2 − sin 𝜙
2 sin 𝑥

2

=
2 cos2 𝜙

2 sin 𝑥
2 + 2 cos 𝜙

2 sin 𝜙
2 cos 𝑥

2

2 cos2 𝜙
2 cos 𝑥

2 − 2 cos 𝜙
2 sin 𝜙

2 sin 𝑥
2

=
(1 + cos𝜙) sin 𝑥

2 + sin𝜙 cos 𝑥
2

(1 + cos𝜙) cos 𝑥
2 − sin𝜙 sin 𝑥

2

=

(︀
𝑎+
√
𝑎2 + 𝑏2

)︀
sin 𝑥

2 + 𝑏 cos 𝑥
2(︀

𝑎+
√
𝑎2 + 𝑏2

)︀
cos 𝑥

2 − 𝑏 sin 𝑥
2

,

we get

∫︁
d𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
=

1√
𝑎2 + 𝑏2

ln

⃒⃒
⃒⃒
⃒

(︀
𝑎+
√
𝑎2 + 𝑏2

)︀
sin 𝑥

2 + 𝑏 cos 𝑥
2(︀

𝑎+
√
𝑎2 + 𝑏2

)︀
cos 𝑥

2 − 𝑏 sin 𝑥
2

⃒⃒
⃒⃒
⃒+ 𝐶.

Another method of calculating the discussed integral, without using the half-angle
formula, is presented below

∫︁
d𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
=

∫︁
𝑎 sin𝑥− 𝑏 cos𝑥

𝑎2 sin2 𝑥− 𝑏2 cos2 𝑥 d𝑥

=

∫︁
𝑎 sin𝑥

𝑎2 − (𝑎2 + 𝑏2) cos2 𝑥
d𝑥+

∫︁
𝑏 cos𝑥

𝑏2 − (𝑎2 + 𝑏2) sin2 𝑥
d𝑥

=
1

2

∫︁ (︂
sin𝑥

𝑎−
√
𝑎2 + 𝑏2 cos𝑥

+
sin𝑥

𝑎+
√
𝑎2 + 𝑏2 cos𝑥

)︂
d𝑥

+
1

2

∫︁ (︂
cos𝑥

𝑏−
√
𝑎2 + 𝑏2 sin𝑥

+
cos𝑥

𝑏+
√
𝑎2 + 𝑏2 sin𝑥

)︂
d𝑥

=
1

2
√
𝑎2 + 𝑏2

(︃
ln

⃒⃒
⃒⃒
⃒
𝑎−
√
𝑎2 + 𝑏2 cos𝑥

𝑎+
√
𝑎2 + 𝑏2 cos𝑥

⃒⃒
⃒⃒
⃒+ ln

⃒⃒
⃒⃒
⃒
𝑏+
√
𝑎2 + 𝑏2 sin𝑥

𝑏−
√
𝑎2 + 𝑏2 sin𝑥

⃒⃒
⃒⃒
⃒

)︃
+ 𝐶.

At the end of this section, we present the conventional method of calculating∫︀
d𝑥

𝑎 sin 𝑥+𝑏 cos 𝑥 using the Weierstrass substitution. We consider it in a more general
case with an additional constant in the denominator.
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∫︁
d𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥+ 𝑐

=

∫︁
d𝑥

𝑎
(︀
2 sin 𝑥

2 cos 𝑥
2

)︀
+ 𝑏
(︀
cos2 𝑥

2 − sin2 𝑥
2

)︀
+ 𝑐
(︀
cos2 𝑥

2 + sin2 𝑥
2

)︀

=

∫︁
d𝑥(︀

(𝑐− 𝑏) tan2 𝑥
2 + 2𝑎 tan 𝑥

2 + 𝑏+ 𝑐
)︀
cos2 𝑥

2

=

⃒⃒
⃒⃒ substitution

𝑡 = tan 𝑥
2

⃒⃒
⃒⃒

=

∫︁
2 d𝑡

(𝑐− 𝑏)𝑡2 + 2𝑎𝑡+ 𝑏+ 𝑐
=
⃒⃒
⃒we only give
the final result

⃒⃒
⃒

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1√
𝑎2 + 𝑏2 − 𝑐2

ln

√
𝑎2 + 𝑏2 − 𝑐2 − 𝑎− (𝑐− 𝑏) tan 𝑥

2√
𝑎2 + 𝑏2 − 𝑐2 + 𝑎+ (𝑐− 𝑏) tan 𝑥

2

, when 𝑎2 + 𝑏2 > 𝑐2,

2√
𝑐2 − 𝑎2 − 𝑏2

arctan
𝑎+ (𝑐− 𝑏) tan 𝑥

2√
𝑐2 − 𝑎2 − 𝑏2

, when 𝑎2 + 𝑏2 < 𝑐2,

− 2

𝑎+ (𝑐− 𝑏) tan 𝑥
2

, when 𝑎2 + 𝑏2 = 𝑐2.

5. A generalization due to the power of the
denominator

In the case of the integrals
∫︁

sin𝑥 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
d𝑥, 𝑘 ∈ N, 𝑘 ≥ 2, (5.1)

our attempts of the finding of a generalization of formula (3.3) did not provide
desired results. Following the discussed methods, we generated only

∫︁
𝑏 sin𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)3
d𝑥 =

sin2 𝑥

2(𝑎 sin𝑥+ 𝑏 cos𝑥)2
+ 𝐶, (5.2)

∫︁
𝑎 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)3
d𝑥 =

− cos2 𝑥

2(𝑎 sin𝑥+ 𝑏 cos𝑥)2
+ 𝐶. (5.3)

Hence, by 𝑎
𝑏 × (5.2) + 𝑏

𝑎 × (5.3) we get

∫︁
d𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)2
=

𝑎
𝑏 sin

2 𝑥− 𝑏
𝑎 cos2 𝑥

2(𝑎 sin𝑥+ 𝑏 cos𝑥)2
+𝐶 =

1

2𝑎𝑏
· 𝑎 sin𝑥− 𝑏 cos𝑥
𝑎 sin𝑥+ 𝑏 cos𝑥

+𝐶 (5.4)

and generally

∫︁
𝑎𝑢 cos𝑥+ 𝑏𝑣 sin𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)3
d𝑥 =

𝑣 sin2 𝑥− 𝑢 cos2 𝑥
2(𝑎 sin𝑥+ 𝑏 cos𝑥)2

+ 𝐶 (5.5)
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for any 𝑢, 𝑣 ∈ R. So, we got certain analogues of formulae (3.3) and (3.4). Formulae
(5.2) and (5.3) can be easily verified directly and they prompted us to calculate
the following derivatives (and it was a bull’s-eye)

(︂
cos2 𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘

)︂′
=
−2𝑎 cos𝑥− (𝑘 − 2) cos2 𝑥(𝑎 cos𝑥− 𝑏 sin𝑥)

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘+1
,

(︂
sin2 𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘

)︂′
=

2𝑏 sin𝑥− (𝑘 − 2) sin2 𝑥
(︀
𝑎 cos𝑥− 𝑏 sin𝑥)

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘+1
.

After integrating the above identities, we get

cos2 𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘

= −
∫︁

2𝑎 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘+1
d𝑥− (𝑘 − 2)

∫︁
cos2 𝑥

(︂ − 1
𝑘

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘

)︂′
d𝑥

(integrating by parts)

= −
∫︁

2𝑎 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘+1
d𝑥+

𝑘 − 2

𝑘
· cos2 𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘

+
2(𝑘 − 2)

𝑘

∫︁
sin𝑥 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
d𝑥,

which implies

(𝑘 − 2)

∫︁
sin𝑥 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
d𝑥

=
cos2 𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
+ 𝑘

∫︁
𝑎 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘+1
d𝑥 (5.6)

for 𝑘 ∈ N, 𝑘 ≥ 3. Similarly

sin2 𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘

=

∫︁
2𝑏 sin𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘+1
d𝑥− (𝑘 − 2)

∫︁
sin2 𝑥

(︂ − 1
𝑘

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘

)︂′
d𝑥

=

∫︁
2𝑏 sin𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘+1
d𝑥+

𝑘 − 2

𝑘
· sin2 𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘

− 2(𝑘 − 2)

𝑘

∫︁
sin𝑥 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
d𝑥,

which implies

(𝑘 − 2)

∫︁
sin𝑥 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
d𝑥
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=
− sin2 𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
+ 𝑘

∫︁
𝑏 sin𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘+1
d𝑥 (5.7)

for 𝑘 ∈ N, 𝑘 ≥ 3. Additionally, by 𝑏2

𝑎2+𝑏2 × (5.6) + 𝑎2

𝑎2+𝑏2 × (5.7), we obtain

(𝑘 − 2)

∫︁
sin𝑥 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
d𝑥 =

1

𝑎2 + 𝑏2
· 𝑏 cos𝑥− 𝑎 sin𝑥
(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘−1

+
𝑎𝑏𝑘

𝑎2 + 𝑏2

∫︁
1

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
d𝑥 (5.8)

for 𝑘 ∈ N, 𝑘 ≥ 3. Moreover, by 𝑢× (5.6) + 𝑣 × (5.7) we get

(𝑘 − 2)

∫︁
sin𝑥 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
𝑑𝑥 =

𝑢 cos2 𝑥− 𝑣 sin2 𝑥
(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘

+ 𝑘

∫︁
𝑎𝑢 cos𝑥+ 𝑏𝑣 sin𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘+1
𝑑𝑥 (5.9)

whenever 𝑢, 𝑣 ∈ R, 𝑢+𝑣 = 1, and 𝑘 ∈ N, 𝑘 ≥ 3. For 𝑘 = 1, from (5.8) and (5.9), we
obtain (3.3) and (3.4), respectively. Furthermore, for any 𝑘 ∈ N, 𝑘 ≥ 3, formulae
(5.8) and (5.9) are generalizations of formulae (3.3) and (3.4), respectively, for any
𝑘 ∈ N, 𝑘 ≥ 3. Let us recall that the case 𝑘 = 2 is not covered by these formulae and
it is described by identities (5.4) and (5.5) - we can obtain them also from (5.8) and
(5.9) after substitution 𝑘 = 2. In this way, we also obtain a solution to problem
(5.1), previously unsuccessfully investigated with the method from Section 3.

Corollary 5.1. Suppose 𝑎𝑏 > 0 and let 𝑥0 ∈
(︀
−𝜋

2 , 0
)︀

be such that tan𝑥0 = − 𝑏
𝑎 .

Then for each 𝜙 ∈
(︀
0, 𝜋2

)︀
, there is 𝑥(𝜙) ∈ (𝑥0, 0) that satisfies the condition

0∫︁

𝑥(𝜙)

sin𝑥 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
d𝑥 = −

𝜙∫︁

0

sin𝑥 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
d𝑥.

Hence, based on formula (5.8), we get the formulae

𝜙∫︁

𝑥(𝜙)

d𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
=

1

𝑘
· 1
𝑎𝑏
· 𝑎 sin𝑥− 𝑏 cos𝑥
(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘−1

⃒⃒
⃒⃒
⃒

𝜙

𝑥(𝜙)

,

𝜙∫︁

𝑥(𝜙)

𝑎𝑢 cos𝑥+ 𝑏𝑣 sin𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘+1
d𝑥 = −1

𝑘
· 𝑢 cos

2 𝑥− 𝑣 sin2 𝑥
(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘

⃒⃒
⃒⃒
⃒

𝜙

𝑥(𝜙)

,

whenever 𝑢, 𝑣 ∈ R, 𝑢+ 𝑣 = 1, and 𝑘 ∈ N, 𝑘 ≥ 3.

Proof. Note that
sin𝑥 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
< 0
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in the interval (𝑥0, 0) and

0∫︁

𝑥0

sin𝑥 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
d𝑥 = −∞.

The function

(𝑥0, 0] ∋ 𝑥 ↦→
0∫︁

𝑥

sin 𝜏 cos 𝜏

(𝑎 sin 𝜏 + 𝑏 cos 𝜏)𝑘
d𝜏

is continuous. It remains to use the Darboux property.

Remark 5.2. In according to identity (5.8), we propose to derive a recurrent identity
for the integrals

𝐼𝑘 =

∫︁
d𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
, 𝑘 ∈ N.

So, we have

(𝑎2 + 𝑏2)𝐼𝑘 =

∫︁
(𝑎 sin𝑥+ 𝑏 cos𝑥)2 + (𝑎 cos𝑥− 𝑏 sin𝑥)2

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘
d𝑥

= 𝐼𝑘−2 +

∫︁
(𝑎 cos𝑥− 𝑏 sin𝑥) ·

(︃
− 1

𝑘−1

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘−1

)︃′

d𝑥

= 𝐼𝑘−2 +
1

𝑘 − 1
· 𝑏 sin𝑥− 𝑎 cos𝑥
(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘−1

− 1

𝑘 − 1
𝐼𝑘−2

=
𝑘 − 2

𝑘 − 1
𝐼𝑘−2 +

1

𝑘 − 1
· 𝑏 sin𝑥− 𝑎 cos𝑥
(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑘−1

. (5.10)

Hence, for example, by (5.4) we obtain

3(𝑎2 + 𝑏2)𝐼4 =
1

𝑎𝑏
· 𝑎 sin𝑥− 𝑏 cos𝑥
𝑎 sin𝑥+ 𝑏 cos𝑥

+
𝑏 sin𝑥− 𝑎 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)3
+ 𝐶.

Remark 5.3. In according to identities (5.8) and (5.4), it is worth pointing out that
∫︁

sin𝑥 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)2
d𝑥

=
𝑎2 − 𝑏2

(𝑎2 + 𝑏2)2
ln |𝑎 sin𝑥+ 𝑏 cos |

+
𝑏

𝑎2 + 𝑏2
· cos𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
+

2𝑎𝑏𝑥

(𝑎2 + 𝑏2)2
+ 𝐶, (5.11)

where the calculations were done using the following decomposition in an ingenious
way

∫︁
sin𝑥 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)2
d𝑥 =

∫︁
tan𝑥

(𝑎 tan𝑥+ 𝑏)2(tan2 𝑥+ 1)
d(tan𝑥)
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(where 𝑢 = tan𝑥)

=

∫︁
𝑢

(𝑎𝑢+ 𝑏)2(𝑢2 + 1)
d𝑢 =

∫︁ (︂
𝛼

𝑎𝑢+ 𝑏
+

𝛽

(𝑎𝑢+ 𝑏)2
+
𝛾𝑢+ 𝛿

𝑢2 + 1

)︂
d𝑢

(after an observation of the obtained integrals)

= 𝐴 ln |𝑎 sin𝑥+ 𝑏 cos𝑥|+𝐵
cos𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
+𝐷𝑥+ 𝐶

(we have only 3 unknown constants 𝐴,𝐵,𝐷), which, after differentiation, easily
implies formula (5.11). Therefore, from (5.4) and (5.11) results that a simple
functional identity, as for example formula (5.8), between the integrals

∫︁
d𝑥

(𝑎 sin𝑥+ 𝑏 cos)2
and

∫︁
sin𝑥 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos)2
d𝑥

does not exist. But there exists such a connection between the discussed integral
∫︁

sin𝑥 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)2
d𝑥

and the other surprising integral
∫︁
𝑎 cos𝑥+ 𝑏 sin𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
d𝑥.

Based on the identity

(𝑏2 + 𝑎2) sin𝑥 cos𝑥+ 𝑎𝑏 = (𝑏2 + 𝑎2) sin𝑥 cos𝑥+ 𝑎𝑏(sin2 𝑥+ cos2 𝑥)

= 𝑏 sin𝑥(𝑏 cos𝑥+ 𝑎 sin𝑥) + 𝑎 cos𝑥(𝑎 sin𝑥+ 𝑏 cos𝑥)

= (𝑎 sin𝑥+ 𝑏 cos𝑥)(𝑎 cos𝑥+ 𝑏 sin𝑥)

we get
∫︁

sin𝑥 cos𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)2
d𝑥

=
1

𝑎2 + 𝑏2

∫︁
(𝑏2 + 𝑎2) sin𝑥 cos𝑥+ 𝑎𝑏

(𝑎 sin𝑥+ 𝑏 cos𝑥)2
d𝑥− 𝑎𝑏

𝑎2 + 𝑏2

∫︁
d𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)2

=
1

𝑎2 + 𝑏2

∫︁
𝑎 cos𝑥+ 𝑏 sin𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
d𝑥− 𝑎𝑏

𝑎2 + 𝑏2

∫︁
d𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)2

(5.4)
=

1

𝑎2 + 𝑏2

∫︁
𝑎 cos𝑥+ 𝑏 sin𝑥

𝑎 sin𝑥+ 𝑏 cos𝑥
d𝑥− 1

2(𝑎2 + 𝑏2)
· 𝑎 sin𝑥− 𝑏 cos𝑥
𝑎 sin𝑥+ 𝑏 cos𝑥

.

Remark 5.4. Using formulae (2.1), (5.7) and (5.9) we obtain a generalization of the
identities presented in Section 2
∫︁
𝑝 sin2 𝑥+ 𝑞 sin𝑥 cos𝑥+ 𝑟 cos2 𝑥

(𝑎 sin𝑥+ 𝑏 cos𝑥)𝑛
d𝑥
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𝑛≥2
= 𝛼𝐼𝑛−2 + 𝛽

∫︁
𝑀 ′(𝑥)
𝑀𝑛(𝑥)

d𝑥+ 𝛾

∫︁
sin𝑥 cos𝑥

𝑀𝑛(𝑥)
d𝑥

𝑛≥3
= 𝛼𝐼𝑛−2 −

𝛽

𝑛− 1
· 1

𝑀𝑛−1(𝑥)
+

𝛾(𝑏 cos𝑥− 𝑎 sin𝑥)
(𝑛− 2)(𝑎2 + 𝑏2)𝑀𝑛−1(𝑥)

+
𝑎𝑏𝑛𝛾

(𝑛− 2)(𝑎2 + 𝑏2)
𝐼𝑛

=

(︂
𝛼+

𝑎𝑏𝑛𝛾

(𝑛− 1)(𝑎2 + 𝑏2)2

)︂
𝐼𝑛−2 +

(︂
− 𝛽

𝑛− 1
+

𝛾

(𝑛− 2)(𝑎2 + 𝑏2)
(𝑏 cos𝑥− 𝑎 sin𝑥)

+
𝑎𝑏𝑛𝛾

(𝑛− 2)(𝑛− 1)(𝑎2 + 𝑏2)2
(𝑏 sin𝑥− 𝑎 cos𝑥)

)︂
1

𝑀𝑛−1(𝑥)
, (5.12)

where 𝑀(𝑥) is defined in (2.2) and 𝐼𝑛 is discussed in Remark 5.2.
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Abstract

Recently more and more ethical issues arise in several sciences. We think
that didactics of mathematics is not an exception. In this paper we investigate
the question whether we can allow from mathematical precision in talent
care. We suggest that these questions origin even from the formulation of a
problem. The formulation of three well-known math problem is analized.
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1. Ethical questions in science

“Mathematics is useful because we can find things to do with it. With this utility
ethical issues arise relating to how mathematics impacts the world. (. . . ) We study
one of the most abstract areas of human knowledge: mathematics, the pursuit of
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absolute truth. It has unquestionable authority. Indeed, it is clear that mathemat-
ics is one of the most useful and refined tools ever developed. When something is
useful, however, it can often also be harmful; this can be either through deliberate
misuse or ignorance.” [3] Although the system of mathematical thinking is a closed
system, the results of mathematics are widely used in real life. Usually, a math-
ematician cannot be held responsible for the applications of their mathematical
findings as those theorems are purely theoretical and have a well-defined system
of conditions. At the same time in real life the same findings are often applied
without checking the conditions. Still, these “uncontrolled” deductions are usually
true. The opposite case is also possible. For example, in modeling problems, it
is almost never possible to give a precise model to the task, and very often it is
also impossible to translate the practical model to a mathematical one. Apply-
ing mathematical theorems without due prudence (e.g. leaving out conditions) can
cause serious problems. Take the global financial crisis of 2007–2008 as an example,
as so did [3]. The causes of the GFC are complex; however, there is consensus that
mathematical work played a vital role. Unfortunately, the mathematical model
and pricing of Collateralised Debt Obligations were based on several assumptions
some of which did not hold. In the end, it led to the write-down of $700 billion of
CDO value from 2007 to 2008. The rest is history.

It is worth considering whether a mathematician should care about the aim of
their mathematical task, i.e. what will their results be used for. Should they solve
a problem if they know that the solution can be used to cause harm? It is not a
specialty of mathematics; similar dilemmas appear in other branches of science. A
classic example is that of the physicists taking part in the Manhattan plan. Their
findings are revolutionary as scientific innovations, still, their work leads to the
creation of a weapon capable of destroying humanity. Similar ethical dilemmas
arose concerning the work of Ede Teller. Let us quote the famous scientist himself
about the issue: “The scientist is not responsible for the laws of nature. It is his
job to find out how these laws operate. It is the scientist’s job to find the ways in
which these laws can serve the human will. However, it is not the scientist’s job to
determine whether a hydrogen bomb should be constructed, whether it should be
used, or how it should be used.” He reinforces this point of view later [6] stating
that the scientist’s responsibility extends to work and to explain their findings
along with the possible consequences – and no further.

Are any of these ethical issues relevant for a pure mathematician, say, a num-
ber theorist working in academia? Suppose they develop an algorithm for fast
factorization. Should they publish it? If so, when, where, and how? If not, what
should they do? Should they have thought about it beforehand? – asks Chiodo
and Clifton [3]. Based on interviews, the typical answer would be that they would
publish it immediately as they have the right to do so. But the consequences would
be problematic – for instance, the breaking of RSA encryption in a chaotic manner
could result a collapse of internet commerce and the global economy.

The following question also arises: Are there ethical dilemmas concerning the
teaching of mathematics? Let us give some examples. Only a small part of the wide
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range and great depth of known mathematical ideas can be shown during maths
lessons. The yet limited competencies of students often make giving clear defini-
tions and exact proofs impossible. Instead of proofs, it is not rare to demonstrate
only trains of thoughts. When teaching the definition of a prime number in high
school, we give a definition that is mathematically incorrect. It is an important
question whether pupils are deceived when they are given incomplete definitions
or is they are given trains of thoughts instead of proofs. Do we do them wrong
by giving a false image of mathematics and mathematical thinking? Luckily this
question is already well-handled in the education of the methodology of mathe-
matics and there is a classical saying of Éva Vásárhelyi addressing this issue: “We
have to grant some mathematical inaccuracies in favour of comprehensibility due
to the level of proficiency of the students” [5]. We can see many occurrences of this
kind of inaccuracies in primary and secondary level mathematics education, mainly
when working on developing concepts. As a concept develops, in time, it becomes
clearer. For example, when introducing exponential functions, understanding pre-
cisely why they make sense is out of reach for the students. Then, most of the
concepts which were initially sloppy and loose, become exact by the time of final
exams. These initial inaccuracies or gracious lies are serious errors from the aspect
of mathematics but they are unavoidable because of the spiral structure of the cur-
ricula (key concepts are presented repeatedly throughout the curriculum, but with
deepening layers of complexity, or in different applications) [2]. However, spiral
curricula are well-reasonable from a developmental cognitive psychological point of
view (e.g. the information is reinforced and solidified each time the student revisits
the subject matter) [2].

Probably the most obvious ethical dilemma of teaching mathematics is what
should appear in the National Core Curriculum (NCC), the law which regulates the
official learning material in Hungary [26]. Thus, the first question that should arise
in those who are preparing the NCC is which topics and competencies to include
and whether these topics and competencies reflect the mathematical education that
we want to mean by mathematical education. A row of ethical questions can be
posed concerning the transitions from NCC to the framework curricula, then the
local curricula and the syllabus, and at last the practice of teachers. This latter
one includes an already debated issue, namely that teachers tend to teach students
towards the maximum percentage on the school-leaving exam by endless mechanical
practicing rather than fulfilling the aims set in NCC [11].

2. Ethical dilemmas in talent care

In this paper, we focus on ethical issues concerning mathematical talent care, which
has long traditions in Hungary. One of the first mathematical journals was estab-
lished and published in Hungary: Arany Dániel founded the “Középiskolai Matem-
atikai Lapok” in 1893, the first issue was published in 1894. The journal has
been functioning since. In the aspect of mathematics, Hungary belongs to the
elite of the world. This fact is strongly related to talent care. Children partici-
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pating in talent care programs or optional math classes (e.g. after-school classes)
face the concept (and challenge) of giving arguments and proofs much more than
their peers. As they need to give more and more accurate proofs (on talent care
lessons and competitions), they reach a deeper level of understanding in mathe-
matics. The mathematical development of students is largely affected by problems
and problem compilations posed on talent care classes. Some well-known examples
of problem books are: Szakköri feladatok matematikából 7–8. osztály (Problems
for special math classes grade 7-8.) [20], Szakköri füzetek – Számelmélet (Opta-
tive math booklets – Number Theory) [21], Prímszámok (Prime numbers) [19],
Négyzetszámok (Perfect squares) [18], Kombinatorika (Combinatorics) [16]. These
booklets are well-known and used on paper or online by many students interested in
mathematics. What ethical questions can be posed concerning talent care? Can we
grant mathematical inaccuracies in favour of comprehensibility even in talent care?
Can we correct inaccuracies and gracious lies that have occurred in normal mathe-
matics class? How can we communicate so that neither knowledge nor authority is
hurt? We have picked one of these issues and have transformed it to the following
research question: In contrast to the inaccuracy that is accepted and often nec-
essary in regular mathematics classes, can we give an inaccurate, mathematically
incorrect answer or solution to a question or problem in talent care? Some prob-
lems can be considered typical in talent care as they appear often. We deal with
three branches of problems which we will name “balance scale-” “statements-” and
“camel-” problems. After analyzing the problems, we will also discuss the ethical
questions arising concerning them.

3. Problems in talent care

In this section, we show three families of problems appearing in talent care. Two
of these problems are of current interest among mathematicians, too. We try to
analyze to what extent these problems can and should be posed to high-school
students.

3.1. Balance scale-problems
Consider the following problem: Given 9 coins, one of them fake and lighter, find
the fake coin in two weighings on a balance scale.[17]

The official solution the booklet shows that it can be done with three weighings,
and does not show that two weighings are not enough. The following problem is
handled similarly:

Which of the 8 coins is the fake one? There are 8 coins; one of them is fake.
All real coins weigh the same. The fake coin is either lighter or heavier than the
real coins. Find the fake coin and figure out whether it is heavier or lighter than
the others, in the minimum number of weighings on a balance scale. [17]

One might think that the balance-scale problems are traditional and ancient.
Yet, this type of problems is quite novel. Surprisingly, its first publication was
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by E. D. Schell in the January 1945 issue of the American Mathematical Monthly
[22]. The solution for 𝑛 coins can be found for example in [24], a rather popular
high-school problem book. The problem can be posed for several fake coins, and
the complete solution is not known. The best known construction for 𝑛 coins and
unknown many fake coins has 7/11𝑛 many weighings [12] and the best known lower
bound is [13] log3(2𝑛 + 2𝑛−5 + 2𝑛−6 + 2𝑛−7 + 2𝑛−9 + 2𝑛−10 + 2𝑛−12 + 2𝑛−13). We
can see from this formula that the general solution of this problem does not only
look hard but is not even known. We might still think that for a small, given
amount of coins we could pose the problem for students and after they tried cases
and experimented, it is easier to show them that the lower and upper bounds are
equal. Unfortunately, this is not a viable option either. For example, 11 and 2 are
small numbers, so based on the assumption above, finding 2 fake coins out of 11
would be a problem suitable for secondary school students. In this problem, the
number of the necessary weighings is 5 which was found out in 2015 and the proof
uses the ternary Virtakallio–Golay code [4].

3.2. Camel-problems
We have camels and water and we want to cross a desert. The camels can carry a
given amount of water and they can pass water to each other. They also consume
water continually. The first question is if we have a given number of camels and
all of them need to return to the starting point, except one. Then how far this
exceptional camel can go. The second question is how many camels do we need if
we want to get to a given distance. The following two analogous problems can be
found in [17].

Peregrination in the desert. Ali ben Yusuf works far from his hometown, with
a hundred-kilometer-wide desert between his workplace and his parents’ house. He
wants to visit his parents and starts planning the trip. It turns out that one can
travel 20 km a day and the maximum weight to carry is three days’ food and water.
For simplicity, let us suppose that he can make dumps only after a whole day-route.
How many days does he need to cross the desert?

The exact solution of the camel-problems is not known. The problems about
desert-crossing were first introduced in 1947 [7]. The second version of the camel
problem is formulated with jeeps instead of Yusuf, and is known under the name
of the Jeep-problem. An analysis can be found in the article Gale’s Round-Trip
Jeep Problem [10]. The paper contains the proof of the following theorems. Let
us suppose that we have enough fuel for 𝑛 days. Then the maximum distance
reachable with one jeep is 𝐷1 = 1+ 1

3 + 1
5 + · · ·+ 1

2𝑛−1 . Numerous versions of the
jeep problem were solved [1, 8, 9]. In each work it is in common that both the
readers and the authors themselves have a feeling of deficiency. Although every
paper solves some problems, none of them reaches the goal it aims at.
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3.3. Problems about statements
Two hundred statements. “On one side of a sheet of paper the following list
of statements can be found:

1. At least one of the statements on this paper is true.
2. At least two of the statements on this paper are true.
3. At least three of the statements on this paper are true.

. . .
99. At least ninety-nine of the statements on this paper are true.

100. At least a hundred of the statements on this paper are true.

If we turn the sheet over, the following can be read:
1. At least one of the statements on this paper is false.
2. At least two of the statements on this paper are false.
3. At least three of the statements on this paper are false.

. . .
99. At least ninety-nine of the statements on this paper are false.

100. At least a hundred of the statements on this paper are false.

The text is continuous, we have left out some sentences (marked by three dots).
How many true statements are there on the paper?” [17]

It is easy to ascertain that all hundred statements on the first side of the paper
are true and on the second side statements 1–50 are true and statements 51–100
are false. Then the answer is that there are one hundred and fifty true statements
on the paper.

Eight statements. “The following statements can be read on a paper:
1. At least one of the statements on this paper is false.
2. At least two of the statements on this paper are false.
3. At least three of the statements on this paper are false.
4. At least four of the statements on this paper are false.
5. At least five of the statements on this paper are false.
6. At least six of the statements on this paper are false.
7. At least seven of the statements on this paper are false.
8. . . .

Unfortunately, the eighth statement is illegible. Is statement eight true or false?”
[17]

Let us examine the first statement problem for three statements. Then the
statements are the following:

1. At least one of the statements on this paper is false.
2. At least two of the statements on this paper are false.
3. At least three of the statements on this paper are false.

This problem has no “solution.” – the problem itself is not even a proper problem
as it has no exact mathematical sense.
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3.4. Students’ possible dilemmas concerning the problems
The foundations of the methodology of problem-solving have been laid by György
Pólya [14]. Since then problem-solving became an autonomous branch of didactics
[23] with numerous aspects out of which we now highlight only one: Problem-
solving as a thinking activity involves re-formulation, analysis, generalization, and
extension of problems. This is how the idea of solving the three-statement-problem
can appear after solving the hundred-statement-problem. Students working on
generalizations of the problem probably see that they cannot give a solution for
any odd number of statements. At this point they might become frustrated, think
that they misunderstood something or made a mistake and start developing math-
ematical anxiety. They might also get confused not being able to solve a problem
that is similar to one that they have already solved. They might even think that
their previous solution might have been wrong.

The eight-statement problem can cause dilemmas already when interpreting the
problem. One might try to analyze what happens if they write a specific sentence
to the eighth place. In case of different sentences the conclusion can be different. If
we write “2+2 = 5 over integers.” the problem is solvable, but if we write “2+2 = 4
over integers.”, we get a contradiction – this causes confusion concerning what to
say about the original problem. If we write the sentence “John eats soup.” as the
eighth statement, the case is even more problematic: Why would seven sentences
on a paper make John eat soup?

The sample solutions presented for the balance scale-problems are not complete.
In both cases, a construction for finding the fake coin by a certain number of
weighings is presented. But why do we solve the second problem by three weighings,
not five? It is easy, the task told us to use the least possible number of measures.
But can we manage to find the fake coin with two weighings? To give an exact
solution, we need to show two things. First, we need to prove that less than three
measures are not enough and that three measures are enough. The sample solution
only shows the latter by giving a construction, it does not even mention that fewer
weighings are not enough, let alone reasoning why. We can draw the conclusion
that the sample solution does not answer fully the question – while making a
convincing impression in students of doing so. Even some of the authors of this
article were fully convinced by this impression before changing to “teacher’s view”
and, after careful analysis, noticing that there are mathematical, and what is more,
metamathematical errors here. Let us imagine how a student might think. They
know that these problems are dedicated to their age group. They try and try and
can or cannot solve the problem. Probably they get a weaker result by themselves
than the sample solution. Then they read it and see that it gives a thoughtful
construction which suggests that it is the best possible. Talented students are
likely to think that they are not entitled to judge the correctness of the book,
so if they are not convinced, they blame themselves for not understanding the
book which is written by clever professionals, therefore it must be perfect. This
false impression is reinforced by the fact that these problem compilations contain
several similar problems of one type in one block – for didactical reasons and for
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making a greater impression.
Usually, it is normal and is also in accord with the theory of the zone of proximal

development as it divides the chains of thoughts into steps, advancing from concrete
to abstract, from small to large. This structure supports that the solution of one
problem gives ideas that help to solve the next problem without taking away the
joy of challenge and while providing a good experience, improving thinking as well.

The problem is that here a partial proof of the sample solution makes the
impression of being a full one. These dilemmas and similar ones can appear in the
case of the camel-problems, too.

4. Ethical dilemmas in talent care

The dilemmas appearing concerning the balance scale, the camel and the statement
problems can be of different types: mathematical, teacher’s, author’s, and poser’s
dilemmas.

Mathematical dilemmas can be: What are the exact meanings of these prob-
lems? What are their exact solutions? Are they at all solvable? Are the conditions
unambiguous? Does the problem use mathematical terms correctly? Are we sure
that we do not try to see information in the text of the problem that actually is
not included?

Teachers’ dilemmas can be: Are we able to solve the problem? Are we able
to solve with secondary-school methods? When we read the sample solution, we
might also think that it is correct. But can we decide whether the sample solutions
are real solutions to the problem? We must be careful when posing the problem
so that we do not leave any questions unanswered or make any student frustrated.
Finding a construction in case of the camel and the balance scale problems is
already an exciting problem. Can we pose the problem in order to show a nice
construction and at the same time without giving a full solution? If we only ask
students to solve a balance scale-problem with a particular number of weighings,
then we pose the problem ethically but less elegantly. But we do not address
the inaccessible question: “is it possible with fewer measures?”. Here the chance
of students trying to generalize the problem and find the minimum number of
measures still exists. We have already seen that this requires strong mathematical
background. At this point we, as teachers, have an important task: we have to tell
our students that there exists a minimal number of weighings, but in a lot of cases
the full clarification would need a stronger mathematical background than they
have. This raises even more questions: Should we show our students the solution
even if we know that they will not understand everything? This way we make them
see that the problem is solvable. We can also tell them that similar problems are
subjects of great interest among mathematicians, too. We can mention that some
of the problems are already solved but some of them are still unsolved. We can
also give information on the specific problem we posed: who solved it and when.

Problem posers’ first dilemma is how to pose these problems: To which age
group can we show the problem? To which age group can we pose the problem so
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that we can tell the solution, too? How much experience do students have with
making proofs? Will they feel the need for proof? For those who feel, we might
cause momentary frustration (if they do not have the competence to give correct
proof). For those who do not realize the need for proof, we do not cause frustration.
Their problem can appear later on when they see other types of thoughts and think
that they are proofs. Another question is whether to pose only the easily solvable
part of the problem. Here the dilemmas are similar as in case of teachers.

Author’s dilemmas appear when someone starts to write a book or a compilation
of problems. The first “author’s dilemma” is whether I can include a problem in my
book knowing that I must provide an incorrect or incomplete solution. We can see
a lot of examples of this in books. The exact solutions of these problems cannot be
presented in books for primary or secondary school students as they require higher
mathematical knowledge. Another possibility is posing only a part of the problem.
This makes it less appealing, maybe it will not even fit into the book. But if I omit
it, I might deprive the readers of getting to know a nice, deep thought.

5. Interviews

To resolve as many dilemmas as possible, we conducted two interviews. One with
PhD students to see how they solve the problems analyzed above. Are the solutions
of these problems adequate to discuss on PhD level? Do doctoral students need
directing questions to answer their own arising questions?

For the second interview we asked Sándor Róka, the author of [16–18] and
many other problem books. He is one of the outstanding characters in Hungarian
mathematical talent care. The idea of conducting an interview with him is thrilling
and frightening at the same time. He gladly answered our questions and even
after the interview he continued to share his thoughts with us via email. These
thoughts are based on decades of experience in leading talent care courses for
students from different age groups, starting with primary school, up until university
level. Among his several widely used booklets and books, probably the most well-
known is “2000 problems from the field of elementary mathematics” [15] which is
part of the recommended literature for pre-service teachers. Sándor Róka was an
educator in teacher training for a long time at the University of Nyíregyháza, now
he focuses on talent care for upper primary and secondary students, mainly within
the Erdős Pál Talent Care Center.

5.1. Interview with PhD students
To disclose the dilemmas concerning these problems and reveal the mathematical
disorders in them we conducted an interview. The interviewees were three PhD
students, all of them having a master’s degree in mathematics education and partic-
ipating in the Didactics of Mathematics PhD-program. Besides their PhD studies
and research, they also teach mathematics at primary or secondary school. The
interview consisted of open questions in connection with five tasks. The five tasks
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were consecutive problems from [17]. The whole interview was videotaped. In the
structure of the interview, the consecutiveness of the five tasks and the fact that
each problem is built (in some sense) on the previous ones held a key role. At the
beginning of the interview the interviewees were asked to analyze the problems one
by one along with their solutions both from a student’s and a teacher’s point of
view, parallelly. We summarize the interview. If necessary, we quote participants,
they will be denoted by A (interviewer), and 𝑃1, 𝑃2, 𝑃3 the PhD students.

The first two problems in the interview were the “Ninety-nine statements” and
the “One hundred statements” problems.

Ninety-nine statements. The following statements are written on a paper:
1. Exactly one statement is true on this paper.
2. Exactly two statements are true on this paper.
3. Exactly three statements are true on this paper.

. . .
99. Exactly ninety-nine statements are true on this paper.

The text is continuous, we have left out some sentences (marked by three dots).
Find out which statements on the paper are true.

One hundred statements. The following statements are written on a paper:
1. Exactly one statement is false on this paper.
2. Exactly two statements are false on this paper.

. . .
99. Exactly ninety-nine statements are false on this paper.

100. Exactly one hundred statements are false on this paper.
The text is continuous, we have left out some sentences (marked by three dots).
Find out which statements on the paper are true.

The students solved the first two problems without spending too much time.
The third problem of the interview was the “Two hundred statements” problem
from Section 3.3.

At this problem, the answer is not so obvious. After considering the possibilities
a linear ordering of the statements was proposed.

P1: “From at least 𝑥 true statement, at least 𝑥− 1 is implied.”
Then “open problem”, doubts arose considering about what do we call a state-

ment:
P1: “It might be an open problem with multiple solutions. The definition of a

statement is: a sentence is a statement if it is clearly decidable whether or not it
is true.”

P2: „The text of the problem tells that they are statements so we cannot say
that they are not. . . or that the poser of the problem is not right.”

After thinking a short while, they proved that the statements on the first page
must be true, and they started to think about how many false statements have
to be on the second page to get an adequate number of false statements. Then
they quickly finished the analysis and the solution of the problem. The last two
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problems were “The mysterious rock” and “The eight statements” problem from
Section 3.3.

The mysterious rock. Once upon a time, two kings were fighting against each
other. When one of them won and occupied the other’s castle, he found a strange
rock in the castle yard. On the top side of the rock, there was the exact same
statement engraved 77 times: “There are at least 77 false sentences engraved on
this rock.” Next to the rock, there was a small table with the following explanation:
“On the bottom side of the rock there are as many statements as on the top side,
but these statements cannot be seen by any human.” How many true statements
are there on the rock?

In the first part of their search for a solution they reached again the question of
what we call a statement in mathematics. They started to understand that they
had not considered the exact definition of a statement.

P1: “Because of the other statements it is necessary that statement 8 is false.
This way, there will not be any contradiction in the system.”

P2: “It should be stated that the problem has a solution. Because . . . for
example, let us take “The sky is blue” as statement 8. Will “The sky is blue” be
false because it should be false based on the other statements?”

P1: “Of course not . . . We only have to decide, whether or not the 8 statement
on the paper was true.”

A: “What is the matter with the 8 statements problem? I mean, the main
problem. . . didactically and mathematically.”

P2: “Didactically the main error that it is like the task: Follow the sequence: 5,
10, 15, 20,” (meaning, that these kind of problems are not well defined, you need
to figure out, what the problem poser thought.)

A: “What is the mathematical error??”
P1: “What is a statement?”
After discussing and clarifying the notion of statement, the next dilemma arose:
P2: “Is it not the resolution that we know from the formulation of the problem

that these sentences are statements?”
At some point the students reached the conclusion that in these problems there

is no given frame system (axioms) based on which we could decide whether these
statements can be formally deduced or not. Firstly, there is no way to give true or
false values to these statements such that they become consistent in the classical
human language. Secondly, there is no base of knowledge that would tell us which
sentences are statements. Thirdly, students, especially high-school students are not
supposed to be aware of these ideas. So it is a kind of cheating not to tell students
that here we have (or might have) paradoxes.

During the interview the three PhD students wanted to solve the problems in
the first place instead of interpreting them. Right after the beginning, although P2
mentions that they should analyze the notion of statement, they soon got back to
searching for the solution. The timespan of the interview was nearly an hour and
it was only towards the end when PhD students started to have doubts about the
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sense of the problems – or we should rather say the senselessness. None of them
could tell the correct, exact definition of a statement.

One needs a very strong mathematical background and intelligence to start
having doubts concerning the problem itself and the way of its posing. At PhD
level this is attainable. The interview shows that the clarification of the problem
at secondary school level would be very hard. A nice example of the resolution
of a contradictory problem is the next one about knights and knaves. “Suppose
A says, ‘Either I am a knave or else two plus two equals five.’ What would you
conclude?” [25] The official solution presented in the book is the following: “The
only valid conclusion is that the author of this problem is not a knight. The fact is
that neither a knight nor a knave could possibly make such a statement. If A were
a knight, then the statement that either A is a knave or that two plus two equals
five would be false, since it is neither the case that A is a knave nor that two plus
two equals five. Thus A, a knight, would have made a false statement, which is
impossible. On the other hand, if A were a knave, then the statement that either A
is a knave or that two plus two equals five would be true since the first clause that
A is a knave is true. Thus A, a knave, would have made a true statement, which
is equally impossible. Therefore the conditions of the problem are contradictory
(. . . ) Therefore, I, the author of the problem, was either mistaken or lying. I can
assure you I wasn’t mistaken. Hence it follows that I am not a knight. For the
sake of the records, I would like to testify that I have told the truth at least once
in my life, hence I am not a knave either.” [25] So it can mean a resolution if we
admit that the problem-poser either made a mistake or lied.

5.2. Interview with Sándor Róka
When preparing for the interview we chose to focus our questions on his problem
compilations and beliefs and principles as a problem poser. He was very open
towards us and started sharing his views as a problem poser and talent nurturer
almost without having to ask concrete questions. The online interview lasted for
80 minutes. We quote some highlights from the interview that are interesting to
our paper.

A: I found several problems in your books where the solution is practically a
construction (e.g. the balance-scale problems when we have to find a fake coin). In
this case we provide some inaccuracy, since with these constructions we can only
show that a certain number of weighings is enough. What is your opinion in general
about providing inaccuracies and demanding less mathematical preciseness even in
talent care in order to make the problem more understandable?

RS: We do not look mathematics as “definition, theorem, proof, and then ev-
erything is complete”. This is not the way mathematics was explored. This would
be an exaggeration. Precise axiomatic mathetatics is important only for very few
people. I am not sure that it should be introduced to children. They are not really
interested in this more abstract part, they don’t understand why it is important.
But problems asking for constructions appear a lot of times in competitions. Sev-
eral times both directions are asked. If they ask to demonstrate that you can solve
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the problem with a given amount of weighings – you just show a construction. In
case of a lot of balance-scale problems you can argue that fewer weighings are not
enough, so our construction reaches the optimum. Of course, this latter problem
can be incredibly hard, I know. For example, take the problem of finding the two
heaviest among 8 different balls – telling how many weighings we need is hard.
But it is clear that to find the heaviest one we need seven weighings, we can give
reasoning and also show a construction how to do it.

A: Do you think that there is a level in talent care when (or starting from when)
things can be clarified? Do you have a solid opinion on who should support students
in this clarification if later they feel the need to make everything precise? Whose
task or role is to clarify the problems already seen without losing preciseness?

RS: I think these questions only bother specialists and maybe very few “gour-
mands” . . .

A: As you have already mentioned there are problems which can be approached
from several aspects and can make the solver think about numerous related prob-
lems. To what extent is the phrasing of the problem important in this case? As
you have already mentioned, the way how we pose the problems can be important.
For example, take a “crossing a desert”-type problem. We can ask “how far can XY
go” or we can ask “how XY can reach the furthest possible”. According to you,
what is or what can be the role of phrasing?

RS: In this certain case it is quite random which option of phrasing I choose –
sometimes this, sometimes that. But if I ask “which far can XY go” – then when
someone tells a numerical answer, they also have to explain how that is possible. . .
I guess the answers to these two questions somehow go together. But, surely, the
way I ask questions, the way I compose them is important.

During the interview Sándor Róka made clear that it was an important aim
of all problems in his books to raise students’ interest. It is important that the
phrasing is catchy, so students start to solve the problem because of its exciting
and interesting nature. In talent care classes it is the problem poser’s task to
care with the problem profoundly and give as precise solution as possible. Earlier
when dealing with balance scale-problems, Sándor Róka himself also prioritized
preciseness so he asked for example “Can you solve with five weighings?”. Nowadays,
he rather tells them to try to solve with as few weighings as possible. This way
he can achieve that everyone can feel themselves successful – even those who did
not find the optimum solution. During the discussion students see that there are
several ways to solve the problem and there might be more effective solutions (in
this case, with fewer weighings). With the most interested students the professor
addresses a problem from several aspects and with several questions. During this
process the details that were inaccurate at the beginning can be clarified. This
clarification is the task of the teacher, along with giving answers to the questions
that arise about the problems. This spirit appears in his books also.
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6. Resolution and summary

In our paper we addressed an ethical question related to mathematics education.
We analyzed whether we can give an inaccurate, mathematically incorrect answer
or solution to a question or problem in talent care in contrast to the inaccuracy that
is accepted and often necessary in regular mathematics classes. While inaccuracies
and white lies are normal in regular math lessons as part of the spiral method
of concept building, are they acceptable in talent care, too? When analyzing the
statement-, balance scale- and camel problems, two types of questions arose. The
first question is whether it is acceptable – and if yes, then in what content – to
play with concepts that students do not know exactly. Distinguishing between the
everyday sense and the mathematical concepts of a statement is not easy. The
difficulty of the other two types of problems comes from the difference between a
construction and an extremum. In both cases it is a challenge for a student to
find an optimal construction, but giving a proof that the construction is optimal is
beyond a secondary school student’s competence. Concerning posing and present-
ing of problems, several dilemmas and metamathemEtical questions arise. After
analyzing these questions we presented the extract of two interviews. In the first
one participants are PhD students and the interview focuses on the mathematical
background of a problem. In the second one the interviewee is Sándor Róka, one
of the most well-known problem creators in Hungary, author of multiple books
and problem booklets. In the first interview it turned out that the solution and
resolution of the problems is a challenge even for PhD students. It requires serious
mathematical background and intelligence to doubt the posing of the problem itself.
This interview enlightened that clarifying these problems would be very difficult
at secondary school level. The short conclusion of the second interview is that a
problem poser needs to pay attention to a lot of aspects at once. The borderline
of these aspects is sharp and we have to cross at least some of them. According
to the Ars Poetica of Sándor Róka, the first border to keep us inside is that of the
attention and the interest of students. Without the mathematical commitment of
the students, without gaining their attention and raising their interest none of the
further questions can even appear. Later, when students and their teacher deal
with the problems together and some doubts arise at border-crossings, they need
to resolve the doubts together.

Talent care is a significant task. It requires profound planning, a lot of prepa-
ration, and continuous attention.

When Ptolemaios the first asked Euclid whether there is a way of learning
geometry that is easier and shorter than the one presented in Elements, the great
geometer answered: There is no royal road to geometry. In the footsteps of Euclid,
we can say: There is no royal road to talent care.
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