
On structure of the family of regularly
distributed sets with respect to the union∗

Szilárd Svitek, Miklós Vontszemű

Department of Mathematics, J. Selye University,
Komárno, Slovakia
sviteks@ujs.sk

vontszemum@ujs.sk

Submitted: April 23, 2021
Accepted: October 11, 2021

Published online: October 20, 2021

Abstract

Let 0 ≤ 𝑞 ≤ 1 and N denotes the set of all positive integers. In this
paper we will be interested in the family 𝒰(𝑥𝑞) of all regularly distributed
set 𝑋 ⊂ N whose ratio block sequence is asymptotically distributed with
distribution function 𝑔(𝑥) = 𝑥𝑞; 𝑥 ∈ (0, 1], and we will study the structure
of this family with respect to the union.
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1. Introduction

In the whole paper we assume 𝑋 = {𝑥1 < 𝑥2 < · · · < 𝑥𝑛 < · · · } ⊂ N where N
denotes the set of all positive integers.

The following sequence derived from 𝑋

𝑥1
𝑥1
,
𝑥1
𝑥2
,
𝑥2
𝑥2
,
𝑥1
𝑥3
,
𝑥2
𝑥3
,
𝑥3
𝑥3
, . . . ,

𝑥1
𝑥𝑛
,
𝑥2
𝑥𝑛
, . . . ,

𝑥𝑛
𝑥𝑛
, . . . (1.1)
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is called the ratio block sequence of the set (sequence) 𝑋.
It is formed by the blocks 𝑋1, 𝑋2, . . . , 𝑋𝑛, . . . where

𝑋𝑛 =

(︂
𝑥1
𝑥𝑛
,
𝑥2
𝑥𝑛
, . . . ,

𝑥𝑛
𝑥𝑛

)︂
, 𝑛 = 1, 2, . . .

is called the 𝑛-th block. This kind of block sequences was introduced by O. Strauch
and J. T. Tóth [12] and they studied the set 𝐺(𝑋𝑛) of its distribution functions.
Further, we will be interested in ratio block sequences of type (1.1) possessing an
asymptotic distribution function, i.e. 𝐺(𝑋𝑛) is a singleton (see definitions in the
next section).

By means of these distribution functions in [13] was defined the next families
of subsets of N. For 0 ≤ 𝑞 ≤ 1 we denote 𝒰(𝑥𝑞) the family of all regularly dis-
tributed set 𝑋 ⊂ N whose ratio block sequence is asymptotically distributed with
distribution function 𝑔(𝑥) = 𝑥𝑞; 𝑥 ∈ (0, 1].

Further in [13] the following interesting results can be seen, that 𝜆 the expo-
nent of convergence is closely related to distributional properties of sets of positive
integers. More precisely, for each 𝑞 ∈ [0, 1] the family ℐ≤𝑞 of all sets 𝐴 ⊂ N such
that 𝜆(𝐴) ≤ 𝑞 is identical with the family ℐ(𝑥𝑞) of all sets 𝐴 ⊂ N which are covered
by some regularly distributed set 𝑋 ∈ 𝒰(𝑥𝑞).

The exponent of convergence of a set 𝐴 ⊂ N is defined by

𝜆(𝐴) = inf
{︁
𝑠 ∈ (0,∞) :

∑︁

𝑛∈N
𝑎−𝑠
𝑛 <∞

}︁
,

where 𝐴 = {𝑎1 < 𝑎2 < · · · } ⊂ N.
In this paper we will be interested in the family 𝒰(𝑥𝑞) and study the structure

of this family respect to the union.
The rest of our paper is organized as follows. In Section 2 and Section 3 we

recall some known definitions, notations and theorems, which will be used and
extended. In Section 4 our new results are presented.

2. Definitions

The following basic definitions are from papers [9, 12, 14].

• For each 𝑛 ∈ N consider the step distribution function

𝐹 (𝑋𝑛, 𝑥) =
#{𝑖 ≤ 𝑛; 𝑥𝑖

𝑥𝑛
< 𝑥}

𝑛
,

for 𝑥 ∈ [0, 1), and for 𝑥 = 1 we define 𝐹 (𝑋𝑛, 1) = 1.

• A non-decreasing function 𝑔 : [0, 1] → [0, 1], 𝑔(0) = 0, 𝑔(1) = 1 is called
a distribution function (abbreviated d.f.). We shall identify any two d.f.s
coinciding at common points of continuity.
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• A d.f. 𝑔(𝑥) is a d.f. of the sequence of blocks 𝑋𝑛, 𝑛 = 1, 2, . . . , if there exists
an increasing sequence 𝑛1 < 𝑛2 < · · · of positive integers such that

lim
𝑘→∞

𝐹 (𝑋𝑛𝑘
, 𝑥) = 𝑔(𝑥)

a.e. on [0, 1]. This is equivalent to the weak convergence, i.e., the preceding
limit holds for every point 𝑥 ∈ [0, 1] of continuity of 𝑔(𝑥).

• Denote by 𝐺(𝑋𝑛) the set of all d.f.s of 𝑋𝑛, 𝑛 = 1, 2, . . . . The set of distribu-
tion functions of ratio block sequences was studied in [1–7, 9–12].
If 𝐺(𝑋𝑛) = {𝑔(𝑥)} is a singleton, the d.f. 𝑔(𝑥) is also called the asymptotic
distribution function of 𝑋𝑛.

• Let 𝜆 be the convergence exponent function on the power set 2N of N, i.e. for
𝐴 ⊂ N put

𝜆(𝐴) = inf
{︁
𝑡 > 0 :

∑︁

𝑎∈𝐴

1

𝑎𝑡
<∞

}︁
.

If 𝑞 > 𝜆(𝐴) then
∑︀

𝑎∈𝐴
1
𝑎𝑞 < ∞ and if 𝑞 < 𝜆(𝐴) then

∑︀
𝑎∈𝐴

1
𝑎𝑞 = ∞. In

the case when 𝑞 = 𝜆(𝐴), the series
∑︀

𝑎∈𝐴
1
𝑎𝑞 can be either convergent or

divergent.
From [8, p. 26, Exercises 113, 114], it follows that the set of all possible
values of 𝜆 forms the whole interval [0, 1], i.e. {𝜆(𝐴) : 𝐴 ⊂ N} = [0, 1] and if
𝐴 = {𝑎1 < 𝑎2 < · · · < 𝑎𝑛 < · · · } then 𝜆(𝐴) can be calculated by

𝜆(𝐴) = lim sup
𝑛→∞

log 𝑛

log 𝑎𝑛
.

Evidently the exponent of convergence 𝜆 is a monotone set function, i.e.
𝜆(𝐴) ≤ 𝜆(𝐵) for 𝐴 ⊂ 𝐵 ⊂ N and also 𝜆(𝐴 ∪ 𝐵) = max{𝜆(𝐴), 𝜆(𝐵)} holds
for all 𝐴,𝐵 ⊂ N.

• By means of 𝜆 the following sets were defined (see [14]):

ℐ<𝑞 = {𝐴 ⊂ N : 𝜆(𝐴) < 𝑞} for 0 < 𝑞 ≤ 1,

ℐ≤𝑞 = {𝐴 ⊂ N : 𝜆(𝐴) ≤ 𝑞} for 0 ≤ 𝑞 ≤ 1 and
ℐ0 = {𝐴 ⊂ N : 𝜆(𝐴) = 0}.

Obviously ℐ≤0 = ℐ0 and ℐ≤1 = 2N.
For a finite set 𝐴 ⊂ N we have 𝜆(𝐴) = 0. Consequently, ℱ𝑖𝑛 = {𝐴 ⊂
N : 𝐴 is finite} ⊂ ℐ0. Families ℐ<𝑞, ℐ≤𝑞 are related for 0 < 𝑞 < 𝑞′ < 1 by
following inclusions (see [14, Theorem 1]),

ℱ𝑖𝑛 ⊊ ℐ0 ⊊ ℐ<𝑞 ⊊ ℐ≤𝑞 ⊊ ℐ<𝑞′ ⊊ ℐ<1,

and the difference of successive sets is infinite, so equality does not hold in
any of the inclusions.
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• Let ℐ ⊂ 2N. Then ℐ is called an ideal of subsets of positive integers, if ℐ is
additive (if 𝐴,𝐵 ∈ ℐ then 𝐴 ∪𝐵 ∈ ℐ), hereditary (if 𝐴 ∈ ℐ and 𝐵 ⊂ 𝐴 then
𝐵 ∈ ℐ), ℐ ⊇ ℱ𝑖𝑛 and N /∈ ℐ.

3. Overwiew of known results

In this section we mention known results related to the topic of this paper and some
other ones we use in the proofs of our theorems. In the whole part in (S1)–(S7) we
assume 𝑋 = {𝑥1 < 𝑥2 < · · · < 𝑥𝑛 < · · · } ⊂ N.

(S1) We will use step function

𝑐0(𝑥) =

{︃
0, if 𝑥 = 0,

1, if 0 < 𝑥 ≤ 1.

Assume that 𝐺(𝑋𝑛) is singleton, i.e., 𝐺(𝑋𝑛) = {𝑔(𝑥)}. Then either 𝑔(𝑥) =
𝑐0(𝑥) for 𝑥 ∈ [0, 1]; or 𝑔(𝑥) = 𝑥𝑞 for 𝑥 ∈ [0, 1] and some fixed 0 < 𝑞 ≤ 1.

[12, Theorem 8.2]

The result (S1) provides motivation to introduce the following families of
subsets of N( see [13]):

𝒰(𝑐0(𝑥)) = {𝑋 ⊂ N : 𝐺(𝑋𝑛) = {𝑐0(𝑥)}},
ℐ(𝑐0(𝑥)) = {𝐴 ⊂ N : ∃𝑋 ∈ 𝒰(𝑐0(𝑥)), 𝐴 ⊂ 𝑋},

and for 0 < 𝑞 ≤ 1

𝒰(𝑥𝑞) = {𝑋 ⊂ N : 𝐺(𝑋𝑛) = {𝑥𝑞}},
ℐ(𝑥𝑞) = {𝐴 ⊂ N : ∃𝑋 ∈ 𝒰(𝑥𝑞), 𝐴 ⊂ 𝑋}.

Obviously,
𝒰(𝑐0(𝑥)) ⊊ ℐ(𝑐0(𝑥)), 𝒰(𝑥𝑞) ⊊ ℐ(𝑥𝑞).

Sets 𝑋 from 𝒰(𝑐0(𝑥)) are characterized by (S4) and sets belonging to 𝒰(𝑥𝑞)
are characterized by (S2) and (S5). In [13, Theorem 1 and Example 1] is
proved that the family 𝒰(𝑐0(𝑥)) is additive, i.e. it is closed with respect to
finite unions and does not form an ideal as it is not hereditary, i.e. there exists
sets 𝐶 ∈ 𝒰(𝑐0(𝑥)) and 𝐵 ⊂ 𝐶 such that 𝐵 /∈ 𝒰(𝑐0(𝑥)). On the other hand
the family ℐ(𝑐0(𝑥)) is an ideal (see [13, Theorem 2]). For these families the
following statements hold.

(S2) Let 0 < 𝑞 ≤ 1 be a real number. Then

𝑋 ∈ 𝒰(𝑥𝑞) ⇐⇒ ∀ 𝑘 ∈ N : lim
𝑛→∞

𝑥𝑘𝑛
𝑥𝑛

= 𝑘
1
𝑞 .

[6, Theorem 1]
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(S3) Let 0 < 𝑞 ≤ 1 be a real number and 𝑋 ∈ 𝒰(𝑥𝑞). Then

lim
𝑛→∞

𝑥𝑛+1

𝑥𝑛
= 1.

[4, Remark 3]

(S4) We have

𝑋 ∈ 𝒰(𝑐0(𝑥)) ⇐⇒ lim
𝑛→∞

1

𝑛𝑥𝑛

𝑛∑︁

𝑖=1

𝑥𝑖 = 0.

[12, Theorem 7.1]

(S5) Let 0 < 𝑞 ≤ 1 be a real number. Then

𝑋 ∈ 𝒰(𝑥𝑞) ⇐⇒ lim
𝑛→∞

1

𝑛𝑥𝑛

𝑛∑︁

𝑖=1

𝑥𝑖 =
𝑞

𝑞 + 1
.

[3, Theorem 1]

(S6) Let 𝑋 ∈ 𝒰(𝑐0(𝑥)). Then

lim
𝑛→∞

log 𝑛

log 𝑥𝑛
= 0 (i.e. 𝜆(𝑋) = 0).

[3, Theorem 2]

(S7) Let 0 < 𝑞 ≤ 1 be a real number and 𝑋 ∈ 𝒰(𝑥𝑞). Then

lim
𝑛→∞

log 𝑛

log 𝑥𝑛
= 𝑞 (therefore 𝜆(𝑋) = 𝑞).

[3, Theorem 3]

(S8) Let 0 < 𝑞 ≤ 1. Then each of the families ℐ0, ℐ<𝑞 and ℐ≤𝑞 forms an admissible
ideal, except for ℐ≤1.
[14, Theorem 1]

(S9) Let 0 < 𝑞 ≤ 1. Then each of the families ℐ(𝑐0(𝑥)), ℐ(𝑥𝑞) forms an admissible
ideal and ℐ(𝑐0(𝑥)) = ℐ0, ℐ(𝑥𝑞) = ℐ≤𝑞.
[13, Theorem 5 and Theorem 7]
Given 𝑡 ≥ 1, define the counting function of 𝑋 ⊂ N as

𝑋(𝑡) = #{𝑥 ≤ 𝑡 : 𝑥 ∈ 𝑋}.

(S10) Let 0 < 𝑞 ≤ 1, 𝑋 = {𝑥1 < 𝑥2 < · · · } ⊂ N and 𝑌 = {𝑦1 < 𝑦2 < · · · } ⊂ N.
Let 𝑔(𝑥) ∈ {𝑐0(𝑥), 𝑥𝑞} be fixed and assume that

𝑌 ∈ 𝒰(𝑔(𝑥)) and lim
𝑡→∞

𝑋(𝑡)

𝑌 (𝑡)
= 0.

Then
𝑋 ∪ 𝑌 ∈ 𝒰(𝑔(𝑥)).

[13, Theorem 4]
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4. Results

In this section we will study the structure of the family 𝒰(𝑥𝑞) respect to the union of
its elements. We show that there exist such sets 𝑋,𝑌 ∈ 𝒰(𝑥𝑞) that 𝑋 ∪𝑌 /∈ 𝒰(𝑥𝑞),
but on the other hand, if 𝑋,𝑌 ∈ 𝒰(𝑥𝑞) (hence 𝜆(𝑋) = 𝑞 and 𝜆(𝑌 ) = 𝑞) then
necessary 𝜆(𝑋 ∪ 𝑌 ) = 𝑞, thus

𝑋 ∪ 𝑌 ∈ ℐ≤𝑞 ∖ ℐ<𝑞 = ℐ(𝑥𝑞) ∖ ℐ<𝑞 ⊊ ℐ(𝑥𝑞).

This follows from the (S7), (S9) and the fact that 𝜆(𝑋 ∪ 𝑌 ) = max{𝜆(𝑋), 𝜆(𝑌 )}.
Theorem 4.1. Let 0 < 𝑞 ≤ 1. Then the family 𝒰(𝑥𝑞) does not form an ideal as it
is not additive, i.e. it is not closed with respect to finite unions.

Proof. It is sufficent to show that there exist sets 𝑋,𝑌 ∈ 𝒰(𝑥𝑞) such that 𝑋 ∪𝑌 /∈
𝒰(𝑥𝑞). Let 0 < 𝑞 ≤ 1 and 𝑋 = {𝑥1 < 𝑥2 < · · · < 𝑥𝑛 < · · · } ⊂ N be such that
𝑥𝑛+1 > 𝑥𝑛 + 1 for every 𝑛 ∈ N and 𝑋 ∈ 𝒰(𝑥𝑞). For example, it will be like that
𝑥𝑛 = ⌊2𝑛 1

𝑞 ⌋ (as usual, ⌊𝑥⌋ is the integer part of the real 𝑥). From (S2) it is clear
that 𝑋 ∈ 𝒰(𝑥𝑞).

Then 𝑥𝑛 = 2𝑛
1
𝑞 − 𝜀(𝑛) for some 0 ≤ 𝜀(𝑛) < 1, and by Lagrange’s Mean Value

Theorem for 𝑓(𝑥) = 2𝑥
1
𝑞 on [𝑛, 𝑛+ 1] we get that 𝑥𝑛+1 > 𝑥𝑛 + 1 for all 𝑛.

Define the set 𝑌 = {𝑦1 < 𝑦2 < · · · < 𝑦𝑛 < · · · } such that 𝑦1 = 𝑥1 and for 𝑛 ≥ 2

𝑦𝑛 =

{︃
𝑥𝑛 − 1, if 𝑛 ∈ (22𝑘, 22𝑘+1] , 𝑘 = 0, 1, 2, . . . ,

𝑥𝑛, if 𝑛 ∈ (22𝑘+1, 22𝑘+2] , 𝑘 = 0, 1, 2, . . . .

We show that 𝑌 ∈ 𝒰(𝑥𝑞). Since 𝑥𝑛 − 1 ≤ 𝑦𝑛 ≤ 𝑥𝑛 then for every 𝑘 ∈ N

𝑥𝑘𝑛 − 1

𝑥𝑘𝑛

𝑥𝑘𝑛
𝑥𝑛

=
𝑥𝑘𝑛 − 1

𝑥𝑛
≤ 𝑦𝑘𝑛

𝑦𝑛
≤ 𝑥𝑘𝑛
𝑥𝑛 − 1

=
𝑥𝑛

𝑥𝑛 − 1

𝑥𝑘𝑛
𝑥𝑛

.

From this according to (S2) for each 𝑘 ∈ N we have

lim
𝑛→∞

𝑦𝑘𝑛
𝑦𝑛

= lim
𝑛→∞

𝑥𝑘𝑛
𝑥𝑛

= 𝑘
1
𝑞 ,

thus 𝑌 ∈ 𝒰(𝑥𝑞).
Further let

𝑋 ∪ 𝑌 = {𝑧1 < 𝑧2 < · · · < 𝑧𝑛 < · · · }.
We now show that 𝑋 ∪ 𝑌 /∈ 𝒰(𝑥𝑞), i.e. according to (S5)

lim
𝑛→∞

1

𝑛𝑧𝑛

𝑛∑︁

𝑖=1

𝑧𝑖 ̸=
𝑞

𝑞 + 1
.

Let 𝑛𝑘 (𝑘 = 1, 2, . . . ) be such that 𝑧𝑛𝑘
= 𝑥22𝑘+1 . Then

𝑛𝑘 = 22𝑘+1 +

𝑘∑︁

𝑖=0

(22𝑖+1 − 22𝑖) = 22𝑘+1 +

𝑘∑︁

𝑖=0

22𝑖
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= 22𝑘+1 +
22𝑘+2 − 1

22 − 1
=

5

3
22𝑘+1 − 1

3
. (4.1)

We estimate the following means

1

𝑛𝑘𝑧𝑛𝑘

𝑛𝑘∑︁

𝑖=1

𝑧𝑖 ≥
1

𝑛𝑘𝑧𝑛𝑘

(︃
22𝑘+1∑︁

𝑖=1

𝑥𝑖 +
22𝑘+1∑︁

𝑖=22𝑘+1

𝑦𝑖

)︃

=
1

𝑛𝑘𝑥22𝑘+1

(︃
22𝑘+1∑︁

𝑖=1

𝑥𝑖 +
22𝑘+1∑︁

𝑖=1

𝑦𝑖 −
22𝑘∑︁

𝑖=1

𝑦𝑖

)︃

=
22𝑘+1

𝑛𝑘

1

22𝑘+1𝑥22𝑘+1

22𝑘+1∑︁

𝑖=1

𝑥𝑖

+
22𝑘+1

𝑛𝑘

𝑦22𝑘+1

𝑥22𝑘+1

1

22𝑘+1𝑦22𝑘+1

22𝑘+1∑︁

𝑖=1

𝑦𝑖

− 22𝑘

𝑛𝑘

𝑦22𝑘

𝑥22𝑘+1

1

22𝑘𝑦22𝑘

22𝑘∑︁

𝑖=1

𝑦𝑖. (4.2)

Since 𝑋,𝑌 ∈ 𝒰(𝑥𝑞) then by (S5) we give

lim
𝑘→∞

1

22𝑘+1𝑥22𝑘+1

22𝑘+1∑︁

𝑖=1

𝑥𝑖 = lim
𝑘→∞

1

22𝑘+1𝑦22𝑘+1

22𝑘+1∑︁

𝑖=1

𝑦𝑖

= lim
𝑘→∞

1

22𝑘𝑦22𝑘

22𝑘∑︁

𝑖=1

𝑦𝑖 =
𝑞

𝑞 + 1
.

From definition of the set 𝑌 and (S2) it follows

lim
𝑘→∞

𝑦22𝑘

𝑥22𝑘+1

= lim
𝑘→∞

𝑥22𝑘

𝑥22𝑘+1

= lim
𝑘→∞

𝑥22𝑘

𝑥2.22𝑘
=

1

2
1
𝑞

≤ 1

2
.

Furthermore we have

lim
𝑘→∞

𝑦22𝑘+1

𝑥22𝑘+1

= lim
𝑘→∞

𝑥22𝑘+1−1

𝑥22𝑘+1

= 1,

and (4.1) implies

lim
𝑘→∞

22𝑘+1

𝑛𝑘
=

3

5
, lim

𝑘→∞
22𝑘

𝑛𝑘
=

3

10
.

Then from estimation (4.2) by previously statements we obtain

lim inf
𝑘→∞

1

𝑛𝑘𝑧𝑛𝑘

𝑛𝑘∑︁

𝑖=1

𝑧𝑖 ≥
(︁3
5
+

3

5
· 1− 3

10
· 1
2

)︁ 𝑞

𝑞 + 1
=

21

20

𝑞

𝑞 + 1
>

𝑞

𝑞 + 1
,

which it means that 𝑋 ∪ 𝑌 /∈ 𝒰(𝑥𝑞).
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However, if we choose such sets 𝑋,𝑌 ∈ 𝒰(𝑥𝑞) that 𝑋 ∩ 𝑌 ∈ ℐ0, then holds
already the following.

Theorem 4.2. Let 0 < 𝑞 ≤ 1 and sets 𝑋,𝑌 ∈ 𝒰(𝑥𝑞) are such that 𝑋 ∩ 𝑌 ∈ ℐ0.
Then 𝑋 ∪ 𝑌 ∈ 𝒰(𝑥𝑞).
Proof. Let 0 < 𝑞 ≤ 1, 𝑋 = {𝑥1 < 𝑥2 < · · · } ⊂ N, 𝑌 = {𝑦1 < 𝑦2 < · · · } ⊂ N.
Assume that 𝑋,𝑌 ∈ 𝒰(𝑥𝑞). According to (S5) and (S3) we have

1

𝑛𝑥𝑛

𝑛∑︁

𝑖=1

𝑥𝑖 →
𝑞

𝑞 + 1
and

1

𝑛𝑦𝑛

𝑛∑︁

𝑖=1

𝑦𝑖 →
𝑞

𝑞 + 1
as 𝑛→∞, (4.3)

and
𝑥𝑘+1

𝑥𝑘
→ 1 and

𝑦𝑘+1

𝑦𝑘
→ 1 as 𝑛→∞. (4.4)

Let 𝑋 ∩ 𝑌 = {𝑦𝑖1 , 𝑦𝑖2 , . . . , 𝑦𝑖𝑛 , . . . }. We denote

𝐴(𝑋 ∩ 𝑌, 𝑦𝑛) =
∑︁

𝑦𝑛𝑖
∈[1,𝑦𝑛]

𝑦𝑛𝑖
.

Further, let 𝑋 ∪ 𝑌 = {𝑧1 < 𝑧2 < · · · < 𝑧𝑚 < · · · } and choose sufficiently large
𝑚 ∈ N. Let 𝑧𝑚 ∈ 𝑋 ∪ 𝑌 . If 𝑧𝑚 = 𝑦𝑛 then

𝑥𝑘 ≤ 𝑦𝑛 < 𝑥𝑘+1 and 𝑦𝑖𝑙 ≤ 𝑦𝑛 < 𝑦𝑖𝑙+1
,

for some 𝑘, 𝑙 ∈ N.
Thus 𝑚 = 𝑋 ∪ 𝑌 (𝑦𝑛), 𝑋 ∩ 𝑌 (𝑦𝑛) = 𝑙 and 𝑚 = 𝑘+𝑛− 𝑙. Then we estimate the

value

1

𝑚𝑧𝑚

𝑚∑︁

𝑖=1

𝑧𝑖 =
1

𝑘 + 𝑛− 𝑙
1

𝑦𝑛

(︃
𝑛∑︁

𝑖=1

𝑦𝑖 +
𝑘∑︁

𝑖=1

𝑥𝑖 −𝐴(𝑋 ∩ 𝑌, 𝑦𝑛)
)︃

(4.5)

=
𝑛

𝑘 + 𝑛− 𝑙
1

𝑛𝑦𝑛

𝑛∑︁

𝑖=1

𝑦𝑖 +
𝑘

𝑘 + 𝑛− 𝑙
𝑥𝑘
𝑦𝑛

1

𝑘𝑥𝑘

𝑘∑︁

𝑖=1

𝑥𝑖 −
𝐴(𝑋 ∩ 𝑌, 𝑦𝑛)
(𝑘 + 𝑛− 𝑙)𝑦𝑛

=
𝑘 + 𝑛

𝑘 + 𝑛− 𝑙
1

𝑛𝑦𝑛

𝑛∑︁

𝑖=1

𝑦𝑖 +
𝑘

𝑘 + 𝑛− 𝑙

(︃
𝑥𝑘
𝑦𝑛

1

𝑘𝑥𝑘

𝑘∑︁

𝑖=1

𝑥𝑖 −
1

𝑛𝑦𝑛

𝑛∑︁

𝑖=1

𝑦𝑖

)︃
− 𝐴(𝑋 ∩ 𝑌, 𝑦𝑛)

(𝑘 + 𝑛− 𝑙)𝑦𝑛
.

On the other hand

𝑘 + 𝑛

𝑘 + 𝑛− 𝑙 = 1− 𝑋 ∩ 𝑌 (𝑦𝑛)

𝑋 ∪ 𝑌 (𝑦𝑛)
,

0 ≤ 𝐴(𝑋 ∩ 𝑌, 𝑦𝑛)
(𝑘 + 𝑛− 𝑙)𝑦𝑛

≤ 𝑋 ∩ 𝑌 (𝑦𝑛).𝑦𝑛
(𝑘 + 𝑛− 𝑙)𝑦𝑛

=
𝑋 ∩ 𝑌 (𝑦𝑛)

𝑋 ∪ 𝑌 (𝑦𝑛)
≤ 𝑋 ∩ 𝑌 (𝑦𝑛)

𝑋(𝑦𝑛)
,

and as 𝑚→∞, also 𝑘 →∞ and 𝑛→∞. Since from Theorem 4.3 we have

𝑋 ∩ 𝑌 (𝑛)

𝑋(𝑛)
→ 0 as 𝑛→∞,

116 Sz. Svitek, M. Vontszemű



then holds
𝑘 + 𝑛

𝑘 + 𝑛− 𝑙 → 1,
𝐴(𝑋 ∩ 𝑌, 𝑦𝑛)
(𝑘 + 𝑛− 𝑙)𝑦𝑛

→ 0 as 𝑚→∞.

Furthermore from (4.4) and condition 𝑥𝑘 ≤ 𝑦𝑛 < 𝑥𝑘+1 we obtain

𝑥𝑘
𝑦𝑛
→ 1 as 𝑚→∞.

Then by (4.3), (4.5) and from the fact, that 𝑘
𝑘+𝑛−𝑙 is bounded we have

1

𝑚𝑧𝑚

𝑚∑︁

𝑖=1

𝑧𝑖 →
𝑞

𝑞 + 1
as 𝑚→∞,

thus 𝑋 ∪ 𝑌 ∈ 𝒰(𝑥𝑞).
The proof in the case 𝑧𝑚 = 𝑥𝑘 and 𝑦𝑛 ≤ 𝑥𝑘 ≤ 𝑦𝑛+1 is similar.

In the following theorems we will deal with sets X, Y for which 𝑋 ∈ 𝒰(𝑔1(𝑥))
𝑌 ∈ 𝒰(𝑔2(𝑥)) where 𝑔1(𝑥) ̸= 𝑔2(𝑥) and 𝑔1(𝑥), 𝑔2(𝑥) ∈ {𝑐0(𝑥), 𝑥𝑞}.

Theorem 4.3. Let 0 < 𝑞 ≤ 1 and sets 𝑋 ∈ 𝒰(𝑐0(𝑥))(it can also be 𝑋 ∈ ℐ0),
𝑌 ∈ 𝒰(𝑥𝑞). Then

lim
𝑛→∞

𝑋(𝑛)

𝑌 (𝑛)
= 0.

Proof. Let 0 < 𝑞 ≤ 1, 𝑋 = {𝑥1 < 𝑥2 < · · · } ⊂ N, 𝑌 = {𝑦1 < 𝑦2 < · · · } ⊂ N.
Assume that 𝑋 ∈ 𝒰(𝑐0(𝑥)) and 𝑌 ∈ 𝒰(𝑥𝑞). Then by (S6) and (S7) for sufficiently
large 𝑘 ∈ N there exists 𝑛0 ∈ N such that for every 𝑛 ≥ 𝑛0 we have

𝑥𝑛 > 𝑛𝑘 and 𝑦𝑛 < 𝑛
1
𝑞+

1
𝑘 .

Therefore

0 ≤ 𝑋(𝑛)

𝑌 (𝑛)
<

𝑛
1
𝑘

𝑛
𝑞𝑘

𝑞+𝑘

= 𝑛
1
𝑘− 𝑞𝑘

𝑞+𝑘 ,

where the exponent for sufficiently large 𝑘 is negative, since 1
𝑘 −

𝑞𝑘
𝑞+𝑘 → −𝑞 as

𝑘 →∞. From this and previous estimation follows 𝑋(𝑛)
𝑌 (𝑛) → 0 as 𝑛→∞.

Note that the previous Theorem 4.3 holds even if for the sets 𝑋 = {𝑥1 < 𝑥2 <
· · · } ⊂ N, 𝑌 = {𝑦1 < 𝑦2 < · · · } ⊂ N we assume that

lim
𝑛→∞

log 𝑛

log 𝑥𝑛
= 0 (i.e. 𝑋 ∈ ℐ0) and lim

𝑛→∞
log 𝑛

log 𝑦𝑛
= 𝑞.

On the other hand we have.

Corollary 4.4. Let 0 < 𝑞 ≤ 1 and sets 𝑋 ∈ 𝒰(𝑐0(𝑥)), 𝑌 ∈ 𝒰(𝑥𝑞). Then

𝑋 ∪ 𝑌 ∈ 𝒰(𝑥𝑞).
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Proof. This is a direct corollary of Theorem 4.3 and (S10).

Theorem 4.5. Let 0 < 𝑞1 < 𝑞2 ≤ 1 and sets 𝑋 ∈ 𝒰(𝑥𝑞1), 𝑌 ∈ 𝒰(𝑥𝑞2). Then

lim
𝑛→∞

𝑋(𝑛)

𝑌 (𝑛)
= 0.

Proof. Let 0 < 𝑞1 < 𝑞2 ≤ 1, 𝑋 = {𝑥1 < 𝑥2 < · · · } ⊂ N, 𝑌 = {𝑦1 < 𝑦2 < · · · } ⊂ N.
Assume that 𝑋 ∈ 𝒰(𝑥𝑞1) and 𝑌 ∈ 𝒰(𝑥𝑞2). Then by (S7) for sufficiently large 𝑘 ∈ N
there exists 𝑛0 ∈ N such that for every 𝑛 ≥ 𝑛0 we have

𝑥𝑛 > 𝑛
1
𝑞1

− 1
𝑘 and 𝑦𝑛 < 𝑛

1
𝑞2

+ 1
𝑘 .

Therefore

0 ≤ 𝑋(𝑛)

𝑌 (𝑛)
<
𝑛

𝑞1𝑘
𝑞1+𝑘

𝑛
𝑞2𝑘

𝑞2+𝑘

= 𝑛
𝑞1𝑘

𝑞1+𝑘− 𝑞2𝑘
𝑞2+𝑘 ,

where the exponent for sufficiently large 𝑘 is negative, since 𝑞1𝑘
𝑞1+𝑘 −

𝑞2𝑘
𝑞2+𝑘 → 𝑞1− 𝑞2

as 𝑘 →∞. From this and previous estimation follows 𝑋(𝑛)
𝑌 (𝑛) → 0 as 𝑛→∞.

Note that the previous Theorem 4.5 holds even if for the sets 𝑋 = {𝑥1 < 𝑥2 <
· · · } ⊂ N, 𝑌 = {𝑦1 < 𝑦2 < · · · } ⊂ N we assume that

lim
𝑛→∞

log 𝑛

log 𝑥𝑛
= 𝑞1 and lim

𝑛→∞
log 𝑛

log 𝑦𝑛
= 𝑞2.

Corollary 4.6. Let 0 < 𝑞1 < 𝑞2 ≤ 1 and sets 𝑋 ∈ 𝒰(𝑥𝑞1), 𝑌 ∈ 𝒰(𝑥𝑞2). Then

𝑋 ∪ 𝑌 ∈ 𝒰(𝑥𝑞2).

Proof. This is a direct corollary of Theorem 4.5 and result (S10).
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