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Abstract
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1. Introduction

Let D be a positive integer. The equation
2?2+ D = 4y" (1.1)

is called a Lesbgue-Ramanujan-Nagell equation. It has been studied by several
authors. Luca, Tengely, and Togbé [7] studied (1.1) when 1 < D <100 and D # 1
(mod 4), D = 7% -11°, or D = 7% - 13", where a,b € N. Bhatter, Hoque, and
Sharma [1] studied (1.1) when D = 19%**1 where k € N. Chakraborty, Hoque,
and Sharma [4] studied (1.1) when D = p™, where p € {1,2,3,7,11,19,43,67,163}
and m € N. For a comprehensive survey of equation (1.1) and other Lebesgue-
Ramanunjan-Nagell type equations, see Le and Soydan [6] with over 350 references.
In this paper, we study (1.1) when D = 3%-5°.11¢-199. It can be deduced from our
work all solutions to (1.1) when the set of prime divisors of D is a proper subset
of {3,5,11,19}. The main result is the following.
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Theorem 1.1. All integer solutions (n,a,b,c,d,x,y) to the equation
22 +3%.5°.11°.19% = 44
with
(i) n >3, a,b,c,d >0, x,y >0, ged(z,y) =1,
(i) (a,b,c,d) £ (1,1,1,1) (mod 2) if 5 | n,
are given in Tables 1, 4, 5, 7, and 8.

Our main tool is the so-called primitive divisor theorem of Lucas numbers by
Bilu, Hanrot, and Voutier [2].

2. Preliminaries

Let « and 8 be two algebraic integers such that a4+ 8 and af are nonzero coprime
integers, and % is not a root of unity. The Lucas sequence (L, ),>1 is defined by

Ln:u for all n>1.
a—p3

A prime number p is called a primitive divisor of L, if
p|L, but pf(a—p)>*Ly---Ly,_1.

From the work of Bilu, Hanrot, and Voutier’s [2] we know

<a—6)2)

(i) if ¢ is a primitive divisor of L,, then n | ¢ — (T

(ii) if n > 30, then L, has a primitive divisor,

(iii) for all 4 < n < 30, if L,, does not have a primitive divisor, then (n,a, 8) can
be derived from Table 1 in [2].

3. Proof of Theorem 1.1

From

22 43750119197 = 49" (3.1)
we have 2 { z. Reducing (3.1) mod 4 gives 1+ (—1)**t¢*4 =0 (mod 4). Hence, 2 {
a+c+d. Note that z,y > 0, ged(z,y) = 1, and n > 3. Write 3¢-5°-11¢-19¢ = AB2?,
where A, B € ZT and A is square-free. Here A € {3,11,15,19,55,95,627,3135}.
Let K = Q(v—A). Let h(K) and Og be the class number and the ring of integers
of K respectively. Then h(K) € {1,2,4,8,40} and K = Z {L VQ*A}
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Assume now that n is an odd prime not dividing h(K). Then

<x+BvTA><x—B¢iA>(m¢

) 5 (3.2)

Since z and AB? are odd, the two ideals (% V_A) and (% V_A> are coprime.

We also have n t h(A), so (3.2) implies that
r+Bv-A

ux

= wa”, (3.3)

where u is a unit in Ok and a € Ok. Since the order of the unit group of Ok
is a power of 2, it is coprime to n. Therefore, in (3.3) u can be absorbed into «.
So we can assume u = 1. Let a = @ and 8 = #, where r;s € Z and
r = s (mod 2). We claim r and s are coprime odd integers. If r and s are even, let
r1 =5 and s; = 5. Then

n—1
a4 B S o k 2k
r= g2 3 ()

impossible since 2 t 2. Therefore r and s are odd. Then

T\ n—2k;  \k 2k
<2k>T (—A)¥s*".

Let | = ged(r,s). Then ! | x and | %. Hence, [ | ged(x,y). Therefore [ = 1.
So ged(r,s) = 1. Let ¢ = ged(r, A). Since |y| = T2+4A32, we have ¢ | y. Since
2?2 + AB? = 4y™, we have ¢ | 2%. Since ged(z,y) = 1, we have ¢ = 1. Since

n—1

i
M-

k=0

a+ B =rand af = %, we have a + 8 and af are coprime integers.

The proof of Theorem 1.1 is now achieved by means of the following four lem-
mas. We only require the condition (a,b,c,d) # (1,1,1,1) (mod 2) in the Lemma
3.5. So Lemmas 3.1, 3.2, 3.3, 3.4 give all solutions to (1.1) in each case of n with

ged(z,y) = 1.

Lemma 3.1. All solutions (n,a,b,c,d,x,y) to (3.1) with n = 3 are given in Ta-
ble 1.

Table 1. Solutions to (3.1) with n = 3 and ged(z,y) = 1.

(n,a,b,c,d, z,y) (n,a,b,¢,d, z,y)
(3,1,0,0,0,1,1) (3,1,0,0,0,37,7)
(3,1,0,0,2,17,7) (3,1,0,0,4, 719, 61)
(3,7,1,0,4, 19307, 766) (3,7,1,2,0, 15599, 394)
(3,7,1,4,2, 111946687, 146326) (3.7.3,1,2, 2043331, 10144)




124 N. X. Tho

—

1,1,1,74333,1126) 1824473, 9406)
2,0,11877401,32794)

101, 34) ,
,7 4, 1160073209, 699154)

1,2,0,

1,2,4,873907, 5806)
,1,4,0,713,166) ,1,4,6,1399486399, 862744)
3,0, 6, 778921, 7984) ,3,2,2,41803, 916)
5,6,0,

8694731, 26794)

) )

) )

(3,7,3,4,0,2073287,10246) (3,7,3,4,2,2495189, 12424)
(3,3,1,0,0,11,4) (3,3,1,6,0,96433, 1336)
(3,9,1,0,2,443531, 3664) (3,3,1,2,0,7,16)
(3,3,7,14,2, 380377270937, 47690296) | (3,3,1,2,2,5771,214)
(3,3,9,1,2 2,397447,3436) (3,3,1,2,2, 28267, 536)
(3,3,1,2,2, 154757, 1816) (3,3,7,2,2,43847521, 78334)
(3,3,3,0,0,2761, 124) (3,3,3,0,2,1883,106)
(3,3,3,2,0,3107, 136) (3,3,3,2,2,1271,334)
(3,3,5,0,4, 271051, 2764) (3,27,5,1,1,1291606603, 1184566)
(3,3,5,10,2,10684962781, 3063094) | (3,4,1,0,1,9673,286)
(3,5,1, 0 0,623, 46) (3,5,1,0,2,781, 64)

(3,1 (3,5,1, 1 1,

(3,5 (3,11

(3,5 (3,5

(3,5 (3,11

(3,5 (3,5

(3,5

Proof. Write a = 6ay + €1, b = 6b; + €2, ¢ = 6¢1 + €3, and d = 6d; + €4, where
ay,by,c1,d; € N and €1,€e9,€3,e4 € {0,1,...,5}. Let D; = 3 - 52 . 11 . 19,
From (3.1) we have

Y2 = X3~ 16Dy, (3.4)
where X = o f“ﬁzcl.lgwl and Y = 33(11.5%1%1:”1361.193(11 . Since 2ta+c+d, we
have 2 t €1 + €3 + €4. We use Magma [3] to search for S-integral points on (3.4),
where S = {3,5,11,19}. Solutions to (3.1) deduced from these S-integral points
are listed in Table 1. We are able to find S- integral points on (3.4) for all but the
cases of (€1, €a, €3,€4) listed in Table 2.

Table 2

(€1,€2,€3,€4) | (€1,€2,€3,€4) | (€1,€0,€3,€4) | (€1,€2,€3,€4)
(0,1,5,4) (0,4,5,4) (1,1,5,5) (1,2,1,5)
(]‘72’355) (1’27573) (]"27575) (]‘73’355)
(1,3,5,3) (1,3,5,5) (1,4,1,5) (1,4,3,5)
(1,4,5,1) (1,4,5,5) (1,5,3,3) (1,5,5,3)
(1,5,5,5) (3,1,5,3) (3,1,5,5) (3,3,1,5)
(3,3,5,3) (3,4,5,3) (3,5,3,5) (4,1,3,4)
(4,1,5,4) (4,3,5,4) (4,4,4,5) (4,5,1,4)
(4,5,3,4) (4,5,4,5) (4,5,5,2) (4,5,5,4)
(5,0,3,5) (5,0,5,5)

We will show that (3.1) has no solutions for these cases of (€1, €2, €3, €4). Since
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3t h(K), there exist coprime odd integers r, s such that

x+BQ\/j: <r+52\/ﬂ>3

Comparing the imaginary parts gives
4B = 5(3r% — As?). (3.5)

Notice that B = 33e1+u1 . 53bituz . jydetus . 193ditus where u; = |$] for i =
1,2,3,4. Hence,

4. 33mtur g3bitus qpdatus qgdditus — (302 _ A4?), (3.6)

Case 1: A =11. Then (€1, €2,¢€3,€4) = (0,4, 5,4). Hence, (3.6) reduces to

4. 3301 5302 qp3at2 193dhit2 — (302 _ 1162). (3.7)
If 11 | r, then 11t s. Hence, 11% f 5(3r> —11s%). Thus, (3.7) is impossible. So 11 { 7.
Hence, 113¢%2 | 5. Since (311) = —1 and ged(r, s) = 1, we have 51 3r% — 115
Hence, 53172 | 5. Since (3!) = —1, we have 19 { 3r>—11s%. Therefore 1934172 | s.

Case 1.1: a; > 0. Reducing (3.7) mod 3 gives 3 | s. Hence, 33%1 | s. Since
21 s, we have s = 33a1—1. 530142 1342 . 193142 . 5, where s; € {41}. Then
(3.7) reduces to

4= s (r? — 30073 . 500Hd 1100H5  gbditdy, (3.8)

Since a; > 0, we have 6a; — 3 > 0. Reducing (3.8) mod 3 shows s; = 1. Then (3.8)

reduces to
4 — ,r2 _ 36(11—3 . 56b1+4 . 11601+5 . 196d1+4. (39)

Reducing mod 7 shows
4=7>-6 (mod 7),

impossible mod 7 since (%) =—1.
Case 1.2: a; = 0. Since 21 s, we have s = £5301+2 . 113142 . 1934142 Then
(3.7) reduces to

4 =+(3r? — 115%),
impossible mod 5 since 5 | s, 5{ 7, and (£2) = —1.
Case 2: A =19. Then (€1, €2,€3,€64) = (4,4,4,5). Hence, (3.6) reduces to
4. 33042 A2 p3at2 193ht? — g(3r2 — 195%). (3.10)

If 19 | r, then 19 { s. Hence, 192 { s(3r? — 19s%), so (3.8) is impossible mod
192. Therefore 19 { r. Hence, 193d1+2 | s. Since (%) = (212) = —1, we have
513r2—19s? and 11 { 3r2 —19s2. Hence, 531721134142 | 5. Reducing (3.8) mod 3
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shows that 3 | s. Hence, 3341+1 | s. Therefore s = 3301+1.530142.113c142.193d1+2. g/
where s; € {£1}. Then (3.10) reduces to

4 = 5y (r? — 300 F1. 5601F2 qq6ertd  1gBdits o2y, (3.11)
Reducing (3.11) mod 3 shows s; =1 (mod 3). Hence, s; = 1. Then
4 = p? — 36artl 5Obi+2 q16eitd  1g6dits (3.12)

Write (3.12) as
4=Y?-3-52.11-19%- X?, (3.13)

where Y = r and X = 3291 . 5201+l 12e+1 . 192+l

Magma [3] shows (3.13) only has integer solutions (X,Y) = (0,42). Hence,
(3.12) has no solutions.

Case 3: A = 55. Then (e1,€e2,€e3,64) = (0,1,5,4), (4,1,3,4), (4,5,3,4),
(4,5,5,2), (4,5,5,4). Equation (3.6) reduces to

4. gl 5ihituz qpdatus qg3ditus — g(3r2 — 55s%). (3.14)

Since (%3%) = —1, we have 191 3r? — 5552,

Case 3.1: (e1,¢€2,€3,€4) = (0,1,5,4). Equation (3.14) reduces to
4530 1132193042 — (302 — 5552). (3.15)

Since 3b; = 0 or 3b; > 3, from (3.15) have 5% | s. From (3.15) we also have
1134%2 | 5. Therefore s = 5301 . 1134142 . 19341425, where s; € {£1}. Equation
(3.15) reduces to

4 = +3r® — 5557,

impossible mod 5 since 5 { r and (%) =—1.
Case 3.2: 3a; +uj; > 0.
Case 3.2.1: (e1,¢6a,€3,€64) = (4,1,3,4). Then (3.14) reduces to

4.330+2 530 qp3atl . 193hit2 — (3,2 _ 5557, (3.16)

Reducing (3.16) mod 3 gives 3 | s. Hence, 33171 | 5. If 5 | r, then 5 { s. Hence,
52 t 5(3r2 — 555%). Therefore, (3.16) is impossible mod 53**. Hence, 5 { r. Thus
5301 | s.

e 11 { s. Then 11 | r. Hence, 112 { s(3r? — 55s%). From (3.16) we have
3ci1 +1=1. Let s = 33+l . 5301 . 193dituag, where s; € Z and r = 11r;, where
r1 € Z. Then (3.16) reduces to

4 = sy(117% — 3001 F2 . 560iF1 1gbditd o2y (3.17)
Reducing (3.17) mod 3 shows that s; = —1 (mod 3). Hence, s; = —1. Then (3.17)

reduces to
6a1+2  £6bi+1 6d,+4 2
4 = 3bmt2 . 5Ohtl gbditd _11y3
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impossible mod 19 since (_1—})1) —1.

e 11| 5. Then 113¢H! | 5. Let s = 330142 . 5301 . 1131+l . 19342 . 5, where
s1 € {£1}. Then (3.16) reduces to
4 = 5y (r? — 3003 . 5O0FL qq6ertl qgbditd 2y (3.18)

Reducing (3.18) mod 3 gives s; = 1 (mod 3). Hence, s; = 1. Then (3.18) reduces
to
4 =p? —gbaat3 56hitl 116eitl 1g6ditd (3.19)

Reducing mod 13 shows
4=7r*-1 (mod 13)

impossible since (%) =1
Case 3.3.2: (e1,€2,€3,¢4) = (4,5,3,4), (4,5,5,2), (4,5,5,4). Then (3.16)
reduces to

4. 33042 5342 q3atus  gdditus — (372 _ 5542), (3.20)

Then 33a1+1. 530142 [g3ditua | 5
e 11 |s. Then 11341743 | 5. Hence, s = 3301+ . 530142 . 1]3c1tus . 1g3ditua . o)
where s; € Z. Then (3.20) reduces to

4 = 81(7"2 _ 36a1+1 . 5Gbl+4 . 11661+2’U,3+1 . 196d1+QU4 . S%) (321)

Reducing (3.21) mod 3 gives s; = 1 (mod 3). Hence, s; = 1. Then
4 =p? — gbartl 5Bbitd 16ertes  1gbditery, (3.22)
Write (3.22) as a cubic
Y2=4+3-5-11"1-19"2 . X3, (3.23)

where Y = r, X only has prime divisors 5,11, 19, and (vy,v2) = (0,1), (2,2), (2,1).
Equation (3.23) only has integer solutions (X,Y) = (0,+2), (1,17) as

22 =4+43-5-11" .19 . 0%,
172 =4+3-5-19-12.

None of these solutions gives solutions to (3.22).

e 11 1 s. Reducing (3.20) mod 11 shows 11 | r. Since 112 1 s(3r? — 55s%), in
(3.20) we must have 3¢y + uz = 1. Hence, (e1,€2,€3) = (4,5,3,4). Then (3.16)
reduces to

4.330+2 53042 1119302 — (302 — 5547). (3.24)

Let s = 331+l . 530142, 193di+2 . 5, and r = 117y, where 51,7, € Z. Then (3.24)
reduces to
4 = sy(117% — 30arF1 . 5601+ 1gbditd 2y (3.25)
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Reducing (3.25) mod 3 shows sy = —1 (mod 3). Hence, s = —1. Therefore
4 = goamtl . gbbitd qgbditd 2 11,2

impossible mod 19 since (5§t) = —1.

Case 4: A =95. Then (€1, €2,€3,€64) = (4,5,4,5). Then (3.16) reduces to

4. 330mF2 5302 p3at2 19302 — (3,2 _ 955%), (3.26)
Then 330111 | 5, 530142 | 5 193042 | 5 Since (%2%) = —1, (3.26) implies 1132 |

s. Let s = 33a1H1.530142. 113142193142 5| "where s; = £1. Then (3.26) reduces
to
4 = 31(7”2 _ 36a1+1 . 56b1+5 . 116C1+4 . 196d1+5 . S%)

Reducing mid 3 shows s; =1 (mod 3). Hence, s; = 1. Then
4 = p? — 36artl  5ObiA5 g 6eitd  1g6dits (3.27)
Write (3.27) as a cubic curve
Y?=4+3-52-11-19%- X?, (3.28)

where Y = r and X = 3241 . 5201+1.112e1+1 . 192d1+1 Magma shows that equation
(3.28) only has integer solutions (X,Y’) = (0, £2). Hence, (3.27) has no solutions.

Case 5: A =3-11-19. Then (e1, e, €3, 1) = (1,2,1,5), (1,2,3,5), (1,2,5,3),
(1,2,5,5), (1,4,1,5), (1,4,3,5), (1,4,5,1), (1,4,5,5), (3,4,5,3), (5,0,3,5),
(5,0,5,5). Then (3.16) reduces to

4. 33mtu=l g3bitus qpdatus qgdditus — g2 _ 909s2). (3.29)

Since r and s is odd, we have 8 | 72 —209s2. Therefore equation (3.29) is impossible
mod 8.

Case 6: A =3-5-11-19. Then (e, €2,€3,€4) = (1,1,
(1,3,5,5), (1,5,3,3), (1,5,5,3), (1,5,5,5), (3,1,5,3), (3,1,5,5), (3,3,1,5),
(3,3,5,3), (3,5,3,5). Hence, (3.16) reduces to

4. 33mtw=l g3bitus qpdatus qgdditus — g2 _5.1]1.19.s%). (3.30)

Notice that s can only have prime factors 3,5,11,19. Dividing both sides of (3.30)
by s3 gives a quartic equation of the form

YZ2=5-11-19+4-37 .52 . 114 . 19 . X3 (3.31)

where Y = ~, X can only have prime factors 3,5,11,19, and 1 = wy if uy > 1,
v1 = 2 if u; = 0. We use Magma to search for S-integral points on (3.31), where
S ={3,5,11,19}. The result is given in Table 4, where UD means Magma is not
able to find S-integral points.
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Table 3. Solutions to (3.31).

(61762763764) (’71,U2,U3,U4) (X7Y)
(1,1,1,5) (2,0,0,2) 0
(1,3,3,5) (2,1,1,2) )
(1,3,5,3) (2,1,2,1) 0
(1,3,5,5) (2,1,2,2) UD
(1355373) (2727131) @
(1,5,5,3) (2,2,2,1) UD
(1,5,5,5) (2,2,2,2) UD
(3,1,5,3) (0,0,2,1) 0
(3,1,5,5) (0,0,2,2) 0
(3,3,1,5) (0,1,0,2) 0
(3,3,5,3) (0,1,2,1) 0
(3,5,3,5) (0,2,1,2) UD

Case 6.1: (e1,¢9,€3,€4) = (3,5,3,5). Equation (3.16) reduces to
4.33a . 5302 qp8atl 19302 — (2 _5.11.19- 5%). (3.32)

Case 6.1.1: 11| 7. Then 3c; +1 = 1. Let r = 11r; and s = 531+2.1930+2. 5,
where r1,s1 € Z. Then (3.32) reduces to

4.3% = 5 (1107 — 550190 . 19040 F5 . o), (3.33)
e 57 = 1. Then (3.33) reduces to
4330 = 112 — Ob1H5 . 1g0dits,
Since (13—9) = —1and (%) =1, we have 2 | 3a;. Let a; = 2as, where ay € N. Then
4304 = 1177 — 500115 . 19005,

Reducing mod 7 gives
4=4r? =2 (mod 7),

9)=-1.
3) reduces to

impossible mod 7 since (
e s; = —1. Then (3.3

4330 = 1172 — 560115 . 190dit5,

Since (13—9) = (%) = —1, we have 3 { a;. Hence, a1 = 2as + 1, where as € N.

Then
4. 380m+3 — 11,2 _ 5Ob1+5 . 1gOdits,

Reducing mod 7 gives
3=4rf —2 (mod 7),
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impossible mod 7 since (%) =-—1.

Case 6.1.2: 11 | s. Then 1139F! | 5. Let s = 530172 . 1131+l . 19342 . g
where s; € Z. Then (3.33) reduces to

4330 = g (p2 — 501 +5 . 16e+3  1gbditD 2y (3.34)
e 31s1. Since 1117 and (%) =1, from (3.34) we have
2 4 . 23a;
(s—1> = 51T = 3 =1
11 11 11

Since s; € {—1,1}, we have s; = 1. Then (3.34) reduces to

4 . 33&1 — 7"2 _ 56b1+5 . 11601+3 . 196d1+5.

Hence, (4'??;1 = 1. Since (32) = —1, we have 2 | a;. Let a1 = 2ap, where
as € N. Then

4 . 36&2 — 7"2 _ 56b1+5 . 11601+3 . 196d1+5.

Reducing mod 7 gives
4=7r*-2 (mod7),

impossible since (£) = —1.

Case 6.2: (e1,¢€2,€3,€64) = (1,3,5,5). Then (3.33) reduces to
4. 3301 g3t 32 193t — (2 _5.11.19 - 5%). (3.35)

Case 6.2.1: 5| r. Since 5% 1 s(r? —5-11-19 - s?), we have 3b; + 1 = 1. Let
r=>5r; and s = 113%2. 193042 . 5, "where 71,5, € Z. Then (3.35) reduces to

4.330—-1 _ 51(57% — 11615 . 1gbdi+5 3%) (3.36)

Notice that () = (Z) = 1. Hence, (3.36) gives (1) = 1.
e 31s;. Since (7+) = —1, we have s; = 1. Then (3.36) reduces to

4.330-1 = 5p2 _ 110e0F5 196 +5

4'330‘171 B ﬁ _
19 S \19/)

Since (1%) = —1, we have 2 | 3a; — 1. Hence,, 21 a;. Let a; = 2as + 1, where

as € N. Then

Hence,

4300272 = 5p — 11045 . 190AF5,

Reducing mod 5 gives 4(—1)3%2*! =1 (mod 5). Hence, 2 | as. Let ay = 2a3, where
a3 € N. Then
4.312042 = 5p2 11615 . 19005, (3.37)



The Diophantine equation x2 4+ 3% - 5° . 11¢.19¢ = 4y" 131

Let ¢; = 2¢o 4+ 41 and dy = 2ds + i3 where i1,i9 € {0,1}. From (3.37) we have

V2= X(X?+5% 61115160 . 195+6i2) (3.38)

where X = 121%;:;5_?;52 Y = i??ﬁjﬁ;i’g. Magma [3] shows that the only {11,19}-
integral point on (3.38) is (0,0). Hence, (3.37) has no solutions.
e 3| s1. Since ($+) =1, we have s; = 33"~ then (3.36) reduces to
4 — 57,% _ 36(1172 . 11661+5 . 196d1+5,

impossible mod 3 since (%) =—1.
Case 6.2.2: 5| s. Then s = 5301+1 . 113142 1931+2 . 5, where s; € Z. Then

(3.35) reduces to

4.33071 — g (p2 — pO01H3 1 0atD  1gbdits . g2y (3.39)
e 3tsp. If s3 =1, then (3.39) reduces to

4.330-1 — 2 _ 560143 176145 1g6di+5 (3.40)
Hence, (4'33;9171) = 71;; = 1. Since (55) = —1, we have 2 | 3a; — 1. Let

ay = 2as + 1, where ay € N. Then (3.40) reduces to

4 . 36&2—‘,—2 — 7"2 _ 56b1+3 . 116C1+5 . 196d1+5.

Reducing mod 13 gives
10=7r*—-8 (mod 13),
18

impossible since (ﬁ) =—1.

If s = —1, then (3.39) reduces to

4.3%07 1 = 50 H3 1 6ets . 1gbhits 2, (3.41)

Hence, (4‘331(;1_1> = (1—91) = —1. Since (%) = —1, we have 2 t 3a; — 1. Let
a1 = 2ay, where as € N. Then (3.41) reduces to

4. 36(1171 _ 56b1+3 . 11601+5 . 196d1+5 o 7,2’

impossible mod 5 since (£2) = —1.

e 3| s1. Then s; = 33171 . 5, where s € Z. Hence, (3.39) reduces to

4 = 82(7"2 _ 36@1—2 . 56b1+3 3 11661+5 . 196d1+5 . S%)

Hence, 537 = 4 (mod 19). Therefore (£2) = 1. Thus, sy = 1. Then

4 — 7"2 _ 36(11—2 . 56b1+3 . 11661+5 . 196d1+5.

Reducing mod 13 gives
4=7r*-11 (mod 13),
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impossible since (%) =—1.

Case 6.3: (e1,¢€2,€3,€4) = (1,5,5,3). Then (3.33) reduces to
4.33m-1 5342 q3at2 qg3hitl — g(42 _5.11.19-s?). (3.42)

Case 6.3.1: 19 | r. Then 19 { s. Thus, 19% { s(r> —5-11-19 - s?). Thus, in
(3.42), we must have d; = 0. So (3.42) reduces to

433071 = 5 (1977 — 50015 . 1160149y, (3.43)

Since (%) =1 and () = —1, we have from (3.43) that (1) = —1.
e 31s1. Then s; € {£1}. Since (%) = —1, we have s; = —1. Therefore (3.43)
reduces to

4 - 33@1*1 — 56b1+5 . 11661+5 —19. 7'%. (344)

19 19
a; = 2ay + 1, where ay € N. Then (3.44) reduces to

Thus, (4'33(1171) = (5%§) = 1. Since (55) = —1, we have 2 | 3a; — 1. Thus,

430042 = pO0Hs 110045 1947,

Reducing mod 13 gives
10=9—-6-r7 (mod 13),

impossible since (72) = —1
e 3| s1. Then s; € {£33471}. Since (i) = —1, we have s = =330+l

11
Therefore (3.42) reduces to

4 = 36&1—2 . 56b1+5 A 11661+5 —19. ,r%7

impossible mod 3 since (%) -1

Case 6.3.2: 19 | s. Then s = 5301721130142, 193141 . 5 "where s; € Z. Then
(3.42) reduces to

4. 330,171 _ 81(7"2 o 56b1+5 . 11661+5 . 196d1+5 . S%) (345)

Since (%) =1, we have (%) =1.

T
e 34s;. Then s; = 1. Hence, (3.45) reduces to

4 . 33&1—1 — TZ _ 56b1+5 . 11601+5 . 196d1+5.

Since (1%) = —1, we have 2 | 3a; — 1. Let a; = 2as + 1, where ay € N. Then
4 . 36@2-‘1—2 — ,',,2 _ 56b1+5 . 11601+5 . 196d1+5.
Reducing mod 7 gives
1=72—4 (mod7),

impossible mod 7 since (%) =—1.
e 3| s1. Then s; = 33171 Hence, (3.45) reduces to
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4 — ,',,2 _ 36(11—2 . 56b1+5 3 11601+5 . 196(11-"—5.

Reducing mod 7 gives
4=7r*-2 (mod7),

impossible since (%) =-1

Case 6.4: (e1,€9,€3,€¢4) = (1,5,5,5). Then (3.33) reduces to
43301 532 q13at2 193hit2 — 542 _5.11.19 - s%). (3.46)
Thus, s = 530112, 113142 . 193142 . 5, where s € Z. Therefore

4. 330,171 _ 81(7"2 o 56b1+5 . 11601+5 . 196d1+5 . S%) (347)

Since (%) =1, we have (%) = 1. Notice that (I—ll) =—1.

e 34s;. Then s; = 1. Hence, (3.47) reduces to

4 . 33(1171 — 7,,2 _ 56b1+5 . 11661+5 . 196d1+5

Reducing mod 7 gives

(=) =92 — 4 (mod 7),

impossible since (‘Li—l =-1

e 3| s1. Then s; = 33171 Hence, (3.47) reduces to

4 = ’I"2 _ 360,172 . 56b1+5 A 116C1+5 . 196d1+5.

Reducing mod 7 gives
4=7r*-2 (mod7),

impossible since (7) =—1. O

Lemma 3.2. All solutions (n,a,b,c,d, z,y) with 3| n andn > 3 to (3.1) are given
in Table 4.

Table 4. Solutions to (3.1) with 3 | n, n > 3, and ged(z,y) = 1.
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Proof. Let n = 3k, where k € Z* and k > 1. Let y; = y*. Then (3.1) reduces to
2?4357 1119 = 4¢3, (3.48)

We apply Lemma 3.1 to equation (3.48). Notice that solutions in Table 2 are
deduced from solutions in Table 1. For example, solution

(n,a,b,¢,d, z,y) = (3,3,1,0,0,11, 4)
from Table 1 gives us a solution
(n,a,b,¢,d,z,y) = (6,3,1,0,0,11,2)
in Table 2. O

Lemma 3.3. All solutions (n,a,b,c,d,x,y) to (3.1) with n = 4 are list in Table 5.

Table 5. Solutions to (3.1) with n = 4.

(Tl7ll, b,C, d,l‘,y) (n7a7b7 G dvxvy) (77’7 a7b7 &) d,I,y) (Tl7ll, b7c‘, d,l‘,y)
(4,4,0,0,1,31,5) (4,4,8,3,0,141407,353) | (4,0,1,1,0,3,2) (4,0,5,1,0, 1557, 28)
(4,4,1,2,1,947, 26) (4,0,1,2,1,1147,24) (4,0,1,3,2,237, 28) (4,0,1,1,0,7,3)
(4,8,3,4,1,270073,524) | (4,0,3,0,1,53,6) (4,0,3,1,2,1923,32) | (4,1,0,0,0,1,1)
(4,5,0,4,0,7199,61) (4,1,4,1,1,195937,313) | (4,1,0,2,2,65521,181) | (4,1,1,0,0,7,2)
(4,1,2,2,0,23,7) (4,2,0,1,0,49,5) (4,2,4,2,1,10033,73) | (4,2,1,0,1,13,4)
(4,2,1,1,0,23,4) (4,6,1,1,,0,337,14) (4,2,2,0,1,73,7) (4,2,2,0,1,233,11)
(4,2,3,1,2,937,34) (4,3,1,2,0,7,8) (4,3,2,0,0,337,13)

PTOOf. Let a = 4a; 411, b=4b; +19, c = 4c1 +13, d=4d; +14, where ay, bl, c, dy €
N and 0 < 4y,141,43,74 < 3. From (3.1) we have

Y2 =4Xx% 30 .5%2.11% . 19" (3.49)

where X = 3a,1,5h1,i!1c1_19d1 , Y = 32a1_52b1_f1261_192d1 ,ai, by, cr,dr €N,

0 <iy,i9,i3,i4 < 3, and 21 iy + i3 + i4. Magma [3] is able to find S-integral points
n (3.49) for all but the case (i,42,13,14) = (3,3,3,3), where S = {3,5,11,19}.

We list all cases of (i1,142,13,74) where (3.49) has solutions in Table 6, the case

(i1,12,13,14) = (3,3,3,3) is undetermined (or UD).

Table 6. Solutions to (3.49).

(i1,92,13,14) | (X,Y) (n,a,b,c,z,y)
0,0.0,1) | (£5/3, £31/9) (1,4,0,0,1,31,5)
(0,0,3,0) (£353/75,+141407/5625) | (4,4,8,3,0,141407,353)
(0,1,1,0) | (£2,+3) (4,0,1,1,0,3,2)
(0,1,1,0) | (£28/5, £1557/25) (4,0, ,1,0,1557, 28)
(0,1,2,1) | (£22/3,£77/9)

(0,1,2,1,) | (£26/3,4947/9) (4,4,1,2,1,947, 26)
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(0,1,2,1) (£24,4+1147) (4,0,1,2,1,1147,24)
(0,1,3,2) (£28,4+237) (4,0,1,3,2,237,28)
(0,2,0,1) (£5, +45) 0

(0,2,1,0) (£3,+£7) (4,0,2,1,0,7,3)
(0,2,2,1) (£11,433) 0

(0,3,0,1) (£524/99, £270973/9801) | (4,8,3,4,1,270973, 524)
(0,3,0,1) (£6, £53) (4,0,3,0,1,53,6)
(0,3,1,2) (£32,41923) (4,0,3,1,2,1923, 32)
(1,0,0,0) (£1,+1) (4,1,0,0,0,1,1)
(1,0,0,0) (£61/33,+£7199/1089) (4,5,0,4,0,7199,61)
(1,0,1,1) (£313/5,4£195937/25) (4,1,4,1,1,195937, 313)
(1,0,2,2) (£181, £65521) (4,1,0,2,2,65521,181)
(1,1,0,0) (£2,47) (4,1,1,0,0,7,2)
(1,1,0,2) (£76/3,+11533/9) 0

(1,1,1,1) (£28, £1567) 0

(1,2,0,2) (£19,4+703) 0

(1,2,2,0) (£7,423) (4,1,2,2,0,23,7)
(2,0,1,0) (£3,+15) 0

(2,0,1,0) (£5, +49) (4,2,0,1,0,49,5)
(2,0,2,1) (£73/5,4+10033/25) (4,2,4,2,1,10033, 73)
(2,1,0,1) (+4,413) (4,2,1,0,1,13,4)
(2,1,1,0) (+4,423) (4,2,1,1,0,23,4)
(2,1,0,1) (+£14/3,+337/9) (4,6,1,1,0,337,14)
(2,1,2,1) (£22,4913) 0

(2,2,0,1) (£7,+£73) (4,2,2,0,1,73,7)
(2,2,0,1) (£11,4233) (4,2,2,0,1,233,11)
(2,2,1,0) (£5, £5) 0

(2,2,3,2) (£575/3, £654595/9) 0

(2,2,3,2) (£775,£1201205) 0

(2,3,1,2) (£34, +937) (4,2,3,1,2,937, 34)
(3,1,2,0) (£8,47) (4,3,1,2,0,7,8)
(3,2,0,0) (£13,4337) (4,3,2,0,0,337,13)
(3,3,3,3) UD U

We consider the case (i1, i2,13,14) = (3,3,3,3). Then (3.1) reduces to
(2y2 _ m)(2y2 + x) — 34(11-‘,-3 . 54b1+3 . 11401+3 . 194d1+3.

Hence,
4y® = Ay + By, (3.50)

where A1, B € Z1 ad A1 By = 3% 13 . 540143 . 114143 . 1941+3 . Without loss of
generality, we can assume that 3 | A;.

Case 1: 3| A; and 19 | By. Then 3% | Ay, Since (55) = (45) = 1 and

() = —1, we have (4¢) = —1. Hence, equation (3.50) is impossible mod 19.
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Case 2: 3-19 | A; and 5 | By. Since 31113 . 1910143 | 4, (11)

- 5
and (5) = —1, we have (%) = —1, impossible since we deduce from (3.50) th

(3)-(5)-

Case 3: 3-5-19 | A; and 11 | By. Then A; = 3301+3 . 530143 . 1934143 apnd
B; = 113173, Equation (3.50) becomes

4y2 — 34a1+3 . 54b1+3 3 194d1+3 + 11401-{-3’

impossible mod 11 since (%) = —1 and (11) (—) = 1.

Case 4: 3-5-11-19| A;. Then A; = 34a+3 . 5abid3 . q1deit3  194dit3 apg
B; = 1. Equation (3.50) reduces to

4y2 =1 + 34(11“1‘3 3 54b1+3 . 11461—‘1-3 ) 194d1+3.

Then (2y, 3201+1. 520141 . 11241, 192d1+1) g 4 solution to the Pell equation
X?-3.5-11-19-Y? =1, (3.51)

The fundamental solution to (3.51) is (X,Y) = (56,1). We look for k € Z* such
that
Ak — \E

32a1+1 . 52b1+1 . 11261+1 . 192d1+1 — Yk — ,
Al — Ao

(3.52)

where A1 = 56 + v/3135 and Ay = 56 — 1/3135.
If k£ > 30, then from the work of Bilu, Hanrot, and Voutier [2] we know that

Y has a primitive divisor ¢ such that k | ¢ — (W), impossible since ¢ €
{3,5,11,19} and k > 30.

Therefore k < 30. Checking the values of k in the range 1 < k < 30 shows that
(3.52) is impossible for all 1 < &k < 30.

We conclude that all solutions to (3.1) with n = 4 is given in Table 5. O

Lemma 3.4. Solutions (n,a,b,c,d,z,y) to (3.1) with 4 | n and n > 4 are listed in
Table 7.

Table 7. Solutions to (3.1) with n4 | n, n > 4, and ged(z,y) = 1.

(n,a,b,c,d, z,y)
(n, 10 0,0,1,1)

(8,2,1,0,1,13,2)
(8, 2 ,1,0,23,2)
(12,3,1,2,0,7,2)

Proof. Let n = 4k, where k € ZT and k > 1. Let y; = y*. Then
2% 4357 11° .19 = 4y, (3.53)
We use Table 5 in Lemma 3.3 to find solutions to (3.53) and get Table 7. O
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Lemma 3.5. All solutions to (3.1) withn > 5, 31n, 4tn, (a,b,¢,d) # (1,1,1,1)
(mod 2), and ged(z,y) =1 are given in Table 8.

Table 8. Solutions to (3.1) with n > 5, 3{n, 4{n, and
ged(z,y) = 1.

,a,b,c,d, x,y)
,1,0,0,0,1,1)
5,2,0,5, 2, 38599, 55)
5,0,4,5,2,41261,99)
5,0,3,5,0,25289, 44)

n
n

(
(
(
(
(

Proof. We can assume that n is an odd prime > 5. Then

r+By-A <r+s\/—A>n
2 B 2 ’

where 7, s are odd coprime integers. Therefore

B n _ Qn

- = a 6 - Lna

s a— 0
where a = % V=4 and § = = 2*‘4. If % is a root of unity, then % = (m, a
primitive m-root of unity. Since |Q((n) @ Q = ¢(m) and Q(3) = 2, we have
¢(m) = 2. Therefore m € {3,4}. Hence, (,, € {i\/—l,%}. Therefore

A=3and a = :I:HET\/jg. Hence, y = 1. We deduce that (n,a,b,c,d,z,y) =
(n) 17 07 0’ 07 17 1)'
We consider the case % is not a root of unity. If L,, has a primitive divisor ¢, then

n|q-— (%) Since ¢ € {3,5,11,19} and n > 5, we deduce that n =5, ¢ = 19,
and (M) = —1. Since (o — 8)? = —As?, we have (52) = —1. Since 191 A
; . , .

19
and A € {3,11,15,19,55,95,627}, we have A € {11,55}. Let B = 3¢5/ - 11% . 19,
where i, j,k, 1 € N. Since

5 65
B= ,
V—A
we have
16B = s(5r* — 104r%s% + A?%s%). (3.54)

Notice that s | B, so s only has prime divisors 3,5,11,19. Dividing both sides of
(3.54) by s° gives a quartic curve

7Y? =5X% — 10AX? 4 A2, (3.55)

where v = 43" - 572 - 11% - 19% iy, iy, 43,44 € {0,1}, X =2, Y € Q and Y only has
prime divisors 3,5,11,19. We use Magma to search for S-integral points on (3.55),
where S = {3,5,11,19}. We list the value of v where (3.55) has S-integral points
and the corresponding tuples (n,a, b, ¢,d, x,y) in Table 9. O



138 N. X. Tho

Table 9. Solutions to (3.55).

A | (3.55) (X,Y) (r,s) (nya,b,c,d,z,y)
11| —19Y2=5X% - 110X2 + 121 (i11/3 +44/9) (£11,£3) | (5,2,0,5,2,38599, 55)
11 | —95Y2 =5X7 — 110X % + 121 | (£78/25,£1399/625) | (£78,+25) |
(£11/5, £44/25) (£11,+5) | (5,0,4,5,2,41261,99)
(+8/5,429/25) (8, +5)
55 | Y2 = X* - 110X? + 605 (£11, +40) (£11,+1) | (5,0,3,5,0,25289,44)

Remark 3.6. We need the condition 5 { h(Q(v/—A)) in the proof of Lemma 3.5.
Since the class number of Q(v/—3-5-11-19) is 40, the condition (a,b,c,d) #
(1,1,1,1) (mod 2) in Lemma 3.5 and Theorem 1.1 is indispensable.

When (a,b,¢,d) = (1,1,1,1) (mod 2), then a = 10ay + i1, b = 10by + @2, ¢ =
10cy + i3, and d = 10dy +i4, where a1, b1, c1,d; € N and iq,i0,13,74 € {1, 3,5,7, 9}
Then (3.1) reduces to

Y2 =4X5 431 .52.11% .19 (3.56)
where
— x _ Y
Y= 3501 . §5i2 . 11543 . 195ia and X = 32i1 . 5242 . 11203 . 1924

Equation (3.56) represents a curve of genus 2, and we need to find {3,5,11,19}-
integral points on this curve. It might be possible to attack (3.56) using the method
in [5] but the author of this paper has not been able to proceed in this way.
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