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Abstract
Trend filtering is known as the technique for detecting piecewise linear

trends in univariate time series. This technique is extended to the setting
of compositional data, which are multivariate data where only the relative
information is of importance. According to this, we formulate the problem
and present a procedure how to efficiently solve it. To show the usefulness
of this method, we consider the number of COVID-19 infections in several
European countries in a chosen time period.
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1. Introduction

Filtering linear trends of a univariate time series has been extensively investigated
in the literature, and many methods exist for this purpose, see [7] or [11]. In the
univariate context, estimating a piecewise linear trend and its change points can
deliver valuable insights and serve as an analytical tool. The standard 𝑙1 linear
trend filtering estimator for given measurements 𝑦𝑡 ∈ R with equidistant time
stamp 𝑡 = 1, . . . , 𝑇 is given as the solution of the following optimisation problem

min
𝑎𝑡

1

2

𝑇∑︁

𝑡=1

‖𝑦𝑡 − 𝑎𝑡‖2 +
𝜆

2

𝑇∑︁

𝑡=3

|𝑎𝑡 − 2𝑎𝑡−1 + 𝑎𝑡−2|,
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for a fixed positive tuning parameter 𝜆. The term on the left controls the goodness
of fit to the data, whereas the right penalty term enforces the parameters 𝑎𝑡 to be
close to a linear function in 𝑡. This follows from the fact that a lasso penalty [12] is
used on the second differences, i.e. 𝑎𝑡 − 2𝑎𝑡−1 + 𝑎𝑡−2, setting the latter for certain
𝑡 – depending on 𝜆 – to zero. It is easy to see that when 𝑎𝑡𝑗 − 2𝑎𝑡𝑗−1 + 𝑎𝑡𝑗−2 = 0
holds for consecutive 𝑡𝑗 , with 𝑗 = 1, . . . ,𝐾, we get 𝑎𝑡𝑗 = 𝑎+ 𝑏𝑡𝑗 , for fixed 𝑎, 𝑏 ∈ R.
Therefore, by using a lasso penalty on the second differences we get that 𝑎𝑡 is forced
to become piecewise linear with growing 𝜆. Recently, trend filtering has also been
extended to many other contexts keeping the property that for a growing penalty
parameter 𝜆 linear functions in the appropriate setting are selected; e.g. graphs
[15], vector-valued graphs [13] and additive models [10].

To the best of our knowledge, so far, trend filtering has not been extended to
compositional data. Compositional data are in its nature multivariate and strictly
positive, and for this type of data it is the relative rather than the absolute informa-
tion which is of interest. As an example we might consider chemical concentrations
for 𝐷 ≥ 2 different elements. An observation is written as a 𝐷 dimensional vector
𝑥 = (𝑥1, . . . , 𝑥𝐷)′ with positive entries 𝑥1 to 𝑥𝐷, where each entry is the concen-
tration of a certain element. In a chemical setting it is the relative information
between different elements which is of main interest. Relative meaning that the
important information is contained in the ratios for two different elements, i.e. 𝑥𝑖

𝑥𝑗
,

for 𝑖 ̸= 𝑗 ∈ {1, . . . , 𝐷}. In the ground breaking work [1], not only has it been made
clear how a compositional view can be advantageous, but also the mathematical
foundations of compositional data have been laid out.

In this work we consider fitting linear trends to a time series of compositional
data, i.e. we look at the multivariate linear trend of compositional data with an
equidistant time stamp 𝑡. As an example, consider the case where we compare
the number of healthy individuals to infected ones in the whole population of a
country. Denoting the number of infected individuals at each time 𝑡 as 𝜅𝑡 and
the total number of individuals in a country by 𝑃 , the infected vs. non-infected
individuals in a population over time can be described by the two dimensional time
series (𝜅𝑡, 𝑃 − 𝜅𝑡). If we are interested in analyzing how the number of healthy vs
unhealthy individuals behaves we can see this as a compositional time series.

This perspective is relevant in many other contexts, e.g. comparing the perfor-
mance of different stocks relative to each other. This explains the success compo-
sitional data analysis has had in past applications. The method we propose in this
work guarantees to find an estimator of piecewise compositional linear trends. The
trend estimates will be strictly positive and sum up to a given total.

This paper is organized as follows. In Section 2 we will review some important
compositional data analysis concepts. In Section 3 we introduce compositional
trend filtering, and in Section 4 we present a procedure for the computation. Sec-
tion 5 shows an application of the presented method to the number of COVID-19
infected individuals in various European countries, and the final Section 6 con-
cludes.
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2. Compositional data analysis concepts

In the following, consider a composition 𝑥 = (𝑥1, . . . , 𝑥𝐷)′ with 𝐷 strictly positive
entries, called compositional parts, which sum up to 1. This leads to the definition
of compositional data as observations from the 𝐷 part simplex 𝒮𝐷,

𝒮𝐷 :=

{︂
𝑥 = (𝑥1, . . . , 𝑥𝐷)′ ∈ R𝐷+ ,

𝐷∑︁

𝑖=1

𝑥𝑖 = 1

}︂
.

As established in [1], compositional data aims to capture the relative information
between the entries of 𝑥. This is done by identifying each point 𝑥 ∈ R𝐷+ with a
whole ray starting at zero and going through 𝑥, which means that we identify an
element 𝑥 ∈ 𝒮𝐷 with all elements 𝛾𝑥 for any 𝛾 > 0. In other words, the constraint
of sum equal to 1 can always be achieved by rescaling, see [5].

The simplex can be equipped with an addition, multiplication with a scalar, an
inner product and a norm, which leads to the so-called Aitchison geometry on the
simplex [1]. Consider the compositions 𝑥 = (𝑥1, . . . , 𝑥𝐷)′ and 𝑦 = (𝑦1, . . . , 𝑦𝐷)′:

• For 𝑥,𝑦 ∈ 𝒮𝐷, perturbation is defined by 𝑥⊕ 𝑦 := (𝑥1𝑦1, . . . , 𝑥𝐷𝑦𝐷)′

• For 𝑥 ∈ 𝒮𝐷 and 𝛼 ∈ R, powering is defined by 𝛼⊙ 𝑥 := (𝑥𝛼1 , . . . , 𝑥
𝛼
𝐷)′

• For 𝑥,𝑦 ∈ 𝒮𝐷, the inner product is defined as

⟨𝑥,𝑦⟩𝐴 :=
1

2𝐷

𝐷∑︁

𝑖=1

𝐷∑︁

𝑗=1

log

(︂
𝑥𝑖
𝑥𝑗

)︂
log

(︂
𝑦𝑖
𝑦𝑗

)︂
.

Remark 2.1. The difference of 𝑥 and 𝑦 denoted by 𝑥⊖𝑦 is therefore (𝑥1

𝑦1
, . . . , 𝑥𝐷

𝑦𝐷
)′.

The norm can be defined in the usual manner using the inner product defined
above, i.e ‖𝑥‖𝐴 =

√︀
⟨𝑥,𝑥⟩𝐴.

Interestingly, one can construct isometric mappings from 𝒮𝐷 into R𝐷−1, using
the so called (Centered Logratio Coefficients) clr-mapping, which is defined as

clr : 𝒮𝐷 → R𝐷, clr (𝑥) :=

(︃
log

(︃
𝑥1

𝐷

√︁∏︀𝐷
𝑖=1 𝑥𝑖

)︃
, . . . , log

(︃
𝑥𝐷

𝐷

√︁∏︀𝐷
𝑖=1 𝑥𝑖

)︃)︃′

.

This mapping fulfills important properties regarding addition, multiplication by a
scalar and the inner product, namely

clr(𝑥⊕ 𝑦) = clr(𝑥) + clr(𝑦) (2.1)
clr(𝛼⊙ 𝑥) = 𝛼 clr(𝑥) (2.2)
⟨𝑥,𝑦⟩𝐴 = ⟨clr(𝑥), clr(𝑦)⟩𝐸 (2.3)
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where ⟨·, ·⟩𝐸 denotes the standard inner product in R𝐷. However, clr is not a one-
to-one mapping onto R𝐷 as for each 𝑥 ∈ 𝒮𝐷 we have

∑︀𝐷
𝑖=1 clr (𝑥)𝑖 = 0; meaning

that the sum of the entries of clr (𝑥) is always zero and therefore the image of clr

lies in the subspace {𝑧 ∈ R𝐷|∑︀𝐷
𝑖=1 𝑧𝑖 = 0}.

Nevertheless, fixing 𝐷 − 1 orthonormal basis vectors 𝑣1, . . . ,𝑣𝐷−1 ∈ R𝐷, de-
noted in the following in matrix form V ∈ R𝐷×(𝐷−1), of the subspace {𝑧 ∈
R𝐷|∑︀𝐷

𝑖=1 𝑧𝑖 = 0} ⊂ R𝐷 one can define an isometry from 𝒮𝐷 to R𝐷 by

ilrV : 𝒮𝐷 → R𝐷−1, ilrV(𝑥) := V′ clr(𝑥),

where V′ denotes the transposed matrix, called Isometric Logratio. ilrV naturally
preserves the properties (2.1), (2.2) and (2.3) and is an isometry. This mapping
will be used in the following for trend filtering.

For a more thorough explanation of compositional data and different coordinate
representations we refer to [5].

In the following we will speak of a compositional time series when talking about
a time series 𝑠𝑡 ∈ 𝒮𝐷, with time index 𝑡 = 1, . . . , 𝑇 . It is interesting to note here
that due to the compositional nature of 𝑠𝑡 we can multiply the latter with any
univariate time series 𝑃𝑡 ∈ R+ such that 𝑃𝑡𝑠𝑡 still lies in 𝒮𝐷 for each 𝑡. In a
compositional setting, 𝑃𝑡𝑠𝑡 is therefore equivalent to 𝑠𝑡. This means that if we
would like to go back from a compositional view to absolute numbers one needs to
prespecify 𝑃𝑡. We will see how to do that in the next section. In the following, we
will write 𝑥𝑡 = 𝑃𝑡𝑠𝑡, where 𝑃𝑡 is given by the user.

3. Compositional trend filtering

We will now show how to extend the linear univariate trend filtering framework to
compositional time series 𝑥𝑡 ∈ 𝒮𝐷 and discuss why the basic property of fitting
piecewise linear trends is kept.

We define the trend filtering estimator of a compositional time series 𝑥𝑡 as:

(𝑎̂1, . . . , 𝑎̂𝑇 )′ := arg min
𝑎𝑡∈𝒮𝐷

1

2

𝑇∑︁

𝑡=1

‖𝑥𝑡 ⊖ 𝑎𝑡‖2𝐴 +
𝜆

2

𝑇∑︁

𝑡=3

⃦⃦
∆2𝑎𝑡

⃦⃦
𝐴

(3.1)

where ∆2𝑎𝑡 denotes 𝑎𝑡 ⊖ 2𝑎𝑡−1 ⊕ 𝑎𝑡−2, for a fixed 𝜆 > 0. This means that we fit
𝑇 vectors 𝑎̂1, . . . , 𝑎̂𝑇 ∈ 𝒮𝐷 to the observed data 𝑥1, . . . ,𝑥𝑇 , taking into account a
given level of smoothness controlled by the penalty term. When 𝜆 goes to infinity
we get ∆2𝑎𝑡 = 0 which can be shown to be equal to 𝑎𝑡 = 𝑎 ⊕ (𝑡 ⊙ 𝑏), for all 𝑡,
for some 𝑎 and 𝑏 in 𝒮𝐷; i.e. 𝑎𝑡 is a linear function in the compositional sense. For
𝜆 <∞ we will see that we usually get piecewise linear trends in the compositional
sense.
Remark 3.1. Problem (3.1) can be extended to fit higher order polynomial trends
by defining for all 𝑡 firstly ∆1𝑥𝑡 := 𝑥𝑡⊖𝑥𝑡−1 resp. ∆2𝑥𝑡 := 𝑥𝑡⊖ 2𝑥𝑡−1⊕𝑥𝑡−2 and
then higher order 𝑘-th finite differences incrementally by ∆𝑘𝑥𝑡 := ∆(∆𝑘−1𝑥𝑡).
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To solve Problem (3.1) we will use isometric logratios. As mentioned in the last
section, the mapping ilrV is, for any fixed basis V, an isometry and therefore the
terms ‖𝑥𝑡 ⊖ 𝑎𝑡‖2𝐴 resp.

⃦⃦
∆2𝑎𝑡

⃦⃦
𝐴

translate for any 𝑡 into ‖ilr(𝑥𝑡)− ilr(𝑎𝑡)‖2𝐸 resp.⃦⃦
∆2 ilr(𝑎𝑡)

⃦⃦
𝐸

, where in the latter ∆2 is defined in the same way as before but for
the usual addition and multiplication in R𝐷−1.

Therefore we get that it suffices to solve the optimisation problem

(𝑢̂1, . . . , 𝑢̂𝑇 )′ := arg min
𝑢𝑡∈R𝐷−1

1

2

𝑇∑︁

𝑡=1

‖ilr(𝑥𝑡)− 𝑢𝑡‖2𝐸 +
𝜆

2

𝑇∑︁

𝑡=3

⃦⃦
∆2𝑢𝑡

⃦⃦
𝐸
. (3.2)

It is easy to see that the latter is strictly convex and therefore has a unique solution
(𝑢̂1, . . . , 𝑢̂𝑇 ). By using the inverse of ilrV, we can recover the solution to (3.1) by
defining 𝑎̂𝑡 := ilr−1

V (𝑢̂𝑡) for every 𝑡. This also shows that the solution to (3.1) is
unique and not dependent on the choice of V as any solution to (3.1) transformed
by ilrV is necessarily the unique one to (3.2). Therefore, the fit in ilr coordinates
for any matrix V, as well as in any special coordinate system like balances or
symmetric pivot coordinates is immediately available [5].

Note that in problem (3.2) we use the 𝑙2 norm as a penalty on the second
differences. This corresponds to a group lasso penalty, see [16], on the latter. The
interpretation of this is that we look for times 𝑡 where the trends of 𝑥𝑡 change at
once for all components together as the penalty automatically sets ∆2𝑎𝑡 for certain
𝑡 to zero.

Remark 3.2. It is also possible to extend this approach to compositional data with
an index 𝑡𝑙, for 𝑙 = 1, . . . , 𝑇 , marking rather a position in space than time. In such
a case the spacing of 𝑡𝑙 is not equidistant. However, a generalisation is straight-
forward by taking the penalty terms

⃦⃦
⃦ Δ𝑎𝑡𝑙

𝑡𝑙−𝑡𝑙−1
⊖ Δ𝑎𝑡𝑙−1

𝑡𝑙−1−𝑡𝑙−2

⃦⃦
⃦
𝐴

instead; compare with
the univariate usual trend filtering extension to non-equidistant points discussed
in [9].

We also want to remark that the estimator defined in (3.1) changes accordingly
under rescaling of each coordinate. That is, assume that each coordinate of the
time series (𝑥𝑖)𝑡 is rescaled by 𝛼𝑖, meaning that we look at 𝛼𝑖(𝑥𝑖)𝑡. Then if 𝑎̂𝑡 is
the solution to (3.1) for the data 𝑥𝑡, 𝑎̂𝑡 ⊕ 𝛼 is the solution to (3.1) for the data
𝑥𝑡⊕𝛼. The proof is trivial, as ∆2𝛼 = 0 and because 𝑥𝑡⊖ 𝑎̂𝑡 = (𝑥𝑡⊕𝛼)⊖ (𝑎̂𝑡⊕𝛼).
Therefore, rescaling the data rescales the estimator accordingly. This is interesting
when looking at log-ratios and other compositional tools. As, for example, when
analysing the trend in log-ratio coordinates we get that after rescaling, the latter
is only shifted by a positive constant.

Finally, when we want to go back to a non-compositional view, we simply mul-
tiply the estimator 𝑎̂𝑡 with 𝑃𝑡. Choices of 𝑃𝑡 are case dependent. If a multivariate
smooth to the original data is also of interest then a smoothed version of

∑︀𝑝
𝑖=1(𝑥𝑡)𝑖

can make sense, see Section 5.
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4. Computational considerations

4.1. The ADMM approach
As problem (3.2) has a very special structure, we use an ADMM (Alternating
Direction Method of Multipliers) approach. The latter is very easy to implement
and has been, with a slight modification, used for the univariate case [9], as well as
for multivariate piecewise constant trend filtering before, see [14]. Naturally other,
approaches could be used here, such as the Primal-Dual Interior-Point Method,
as briefly mentioned in [7]. For a more thorough introduction to ADMM we refer
to [3].

For given functions 𝑓, 𝑔, matrices A,B and a vector 𝑐, the augmented Lagragian
of the optimisation problem

min
𝑥,𝑦

𝑓(𝑥) + 𝑔(𝑦) s.t A𝑥 + B𝑦 = 𝑐 (4.1)

is defined as:

ℒ(𝑥,𝑦,𝜃) := 𝑓(𝑥) + 𝑔(𝑦) + 𝜃′(A𝑥 + B𝑦 − 𝑐) +
𝜌

2
‖A𝑥 + B𝑦 − 𝑐‖2𝐸 ,

where 𝜃 denotes the dual variable, and 𝜌 > 0 is fixed. Solving (4.1) is then done
by the following iterative scheme,

𝑥← arg min
𝑥

ℒ(𝑥,𝑦,𝜃), 𝑦 ← arg min
𝑦

ℒ(𝑥,𝑦,𝜃), 𝜃 ← 𝜃 + 𝜌(A𝑥 + B𝑦 − 𝑐),

with given starting vectors for 𝑥,𝑦 and 𝜃.

To be able to use ADMM for (3.2) we firstly need to reformulate the problem.
For this, denote by ℐ𝐷 the unit matrix of size 𝐷 and by 𝒪 a matrix of only zeros.
We define the second difference matrix as

D2 :=

⎡
⎢⎢⎢⎢⎣

ℐ𝐷 −2ℐ𝐷 ℐ𝐷 𝒪 . . . 𝒪
𝒪 ℐ𝐷 −2ℐ𝐷 ℐ𝐷 𝒪

...
...

. . . . . . . . . . . . 𝒪
𝒪 𝒪 𝒪 ℐ𝐷 −2ℐ𝐷 ℐ𝐷

⎤
⎥⎥⎥⎥⎦
∈ R(𝐷−1)(𝑇−2)×(𝐷−1)𝑇 .

It is easy to see that for the stacked vector of all 𝑢𝑡, i.e. 𝑢 := (𝑢1, . . . ,𝑢𝑇 )′, we
have

D2𝑢 = (𝑢3 − 2𝑢2 + 𝑢2, . . . ,𝑢𝑇 − 2𝑢𝑇−1 + 𝑢𝑇−2)′

and therefore problem (3.2) can be written as

arg min
𝑢𝑡∈R𝐷−1

1

2

𝑇∑︁

𝑡=1

‖ilrV(𝑥𝑡)− 𝑢𝑡‖2𝐸 +
𝜆

2

𝑇∑︁

𝑡=3

⃦⃦
𝜂𝑡−2

⃦⃦
𝐸

s.t. D2𝑢 = 𝜂 ∈ R(𝐷−1)(𝑇−2),
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where 𝜂𝑙 denotes the subvector (𝜂(𝑙−1)(𝐷−1)+1, . . . , 𝜂𝑙(𝐷−1))
′ of 𝜂. In this form we

can use ADMM as explained before, where 𝑓 is simply the first sum and 𝑔 the
second one.

As outlined above, denote by 𝜃 ∈ R(𝑝−1)(𝑇−𝑘) the dual variable. The augmented
Lagrangian is then given by

ℒ(𝑢,𝜂,𝜃) :=
1

2

𝑇∑︁

𝑡=1

‖ilrV(𝑥𝑡)− 𝑢𝑡‖2𝐸 +
𝜆

2

𝑇∑︁

𝑡=3

⃦⃦
𝜂𝑡−2

⃦⃦
𝐸

+𝜃′(D2𝑢− 𝜂) +
𝜌

2

⃦⃦
D2𝑢− 𝜂

⃦⃦2
𝐸
.

From the latter we can easily deduct the ADMM updates by optimising in each
variable at once holding the others fixed. Optimizing in 𝑢 is simple and can be done
by setting the derivative to zero. Optimizing in 𝜂 alone is a group Lasso problem
with non-overlapping groups. Denoting the proximal operator of the group lasso
with non-overlapping groups as 𝒫𝜆

𝜌
, see [8], and writting from now on 𝜃 := 𝜃

𝜌 , we
get the following updates:

𝑢← (ℐ(𝐷−1)𝑇 + 𝜌D2′D2)−1(ilrV(𝑥𝑡)− 𝜌D2′(𝜃 − 𝜂)) (4.2)

𝜂 ← 𝒫𝜆
𝜌

(D2𝑢 + 𝜃) (4.3)

𝜃 ← 𝜃 + D2𝑢− 𝜂. (4.4)

As we usually like to solve problem (3.1) for a whole set of given 𝜆’s, e.g.
𝜆1, . . . , 𝜆𝐿, it seems sensible to use as starting vectors (𝑢,𝜂,𝜃) for the above itera-
tion a warm start scheme, meaning that when solving problem (3.1) for 𝜆𝑖 we use
the solutions obtained by (4.2)–(4.4) belonging to 𝜆𝑖−1 as a start for (4.2)–(4.4)
belonging to 𝜆𝑖.

4.2. Cross Validation (CV)

The optimal 𝜆 from a set of {𝜆1, . . . , 𝜆𝐿} can be chosen by K-fold CV. More pre-
cisely, denote with ℱ1, . . . ,ℱ𝐾 the folds, i.e. a non-overlapping partition of 1, . . . , 𝑇
into K sets. In the case of trend filtering these should be chosen in an interleaved
way, which means that for any time point 𝑡 belonging to a certain fold ℱ𝑘, the
elements of the neighbouring time points belong to other folds.

For each pair (𝜆𝑖,ℱ𝑘) we calculate 𝐶𝑉 (𝜆𝑖,ℱ𝑘) :=
∑︀
𝑡∈ℱ𝑘

⃦⃦
⃦ilrV(𝑥𝑡)− 𝑢̂−ℱ𝑘

𝑡

⃦⃦
⃦
2

,

where 𝑢̂−ℱ𝑘
𝑡 denotes the prediction, at 𝑡 ∈ ℱ𝑘, of the estimator calculated on the

subset of observations with indices {1, . . . , 𝑇} ∖ ℱ𝑘.
To chose 𝜆, one can take the argmin in {𝜆1, . . . , 𝜆𝐿} of

𝐶𝑉 (𝜆) :=
1

𝑇

𝐾∑︁

𝑘=1

𝐶𝑉 (𝜆,ℱ𝑘).
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Denoting with 𝜆⋆ the argmin of the latter, another popular choice is to use the
one standard error rule to choose the optimal 𝜆, as often done for usual univari-
ate trend filtering. Thus we choose the optimal 𝜆 as the maximal 𝜆 satisfying
𝐶𝑉 (𝜆) ≤ 𝐶𝑉 (𝜆⋆) +𝜎(𝜆⋆), where 𝜎(𝜆) is the standard deviation of the data points
𝐶𝑉 (𝜆,ℱ1), . . . , 𝐶𝑉 (𝜆,ℱ𝐾), see [4].

5. Coronavirus data

To illustrate the utility of the method presented above we will look at the number
of COVID-19 infections in 9 different countries in the time period from 2020-03-01
until 2020-07-31. This data set is publicly available at https://ourworldindata.
org/coronavirus-testing.

In Figure 1 we show the absolute number of reported infections per 100000
inhabitants. As for a very few days the reported number of positive cases are zero,
we used time series imputation from the R package forecast [6] to replace the zeros
by positive numbers. Most countries show a very similar pattern and reached their
maximum number of cases around April; except for Sweden which reached it in
June/July. We can see that some countries like Sweden, Spain and Belgium had
much higher peaks. However, we can also see that the periods of high values around
the peaks also differs a lot among the countries.

Figure 1. Number of reported COVID-19 infections per 100000
inhabitants from 2020-03-01 to 2020-07-31 for different countries.

To gain more insight into how one country performed in comparison to the
whole group of countries we use the method described above. We estimate the
multivariate trend filtering fits 𝑎̂𝑡 for 𝑥𝑡, as described above, for 𝜆 chosen by𝐾 = 10
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fold cross validation and the one standard error rule, see Subsection 4.2, with
𝜆 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30}. In Figure 2, we plot the first pivot coordinate√︁

8
9 log

(︂
(𝑥𝑡)𝑖

8
√∏︀9

𝑗 ̸=𝑖(𝑥𝑡)𝑗

)︂
, where 𝑖 is the index corresponding to the 𝑖-th country in

𝑥𝑡, and the estimated trend. Pivot coordinates can be used to compare the fit (or
number of cases) of one country to the geometric mean of the fit (or number of
cases) of the rest of the group, containing all relative information of a specific part
to the remaining parts in the considered composition [5].

Figure 2. Positive COVID-19 cases in first pivot coordinate per
country. The black dots are the measured number of cases in the
first pivot coordinate for each country. Equally, the red lines are its

compositional trend filtering fits for 𝜆 = 10.

It can be seen in Figure 2 that, compared to the whole group, Germany and
Finland have had a comparatively low number of cases, as the values are mainly
negative. Finland experienced a trend change in the middle/end of March with
rising numbers compared to the geometric mean of the rest of the group, whereas
Germany experienced a downward one. It is interesting to see that many coun-
tries have had a change in trend since mid/end June - e.g. Belgium, Germany and
Sweden. For instance, since the absolute numbers in Spain and Belgium have been
rising quickly in July, more than in other countries, also a relative increase com-
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pared to the other countries is visible. The contrary behaviour can be seen for
Sweden, with a decay in relative number in the beginning of July. It is also sur-
prising to see that Italy, which had the highest infection numbers at the beginning
all over Europe, has constantly been improving compared to the other countries,
and is by the end of June doing better than average. The Netherlands have at the
end of July had average numbers however, its trend might have been alarming.

Furthermore, for a fixed country it might also be interesting to see how the
trend of positive cases behaves compared to one other country. For this we display
in Figure 3 the log-ratios of Austria and each country present in the composition.

Figure 3. Log-ratios of Austria and all other countries of the com-
position. The black points are the observations, in red we display
the compositional trends and in blue the regular univariate trend-
filtering estimates. 𝜆 was chosen in both cases by cross validation

with the one standard error rule.

We plot the compositional trend filtering fit described by the method above, which
was also used for Figure 2, in log-ratios in red. Additionally, we show the univariate
non-compositional trend filtering fits to each log-ratio pair in blue with 𝜆 obtained
by cross validation with the one standard error rule as implemented in the R
package [2]. We can see from the log-ratio between Austria and Germany that
since July Austria has increasingly more cases than Germany. This upward trend
has already started at the beginning of May when Austria still had less positive
cases. At the same time the trend for the log-ratio between Austria and Italy
started to change. This means that the positive cases per 100000 inhabitants in
Austria is growing at a faster rate compared to each, Germany and Italy, since the
beginning of July. Something similar holds for the pair Austria and Finland. At
the end of July we can see that the cases in Austria compared to Italy or Finland
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show a similar trend and numbers – around two. This is surprising as Italy notably
started off with the highest infection numbers. At last, since July, Belgium and
Spain seem do be doing worse and worse compared to Austria, indicated by a very
steep downward trend. The non-compostional univariate trend filtering estimates
(in blue) show a slightly different picture. The compositional approach differs
sometimes vastly, e.g. for the log-ratio Austria-France, and seems to follow the
data better where the non-compositional approach oversmooths, e.g. the log-ratio
Austria-Spain in March, end of April and end of June. We also note that the
compositional nature leads to trends which on the one hand are at times very
smooth, and on the other, also display rapid changes.

Figure 4. The black dots show for every country the recorded
number of positive cases per 100000 inhabitants. The red lines dis-
play the estimator 𝑃𝑡𝑎̂𝑡. The blue lines display the trends estimated

by non-compositional trend filtering.

The fit (𝑢̂1, . . . , 𝑢̂𝑇 )′ can also be back-transformed to (𝑎̂1, . . . , 𝑎̂𝑇 )′ into the
simplex, and the elements per time point sum up to 1. If we want to present those
back-transformed fits together with the absolute numbers of infections per 100000
inhabitants, we need to multiply with the total 𝑃𝑡 per time point. However, as we
want to keep the smoothness of the fits, we will multiply with a smoothed total, as
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described at the end of Section 3. To do this we sum up at each time point for all
countries the number of positive cases, log-transform the latter and divide it by the
absolute maximum, fit a smoother – in our case a univariate trend filter from the
R package genlasso [2] with 𝜆 = 1 – and transform it back by multiplying it first
with the absolute maximum of the log-transform and then taking its exponential.
In Figure 4 we display the fit 𝑃𝑡𝑎̂𝑡 to the original points in red. In blue we show
the univariate non-compositional trend filtering fits for 𝜆 = 1, where the data were
first divided by the maximum, then the trend filtering fit was obtained, and lastly,
the latter was again multiplied by the maximum. Dividing the data by the absolute
maximum before fitting puts the 𝜆 on a similar footing for comparison with 𝑃𝑡𝑎̂𝑡.
Note that the estimator 𝑃𝑡𝑎̂𝑡 always sums up to the total 𝑃𝑡, as we are taking a
compositional approach. It is interesting to see that for most countries the highest
number of cases had been reached around mid/end of March with a change in trend
since then. Also note that the fitted trend to Italy in the first half of April seems
to be larger than one would expect from the data in Euclidean space. Examining
the data at this time more closely we can see that the number of positive cases
actually is very high for two consecutive days, before suddenly dropping and so
the compostional fit reflects this better than the non-compositional one. Lastly,
the non-compositional approach gives a negative estimate at the beginning of the
measurements and shows a slightly different behaviour at the peaks.

6. Summary and conclusions

In this paper we presented a new method for fitting piecewise compositional linear
trends to compositional time series. The method we proposed is a direct extension
of univariate trend filtering to the compositional setting, which is multivariate
by definition. This was done by reformulating the optimization problem in the
appropriate Aitchison geometry on the simplex. We showed how to derive the
problem in the usual Euclidean geometry, expressed in ilr coordinates, and that the
solution does not depend on the specific choice of ilr coordinates. We proceeded
by describing how to efficiently solve the problem through an ADMM algorithm.

To show the usefulness of our method, we looked at the number of COVID-
19 cases in different European countries in the period from March to July 2020.
Namely, once the compositional trend was fitted, we explored the trends in Pivot
coordinates and log-ratio representations. This gave insights into how the COVID-
19 infections in some countries behaved compared to the compositional mean of
other countries, during the said time period.

The fitted trends have been back-transformed to the simplex. The results have
to sum up to 1 per time point, and the values cannot be negative – which is often a
desirable property. After multiplication by a smoothed total for every country, the
total infection numbers can be compared to the smooth line, which still represents
relative information to all other countries, and deviations might indicate interesting
phenomena (higher variability, etc.).

Additionally to the compositional time series case presented in this paper, one
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could look at various extensions. For example, instead of looking at compositional
data with a time stamp, one could also look at compositional data with a geographic
stamp. That means that we would look at a random variable 𝑥(𝑢,𝑠) ∈ 𝒮𝐷−1 with
(𝑢, 𝑠) being a geographic location. Such a case might be interesting for geochemical
exploration where at certain geographic points we measure the concentration of
elements. For the latter a shift in concentrations might correspond to interesting
areas, thus leading to piecewise constant trend filtering in the compositional sense.
Another extension might consider robustification of the proposed method. Outliers
are quite common in any statistical setting and compositional data are just as much
affected by such. Therefore, investigating a compositionally robust definition of
trend filtering might be interesting.
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