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Abstract
In this paper we propose some parametric and non-parametric post-pro-

cessing methods for calibrating wind speed forecasts of nine Weather Research
and Forecasting (WRF) models for locations around the cities of Valparaíso
and Santiago de Chile (Chile). The WRF outputs are generated with different
planetary boundary layers and land-surface model parametrizations and they
are calibrated using observations from 37 monitoring stations. Statistical cal-
ibration is performed with the help of ensemble model output statistics and
quantile regression forest (QRF) methods both with regional and semi-local
approaches. The best performance is obtained by the QRF using a semi-
local approach and considering some specific weather variables from WRF
simulations.
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1. Introduction

Numerical weather prediction (NWP) models have been used for many years in
research and operational weather forecasting due to their advantage to simulate
the state of the atmosphere in any region of the globe at high spatial and tem-
poral resolutions. The Weather Research and Forecasting (WRF) model [32, 37]
is one of the most widely used systems, which has received strong support by the
atmospheric science community over the years. However, despite its continuous
improvement and successful use, the model still presents biases in the prediction
of near-surface variables; specifically, in the prediction of wind speed over com-
plex terrain [23, 33, 35], which may be related to the smoothed topography used
in the model and the misrepresentation of small-scale atmospheric processes [19,
23]. Those limitations negatively influence obtaining accurate predictions of sur-
face wind speed and direction, which are used in a large number of applications in
Chile, such as wind energy [24, 28], air-quality [6, 33, 36], and precipitation over
the Andes cordillera [9].

In the last 15 years several statistical post-processing models have been devel-
oped to obtain sharp and calibrated forecasts, e.g. the non-homogeneous regres-
sion or ensemble model output statistics [EMOS; 13], which method provides full
predictive distribution of the future weather quantity using a single parametric
distribution with parameters connected to the ensemble members.

Recently, some studies have been focused on the use of machine learning tech-
niques for statistical post-processing. [39] introduced a new post-processing method
based on quantile regression forests (QRF), which is a generalization of random
forests and allows the estimation of conditional quantiles from the cumulative dis-
tribution function (CDF) in an efficient and simple way. This approach has the
important advantage of allowing the inclusion of other features as predictors in
the post-processing model. One can also mention [34], where QRF is applied to
improve 2m temperature forecasts and a flexible alternative using a neural network
is also proposed.

In [7], we evaluated two parametric models for calibrating surface temperature
forecasts from nine WRF simulations at 19 meteorological stations in Santiago city.
Now, the main aim of this study is to compare the forecast skill of some parametric
and non-parametric post-processing methods to calibrate the wind speed using both
regional and semi-local approaches at 37 monitoring stations around Valparaíso and
Santiago city. Furthermore, the importance of each simulation and that of other
weather variables from WRF included as predictors in QRF are examined on the
basis of the continuous ranked probability score (CRPS).

The paper is organized as follows. Section 2 provides a description of data from
meteorological stations, WRF configurations and variables included in the study,
and a preliminary statistical analysis considering the error forecast and verification
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rank. Methods for modeling wind speed and some verification tools are described
in Section 3. The results of statistical post-processing are given in Section 4 with
a comparison of the various approaches and with specification of the importance
of ensemble members and other included variables. Finally, Section 5 presents the
major results and some possible future extensions.

2. Description of the data and preliminary analysis

Nine WRF simulations were generated for the period between 1 June 2017 and
30 January 2018 to predict wind speed at 37 meteorological stations, around Val-
paraíso and Santiago cities, using the same configurations of [7]. The WRF sim-
ulations and the data from monitoring stations are briefly described below. A
preliminary analysis of the forecasts is also provided.

2.1. WRF configurations and data description
The Advanced Research WRF core (ARW-WRF) [37] Version 3.7.1 was employed
to generate a nine-member forecast ensemble using three nested domains at 18 km,
6 km and 2 km horizontal resolutions (see Figure 1a) and 44 vertical levels with
variable resolution between 60 and 200 m from 1 June 2017 to 30 January 2018
at 3 hour time steps from 00 UTC to 21 UTC. The detailed description of nine
ensemble members is presented in [7].

(a) (b)

Figure 1. (a) Representation of the domains 1, 2 and 3 used in
the WRF model at 18 km, 6 km, and 2 km horizontal resolutions
respectively and (b) Altitude map and the location of monitoring

stations represented with red points.

The ensemble members differ both in the applied planetary boundary layer
(PBL) and land-surface model (LSM) parametrizations. The Land-surface pro-
cesses are represented by the 5-layer [8], Noah [5] and Pleim-Xiu [31] schemes;
we use the Mellor-Yamada-Janjic (MYJ) [18], Yonsei University (YSU) [16] and
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Mellor-Yamada Nakanishi and Ninno 2.5 level (MYNN) [29] schemes to represent
the PBL and surface layer processes.

The rest of the parametrizations are kept the same in all simulations: Kain-
Fritsch (Kain-F) [20] cumulus parametrization, the Rapid Radiative Transfer Model
(RRTMG) [17] to represent the long wave and short wave radiative processes, and
the WRF single-moment 3-class (WSM3) [15] scheme to represent microphysics
processes.

The initial and boundary conditions were provided by the Final Operational
Global Analysis (FNL) at 0.25 × 0.25 degrees horizontal resolution every 6 hours
to obtain the variables described in Table 1 from the highest resolution domain
(d3).

Table 1. The variables included in the study from the highest
resolution domain (d3) of WRF simulations.

Nomenclature Description Unit
XLONG Longitude degree-east
XLAT Latitude degree-north
U10 Zonal (East-West) wind component at 10 m m s−1

V10 Meridional (North-South) wind component at 10 m m s−1

T2 Temperature at 2 m K
PSFC Surface pressure Pa
Q2 Specific humidity at 2 m kg kg−1

VAR Orographic variance
LU Land use category

HGT Terrain height m

Wind speed and relative humidity forecasts are obtained from the predictions
of variables described in Table 1: 10 m wind speed equals WS =

√
U102 + V102

and it is expressed in m s−1, whereas 2 m relative humidity is obtained using an
approximation of equations presented by [3], namely

RH = Q2/
(︀
(𝑝𝑞0/PSFC) exp{𝑎2(T2− 𝑎3)/(T2− 𝑎4)}

)︀
, (2.1)

where 𝑝𝑞0 = 379.91, 𝑎2 = 17.27, 𝑎3 = 273.16 and 𝑎4 = 35.86. The values obtained
by equation (2.1) are normed to 1 and referred to as percents.

Finally, the corresponding 3 hourly verifying observations of 10 m wind speed
for the same time period 1 June 2017 - 30 January 2018 measured in 37 monitoring
stations around Valparaíso and Santiago city (see Figure 1b) were downloaded
from the Dirección Meteorológica de Chile (http://www.meteochile.gob) and
the National System for Air Quality (https://sinca.mma.gob.cl/). The stations
have different altitudes represented in meters from 0 to 3000 m, see Figure 1 (b).

2.2. Preliminary data analysis
Consider first the dependence of the forecast error of an individual member of the
WRF ensemble forecast on the location of the monitoring station. In Figure 2 the
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box-plots of forecast errors corresponding to different stations are given, arranged
in ascending order of station altitude. The median error at all stations is close to
0; however, as expected, stations above 2000 m located in the mountain zone of
Santiago de Chile exhibit the highest forecast errors (last two boxplots in Figure 2),
which is nicely in line with the results of [25].

Figure 2. Forecast error at each station sorted by the altitude
in meters.

(a) (b)

Figure 3. (a) Verification rank histogram for the total period and
(b) the percentage of observed values included in the range of the

ensemble forecasts at each hour for the all period.

Further, to get an idea about the calibration, Figures 3a,b show the verification
rank histogram of raw wind speed ensemble forecasts and the coverage for the
different observation times, respectively. The verification rank is the rank of the
validating observation with respect to the corresponding ensemble members and in
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the case of proper calibration it should be uniformly distributed (see e.g. Section
9.7.1 [42]), whereas the coverage is the proportion of observed values included in
the range of the forecasts. Since, the resulted histogram doesn’t follow a uniform
distribution as confirmed by the high value of the 𝜒2 test statistic, a great difference
between the observed and the expected frequencies is supposed to exist. In addition,
there is no observation hour when the coverage exceeds 50% with the lowest value
of 41.99% at 21 UTC (see Figure 3b), which proportions are far from the nominal
80% coverage of a calibrated 9-member ensemble forecast.

These preliminary results indicate that the ensemble forecasts are biased and
not properly calibrated calling for some form of statistical post-processing.

3. Methodology

As wind speed data are characterized by non-negative values and the observations
do not follow a symmetric law, they cannot be described by a normal distribution as
temperature or air pressure. For this reason, to model wind speed the use of skewed
and non-negative distributions, such as a truncated normal [1, 41], log-normal [2]
or gamma [38] distribution are proposed.

Some post-processing approaches to calibrate wind speed forecasts and the tools
to assess the forecast skill of the models are described below.

3.1. EMOS using truncated normal distribution
The Ensemble Model Output Statistics (EMOS) or non-homogeneous regression
approach, proposed by [13], is one of the most used parametric post-processing
techniques. EMOS models for various weather variables differ in the predictive
distribution family and in the link functions connecting the parameters of the
predictive distribution to the ensemble members. Following [41], as parametric
family we consider a truncated normal (TN) distribution 𝒩0(𝜇, 𝜎) with location 𝜇,
scale 𝜎 > 0 and cut-off equal at 0, defined by probability density function (PDF)

𝑓(𝑥 | 𝜇, 𝜎) :=

{︃
1
𝜎𝜑((𝑥− 𝜇)/𝜎)/Φ(𝜇/𝜎), if 𝑥 ≥ 0,

0, otherwise,
(3.1)

[41], where 𝜑 and Φ are the PDF and the cumulative distribution function (CDF)
of a standard normal distribution, respectively.

The TN EMOS predictive distribution considering 9 WRF ensemble members
is defined as

𝒩0(𝑎0 + 𝑎1𝑓1 + · · ·+ 𝑎9𝑓9, 𝑏0 + 𝑏1𝑆
2), where 𝑆2 :=

1

8

9∑︁

𝑘=1

(𝑓𝑘 − 𝑓)2,

with 𝑓 denoting the ensemble mean. Location parameters 𝑎0, 𝑎1, . . . , 𝑎9 ∈ R,
𝑎1, . . . , 𝑎9 ≥ 0 and scale parameters 0 ≤ 𝑏0, 𝑏1 ∈ R are estimated over the training

98 M. Díaz, O. Nicolis, J. C. Marín, S. Baran



data consisting of ensemble members and verifying observations from the preceding
𝑛 days (rolling training period) by optimizing the mean of a certain proper verifi-
cation score (see [41] for more details), which in our case is the continuous ranked
probability score (CRPS) described in detail in Section 3.2.

3.2. Diagnostics

[11] defines the aim of statistical post-processing as maximization of the sharpness
of the predictive distribution subject to calibration, where the latter expresses
a statistical consistency between forecasts and observations, whereas the former
indicates the forecast accuracy.

For doing a simultaneous evaluation of calibration and sharpness, [12] suggests
the use of the continuous ranked probability score (CRPS), which for a given CDF
𝐹 (𝑦) and observation 𝑥 is defined as

CRPS(𝐹, 𝑥) :=

∞∫︁

−∞

(︀
𝐹 (𝑦)− 1{𝑦≥𝑥}

)︀2
d𝑦 = E|𝑋 − 𝑥| − 1

2
E|𝑋 −𝑋 ′|,

where 1{𝑦≥𝑥} denotes the indicator function which is 1 if 𝑦 ≥ 𝑥 and 0 otherwise,
while 𝑋 and 𝑋 ′ are independent random variables with CDF 𝐹 and finite first
moment. For wind speed, similar to observations and forecasts, this score is ex-
pressed in m s−1 and it is a negatively oriented scoring rule, that is the smaller the
better. For comparing predictive performance of different probabilistic forecasts
one usually considers the mean CRPS over all forecasts and observations of the
verification data denoted by CRPS.

In addition, to assess the relative improvement of a forecast with respect to a
given reference forecast, one can calculate the continuous ranked probability skill
score (CRPS.S) [12],

CRPS.S = 1− CRPS

CRPSref
,

where CRPSref denotes the mean CRPS of the reference forecast over the verifica-
tion data.

Further, calibration can also be investigated by examining the coverage of the
(1 − 𝛼)100% central prediction interval with 𝛼 ∈ (0, 1), i.e. by calculating the
proportion of validating observations located between the lower and upper 𝛼/2
quantiles of the predictive distribution. In the case of proper calibration the cover-
age should be around (1−𝛼)100%, and in order to provide a fair comparison with
the raw ensemble one usually chooses the value of 𝛼 to match the nominal coverage
of the raw ensemble (80 % for the 9-member ensemble).

The predictive performance of point forecasts can be assessed by considering
the root mean of the squared error 𝑆𝐸(𝑥, 𝑦) = (𝑥 − 𝑦)2 (RMSE) and mean of
the absolute error 𝐴𝐸(𝑥, 𝑦) = |𝑥 − 𝑦| (MAE) based on the forecast 𝑦 and the
observation 𝑥 [10, 30] taken over all forecast cases in the verification data.
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Finally, the probability integral transform (PIT) histograms (see e.g. [42]) might
be used for a visual perception of the improvement in calibration compared with
the raw ensemble. The PIT is the value of the predictive CDF evaluated at the
validating observation and for a calibrated forecast PIT has to follow a uniform
law on the [0, 1] interval. Hence, the PIT histogram is the continuous counterpart
of the verification rank histogram of the raw ensemble.

3.3. Quantile Regression Forests
As an alternative to parametric post-processing, [39] and [34] recently applied the
Quantile Regression Forest (QRF) model for calibrating ensemble forecasts. This
model was originally introduced by [26] as an extension of the random forest theory
[4], by presenting an algorithm for computing the estimated distribution of the
variable of interest, in our case the wind speed. The algorithm consists of an
iterative process which splits the training data and every split minimizes the sum
of the variance of the response variable. One of the disadvantages of this method
is that the process of growing trees might lead to overfitting as mentioned in [22].
However, [39] suggested to solve this problem by tuning the number of trees.

Different predictors can be used in the implementation of the QRF (see for
example [39] and [34]); here we consider two cases. For the first one the only
predictors are the nine wind speed forecasts from the WRF model. In the second
case this set is extended by the mean, standard deviation, minimum and maximum
of some variables presented in Table 1 (U10, V10, T2, PSFC, and RH) in addition
to the orographic variance (VAR), land use (LU), HGT, and the observed altitude
(Alt_st), forming a total of 24 covariates. In particular, our implementation is
based on the R package quantregForest.

The QRF model also allows to determine the importance of the predictor 𝑝𝑗 by
the random permutation method introduced in the context of random forests by
[4]. The importance is computed by the mean CRPS of the difference between the
forecast 𝐹 conditional to the permuted predictor and the unpermuted features, i.e.

Imp(𝑝𝑗) =
1

𝑆𝑇

𝑆∑︁

𝑠=1

𝑇∑︁

𝑡=1

(︀
CRPS(𝐹 | 𝑋𝑝𝑗

𝑠,𝑡, 𝑦𝑠,𝑡)− CRPS(𝐹 | 𝑋𝑠,𝑡, 𝑦𝑠,𝑡)
)︀
, (3.2)

where 𝑋𝑝𝑗
𝑠,𝑡 denotes the vector of predictors at time 𝑡 and station 𝑠 for the permuted

predictor (see [34] for more details). The higher the value of Imp(𝑝𝑗), the more
important the predictor 𝑝𝑗 .

3.4. Spatial selection of training data
For selecting the geographical composition of the training data for post-processing
methods, [41] defines the local and regional approaches. By regional or global we
mean that forecast/observation pairs of all stations from the training period are
used to estimate the parameters of a given parametric model or perform a non-
parametric calibration, while the local approach uses only the information of the
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observation site at hand. Although the local approach in general results in better
predictive performance, it requires longer training periods to avoid numerical sta-
bility issues [21]. Hence, we focus on regional estimation and on the novel semi-local
approach proposed by [21]. Semi-local modeling takes the advantages of regional
and local forecasting by clustering the observation stations based on climatologi-
cal characteristics and the distribution of forecast errors of the training data and
performing a global estimation within each cluster. Clustering is performed with
the help of a 𝑘-means algorithm [14] and clusters may vary as the training window
slides.

4. Results

In order to exclude the effect of natural daily variation in wind speed, calibration
approaches described in Sections 3.1 and 3.3 were run separately for each forecast
hour using an optimal training period length and both regional and semi-local
approaches.

4.1. Selection of the training data

Selection of an appropriate set of training data is necessary for successful cali-
bration. This selection procedure includes the choice of the length of the rolling
training period and the geographical composition of the training set.

The optimal length of the training period is obtained by verifying the forecasts
against observations for different training periods with the help of various scoring
rules [12]. We investigated the mean CRPS and nominal coverage of the regional
EMOS predictive distribution for the time period from 29 September 2017 to 30
January 2018 separately at each forecast hour using training periods of length
55, 60, 65, . . . , 120 days. Based on the corresponding figures of the mean CRPS
and nominal coverage plotted against the training period length (not shown) we
decided to choose a training period of length 65 days for calibrating wind speed
forecasts of the WRF simulations. This length of the training period leaves 179
calendar days between 5 August 2017 and 30 January 2018 for forecast verification.

As mentioned in Section 3.4, EMOS and QRF modeling were performed using
regional and clustering-based semi-local training. In the latter approach stations
were grouped into 3 clusters using 24 features, where half of the features were
obtained as equidistant quantiles of the climatological CDF, whereas the other half
as equidistant quantiles of the empirical CDF of the forecast error over the training
period [21]. Note that each verification day and forecast hour had an individual
clustering of the 37 monitoring stations.

4.2. Comparison of the post-processed forecasts

EMOS and QRF calibration of WRF ensemble forecasts is performed using the
optimal 65 day rolling training period and regional and semi-local approaches to
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spatial selection of training data. In what follows EMOS_C and QRF_C will
denote the semi-local EMOS and QRF methods, respectively, in order to distinguish
them from the corresponding regional approaches. Note that EMOS model (3.1)
has 12 parameters to be estimated from the training data.

Further, as mentioned is Section 3.3, QRF method is implemented in two dif-
ferent ways. In the first case, referred to as QRF, we use just the nine wind speed
forecasts from the WRF model, whereas in the second case (QRF_M), this set is
extended by several other variables (see Section 3.3) resulting in a total of 24 co-
variates. Both cases were tested with different arguments and we decided to make
use of the model with 300 trees and a minimum size of 5 for terminal leaves, since
these arguments provided smaller scores. Further, the implementations of QRF
and QRF_M differ from each other in the number of variables randomly sampled
as candidates at each split; one for QRF and three for QRF_M were the best
options.

Figure 4. Mean CRPS vs. EMOS by hours for all stations.

Consider first Figure 4 showing the CRPS.S values with respect to the regional
EMOS approach as function of the forecast hour. The use of semi-local estimation
in EMOS modeling improves the calibration at each hour and the same applies for
QRF modeling. QRF models perform slightly better than the corresponding EMOS
approaches and the best QRF forecasts are obtained by adding other features
as predictors to the regression model (QRF_M and QRF_C_M). Although the
(QRF_M and QRF_C_M) provided better predictions than all the other methods
(see Figure 4), the results could be further improved buy adding new covariates, for
example using the wind speed forecasts instead of the U10 and V10 components.
Note that the ranking of the different methods is completely consistent, the different
graphs do not cross.
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Table 2. Overall scores for the different models computed
in the study.

Models CRPS MAE RMSE Coverage
Ensemble 1.1715 1.4470 1.9949 43.95
EMOS 0.6078 0.8333 1.2443 82.12
EMOS_C 0.5108 0.7121 1.0361 80.29
QRF 0.5794 0.7968 1.1827 89.15
QRF_C 0.4939 0.6867 0.9817 88.18
QRF_M 0.4441 0.6143 0.9021 90.69
QRF_C_M 0.4318 0.5992 0.8781 89.65

(a) (b) (c)

(d) (e) (f)

Figure 5. PIT histograms of post-processed forecasts (a) EMOS
and (b) EMOS-C, and verification rank histogram of: (c) QRF, (d)

QRF-C, (e) QRF-M, (f) QRF-C-M.

A similar ranking of the post-processing methods can be derived from the over-
all scores of Table 2. All post-processing approaches outperform the raw WRF
ensemble in all scores with a wide margin, and the lowest CRPS, MAE and RMSE
belong to QRF_M and QRF_C_M combined with slightly high coverage values.

Finally, as mentioned in Section 3.2, PIT and verification rank histograms allow
us to visualize the improvement in calibration, and the goodness of fit to the cor-
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responding uniform distribution can be quantified by the value of the 𝜒2 statistic
(the smaller the better). According to Figure 5, all post-processing methods can
successfully correct the underdispersion of the raw WRF ensemble forecast (see
Figure 3a) turning it into a slight overdispersion indicated by the hump shape of
the histograms. However, none of PIT histograms looks close to uniformity, prob-
ably due to the small sample size [40]. EMOS forecast are slightly biased and from
the competing QRF approaches QRF-C seems to have the best calibration with
𝜒2 = 1647.9.

4.3. Importance features results
Additionally to the comparison of the post-processing methods, the QRF model
allows to determine the importance of each predictor by considering the CRPS as
verification score using equation (3.2). Figure 6 shows that the observed altitude
(Alt-st) and the terrain height from WRF model are the most important variables
in the QRF-M. The zonal near-surface wind component (U10) seems to be more
important than the meridional wind component (V10), and the surface pressure
(PSFC), orographic variance (VAR) and the deviation of surface temperature (T2)
are also included in the first ten most important features.

Figure 6. Importance of the forecasts considering the CRPS score.

5. Conclusions

In this work some parametric and non-parametric post-processing methods for cal-
ibrating 9-member 3 hourly WRF wind speed ensemble forecasts are investigated.
The WRF ensemble forecasts were generated by different planetary boundary lay-
ers and land-surface model parametrizations in order to model wind speed at 37
monitoring stations around Valparaíso and Santiago city for the period between
1 June 2017 and 30 January 2018. In order to choose the optimal training pe-

104 M. Díaz, O. Nicolis, J. C. Marín, S. Baran



riod length (65 days in this study) a regional EMOS model has been tested with
training periods of different lengths. EMOS and QRF modeling is performed both
regionally and using a clustering-based semi-local approach, the different forecast
hours are treated separately in order to exclude the natural daily variation in wind
speed.

Compared with raw WRF ensemble forecasts, all post-processing approaches
result in a substantial improvement in calibration of probabilistic and accuracy of
point forecasts. From the competing approaches to calibration, the semi-local QRF
model considering other weather variables from WRF simulations exhibits the best
overall predictive performance.

The importance of the predictors for QRF using a permutation method is also
investigated, where from the additional covariates the altitude of the station occurs
to be the most important. These results are crucial in choosing the parametrization
for the WRF model in order to improve wind predictions in Chile.

As a next step we are planning to explore other machine learning methods in
addition to different parametrizations. Further, it would be very interesting to
evaluate the performance of EMOS models with additional predictors using the
boosting approach proposed by [27].
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