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Abstract

Researchers often use theoretical models which provide a relatively sim-
ple, yet concise and effective way of modelling various phenomena. However,
it is a well-known fact that the more complex the model, the more complex
the mathematical description is. For this reason, theoretical models generally
avoid large complexity and aim for the simplest possible definition, which al-
though makes models mathematically more manageable, in practice it also
often leads to sub-optimal performance. Furthermore, the data collected dur-
ing the observations usually contain confounding factors, for which a simple
theoretical model can not be prepared. Overall, mathematical models are
usually too rigid and sophisticated, and therefore cannot really deal with
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sudden changes in the environment. The application of artificial intelligence,
however, provides a good opportunity to develop complex models that can
combine the basic capabilities of the theoretical models with the ability to
learn more complex relationships. It has been shown [16] that with neu-
ral networks, we can build such models that can approximate mathematical
functions. Trained artificial neural networks are thus able to behave like the-
oretical models developed for different fields, while still retaining their overall
flexibility, which guarantees an overall better performance in a complex real-
world environment.

The aim of our study is to show our notion that we can create an architec-
ture using neural networks, which is able to approximate a given theoretical
model, and then further improve it with the help of real data to suit the real
world and its various aspects better. In order to validate the functionality of
the architecture developed by us, we have selected a simple theoretical model,
namely the Kermack-McKendrick one [4] as the base of our research. This is
an SIR [2] model, which is a relatively simple compartmental epidemic model,
based on differential equations that can be used well for infections that spread
very similarly to influenza or COVID. However, on one hand, the SIR model
relies too heavily on its parameters, with slight changes in them leading to
drastic overall changes of the S, I and R curves, and on the other hand, the
simplicity of the SIR model distorts its accuracy in many cases. In our paper,
by using the SIR model, we will show that the architecture described above
can be a valid approach to modeling the spread of a given disease (such as
influenza or COVID-19). To this end, we detail the accuracy of our models
with different settings and configurations and show that it performs better
than both a simple mathematical model and a plain neural network with
randomly initialized weights.

Keywords: Deep learning, neural networks, mathematical models, approxi-
mation, parameter optimization, SIR model

1. Introduction

The appearance of COVID-19 made 2020 a very memorable year. It affected nearly
all of the countries in the world, leading to quarantines and regulations that the
people of the 21st century have never experienced before, while also delivering a
heavy blow to the global economy, thus resulting in people losing their jobs. Not
only that, the number of people dying due to this disease has also reached heights
that was previously unimaginable. Therefore, it goes without saying that examin-
ing and researching this disease is of utmost importance to better understand its
mechanics and driving forces.

Pure mathematical models have been very frequently used for modeling the
spread of diseases like influenza [9, 12], measles [17] and so on. This is mainly due
to their simplicity and mathematical foundations, which guarantees a compact,
yet concise, effective and simple-to-explain model. However, the accuracy of pure
mathematical models, such as SIR [4], SIS [1], SEIR [7], SEIRS [5], is often sub-
optimal, which is precisely due to this simplicity. The prediction curve of an SIR
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model for example is a simple bell-shaped curve, which means that a single SIR
model cannot perform well when examining diseases like COVID-19, that have
multiple waves. One possible solution to that problem is to fit multiple SIR models
to the data. However, that is not optimal either, because we need to manually
group the data into segments first, and then fit the SIR models to these groups.
Selecting these groups manually however is not a trivial task, as the grouping affects
the fitting phase, meaning that a bad grouping results in worse fitting and therefore
yields worse results. This can easily be solved by using neural networks, since they
can generalize well and achieve state-of-the-art accuracy in just about every field
of science. One problem with using pure neural network models is the lack of
quality data. For example, even though almost a year has passed since the initial
outbreak of COVID-19, there are only around 200-300 data points per country to
learn from, since data was usually gathered on a daily basis. Another problem is
that COVID data often have huge amounts of noise due to how the recording of
the daily cases took place and other factors. These can however heavily affect both
the training phase (since the network will be much likely have a higher bias) and
the performance of the network (since it will not be able to generalize well).

The goal of our research is to show that mathematical models, which are used
frequently in investigating disease spread, epidemiology and even COVID-19 [15],
can be applied to the training of neural network models as a pretraining step,
resulting in a more accurate model. In our paper we show that if we train a neural
network first on an SIR model, then train it further on real data, this method
outperforms not only the original mathematical model, but also a neural network
trained only on real data. This is because this way the neural network not only
has access to more data (SIR data and real data), but the initial training phase
(approximating the SIR model) is mathematically well-defined and the data points
are not noisy, unlike the real data. This way, the neural network will have a solid
set of weights before being trained on real data, that are roughly equivalent to a
mathematical SIR model, making the second part of the training much smoother
and easier. We also show that a neural network trained in this way can easily
overcome the biggest obstacle of SIR models described above, which is not being
able to forecast multiple waves by making predictions regarding the second wave
of COVID-19 by training the models only on the first wave and evaluated on the
second wave.

In this paper we outline a simple architectural solution regarding the model by
using a simple neural network as the base. The data that the models operate on
contain the daily number of newly infected patients and all the models were trained
on data constructed from the original data by using a sliding window approach.
This means that the models receive the number of infected people in the last 𝑡 days,
and predict that for the next 𝑇 days. In other words, inputs were of length 𝑡, and
the outputs were of length 𝑇 , where each element was the number of newly infected
people on a given day. We have used different values for 𝑡 and 𝑇 , respectively to
achieve even better performances. Since due to the nature of the model, there
will be multiple predictions for a given day, we also outline an aggregated solution
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that combines the outputs of a single model for a given day by taking the mean
of the predicted values. It is important to note that while in this paper we focus
on deterministic models, due to its simple nature our proposed architecture can be
used for stochastic models as well without any further restrictions.

The rest of the paper is organized as follows. In section 2 we present the SIR
model and talk about its parameters and their effects on the performance of the
model. In section 3 we briefly describe how the data used in the research was
gathered. In section 4 we present our proposed two-step architecture and how it
can be applied in practice. In section 5 we show how this architecture can be
used on a simple and easier Influenza dataset, then in section 6 we show how these
models achieve better results than normal neural networks whose weights have been
initialized randomly for COVID-19 data. Finally, in the last section we summarize
the results of our research.

2. SIR model

SIR is a general virus spread model that can be interpreted easily. The model can
be described with an ordinary differential equation and has only a few parame-
ters. Furthermore, in terms of behaviour it is a non-linear system. It is primarily
recommended to be used for viruses where infected individuals cannot develop
long-lasting immunity after recovery. This theoretical approach with regard to the
spread of viruses was first described by William Ogilvy Kermack and Anderson
Gray McKendrick and became generally known as the Kermack – McKendrick the-
ory. We used this model in our research because currently, for both influenza and
COVID-19, the scientific consensus is that, based on the behavioral characteristics
of the virus, individuals cannot get sustained immunity after recovering.

The classic SIR model can be considered as a system of the following differential
equations:

𝑑𝑆

𝑑𝑡
=
𝛽𝐼𝑆

𝑁
𝑑𝐼

𝑑𝑡
=
𝛽𝐼𝑆

𝑁
− 𝛾𝐼

𝑑𝑅

𝑑𝑡
= 𝛾𝐼

with the following notation of the parameters:

• 𝑆: Number of susceptible individuals.

• 𝐼: Number of infectious individuals.

• 𝑅: Number of recovered individuals.

• 𝑁 : Total population.

• 𝑡: A given moment in time.
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• 𝛽: Potential exposure rate per capita. Namely, it describes how many addi-
tional individuals a particular infected can infect at a given point in time.

• 𝛾: Rate of recovery, which is practically the recovery/death rate and 1/𝛾 is
the infectious period.

We only need to study the equations for two of the three variables 𝑆, 𝐼 and 𝑅,
because

𝑑𝑆

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
= 0,

which follows from the fact that

𝑆(𝑡) + 𝐼(𝑡) +𝑅(𝑡) = 𝑁.

For the basic reproduction number, we have

𝑅(0) =
𝛽

𝛾
.

3. Countries and data

For our research, we used infection data regarding influenza and COVID-19 viruses.
For influenza-related studies, we examined the data published by the World Health
Organization (WHO) between 2018 and 2019. WHO makes the data FluNet1 [14]
available by year and every record in the dataset consists of weekly values.

For COVID-19, we were working on data for new cases published by the Johns
Hopkins Coronavirus Research Center [3]. Johns Hopkins University actualizes
the data every day and makes it available on the open humanitarian data sharing
platform (HDX). On the provided HDX platform, the start date of public dataset2
[11] is 22 January, 2020.

Furthermore, for both COVID-19 and influenza we tested our proposed architec-
ture on data for several different countries, like Austria, China, Croatia, Germany,
Hungary, Japan, Romania. The full list of countries considered can be seen in
the corresponding sections of the paper (Section 5 and 6). Our experimental re-
sults first focus on Hungary by comparing the Hungarian data with the ones of
its neighbors. Then we extend our study to developed, leading countries providing
presumably the most accurate data.

In case of the SIR model, one of the most important parameters is the popula-
tion of the studied area. The knowledge of the population is essential for the SIR
model because one of the starting conditions for calculating the theoretical model
is the number of infectious individuals. Population data for the countries were
collected from a public (total population) database3 [13] which is currently main-
tained by the World Bank. In the analysis, we used the most recent and available
population data for 2019 for both viruses.

1https://www.who.int/influenza/gisrs_laboratory/flunet/en/
2https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases
3https://data.worldbank.org/indicator/SP.POP.TOTL?name_desc=false
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4. Two-step architecture

In this section, we describe the mechanism of our proposed two-step architecture.
First, we detail how we used the SIR model and how we extracted the optimal 𝛾
and 𝛽 parameters for the model. Then, we present how we applied this fitted SIR
model for training a more robust neural network model.

4.1. Determining the optimal parameters

A properly parameterized SIR model already has an acceptable prediction capabil-
ity by itself. So when we approximate a theoretical model with a neural network,
primarily this capability of the theoretical model is needed to be learnt. Namely,
we would like to keep all information in the machine-learned model that can be
extracted from the theoretical model. Furthermore, with the neural network, we
aim to further improve such parameterized SIR models that best describe the real
data. Accordingly, the first step in creating our own models was to find the 𝛾 and 𝛽
parameters that generate such theoretical models which fit the real data the best.

Figure 1. A slice from the big solution space (left) and a SIR curve
fitted to the German data (right).

In the case of SIR, we have a non-linear least-squares minimization problem
with a large solution space due to the peculiarities of the SIR model, as it can
be seen on Figure 1. There are several methods for solving such problems, like
gradient descent, Gauss-Newton algorithm, Levenberg-Marquardt algorithm [6, 8],
or differential evolution [10]. In the experimental phase, we compared several
solution methods (BFGS, Newton, brute force, etc.) out of which the Levenberg-
Marquardt algorithm (LMA) and differential evolution algorithms (DEA) proved
to be the most efficient ones. LMA is a fast and effective algorithm finding an
ideal solution even if started from initial values relatively far from the optimum.
Because of this property, it is applicable to determine proper starting parameters
and their associated parameter range. DEA is proved to be slower than LMA, but
starting with the same initial parameters, it generally finds a better solution than
LMA. Because of its construction, DEA works more efficiently in the case of large
solution spaces, like those occurring in optimization of SIR models.
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Overall, our experience shows that both methods are well applicable to the curve
fitting problem and can be used to find the optimal SIR model fitting best to real
data (see Figure 1). Levenberg-Marquardt algorithm is especially advantageous
because of its speed and the differential evolution algorithm is effective in further
refining the existing near-optimal parameters.

4.2. Approximation
For approximating the spread of infectious disease, we apply a two-step architec-
ture. First, we fit a SIR model to the given data (e.g. by searching for the optimal
𝛽 and 𝛾 values). Then, we fit a neural network to the (infected) curve 𝐼 of this
SIR model, following the mechanism (concentrating only on curve 𝐼) of most of
the methods applied in this field. This approach, of course, led to shorter training
times and easier convergence. After the neural network obtained a set of weights
that was roughly equivalent to the given SIR model (the predictions were close
to the curve 𝐼 of the SIR model), we decreased the learning rate and trained the
neural network on real data. This step is applied to make sure that the weights
of the neural network do not change substantially, which could have resulted in a
model that no longer resembles the original SIR model. Another advantage of the
decreased learning rate is that the impact of the noise present in real data can be
reduced in this way.

Figure 2. The basic workflow of the two-step architecture.

This approach (see Figure 2) has quite a few benefits compared to training a
neural network directly on real data. First of all, the amount of noise generated
throughout the training phase is considerably reduced, thanks to the model being
taught on a much smoother and mathematically well-defined function, which is the
output of the SIR model. The shape of the infected curve (𝐼) for a given SIR model
is bell-shaped, with no irregularities and noise, hence it is easier for neural networks
to be trained on. Moreover, since the network has a solid set of weights after the
first phase is finished and the learning rate is smaller during the second phase,
the irregularities present in real data do not affect the training as much as they
would normally. This fact, along with the ability of an SIR model to approximate
the original data fairly well, leads to a more controlled training, during which the
network can first extract meaningful information about the nature of the disease,
and then it has access to a more irregular dataset for further training. Another huge
advantage of this architecture is the increased amount of data available during the
learning phase. It is beneficial when the available dataset contains only a handful
of records (as in case of the Influenza dataset in our study). However, by pre-
training on a mathematical model that behaves roughly the same, we can generate
the necessary data points to obtain such a starting set of weights that only needs
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to be further refined on real data, hence leading to a smoother and more controlled
training process.

During the experiments, we used a simple dense network with three hidden
layers of 20, 40, 20 neurons and ReLU activation function in each layer. We focused
on this simpler architecture instead of using more sophisticated ones like RNNs,
LSTMs or GRUs to show that the proposed architecture can be used for a variety
of problems. This time, we made the model function similar to a simple RNN by
feeding it data containing several timesteps as input but this is not required; the
architecture itself can be used for non-time step series data as well. Additionally, for
handling time series data, we have considered using a neural network that does not
only receive the data for the previous day and predicts the next day, but receives
a sequence of 𝑡 days as input, and makes predictions regarding a sequence of 𝑇
days. We hand-picked the potential values for 𝑡 and 𝑇 , respectively, according to
recent public forecasts that focus on the recent past and near future and kept 𝑇
smaller than 𝑡, since predicting more days than what the network has information
on would be impractical.

5. Influenza

To demonstrate the basic idea behind the architecture, we decided to start by
showing how it can be used for known diseases, like Influenza. For these diseases,
there are already some mathematically defined models, which are used heavily in
practice due to their simplicity and good overall performances. Therefore, we will
show how one such model, the SIR model performs on data for a few selected
countries and how we can further improve the performance by using our proposed
two-step architecture.

To measure the efficiency of these models, we used the available data of Ger-
many, Hungary and Romania for the influenza season 2019 (starting from the winter
of 2018 and ending in the spring of 2019). We chose these countries specifically
from a bigger pool of countries by selecting those that had a data roughly resem-
bling an SIR curve (see Figure 3). Our aim is to show that we can improve the
overall performance of the original mathematical model even in cases where they
perform relatively well.

Figure 3. A comparison between real influenza data and the fitted
SIR curves for Germany, Hungary and Romania.
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The dataset we used contained the weekly number of newly infected people for
any given time step. Since the data was aggregated at a weekly level, we used the
configuration 𝑡 ∈ {2, 4}, 𝑇 = 1 for the neural network model. This way, it could
process some relatively recent information (the last 2 or 4 weeks) without relying
too much on older information (where 𝑡 > 4), while keeping the model relatively
simple (𝑇 = 1) and suitable for showcasing the potential of the architecture.

The predictions were evaluated by calculating the mean square error (MSE)
and root mean square error (RMSE) metrics. Furthermore, for every country and
configuration, we trained five different neural networks to calculate the spread of
the errors. Table 1 shows the summarized results of both the SIR and the two-
step architecture considering a confidence level of 95% (𝑝 = 0.05, 𝑛 = 5, using
𝑡-statistics).

Table 1. The results of the SIR and the two-step architecture on
the influenza dataset.

Country Model t T MSE RMSE
Germany SIR - - 603.88 24.57
Germany Two-step 2 1 176.66± 49.96 13.23± 1.79

Germany Two-step 4 1 170.67± 29.50 13.04± 1.14

Hungary SIR - - 276.92 16.64
Hungary Two-step 2 1 184.58± 21.57 13.57± 0.79

Hungary Two-step 4 1 127.41± 15.36 11.28± 0.67

Romania SIR - - 1452.93 38.12
Romania Two-step 2 1 877.12± 124.16 29.58± 2.05

Romania Two-step 4 1 1178.39± 175.33 34.28± 2.54

Figure 4. A comparison between the original SIR model (left) and
one of the 𝑡 = 4, 𝑇 = 1 models (right) for Germany.

It can be seen that by using our proposed two-step neural network architecture,
we were able to drastically decrease the overall error in our predictions. The im-
provements were the most drastic for the German and Romanian data, since while
the SIR model fit relatively well to the real data, there were still a number of data
points that were far away from the curves 𝐼 of the models (see Figure 4). This
shows that using our proposed architecture can further increase the overall per-
formance even in cases where the original mathematical model performs well and
thus can be a plausible solution for tackling the spread of some diseases to achieve
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state-of-the-art results. In the next section, we will show how this approach can
be used for predicting the spread of COVID-19.

6. Covid-19

To fully demonstrate the capabilities of the proposed architecture, we ran some
experiments on COVID-19 data. We think that choosing this disease can better
showcase the performance and reliability of our architecture, since at the time of
writing this paper there are no mathematical models that can perform really well
on COVID-19 data. As outlined previously, there are several factors, such as the
numerous waves, noise in the data, regulations that make predicting COVID-19
hard or impossible for a single simple mathematical model and our architecture
aims to overcome these hardships. Moreover, these factors make training a neural
network harder, too, since the noise present in the dataset may mislead the networks
during the training phase.

Figure 5. A model with the configuration 𝑡 = 7, 𝑇 = 3 and its
predictions (red & orange) for Hungary.

During the experiments, we used different values for 𝑇 and 𝑡, respectively to
find out how many days’ worth of data can better describe the disease as well as to
improve the overall performance. Namely, we used the configurations {(𝑡, 𝑇 ) | 𝑡 ∈
{14, 7, 3} and 𝑇 ∈ {7, 3, 1} and 𝑇 < 𝑡}, since the available data was aggregated at
a daily level. This way, we experimented with how many days the model should
take into account when making predictions and find out whether increasing the size
of the input resulted in any substantial performance gains. We also tried changing
the output size to experiment with whether doing so could make the model more
reliable by having it constantly focus on a series of next days. The dataset that we
used contained the number of newly infected people for any given time step.

We found that using 𝑡 > 14 made the training of the model much harder and
resulted in models that performed worse due to making the model more complex
and it focuses too much on days too far away and therefore does not contribute to
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the current number of infected people. For a similar reason, we observed that when
𝑇 was closer to 𝑡, the overall performance plummeted, since the model simply did
not have enough information to make accurate long-term predictions. Moreover, we
found that when 𝑇 > 3, the quality of the predictions regarding the future started
to deteriorate, suggesting that predictions with a larger output window size for the
COVID-19 dataset are not yet feasible. Instead, we suggest that it is better to use
smaller 𝑇 values instead of trying to make long-term predictions (see Figure 5).

We trained all the models on the first wave of COVID-19 for any given country.
This means that we first fit a SIR model to the data of the first wave, then approx-
imated the curve 𝐼 with a neural network, then trained it further on the real data
of the first wave. Then, we tested the models on the second wave of COVID-19 for
the given country. To test the overall reliability and performance of our proposed
architecture, we compared its results with a plain neural network that was not ini-
tialized with weights similar to an SIR model but simply trained on the available
COVID-19 data. These plain neural networks were also trained in the exact same
way: first fit to the first wave of the real data and then tested on the second wave.
We repeated each experiment for a given (𝑡, 𝑇 ) pair a total of 𝑛 times to measure
how the results fluctuated. During our research, we found the number 10 to be the
best for this purpose: the samples gathered proved to be representative enough to
reliably calculate the overall error while the time required to train the models was
still manageable. Tables 2, 3, 4 and 5 show the summarized results of both the
two-step architecture (denoted as “Two-step”) and the plain neural network models
(denoted as “Plain”), calculated with a confidence level of 95% (𝑝 = 0.05, 𝑛 = 10,
using t-statistics) for Hungary and Germany. We deliberately put more focus on
these two countries since we wanted to examine how the spread of the disease can
be modelled for Hungary and for a more developed country, like Germany. The
results regarding the other countries can be found in Appendix, calculated with a
confidence level of 95% but with a lower sample size of 3 (𝑝 = 0.05, 𝑛 = 3, using
t-statistics).

It can easily be seen that the results of the proposed architecture are generally
way better than that of a simple, randomly initialized neural network. It shows that
having the model learn a less complex and mathematically better defined function
that roughly resembles the target data may be a beneficial pre-training step and
could yield potentially better results when trained further on real data compared
to models that are trained only on the latter. Another important note is that the
target mathematical function does not need to match precisely with the real data,
as it was the case for our research regarding COVID-19: the only important part
is that it should contain some key information (in this case the bell-shape curve
hinting that the number of diseases should keep increasing until a certain point
and then start decreasing from then on) that can provide a strong foundation for
the network to build upon in the second phase of the training. This approach also
makes it harder for the model to focus on dispensable features due to the first
step containing the differential equations in its loss function. Another interesting
point is that training the network on a SIR model for the first wave is proved to
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Table 2. Hungary - first wave errors.

t-T Model
First wave errors

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 86.84 ± 20.39 - 9.21 ± 1.05 -
Plain 271.51 ± 52.64 - 16.35 ± 1.54 -

7-1 Two-step 107.55 ± 19.33 - 10.29 ± 0.99 -
Plain 186.41 ± 31.68 - 13.57 ± 1.16 -

3-1 Two-step 98.51 ± 11.96 - 9.89 ± 0.59 -
Plain 141.14 ± 16.04 - 11.85 ± 0.68 -

14-7 Two-step 99.04 ± 31.11 78.53 ± 25.20 9.75 ± 1.49 8.66 ± 1.40
Plain 301.53 ± 70.00 210.27 ± 57.76 17.19 ± 1.87 14.30 ± 1.79

14-3 Two-step 84.98 ± 12.25 66.66 ± 15.06 9.18 ± 0.63 8.07 ± 0.92
Plain 290.72 ± 40.98 272.25 ± 104.48 16.98 ± 1.18 15.93 ± 3.24

7-3 Two-step 92.60 ± 20.33 81.15 ± 24.65 9.53 ± 1.01 8.82 ± 1.39
Plain 214.27 ± 70.07 168.69 ± 73.63 14.30 ± 2.34 12.40 ± 2.92

Table 3. Hungary - second wave errors.

t-T Model
Second wave errors

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 17249.43 ± 5150.43 - 129.28 ± 17.47 -
Plain 31268.19 ± 7438.15 - 174.67 ± 20.78 -

7-1 Two-step 17881.75 ± 2883.75 - 132.85 ± 11.48 -
Plain 25712.03 ± 5261.55 - 159.01 ± 15.62 -

3-1 Two-step 12987.38 ± 448.37 - 113.93 ± 1.97 -
Plain 27127.49 ± 3578.38 - 164.07 ± 10.91 -

14-7 Two-step 12825.61 ± 1246.62 30125.69 ± 9607.12 113.02 ± 5.48 169.84 ± 26.97
Plain 37160.11 ± 27293.57 51981.83 ± 5450.44 180.53 ± 50.97 227.41 ± 12.30

14-3 Two-step 14273.22 ± 2687.75 36985.18 ± 18002.58 118.57 ± 11.01 182.28 ± 46.23
Plain 54495.87 ± 43075.81 42304.32 ± 11569.83 210.89 ± 75.48 202.34 ± 27.83

7-3 Two-step 13117.43 ± 2038.86 25895.53 ± 9037.72 113.91 ± 8.97 156.67 ± 27.69
Plain 76711.68 ± 51465.54 53237.65 ± 23834.57 247.41 ± 93.88 221.32 ± 49.19

be really beneficial for predicting even the second wave, not only surpassing the
original mathematical model but also proving that the network can learn important
features present in the mathematical model which it can use to recognize similar
patterns in future data and remarkably surpass the performance of plain neural
networks.

Overall, this two-step approach made the training of the model easier and more
manageable, since it is always easier to fine-tune a network to fit to a mathe-
matically well-defined function. This also reduced the amount of noise the net-
works faced during training thanks to first being trained on a mathematical model
and then switching to the real data with a smaller learning rate and an already
robust set of weights instead of random ones. Moreover, we did not need any
pre-configured network even though we basically pre-train the model, since the
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Table 4. Germany - first wave errors.

t-T Model
First wave errors (Germany)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 153052.79 ± 58837.38 - 379.54 ± 71.56 -
Plain 207112.48 ± 60990.25 - 446.17 ± 67.64 -

7-1 Two-step 129618.92 ± 35071.52 - 354.20 ± 48.64 -
Plain 204516.15 ± 43125.16 - 447.09 ± 47.91 -

3-1 Two-step 112975.97 ± 13019.34 - 335.10 ± 19.68 -
Plain 156238.49 ± 44879.63 - 386.93 ± 56.88 -

14-7 Two-step 111459.81 ± 39019.06 73770.07 ± 24833.80 324.50 ± 59.19 265.40 ± 43.53
Plain 151080.24 ± 46846.55 218403.27 ± 112174.08 378.65 ± 66.20 441.36 ± 115.85

14-3 Two-step 113579.63 ± 29820.44 105877.50 ± 41614.79 332.29 ± 42.41 315.94 ± 58.69
Plain 250274.30 ± 97146.08 243237.79 ± 132332.29 485.23 ± 91.82 460.28 ± 133.57

7-3 Two-step 116270.58 ± 26964.29 138751.71 ± 56922.80 336.79 ± 40.20 358.14 ± 77.22
Plain 165839.62 ± 64844.88 184524.62 ± 85200.30 393.65 ± 78.66 412.91 ± 89.32

Table 5. Germany - second wave errors.

t-T Model
Second wave errors (Germany)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 386211.34 ± 55594.07 - 618.70 ± 44.12 -
Plain 350296.40 ± 59203.48 - 588.17 ± 49.78 -

7-1 Two-step 373297.62 ± 40519.73 - 609.47 ± 32.37 -
Plain 378415.93 ± 36600.51 - 613.73 ± 29.51 -

3-1 Two-step 396793.00 ± 23700.56 - 629.43 ± 18.60 -
Plain 538979.60 ± 393800.78 - 684.51 ± 83.92 -

14-7 Two-step 244444.79 ± 55772.79 268252.21 ± 90832.01 489.20 ± 53.98 508.17 ± 75.45
Plain 595380.90 ± 453947.98 268208.75 ± 66890.82 680.48 ± 274.30 510.72 ± 64.73

14-3 Two-step 284438.69 ± 34150.12 365277.10 ± 121480.28 531.59 ± 32.42 592.98 ± 88.09
Plain 336347.85 ± 60559.36 404303.46 ± 128238.32 575.86 ± 51.85 624.77 ± 89.13

7-3 Two-step 286050.18 ± 27531.60 352900.11 ± 38205.91 533.76 ± 25.53 592.47 ± 32.73
Plain 593034.40 ± 519253.12 326211.38 ± 56222.30 677.37 ± 276.24 567.29 ± 49.99

mathematical model can be relatively easily defined. This in turn provided a fast
and cheap, yet effective way of using transfer learning.

7. Conclusion

In this paper we outlined a new two-step approach for training more accurate and
reliable neural networks. The key idea we used was to let the model first train
on a simplified version of the real data, which was a mathematical model adjusted
to a part of the real data (i.e. the first wave in the case of COVID-19) and was
defined by differential equations. This way, the models could first grasp the most
important aspects of the data (i.e. spread, nature, bell-like shape etc.) without
being affected by the outliers and noise being present in the real data, and then
learn further on real data once their set of weights was already solid enough.
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First, we showed how this approach performs on one simpler problem, which
was predicting the weekly number of influenza patients and how it delivered better
results than mathematical models that are currently used for this problem. Then
we went one step further and showed how this approach fares with much noisier
COVID-19 data, which currently no mathematical models can predict reliably. We
summarized the results of the architecture for a number of countries and various
configurations by changing the input and output size of the model and showed how
it performs better than simple neural networks that are only trained on real data.

We also showed how this approach can combine the benefits of the two main
pillars which were the mathematical models and the neural networks. For this, we
showed how one model trained using this architecture can not only surpass plain
neural networks that are initialized randomly but how the features regarding the
spread of the disease extracted from the first wave can help with making predictions
for the second wave, surpassing the original mathematical model, too, which could
only predict a single wave.

Lastly, we presented how this method could be used as an easier type of transfer
learning, where we do not need to download large pretrained neural networks, but
can instead choose a mathematical model that roughly resembles the real data and
have the neural network learn on that function. It is important to note that there
are no restrictions regarding this mathematical model as it can be any kind of model
as long as its outputs can be compared to a neural network’s outputs. Therefore
this architecture can be used in a number of disciplines and can be applied to
solving a variety of problems. We also showed how this mathematical model does
not need to perfectly fit the real data and how it is enough if the key features of
the real data (spread, nature, etc.) are encoded in the mathematical model. This
can save a lot of time during the training process while also giving the model a
better mathematical foundation.
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Appendix

This chapter contains the results for the COVID-19 data for all countries except
for Germany and Hungary, which were both shown previously. For these tables,
we used 𝑛 = 3, meaning that we ran the experiments a total of 3 times, unlike for
Germany and Hungary, where 𝑛 was 10. This is because while we mainly focused
on those countries, we still experimented with others. The summarized results were
calculated with a confidence level of 95% (𝑝 = 0.05, 𝑛 = 3, using t-statistics).

t-T Model
First wave errors (Austria)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 1515.32 ± 1319.10 - 38.52 ± 17.00 -
Plain 12725.54 ± 11505.19 - 111.64 ± 49.19 -

7-1 Two-step 2295.17 ± 1322.18 - 47.68 ± 14.21 -
Plain 8658.42 ± 11595.28 - 90.89 ± 60.53 -

3-1 Two-step 1598.95 ± 760.34 - 39.87 ± 9.28 -
Plain 2745.88 ± 2389.63 - 51.90 ± 21.95 -

14-7 Two-step 2047.91 ± 577.55 2660.89 ± 1619.78 45.20 ± 6.50 51.30 ± 16.40
Plain 15398.78 ± 33313.03 13124.99 ± 23690.55 114.48 ± 145.72 106.34 ± 129.65

14-3 Two-step 2321.18 ± 2669.21 1034.83 ± 1040.80 47.34 ± 27.18 31.66 ± 17.30
Plain 11627.03 ± 8161.38 12458.17 ± 8198.15 107.07 ± 38.76 110.97 ± 36.35

7-3 Two-step 1320.84 ± 1098.38 2026.87 ± 1669.98 36.03 ± 14.56 44.64 ± 17.87
Plain 3612.96 ± 1323.07 3141.33 ± 8950.15 59.99 ± 11.23 49.56 ± 79.61

t-T Model
Second wave errors (Austria)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 18278.89 ± 20982.18 - 132.27 ± 85.15 -
Plain 24284.74 ± 13589.91 - 155.20 ± 42.67 -

7-1 Two-step 12566.70 ± 5288.75 - 111.82 ± 23.95 -
Plain 19281.21 ± 14584.62 - 137.85 ± 50.74 -

3-1 Two-step 8440.83 ± 1662.04 - 91.82 ± 9.00 -
Plain 9971.46 ± 1728.25 - 99.82 ± 8.61 -

14-7 Two-step 19226.29 ± 13849.41 36166.18 ± 9576.15 137.75 ± 48.30 190.00 ± 24.82
Plain 54091.63 ± 102159.87 44140.50 ± 19431.46 221.47 ± 216.03 209.57 ± 45.36

14-3 Two-step 18191.20 ± 16938.29 49582.47 ± 41318.60 133.37 ± 61.15 220.71 ± 89.60
Plain 22559.15 ± 7545.53 27781.21 ± 15107.42 149.98 ± 24.76 165.96 ± 47.05

7-3 Two-step 13647.95 ± 5141.28 16497.89 ± 530.98 116.61 ± 21.58 128.44 ± 2.06
Plain 50650.52 ± 161764.05 40733.20 ± 78861.44 194.40 ± 345.02 192.02 ± 86.11

t-T Model
First wave errors (Croatia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 220.89 ± 106.47 - 14.81 ± 3.67 -
Plain 393.09 ± 242.98 - 19.71 ± 6.34 -

7-1 Two-step 224.54 ± 49.53 - 14.97 ± 1.68 -
Plain 473.41 ± 435.75 - 21.51 ± 10.02 -

3-1 Two-step 190.21 ± 30.08 - 13.79 ± 1.09 -
Plain 342.16 ± 210.90 - 18.41 ± 5.54 -

14-7 Two-step 196.23 ± 64.71 176.65 ± 6.04 13.99 ± 2.27 13.29 ± 0.23
Plain 544.45 ± 796.18 486.36 ± 571.65 22.45 ± 19.40 21.67 ± 12.41

14-3 Two-step 170.69 ± 75.34 159.45 ± 59.65 13.03 ± 2.82 12.60 ± 2.40
Plain 686.58 ± 475.52 392.85 ± 341.94 26.01 ± 9.55 19.61 ± 8.69

7-3 Two-step 197.37 ± 120.24 186.21 ± 54.89 13.98 ± 4.21 13.63 ± 2.00
Plain 654.83 ± 521.17 288.30 ± 173.74 25.34 ± 10.80 16.89 ± 5.31

t-T Model
Second wave errors (Croatia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 4974.64 ± 5811.28 - 69.13 ± 42.51 -
Plain 4165.83 ± 300.80 - 64.54 ± 2.32 -

7-1 Two-step 4749.04 ± 2851.06 - 68.60 ± 20.10 -
Plain 3323.75 ± 1121.54 - 57.56 ± 9.88 -

3-1 Two-step 3577.49 ± 421.19 - 59.80 ± 3.52 -
Plain 3999.04 ± 1063.80 - 63.18 ± 8.43 -

14-7 Two-step 4858.05 ± 1388.48 7928.49 ± 2046.42 69.62 ± 9.83 88.96 ± 11.53
Plain 9508.23 ± 19872.40 4747.52 ± 3963.52 90.82 ± 107.99 68.17 ± 30.58

14-3 Two-step 4142.48 ± 2595.50 5816.76 ± 3388.36 64.04 ± 19.68 75.91 ± 22.41
Plain 15893.52 ± 25960.88 6649.36 ± 5851.83 119.34 ± 123.66 80.64 ± 36.75

7-3 Two-step 3483.77 ± 985.94 5306.68 ± 2668.54 58.96 ± 8.39 72.61 ± 17.87
Plain 15097.58 ± 26632.08 8454.94 ± 6991.72 114.68 ± 134.20 91.13 ± 37.35

t-T Model
First wave errors (Japan)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 31173.83 ± 12835.80 - 176.14 ± 37.05 -
Plain 26445.08 ± 7112.04 - 162.46 ± 22.21 -

7-1 Two-step 2172.84 ± 2015.93 - 45.98 ± 23.26 -
Plain 3966.92 ± 2946.28 - 62.54 ± 22.68 -

3-1 Two-step 1163.46 ± 903.46 - 33.81 ± 13.69 -
Plain 1789.36 ± 940.17 - 42.13 ± 11.50 -
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14-7 Two-step 1135.15 ± 984.16 1174.94 ± 414.79 33.35 ± 14.56 34.22 ± 6.09
Plain 3861.56 ± 9161.62 5227.93 ± 6190.41 57.64 ± 70.66 70.98 ± 41.86

14-3 Two-step 1845.98 ± 2939.82 1679.00 ± 2505.62 41.63 ± 32.39 39.72 ± 30.66
Plain 5590.88 ± 6236.25 4202.21 ± 10617.89 73.60 ± 40.12 59.36 ± 79.26

7-3 Two-step 2214.84 ± 359.38 3048.57 ± 680.96 47.05 ± 3.85 55.18 ± 6.13
Plain 2938.19 ± 4027.50 3394.17 ± 3026.15 52.38 ± 42.42 57.68 ± 25.01

t-T Model
Second wave errors (Japan)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 31173.83 ± 12835.80 - 176.14 ± 37.06 -
Plain 26445.08 ± 7112.04 - 162.45 ± 22.21 -

7-1 Two-step 36345.59 ± 14877.43 - 190.23 ± 38.48 -
Plain 27978.35 ± 11084.69 - 166.89 ± 34.01 -

3-1 Two-step 30483.74 ± 3487.63 - 174.57 ± 9.94 -
Plain 28974.52 ± 5629.58 - 170.13 ± 16.69 -

14-7 Two-step 34384.30 ± 11577.81 97623.25 ± 257667.12 185.15 ± 30.74 284.64 ± 392.01
Plain 174277.57 ± 577842.89 104793.24 ± 185061.89 351.93 ± 683.19 311.15 ± 271.78

14-3 Two-step 43934.07 ± 16622.80 149252.23 ± 46094.94 209.19 ± 40.18 385.83 ± 59.77
Plain 46122.41 ± 13903.01 59816.83 ± 37494.31 214.51 ± 31.86 243.26 ± 76.98

7-3 Two-step 37621.15 ± 9175.78 44685.11 ± 5812.97 193.81 ± 23.56 211.34 ± 13.72
Plain 170816.99 ± 583602.03 41983.28 ± 30683.75 346.46 ± 685.63 203.51 ± 72.44

t-T Model
First wave errors (Romania)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 2003.19 ± 1241.37 - 44.50 ± 14.49 -
Plain 2854.63 ± 2958.38 - 52.67 ± 27.29 -

7-1 Two-step 1892.33 ± 1360.64 - 43.19 ± 15.78 -
Plain 3562.15 ± 1736.53 - 59.50 ± 14.41 -

3-1 Two-step 2334.57 ± 750.72 - 48.25 ± 7.65 -
Plain 2831.42 ± 1387.99 - 53.05 ± 12.74 -

14-7 Two-step 2094.13 ± 1347.42 4506.94 ± 4762.57 45.49 ± 5.27 65.93 ± 38.55
Plain 2777.60 ± 2285.47 2595.81 ± 1950.88 52.25 ± 20.99 50.53 ± 19.92

14-3 Two-step 2120.78 ± 741.48 9232.91 ± 14948.22 45.97 ± 8.23 91.09 ± 93.08
Plain 5255.90 ± 2531.97 4891.36 ± 3755.55 72.28 ± 17.06 69.37 ± 27.12

7-3 Two-step 1876.50 ± 1312.50 2116.70 ± 1138.65 43.03 ± 15.08 45.81 ± 12.81
Plain 4089.11 ± 1796.34 3370.65 ± 2518.38 63.78 ± 13.96 57.58 ± 22.50

t-T Model
Second wave errors (Romania)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 71877.76 ± 45011.52 - 266.62 ± 85.63 -
Plain 98788.67 ± 96281.68 - 310.52 ± 147.90 -

7-1 Two-step 85973.31 ± 45135.96 - 292.12 ± 76.88 -
Plain 110134.85 ± 55830.77 - 330.67 ± 85.71 -

3-1 Two-step 76012.83 ± 22299.81 - 275.38 ± 40.37 -
Plain 111523.80 ± 45812.08 - 333.22 ± 67.23 -

14-7 Two-step 47787.30 ± 31708.20 235030.18 ± 303607.15 217.30 ± 72.52 470.78 ± 352.09
Plain 57212.18 ± 8566.19 190334.16 ± 274741.94 239.12 ± 18.06 425.03 ± 299.34

14-3 Two-step 70061.01 ± 21365.08 437848.72 ± 772867.92 264.37 ± 39.91 617.43 ± 724.00
Plain 118355.19 ± 92843.39 128156.15 ± 64752.80 341.25 ± 132.73 356.81 ± 88.27

7-3 Two-step 92617.64 ± 59595.46 162631.00 ± 270817.29 302.72 ± 95.06 389.54 ± 317.54
Plain 109021.98 ± 48827.75 175688.98 ± 294938.94 329.31 ± 73.05 404.48 ± 334.46

t-T Model
First wave errors (Slovakia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 364.20 ± 363.90 - 18.79 ± 10.15 -
Plain 850.22 ± 276.73 - 29.12 ± 4.70 -

7-1 Two-step 254.09 ± 105.92 - 15.90 ± 3.28 -
Plain 417.64 ± 232.20 - 20.35 ± 5.57 -

3-1 Two-step 245.41 ± 42.92 - 15.66 ± 1.37 -
Plain 272.86 ± 75.48 - 16.50 ± 2.32 -

14-7 Two-step 364.77 ± 512.76 419.50 ± 208.44 18.62 ± 12.91 20.42 ± 5.01
Plain 910.09 ± 693.09 753.42 ± 723.37 29.90 ± 12.14 27.05 ± 14.20

14-3 Two-step 356.35 ± 381.45 371.54 ± 568.87 18.57 ± 10.29 18.41 ± 17.34
Plain 918.37 ± 333.55 1428.92 ± 243.88 30.25 ± 5.46 37.79 ± 3.26

7-3 Two-step 358.69 ± 102.05 332.77 ± 262.37 18.92 ± 2.74 18.08 ± 7.43
Plain 391.13 ± 252.35 322.46 ± 302.11 19.67 ± 6.26 17.71 ± 9.06

t-T Model
Second wave errors (Slovakia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 14912.62 ± 7672.64 - 121.66 ± 32.10 -
Plain 16968.34 ± 14892.37 - 128.98 ± 55.54 -

7-1 Two-step 17242.32 ± 6597.18 - 131.05 ± 25.08 -
Plain 19465.78 ± 10695.60 - 138.97 ± 37.73 -

3-1 Two-step 16635.98 ± 1603.47 - 128.96 ± 6.19 -
Plain 26667.26 ± 8118.43 - 163.09 ± 25.29 -

14-7 Two-step 4511.25 ± 1665.30 9543.07 ± 6423.34 67.04 ± 12.68 97.08 ± 33.07
Plain 6347.09 ± 3009.71 12430.07 ± 5152.36 79.43 ± 18.69 111.23 ± 23.33

14-3 Two-step 12988.05 ± 3375.90 17975.61 ± 13027.75 113.86 ± 14.64 133.18 ± 47.01
Plain 16988.85 ± 6788.30 17755.88 ± 6476.31 130.07 ± 25.53 133.02 ± 23.89

7-3 Two-step 13405.69 ± 950.71 19663.17 ± 12020.02 115.78 ± 4.09 139.55 ± 41.78
Plain 30500.83 ± 60495.42 25222.86 ± 15568.28 166.17 ± 163.52 157.98 ± 49.47

Replacing the SIR epidemic model with a neural network and . . . 89



t-T Model
First wave errors (Slovenia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 77.79 +- 26.09 - 8.81 +- 1.46 -
Plain 194.75 +- 189.55 - 13.75 +- 7.30 -

7-1 Two-step 94.58 +- 35.24 - 9.71 +- 1.83 -
Plain 163.92 +- 141.55 - 12.66 +- 5.73 -

3-1 Two-step 69.73 +- 6.29 - 8.35 +- 0.38 -
Plain 120.07 +- 36.98 - 10.94 +- 1.68 -

14-7 Two-step 83.68 +- 40.57 84.27 +- 36.23 9.12 +- 2.28 9.16 +- 1.93
Plain 169.05 +- 139.79 124.69 +- 139.62 12.88 +- 5.40 10.99 +- 5.97

14-3 Two-step 66.58 +- 37.72 65.08 +- 44.48 8.13 +- 2.29 8.02 +- 2.76
Plain 246.59 +- 106.49 148.34 +- 131.93 15.66 +- 3.48 12.03 +- 5.72

7-3 Two-step 85.38 +- 40.53 93.02 +- 31.76 9.21 +- 2.22 9.63 +- 1.68
Plain 115.81 +- 50.61 132.63 +- 70.59 10.73 +- 2.41 11.47 +- 3.12

t-T Model
Second wave errors (Slovenia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 1022.18 +- 930.44 - 31.60 +- 14.72 -
Plain 1247.82 +- 457.40 - 35.26 +- 6.55 -

7-1 Two-step 1266.76 +- 701.12 - 35.44 +- 10.01 -
Plain 1349.53 +- 894.06 - 36.53 +- 11.92 -

3-1 Two-step 1106.60 +- 194.35 - 33.25 +- 2.91 -
Plain 1506.04 +- 601.12 - 38.73 +- 7.66 -

14-7 Two-step 543.05 +- 220.61 1123.13 +- 974.21 23.25 +- 4.76 33.18 +- 14.26
Plain 526.60 +- 136.71 1116.75 +- 832.46 22.93 +- 2.94 33.16 +- 12.51

14-3 Two-step 785.70 +- 31.57 1328.43 +- 1375.75 28.03 +- 0.56 35.94 +- 18.37
Plain 1202.36 +- 524.14 2294.93 +- 3308.89 34.58 +- 7.76 46.53 +- 34.71

7-3 Two-step 1164.56 +- 828.97 1303.17 +- 444.59 33.88 +- 12.38 36.04 +- 6.26
Plain 1544.92 +- 935.20 1535.80 +- 171.83 39.10 +- 12.14 39.18 +- 2.20

t-T Model
First wave errors (Switzerland)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 1650.36 ± 1237.49 - 40.28 ± 16.00 -
Plain 26767.85 ± 31289.39 - 159.86 ± 24.61 -

7-1 Two-step 1751.15 ± 1829.87 - 41.11 ± 23.86 -
Plain 3134.05 ± 3333.79 - 55.16 ± 29.07 -

3-1 Two-step 1434.07 ± 1915.86 - 36.71 ± 28.35 -
Plain 1829.81 ± 184.46 - 42.77 ± 2.17 -

14-7 Two-step 10433.31 ± 28717.23 19846.34 ± 30024.83 90.86 ± 141.96 135.19 ± 120.53
Plain 38316.98 ± 37304.36 81278.59 ± 58801.01 192.92 ± 100.77 283.09 ± 102.70

14-3 Two-step 4861.04 ± 3697.90 8565.31 ± 6611.52 69.15 ± 27.21 91.75 ± 36.96
Plain 15490.40 ± 34452.23 23939.43 ± 68419.65 109.28 ± 181.19 136.68 ± 220.61

7-3 Two-step 2204.43 ± 1265.82 1479.59 ± 1492.09 46.73 ± 13.81 37.84 ± 21.07
Plain 2454.06 ± 4000.73 6121.91 ± 12599.90 47.31 ± 44.66 69.21 ± 111.02

t-T Model
Second wave errors (Switzerland)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 114978.94 ±33095.94 - 338.71 ± 48.59 -
Plain 127891.97 ± 13207.35 - 357.57 ± 18.58 -

7-1 Two-step 128959.18 ± 59863.34 - 358.11 ± 81.48 -
Plain 118014.09 ± 4629.21 - 343.52 ± 6.74 -

3-1 Two-step 143138.45 ± 17755.58 - 378.26 ± 23.46 -
Plain 128062.63 ± 15330.01 - 357.79 ± 21.30 -

14-7 Two-step 33776.03 ± 18393.62 35900.58 ± 19553.14 183.07 ± 49.24 188.68 ± 52.65
Plain 46881.59 ± 19283.71 70863.13 ± 43875.14 216.03 ± 44.51 264.83 ± 82.05

14-3 Two-step 43197.12 ± 23294.05 45179.99 ± 10374.36 207.01 ± 56.27 212.41 ± 24.12
Plain 65516.57 ± 73767.49 56636.31 ± 30539.63 251.92 ± 137.84 236.98 ± 66.57

7-3 Two-step 47442.24 ± 12857.64 45676.70 ± 9910.13 217.59 ± 29.78 213.58 ± 23.50
Plain 58206.81 ± 89425.72 47090.02 ± 39493.20 234.25 ± 175.72 215.08 ± 87.70

t-T Model
First wave errors (USA)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 1.21e+07 ± 1.55e+07 - 3403.95 ±2147.00 -
Plain 9.91e+06 ± 2.53e+06 - 3086.60 ±1874.68 -

7-1 Two-step 2.07e+07 ± 8.19e+06 - 4543.58 ± 881.82 -
Plain 2.02e+07 ± 8.00e+06 - 4482.86 ± 872.58 -

3-1 Two-step 1.20e+07 ± 1.28e+06 - 3458.82 ± 186.73 -
Plain 1.61e+07 ± 6.62e+06 - 4004.74 ± 808.62 -

14-7 Two-step 1.53e+07 ± 1.02e+07 5.83e+07 ± 1.11e+08 3885.53 ± 1263.98 7287.40 ± 6927.27
Plain 9.50e+06 ± 4.62e+06 1.44e+07 ± 1.91e+07 3072.02 ± 773.72 3717.61 ± 2396.30

14-3 Two-step 7.50e+06 ± 6.73e+06 8.11e+07 ± 3.09e+08 2705.74 ± 1281.45 7015.28 ± 17171.39
Plain 1.42e+07 ± 9.26e+06 1.11e+08 ± 2.21e+08 3749.55 ± 1252.22 10010.71 ± 9951.60

7-3 Two-step 2.37e+07 ± 8.17e+06 3.71e+07 ± 5.44e+07 4863.90 ± 824.99 5926.72 ± 4242.28
Plain 4.04e+08 ± 8.25e+08 1.23e+08 ± 2.91e+08 17765.36 ± 28567.51 10076.78 ± 13949.80

t-T Model
Second wave errors (USA)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 4.63e+07 ± 6.02e+07 - 6653.56 ± 4331.68 -
Plain 5.43e+07 ± 6.71e+07 - 7199.30 ± 4825.38 -

7-1 Two-step 5.29e+07 ± 2.24e+07 - 7258.06 ± 1566.00 -
Plain 4.67e+07 ± 7.05e+06 - 6835.16 ± 511.52 -
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3-1 Two-step 3.50e+07 ± 2.77e+06 - 5918.34 ± 235.20 -
Plain 4.39e+07 ± 3.25e+07 - 6578.76 ± 2375.17 -

14-7 Two-step 5.69e+07 ± 4.11e+07 2.79e+08 ± 4.44e+08 7494.99 ± 2638.09 16168.56 ± 12595.59
Plain 7.91e+07 ± 9.11e+07 1.20e+08 ± 8.87e+07 8745.85 ± 4903.62 10872.10 ± 4007.51

14-3 Two-step 3.40e+07 ± 7.37e+06 3.23e+08 ± 1.16e+09 5831.17 ± 637.36 14644.18 ± 31712.39
Plain 5.43e+07 ± 2.65e+07 5.03e+08 ± 7.40e+08 7340.15 ± 1856.98 21833.43 ± 15675.72

7-3 Two-step 6.91e+07 ± 6.30e+07 1.59e+08 ± 2.90e+08 8228.62 ± 3641.60 12046.02 ± 11162.70
Plain 1.21e+09 ± 2.51e+09 3.78e+08 ± 1.01e+09 30522.01 ± 51160.81 17268.64 ± 27200.69

Replacing the SIR epidemic model with a neural network and . . . 91


