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Abstract

Modeling and simulating the traffic flow in large urban road networks are
important tasks. A mathematically rigorous stochastic model proposed in [8]
is based on the synthesis of the graph and Markov chain theories. In this
model, the transition probability matrix describes the traffic dynamics and
its unique stationary distribution approximates the proportion of the vehicles
at the segments of the road network. In this paper various Markov models
are studied and a simulation method is presented for generating random
traffic trajectories on a road network based on the two-dimensional stationary
distribution of the models. In a case study we apply our method to the
central region of the city of Debrecen by using the road network data from
the OpenStreetMap project which is available publicly.
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1. Introduction

Recently, the research and development of Smart City applications have become
more important by providing services to inhabitants which can make everyday life
easier [15]. These applications are based on emerging technologies such as big data
analytics, cloud computing, and complex sensor systems (IoT) that can support
their operation. By the year 2050, 70% of Earth’s population is expected to live in
cities [5] whose infrastructures will face new challenges, e.g., in the field of urban
traffic. In the past few years, many developments have occurred in the automobile
industry, e.g., autonomous (driverless) and pure electric cars are being introduced.
Since more and more people live in urban areas, solutions for problems of dense
traffic such as air pollution and congestion are highly demanding [20, 24, 30].

This research presented in this paper follows our development of a traffic sim-
ulation platform initiative called rObOCar World Championship (or OOCWC for
short) [2, 3]. OOCWC is a multiagent-oriented environment for creating urban
traffic simulations. The traffic simulations are performed by one of its components
called Robocar City Emulator (RCE), which is an open source software released un-
der the GNU GPL v3 and is available on GitHub.1 RCE uses the OpenStreetMap
(OSM) database and processes it with the Osmium Library. The traffic simulation
model of RCE is based on the Nagel-Schreckenberg (NaSch) model [21]. The re-
sult of this processing is a routing map graph and a Boost Graph Library graph
which can be visualized by various map viewers. For a detailed description of
the operation of RCE, see [2]. There exist several traffic simulation platforms,
e.g., Multi-Agent Transport Simulation [14], Simulation of Urban Mobility [18],
Aimsun,2 and PTV Vissim3. The main focus of their simulation algorithms is on
microscopic traffic events, while our software system focuses only on the traffic flow
on the road network of the whole city.

In [8] a mathematically rigorous stochastic model is proposed for investigating
the traffic flow on a road network which is based on the synthesis of discrete time
Markov chains and graph theory. In this model the transition probability matrix
describes the dynamics of the traffic while its unique stationary distribution cor-
responds to the traffic equilibrium (or steady) state on the road network. In our
previous paper [4], the concepts of Markov traffic and two-dimensional stationary
distribution are introduced and a parameter estimation method is proposed by us-
ing the weighted least squares (WLS) approach. To investigate complex systems,
the joint application of Markov chains and large graphs is well known, see [7, 10,
19].

Our contributions in this paper are as follows. Using the approach in [4], we

1https://github.com/nbatfai/robocar-emulator
2https://www.aimsun.com/
3http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/
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present various Markov models for modeling traffic flow on different road graph
models based on, e.g., open or closed and digraph or line digraph views. We
prove the existence and uniqueness of a stationary distribution as a solution of
the global balance equation, see Theorem 3.1. We define the configuration space
of Markov traffic, describe the transition mechanism and prove the ergodicity of
Markov traffic, see Theorem 4.1. Finally, we propose a simulation method for gen-
erating random trajectories for a Markov traffic whose two-dimensional distribution
is closest to a prescribed mask matrix in the least squares sense, see Theorem 5.1.
The results of this paper together with those obtained in [4], which contains some
additional proofs, show that the Markovian approach still works when the scale of
the road graph is significantly enlarged compared to such small one as ‘De Uithof’,
which is a district in the city of Utrecht in Netherlands, see [11].

Several approaches exist for traffic flow simulation and prediction, some recent
surveys are [22, 27, 31], but a few of them are based on Markov models, see [8, 23].

This paper is structured as follows. In section 2 we present various graph
models of road networks. Section 3 is devoted to the probability distributions and
Markov kernels on road networks. Section 4 introduces the notion of Markov traffic,
describes its stationary distribution and proves its ergodicity. A simulation method
is presented in section 5. In section 6 we discuss our findings, and in section 7 we
conclude the paper. The Appendix provides a toy example and a proof.

2. Graph modeling of road networks

Recall that the ordered pair 𝐺 = (𝑉,𝐸) is a directed graph (digraph), where 𝑉
is a finite set of vertices and 𝐸 is a set of ordered pairs, called directed edges, of
vertices. In the sequel, vertices (or nodes) are denoted by 𝑢, 𝑣, 𝑤, edges (or arcs or
arrows) are denoted by 𝑒, 𝑓, 𝑔. For a directed edge 𝑒 = (𝑣, 𝑤) ∈ 𝐸 we also use the
notation 𝑣 → 𝑤. We suppose that 𝐺 is a simple digraph, i.e., it does not contain
multiple arrows. For details, see the textbook [1].

A road network 𝐺 is defined as a simple directed graph, 𝐺 = (𝑉,𝐸), where 𝑉
is a set of nodes representing the terminal points of road segments, and 𝐸 is a set
of directed edges denoting road segments, see [25]. A road segment 𝑒 = (𝑣, 𝑤) ∈ 𝐸
is a directed edge in a road network graph, with two terminal points 𝑣 and 𝑤. The
vehicles move on this edge from 𝑣 to 𝑤. The road network 𝐺 represents the road
system of a city.

Let 𝑆 denote the diagonal set of 𝑉 , i.e., 𝑆 := {(𝑣, 𝑣)|𝑣 ∈ 𝑉 }. From a practical
point of view, we suppose that 𝐸 ∩ 𝑆 = ∅, i.e., there is no loop 𝑣 → 𝑣 in the road
network in order to avoid that a vehicle is able to move in an infinite cycle. For
𝑣 ∈ 𝑉 , define 𝑣− := {𝑒 ∈ 𝐸 | ∃𝑢 ∈ 𝑉 : 𝑒 = (𝑢, 𝑣)} and 𝑣+ := {𝑒 ∈ 𝐸 | ∃𝑤 ∈ 𝑉 : 𝑒 =
(𝑣, 𝑤)}, i.e., 𝑣− and 𝑣+ are the sets of edges in and out the node 𝑣, respectively.
Then, 𝑑𝑒𝑔−(𝑣) = |𝑣−| and 𝑑𝑒𝑔+(𝑣) = |𝑣+| are the indegree and outdegree of node
𝑣, respectively.

Let L(𝐺) = (𝑉 ′, 𝐸′) be the line digraph (line road network, network line graph,
see [9]) associated to 𝐺, see Section 4.5 in [1]. Here, 𝑉 ′ = 𝐸 and the set 𝐸′ consists
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of the ordered pairs (𝑒, 𝑓) where 𝑒, 𝑓 ∈ 𝐸 such that there exist 𝑢, 𝑣, 𝑤 ∈ 𝑉 that
𝑒 = (𝑢, 𝑣) and 𝑓 = (𝑣, 𝑤), i.e., 𝑢 → 𝑣 → 𝑤 is a path of length 2 (dipath) in
𝐺. The elements of 𝐸′ can be described by triplets (𝑢, 𝑣, 𝑤), where 𝑢, 𝑣, 𝑤 ∈ 𝑉 ,
(𝑢, 𝑣), (𝑣, 𝑤) ∈ 𝐸, and for a directed edge in L(𝐺) we use the notation (𝑢, 𝑣) →
(𝑣, 𝑤) too.

The digraph model of a road network assigns the vehicles moving in a city to the
vertices (first-order or primal network). Contrarily, the line digraph model assigns
the vehicles to the edges (second-order or dual network), see [26, 29]. When we are
studying issues that are associated with the crossings (vertices) we will be concerned
with the adjacency relationships of crossings, and so with the road network. On
the other hand, when we are studying issues that associated with road segments
we will be concerned with the adjacency relationships of road segments, and so our
analyses will involve the line road network.

The digraphs 𝐺 and L(𝐺) can be characterized by their degree distributions.
The pairs (𝑖, 𝑛+𝑖 ) form the frequency histogram for the outdegree distribution of
𝐺 where 𝑛+𝑖 := |{𝑣 ∈ 𝑉 | 𝑑𝑒𝑔+(𝑣) = 𝑖}|. The indegree frequency histogram can
be defined similarly as (𝑖, 𝑛−𝑖 ), where 𝑛−𝑖 := |{𝑣 ∈ 𝑉 | 𝑑𝑒𝑔−(𝑣) = 𝑖}|. The pairs
(𝑖,𝑚+

𝑖 ) form the frequency histogram for the outdegree distribution of L(𝐺) where
𝑚+
𝑖 :=

∑︀
𝑣∈𝐺+

𝑖
𝑑𝑒𝑔−(𝑣) and 𝐺+

𝑖 := {𝑣 ∈ 𝑉 | 𝑑𝑒𝑔+(𝑣) = 𝑖}. (Note that 𝑛+𝑖 =

|𝐺+
𝑖 |.) Similarly, the pairs (𝑖,𝑚−

𝑖 ) form the frequency histogram for the indegree
distribution of L(𝐺) where 𝑚−

𝑖 :=
∑︀
𝑣∈𝐺−

𝑖
𝑑𝑒𝑔+(𝑣) and 𝐺−

𝑖 := {𝑣 ∈ 𝑉 | 𝑑𝑒𝑔−(𝑣) =

𝑖}. For the city of Debrecen (described later in this paper), the above mentioned
degree distributions can be seen in Fig. 6. These histograms corroborate the fact
that Debrecen’s road network is a sparse graph since there is no node with higher
in- and outdegree than 4.

Recall that a sequence 𝑣1, . . . , 𝑣ℓ ∈ 𝑉 , ℓ ∈ N, is called walk of length ℓ if
𝑣1 → 𝑣2 → · · · → 𝑣ℓ. A walk is called path if its elements are different vertices.
For a pair 𝑢, 𝑣 ∈ 𝑉, 𝑢 ̸= 𝑣, it is said that 𝑣 is reachable from 𝑢 if there exists a
walk 𝑣1, 𝑣2, . . . , 𝑣ℓ such that 𝑢 = 𝑣1 and 𝑣 = 𝑣ℓ. Clearly, if 𝑣 is reachable from 𝑢,
then there is a path from 𝑢 to 𝑣. A digraph 𝐺 is said to be strongly connected
(diconnected) if every vertex is reachable from every other vertex. Clearly, the
line digraph of a strongly connected digraph is also strongly connected. Namely,
if 𝑒 = (𝑢, 𝑣) ∈ 𝑉 ′(= 𝐸) and 𝑓 = (𝑤, 𝑧) ∈ 𝑉 ′ are arbitrary such that 𝑒 ̸= 𝑓 , then,
since 𝐺 is strongly connected, there exists a walk (or a path) of length ℓ in 𝐺
such that 𝑣 = 𝑣1 → 𝑣2 → . . . → 𝑣ℓ = 𝑤, where 𝑣1, . . . , 𝑣ℓ ∈ 𝑉 , and thus we have
𝑒 = (𝑢, 𝑣) → (𝑣1, 𝑣2) → . . . → (𝑣ℓ−1, 𝑣ℓ) → (𝑤, 𝑧) = 𝑓 , i.e., there exists a walk
(or a path) of length ℓ in L(𝐺) between the vertices 𝑒, 𝑓 ∈ 𝑉 ′. If 𝑢 → 𝑣 → 𝑢
for a pair 𝑢, 𝑣 ∈ 𝑉 then we have (𝑢, 𝑣) → (𝑣, 𝑢) → (𝑢, 𝑣) in the line digraph,
i.e., vehicles can turn back at vertex 𝑢 into 𝑣. Sometimes the traffic regulations
do not allow this kind of reversal, i.e., the edge set 𝐸′ in L(𝐺) must not contain
some triplet (𝑢, 𝑣, 𝑢), while some of these triplets are needed that L(𝐺) be strongly
connected. By deleting all of the unnecessary triplets (𝑢, 𝑣, 𝑢), 𝑢, 𝑣 ∈ 𝑉 , such that
the remaining line digraph be still strongly connected we get the minimal strongly
connected line digraph of 𝐺. This line digraph is denoted by ML(𝐺). For example,
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the vertices of ML(𝐺) for 𝐺 in Fig. 1 are given in Table 1.
Recall that a cycle 𝐶 ⊂ 𝑉 in digraph 𝐺 is a path 𝑣1 → 𝑣2 → . . . → 𝑣ℓ → 𝑣1.

Here ℓ(𝐶) = ℓ is called the length of 𝐶. A digraph 𝐺 is said to be aperiodic if the
greatest common divisor of the lengths of its cycles is one. Formally, the period of
𝐺 is defined as 𝑝𝑒𝑟(𝐺) := gcd{ℓ > 0 : ∃𝐶 ⊂ 𝑉 cycle such that ℓ(𝐶) = ℓ}. Then, 𝐺
is called aperiodic if 𝑝𝑒𝑟(𝐺) = 1. Clearly, if a digraph 𝐺 is aperiodic then its line
digraph L(𝐺) is also aperiodic. This statement follows from the following fact: if
𝑣1 → 𝑣2 → . . . → 𝑣ℓ → 𝑣1 is a cycle then (𝑣1, 𝑣2) → (𝑣2, 𝑣3) → . . . → (𝑣ℓ, 𝑣1) →
(𝑣1, 𝑣2) is a cycle in L(𝐺). Thus, if ℓ > 0 and there exists a cycle 𝐶 ⊂ 𝑉 such that
ℓ(𝐶) = ℓ then there exists a cycle 𝐶 ′ ⊂ 𝑉 ′ such that ℓ(𝐶 ′) = ℓ.

3: 2/11

2: 4/111: 2/11 4: 2/11

5: 1/11

1/2

1/2

1/41/4

1/2

1/2

1/2

1/4

1/4

1/2

1/2

1/2

Figure 1. A Markov kernel (on edges) with its stationary distri-
bution (on vertices with node’s id) on a simple road network.

Table 1. An example for a Markov kernel on the minimal line
digraph of the road network in Fig. 1.

(1,2) (2,3) (3,4) (4,2) (2,1) (4,5) (5,2)
(1,2) 1/2 1/2 0 0 0 0 0
(2,3) 0 1/2 1/2 0 0 0 0
(3,4) 0 0 1/2 1/4 0 1/4 0
(4,2) 0 1/4 0 1/2 1/4 0 0
(2,1) 1/2 0 0 0 1/2 0 0
(4,5) 0 0 0 0 0 1/2 1/2
(5,2) 0 1/4 0 0 1/4 0 1/2

Let 𝐴 = (𝑎𝑢𝑣)𝑢,𝑣∈𝑉 denote the adjacency matrix of the digraph 𝐺, i.e., 𝑎𝑢𝑣 = 1
if and only if (𝑢, 𝑣) ∈ 𝐸 and 0 otherwise. The number of directed walks from
vertex 𝑢 to vertex 𝑣 of length 𝑘 is the entry in the 𝑢-th row and the 𝑣-th column
of the matrix 𝐴𝑘. For example, in Fig. 1, the number of directed walks of length
6 from vertex 2 to vertex 4 is 2, see Appendix 7. One can easily check that 𝐺 is
strongly connected if and only if there is a positive integer 𝑘 such that the matrix
𝐼 + 𝐴 + · · · + 𝐴𝑘 is positive, i.e., all the entries of this matrix are positive. The
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indegree and outdegree of a vertex 𝑣 can be expressed by the adjacency matrix
as 𝑑𝑒𝑔−(𝑣) =

∑︀
𝑢∈𝑉 𝑎𝑢𝑣 and 𝑑𝑒𝑔+(𝑣) =

∑︀
𝑢∈𝑉 𝑎𝑣𝑢. Let us introduce the vectors

𝑑− := (𝑑𝑒𝑔−(𝑣))𝑣∈𝑉 and 𝑑+ := (𝑑𝑒𝑔+(𝑣))𝑣∈𝑉 . Then, we have 𝑑− = 𝐴𝑇1 and
𝑑+ = 𝐴1 where 1 := (1)𝑣∈𝑉 is the constant unit function. It is well known that
the adjacency matrix 𝐴 of an aperiodic, strongly connected graph 𝐺 is primitive,
i.e., irreducible and has only one eigenvalue of maximum modulus. Primitivity is
equivalent to the following quasi-positivity: there exists 𝑘 ∈ N such that the matrix
𝐴𝑘 > 0, see Section 8.5 in [13].

In order to model the cases when vehicles leave or enter the city, we augment 𝑉
by a new ideal vertex 0 and define 𝑉 := 𝑉 ∪ {0}, see [12]. Moreover, let 𝐸 denote
the augmentation of 𝐸 by directed edges (0, 𝑣) and (𝑣, 0) for getting into and out of
the city, respectively. Note that, for 𝐸, it is not allowed to contain the loop (0, 0).
The augmentation 𝐺 = (𝑉 ,𝐸) of 𝐺 is called the closure of the road network 𝐺.
For 𝑒 = (𝑣, 𝑤) ∈ 𝐸 we also use the notation 𝑣 → 𝑤. In what follows, we suppose
that there exist 𝑢, 𝑣 ∈ 𝑉 such that 𝑢→ 0 and 0→ 𝑣.

Each definition, including strong connectedness, periodicity, line digraph, given
for 𝐺 can be extended for 𝐺 in a natural way. Note that in the augmented line
digraph L(𝐺) = (𝑉

′
, 𝐸

′
) the elements of the edge set 𝐸

′
can be described by triplets

(𝑢, 𝑣, 𝑤), where 𝑢, 𝑣, 𝑤 ∈ 𝑉 and if 𝑣 = 0 then 𝑢,𝑤 ̸= 0 and if 𝑢 or 𝑤 is 0 then 𝑣 ̸= 0

because triplets (0, 0, 𝑣), (𝑣, 0, 0), and (0, 0, 0) are excluded from 𝐸
′
. One can easily

see that if 𝐺 is strongly connected then its closure 𝐺 is also strongly connected.
Moreover, the strongly connected components of 𝐺, if there exist more than 1,
can be connected through the ideal vertex 0, resulting in a strongly connected 𝐺.
Thus, the augmented line digraph will also be strongly connected. Clearly, if G is
aperiodic then 𝐺 is aperiodic too.

In the rest of this paper, it is assumed that the road network is closed by
augmenting with the ideal vertex 0.

3. Probability distributions and Markov kernels on
road networks

On a road network, two kinds of probability distributions can be defined by consid-
ering the set 𝑉 or 𝐸 as the state space, respectively. However, the Markov kernels
on the line road network must be defined with particular care.

A probability distribution (p.d.) on 𝑉 is the vector 𝜋 := (𝜋𝑣)𝑣∈𝑉 where 𝜋𝑣 ≥ 0
for all 𝑣 ∈ 𝑉 and

∑︀
𝑣∈𝑉 𝜋𝑣 = 1. We may think of 𝜋𝑣 as the proportion of all

vehicles which drive through the crossing 𝑣 with respect to all vehicles in the city.
A Markov kernel or transition probability matrix on 𝑉 is defined as a real kernel
𝑃 := (𝑝𝑢𝑣)𝑢,𝑣∈𝑉 such that 𝑝𝑢𝑣 ≥ 0 for all 𝑢, 𝑣 ∈ 𝑉 and

∑︀
𝑣∈𝑉 𝑝𝑢𝑣 = 1 for all 𝑢 ∈ 𝑉 .

The quantity 𝑝𝑢𝑣 ∈ [0, 1] is called the transition probability from vertex 𝑢 to vertex
𝑣. In fact, 𝑃 is a stochastic matrix on 𝑉 and we assume that its support is the set
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𝐸 ∪ 𝑆. The sum condition for Markov kernel 𝑃 can be rewritten as:
∑︁

𝑤:𝑣→𝑤

𝑝𝑣𝑤 + 𝑝𝑣𝑣 = 1, 𝑣 ∈ 𝑉. (3.1)

A p.d. 𝜋 is a stationary distribution (s.d.) of the kernel 𝑃 if
∑︀
𝑢∈𝑉 𝜋𝑢𝑝𝑢𝑣 = 𝜋𝑣

for all 𝑣 ∈ 𝑉 . This so-called global balance equation can be expressed as:
∑︁

𝑢:𝑢→𝑣

𝜋𝑢𝑝𝑢𝑣 + 𝜋𝑣𝑝𝑣𝑣 = 𝜋𝑣, 𝑣 ∈ 𝑉. (3.2)

Fig. 1 presents a Markov kernel with its s.d. on a simple road network.
Since the vehicles are moving along the road segments of the road network 𝐺,

it is natural to choose 𝐸 to be the state space. In this case, to define probability
distributions on the set of vertices again, we have to consider the line digraph L(𝐺)
(or ML(𝐺)). Formally, a probability distribution (p.d.) on L(𝐺) is the vector
𝜋′ := (𝜋′

𝑒)𝑒∈𝐸 where 𝜋′
𝑒 ≥ 0 for all 𝑒 ∈ 𝐸 and

∑︀
𝑒∈𝐸 𝜋

′
𝑒 = 1. If we want to

emphasize the vertices of the original road network 𝐺, instead of the edges, then
the notation 𝜋′

𝑒 = 𝜋′
𝑢𝑣 is also used where 𝑒 = (𝑢, 𝑣) ∈ 𝐸. We may think of 𝜋′

𝑒 as
the proportion of the vehicles at the road segment 𝑒 with respect to all vehicles in
the city. Note that 𝐺 endowed with 𝜋′ is a weighted digraph which is often called
a network in itself as well.

A transition probability matrix (or Markov kernel) on 𝐸, i.e., on the line digraph
L(𝐺), can be defined as a real kernel 𝑃 ′ := (𝑝′𝑒𝑓 )𝑒,𝑓∈𝐸 such that 𝑝′𝑒𝑓 ≥ 0 for all
𝑒, 𝑓 ∈ 𝐸 and

∑︀
𝑓∈𝐸 𝑝

′
𝑒𝑓 = 1 for all 𝑒 ∈ 𝐸. A p.d. 𝜋′ on 𝐸 is a s.d. of the kernel 𝑃 ′ if∑︀

𝑒∈𝐸 𝜋
′
𝑒𝑝

′
𝑒𝑓 = 𝜋′

𝑓 for all 𝑓 ∈ 𝐸. Since 𝐺 represents a road system we may suppose
that if 𝑒 ̸= 𝑓 then 𝑝′𝑒𝑓 > 0 implies that (𝑒, 𝑓) ∈ 𝐸′, i.e., there exist 𝑢, 𝑣, 𝑤 ∈ 𝑉 such
that 𝑒 = (𝑢, 𝑣) and 𝑓 = (𝑣, 𝑤), and hence, 𝑢→ 𝑣 → 𝑤 is a walk of length 2. In this
case, we use the notation 𝑝′𝑒𝑓 = 𝑝′𝑢𝑣𝑤 as well. In fact, 𝑝′𝑢𝑣𝑤 denotes the probability
that a vehicle on the road segment (𝑢, 𝑣) will go further to the road segment (𝑣, 𝑤)
in the next time point. Moreover, in the case of 𝑒 = 𝑓 = (𝑢, 𝑣), let 𝑝′𝑒𝑒 = 𝑝′𝑢𝑣 be
the probability that a vehicle remains on the same road segment in the next time
point which can be non-zero as well. Thus, since 𝑃 ′ is a Markov kernel, we have
that, for all 𝑢→ 𝑣, ∑︁

𝑤:𝑣→𝑤

𝑝′𝑢𝑣𝑤 + 𝑝′𝑢𝑣 = 1 (3.3)

and the global balance equation is given as:
∑︁

𝑢:𝑢→𝑣

𝜋′
𝑢𝑣𝑝

′
𝑢𝑣𝑤 + 𝜋′

𝑣𝑤𝑝
′
𝑣𝑤 = 𝜋′

𝑣𝑤 (3.4)

for all 𝑣 → 𝑤.
An example for the Markov kernel 𝑃 ′ on the minimal line digraph ML(𝐺) of

the road network 𝐺 in Fig. 1 is shown in Table 1. Fig. 2 shows the unique s.d. 𝜋′

of the Markov kernel 𝑃 ′.
Probability distributions and Markov kernels on the closure 𝐺 of an open road

network 𝐺 can be defined similarly by considering the set 𝑉 or 𝐸 as the state space,
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respectively. Note that 𝜋0 denotes the proportion of the number of vehicles which
drive in or out of the city’s roads at a time point. Moreover, for any Markov kernel
𝑃 on 𝑉 it is supposed that 𝑝00 = 0, i.e., the vehicles cannot move from 0 to 0, thus
they either enter to the road network or leave the road network. Equations (3.1)
and (3.2) remain true, too. Equation (3.1) can be rewritten as

∑︁

𝑤∈𝑉 :𝑣→𝑤

𝑝𝑣𝑤 + 𝑝𝑣0 + 𝑝𝑣𝑣 = 1, 𝑣 ∈ 𝑉,
∑︁

𝑤∈𝑉 :0→𝑤

𝑝0𝑤 = 1.

The global balance equation (3.2) for the s.d. can be rewritten as
∑︁

𝑢∈𝑉 :𝑢→𝑣

𝜋𝑢𝑝𝑢𝑣 + 𝜋0𝑝0𝑣 + 𝜋𝑣𝑝𝑣𝑣 = 𝜋𝑣, 𝑣 ∈ 𝑉, 0→ 𝑣,

∑︁

𝑢∈𝑉 :𝑢→𝑣

𝜋𝑢𝑝𝑢𝑣 + 𝜋𝑣𝑝𝑣𝑣 = 𝜋𝑣, 𝑣 ∈ 𝑉, 0 9 𝑣,

∑︁

𝑢∈𝑉 :𝑢→0

𝜋𝑢𝑝𝑢0 = 𝜋0.

3

21 4

5

1/9

2/91/9 2/9

1/9

1/91/9

Figure 2. The stationary distribution of the Markov kernel
in Table 1.

We can define Markov kernels on the line digraph L(𝐺) of the augmented road
network 𝐺, and thus on the augmented edge set 𝐸 similarly to the case of L(𝐺).
Note that (𝑒, 𝑓) ∈ 𝐸

′
implies that 𝑒 = (𝑢, 𝑣) and 𝑓 = (𝑣, 𝑤) where 𝑢, 𝑣, 𝑤 ∈ 𝑉

excluding the triplets (0, 0, 𝑣), (𝑣, 0, 0), and (0, 0, 0). We shall also use the notation
𝑝′𝑢𝑣𝑤 = 𝑝′𝑒𝑓 if 𝑒 = (𝑢, 𝑣) and 𝑓 = (𝑣, 𝑤) and 𝑝′𝑢𝑣 = 𝑝′𝑒𝑒 if 𝑒 = (𝑢, 𝑣). However, three
additional conditions should be added. The first one is that 𝑝′𝑢0𝑢 = 0 for all 𝑢 ∈ 𝑉
such that 𝑢 → 0 → 𝑢. This means that if a vehicle is on the edge (𝑢, 0), i.e., it
leaves the city at vertex 𝑢 then it cannot be on the edge (0, 𝑢) at the next time
point, i.e., it cannot enter at vertex 𝑢 in the road network again, immediately. The
second one is that 𝑝′0𝑣0 = 0 for all 𝑣 ∈ 𝑉 such that 0 → 𝑣 → 0, i.e., vehicles can
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enter and leave the city at node 𝑣. This means that if a vehicle enters the city
then it cannot leave the city at the next time point. Finally, the third one is that
𝑝′𝑢0 = 𝑝′0𝑣 = 0 for all 𝑢, 𝑣 ∈ 𝑉 such that 𝑢→ 0 and 0→ 𝑣. That is a vehicle cannot
remain on the road network at the edge (𝑢, 0) after two consecutive time points
and if a vehicle enters into the road network at the edge (0, 𝑣) (or at the vertex 𝑣)
the first time then it does not remain on this edge after the next time point and it
goes further immediately in the road network. Under these conditions, equations
(3.3) and (3.4) remain true. Equation (3.3) can be rewritten as:

∑︁

𝑤∈𝑉 :𝑣→𝑤

𝑝′𝑢𝑣𝑤 + 𝑝′𝑢𝑣0 + 𝑝′𝑢𝑣 = 1, 𝑢, 𝑣 ∈ 𝑉, 𝑢→ 𝑣,

∑︁

𝑤∈𝑉 :𝑣→𝑤

𝑝′0𝑣𝑤 = 1, 𝑣 ∈ 𝑉, 0→ 𝑣,

∑︁

𝑣∈𝑉 ∖{𝑢}:0→𝑣

𝑝′𝑢0𝑣 = 1, 𝑢 ∈ 𝑉, 𝑢→ 0.

Equation (3.4) can be rewritten as:
∑︁

𝑢∈𝑉 :𝑢→𝑣

𝜋′
𝑢𝑣𝑝

′
𝑢𝑣𝑤 + 𝜋′

0𝑣𝑝
′
0𝑣𝑤 + 𝜋′

𝑣𝑤𝑝
′
𝑣𝑤 = 𝜋′

𝑣𝑤, 𝑣, 𝑤 ∈ 𝑉, 𝑣 → 𝑤,

∑︁

𝑢∈𝑉 :𝑢→𝑣

𝜋′
𝑢𝑣𝑝

′
𝑢𝑣0 + 𝜋′

𝑣0𝑝
′
𝑣0 = 𝜋′

𝑣0, 𝑣 ∈ 𝑉, 𝑣 → 0,

∑︁

𝑢∈𝑉 ∖{𝑤}:𝑢→0

𝜋′
𝑢𝑣𝑝

′
𝑢0𝑤 + 𝜋′

0𝑤𝑝
′
0𝑤 = 𝜋′

0𝑤, 𝑤 ∈ 𝑉, 0→ 𝑤.

The s.d. in all cases, i.e., for Markov kernels on road networks, line road networks
and their closures, can be derived by solving the above appropriate linear equations
numerically. It turns out that there is a direct connection between the existence
and uniqueness of s.d. of the Markov kernels 𝑃 and 𝑃 ′ and the strongly connected
property of the physical road network 𝐺 if the Markov and graph structures are
compatible with each other.

The Markov kernel 𝑃 on 𝑉 is called 𝐺-compatible if, for any 𝑢, 𝑣 ∈ 𝑉 such that
𝑢 ̸= 𝑣, 𝑝𝑢𝑣 > 0 if and only if (𝑢, 𝑣) ∈ 𝐸. Similarly, the Markov kernel 𝑃 ′ on 𝐸 is
called 𝐺-compatible if it is L(𝐺)-compatible Markov kernel on L(𝐺), i.e., for any
𝑒, 𝑓 ∈ 𝐸 such that 𝑒 ̸= 𝑓 , 𝑝′𝑒𝑓 > 0 if and only if (𝑒, 𝑓) ∈ 𝐸′. This is equivalent to
the statement that 𝑝′𝑢𝑣𝑤 > 0, 𝑢, 𝑣, 𝑤 ∈ 𝑉 , if and only if (𝑢, 𝑣), (𝑣, 𝑤) ∈ 𝐸. Since
(𝑒, 𝑓) ∈ 𝐸′ if and only if there exist 𝑢, 𝑣, 𝑤 ∈ 𝑉 such that 𝑒 = (𝑢, 𝑣) and 𝑓 = (𝑣, 𝑤)
we can define the 𝐺-compatibility of a Markov kernel 𝑃 ′ as, for any 𝑒, 𝑓 ∈ 𝐸 such
that 𝑒 ̸= 𝑓 , 𝑝′𝑒𝑓 > 0 if and only if there exist 𝑢, 𝑣, 𝑤 ∈ 𝑉 such that 𝑒 = (𝑢, 𝑣) and
𝑓 = (𝑣, 𝑤).

Clearly, if 𝑃 is 𝐺-compatible then the strong connectivity of 𝐺 implies that the
Markov kernel (the transition matrix) 𝑃 is irreducible. Thus, by Theorem 1 in [16],
see also Theorem 3.1 and 3.3 in Chapter 3 of [6] the following theorem holds.
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Theorem 3.1. If a road network 𝐺 is strongly connected then there is a unique sta-
tionary distribution 𝜋 (𝜋′) to any 𝐺-compatible Markov kernel 𝑃 (𝑃 ′). Moreover,
this distribution satisfies 𝜋𝑣 > 0 for all 𝑣 ∈ 𝑉 (𝜋′

𝑢𝑣 > 0 for all (𝑢, 𝑣) ∈ 𝐸).

The main consequence of this theorem is that, in case of any physical road
network augmented by the ideal vertex 0, all of the Markov kernels defined on the
road network that has positive transition probability on all roads have unique s.d.

4. Markov traffic on road networks

Let (Ω,𝒜 ,P) be a probability space. A sequence {𝑋𝑡}𝑡∈Z+
of 𝑉 -valued r.v.’s is a

Markov chain on the state space 𝑉 if the Markov property holds:

P(𝑋𝑡 = 𝑣𝑡|𝑋𝑡−1 = 𝑣𝑡−1, . . . , 𝑋0 = 𝑣0) = P(𝑋𝑡 = 𝑣𝑡|𝑋𝑡−1 = 𝑣𝑡−1)

for all 𝑡 ∈ N, 𝑣0, . . . , 𝑣𝑡 ∈ 𝑉 . If 𝑋,𝑋 ′ are 𝑉 -valued r.v.’s then for the conditional
distribution 𝑃 = (𝑝𝑣𝑣′)𝑣,𝑣′∈𝑉 , 𝑝𝑣𝑣′ := P(𝑋 = 𝑣|𝑋 ′ = 𝑣′), 𝑣, 𝑣′ ∈ 𝑉 , we shall also
use the notation 𝑋|𝑋 ′. Clearly, 𝑋|𝑋 ′ is a Markov kernel on 𝑉 . Similarly, a Markov
chain {𝑌𝑡}𝑡∈Z+ of 𝐸-valued r.v.’s can also be defined through the Markov kernel
𝑌 |𝑌 ′ on the state space 𝐸.

In what follows, we suppose that the road network 𝐺 is strongly connected
and the Markov kernel 𝑃 is 𝐺-compatible on 𝑉 with unique s.d. 𝜋. The Markov
chain {𝑋𝑡}𝑡∈Z+

on 𝑉 is called Markov random walk on the road network 𝐺 with
Markov kernel 𝑃 if for its initial distribution 𝜋𝑋0 = 𝜋 and transition probabilities
𝑋𝑡|𝑋𝑡−1 ∼ 𝑃 for all 𝑡 ∈ N. The set of 𝑘 (𝑘 ∈ N) mutually independent Markov
random walks on 𝐺 with Markov kernel 𝑃 is called Markov traffic of size 𝑘 and it
is denoted by the quadruple (𝐺,𝑃,𝜋, 𝑘). Similarly, {𝑌𝑡}𝑡∈Z+

is a Markov random
walk on the line road network if it is a Markov chain on the state space 𝐸 such
that 𝜋′

𝑌0
= 𝜋′ and 𝑌𝑡|𝑌𝑡−1 ∼ 𝑃 ′ for all 𝑡 ∈ N.

A Markov random walk is the movement of a random vehicle which follows the
stochastic rules defined by the Markov kernel. For a pair 𝑢, 𝑣 ∈ 𝑉 , the notation
𝑢 ⇒ 𝑣 means that (𝑢, 𝑣) ∈ 𝐸 ∪ 𝑆, i.e., either 𝑢 → 𝑣 or 𝑢 = 𝑣. One can see that
𝑋𝑡 ⇒ 𝑋𝑡+1 ⇒ . . .⇒ 𝑋𝑡+𝑛 for all 𝑡 and 𝑛 ∈ N. {𝑋𝑡}𝑡∈Z+

is also called a first-order
random walk on the road network where a vehicle moves from vertex 𝑢 to vertex
𝑣 with probability 𝑝𝑢𝑣. On the other hand, {𝑌𝑡}𝑡∈Z+ may be referred as a second-
order random walk where the vehicles move from edge to edge, i.e., we have to
consider where the vehicle came from, the vertex visited before the current vertex.
The second-order random walk has also been considered in graph analysis, see [29].

The state space of a first-order Markov traffic can be modeled by the function
space ℱ where 𝑓 ∈ ℱ is a non-negative integer valued function on 𝑉 , i.e., 𝑓 =
(𝑓𝑣)𝑣∈𝑉 such that 𝑓𝑣 ∈ {0, 1, 2, . . .} for all 𝑣 ∈ 𝑉 . The function 𝑓 is called a traffic
configuration or a counting function and 𝑓𝑣 measures the number of vehicles at
vertex 𝑣 ∈ 𝑉 . Let |𝑓 | denote the size of the traffic configuration 𝑓 defined by
|𝑓 | :=

∑︀
𝑣∈𝑉 𝑓𝑣. The size of a traffic configuration counts the number of vehicles

on the road network at a time. Let ℱ𝑘 (𝑘 ∈ N) denote the subset of traffic
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configurations of size 𝑘. A p.d. 𝜚 on ℱ is a function 𝜚 : ℱ → [0, 1] such that∑︀
𝑓 𝜚(𝑓) = 1. For a p.d. 𝜋 on the road network 𝐺, let 𝜚 denote a multinomial

distribution on ℱ𝑘 with parameters 𝑘 and 𝜋, see Chapter 35 in [17]. Thus, we
have

𝜚(𝑓) := 𝑘!
∏︁

𝑣∈𝑉

𝜋𝑓𝑣𝑣
𝑓𝑣!

(4.1)

for all 𝑓 ∈ ℱ𝑘. In fact, 𝜚 is the 𝑘-fold convolution of 𝜋. By formula (4.1) the
probability of any complex event of the traffic can be computed.

A Markov kernel 𝑅 on ℱ𝑘 is a function ℱ𝑘 × ℱ𝑘 → [0, 1] such that, for all
𝑓 ∈ ℱ𝑘,

∑︀
𝑔∈ℱ𝑘

𝑅(𝑓 , 𝑔) = 1. We demonstrate that every Markov kernel 𝑃 induces
a natural Markov kernel on ℱ𝑘. The matrix 𝐾 = (𝑘𝑢𝑣)𝑢,𝑣∈𝑉 is called transport
matrix from traffic configuration 𝑓 to 𝑔 on the road network 𝐺 if 𝐾 : 𝑉 × 𝑉 → N0

such that 𝑘𝑢𝑣 > 0 implies 𝑢⇒ 𝑣,
∑︀
𝑣∈𝑉 𝑘𝑢𝑣 = 𝑓𝑢 for all 𝑢 ∈ 𝑉 , and

∑︀
𝑢∈𝑉 𝑘𝑢𝑣 = 𝑔𝑣

for all 𝑣 ∈ 𝑉 . In fact, 𝐾 has row and column marginals 𝑓 and 𝑔, respectively, and,
heuristically, 𝐾 defines a way for transporting the vehicles from configuration 𝑓
into 𝑔 on the road network. An example for a transport matrix can be seen in
Fig 3. For a pair 𝑓 , 𝑔 ∈ ℱ𝑘 let ℳ (𝑓 , 𝑔) denote the set of all transport matrices
from 𝑓 to 𝑔. Define the Markov kernel 𝑅 on ℱ𝑘 in the following way:

𝑅(𝑓 , 𝑔) :=
∏︁

𝑢∈𝑉
𝑓𝑢!

∑︁

𝐾∈ℳ (𝑓 ,𝑔)

∏︁

𝑢,𝑣:𝑢⇒𝑣

𝑝𝑘𝑢𝑣
𝑢𝑣

𝑘𝑢𝑣!
(4.2)

where 𝑓 , 𝑔 ∈ ℱ𝑘. Then, 𝑅 maps a p.d. 𝜚 into the p.d. 𝑅𝜚 on the state space ℱ𝑘

in the following way:
(𝑅𝜚)(𝑔) :=

∑︁

𝑓∈ℱ𝑘

𝜚(𝑓)𝑅(𝑓 , 𝑔) (4.3)

for all 𝑔 ∈ ℱ𝑘. To check that 𝑅 is a Markov kernel indeed we note that, by the
multinomial theorem,

∑︁

𝑔∈ℱ𝑘

𝑅(𝑓 , 𝑔) =
∏︁

𝑢∈𝑉
𝑓𝑢!

∑︁
∑︀

𝑣∈𝑉

𝑘𝑢𝑣=𝑓𝑢

∏︁

𝑢,𝑣:𝑢⇒𝑣

𝑝𝑘𝑢𝑣
𝑢𝑣

𝑘𝑢𝑣!
=
∏︁

𝑢∈𝑉

(︃∑︁

𝑣∈𝑉
𝑝𝑢𝑣

)︃𝑓𝑢
= 1. (4.4)

Moreover, one can easily see similarly to (4.4), by the multinomial theorem, that
if 𝜋 is a s.d. of the Markov kernel 𝑃 , then the p.d. 𝜚 defined by (4.1) is the s.d. of
the induced Markov kernel 𝑅 defined by (4.2). Namely, we have the global balance
equation ∑︁

𝑓∈ℱ𝑘

𝜚(𝑓)𝑅(𝑓 , 𝑔) = 𝜚(𝑔) (4.5)

for all 𝑔 ∈ ℱ𝑘. (For the proof see Appendix.)
Note that the concepts of traffic configuration and induced Markov kernel on

them can be extended to the case of second-order Markov traffic by using the
function space of non-negative integer valued functions on 𝐸 as state space.
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Figure 3. A transport matrix (on edges) on the road network
in Fig. 1 from configuration 𝑓 = (1, 3, 3, 2, 1) (left in vertices) to

configuration 𝑔 = (1, 2, 2, 3, 2) (right in vertices) with 𝑘 = 10.

The applicability of the Markov traffic model is based on its ergodicity. Let 𝜚0

be an initial p.d. on ℱ𝑘 and let us define the 𝑛th absolute p.d. 𝜚𝑛 on ℱ𝑘 by the
recursion 𝜚𝑛 := 𝑅𝜚𝑛−1, 𝑛 ∈ N, where 𝑅 is a Markov kernel on ℱ𝑘 induced by a
𝐺-compatible Markov kernel 𝑃 on 𝐺, see formula (4.2). One can prove that the
irreducibility and aperiodicity of 𝑃 imply the same properties for 𝑅, respectively.

Our main result on ergodicity of Markov traffic, which follows from the ergod-
icity of irreducible aperiodic Markov chains, is the following theorem. Note that
the 𝑛th power of 𝑅 is defined recursively as 𝑅𝑛𝜚 := 𝑅(𝑅𝑛−1𝜚), 𝑛 = 2, 3, . . ., by
formula (4.3).

Theorem 4.1. Let 𝐺 be a strongly connected and aperiodic road network and 𝑃
be a 𝐺-compatible Markov kernel. Then, there is a unique stationary distribution 𝜚
to the Markov traffic described by the Markov kernel 𝑅 on ℱ𝑘 induced by 𝑃 which
has the form (4.1).

Moreover, the Markov traffic is ergodic in the sense that we have

𝑅𝑛(𝑓 , 𝑔)→ 𝜚(𝑔)

as 𝑛→∞ for all 𝑓 , 𝑔 ∈ ℱ𝑘 and, for all initial p.d. 𝜚0 on ℱ𝑘,

𝜚𝑛(𝑓)→ 𝜚(𝑓)

as 𝑛→∞ for all 𝑓 ∈ ℱ𝑘.

By the ergodic theorem, Theorem 4.1 implies that the p.d. 𝜋 on 𝐺 can be
unfolded by the limit of state space averages in time as

1

𝑘

∑︁

𝑓∈ℱ𝑘

𝑓𝑣𝜚𝑛(𝑓)→ 𝜋𝑣

as 𝑛 → ∞ for all 𝑣 ∈ 𝑉 . This formula follows from the well-known fact that the
expectation vector of a multivariate distribution with parameters 𝑘 and 𝜋 is equal
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to 𝑘𝜋, see formula (35.6) in [17]. Similar results hold for any 𝐺-compatible Markov
kernel 𝑃 ′ on 𝑉 ′ = 𝐸.

These results guarantee that the unique s.d. of a 𝐺-compatible Markov kernel
can be approximated and thus explored by long run behavior of absolute p.d.’s on
the traffic configurations of the road network.

5. Simulation by two-dimensional stationary distri-
bution

A Markov traffic can be reparametrized by using its two-dimensional stationary
distribution. Let us define the two-dimensional distribution 𝑄 = (𝑞𝑢𝑣) on 𝑉 × 𝑉
as 𝑞𝑢𝑣 := 𝜋𝑢𝑝𝑢𝑣, 𝑢, 𝑣 ∈ 𝑉 . One can see that 𝑄 satisfies the following properties:
(i) 𝑞𝑢𝑣 ≥ 0 for all 𝑢, 𝑣 ∈ 𝑉 and 𝑞𝑢𝑣 = 0 for all 𝑢, 𝑣 ∈ 𝑉 such that (𝑢, 𝑣) /∈ 𝐸 ∪ 𝑆;
(ii)

∑︀
𝑢,𝑣∈𝑉 𝑞𝑢𝑣 = 1 (i.e., 𝑄 is a normalized matrix on 𝑉 ); and (iii)

∑︀
𝑣∈𝑉 𝑞𝑢𝑣 =∑︀

𝑣∈𝑉 𝑞𝑣𝑢 for all 𝑢 ∈ 𝑉 (i.e., 𝑄 has equidistributed marginals). 𝑄 is called the
two-dimensional stationary distribution (2D s.d.) of the Markov traffic. Clearly, if
𝑃 is 𝐺-compatible, then 𝑄 is positive on 𝐸, i.e., 𝑞𝑢𝑣 > 0 for all (𝑢, 𝑣) ∈ 𝐸.

𝑄 can also be considered as a p.d. on the state space 𝐸 ∪ 𝑆, i.e., if we extend
the set 𝑉 ′ of vertices of L(𝐺) as 𝑉 ′ = 𝐸 ∪ 𝑆, on the line road network. Thus, we
can think of 𝑄 as the distribution of the vehicles on the edges of the road network,
see formula (11) in [8]. The distribution 𝑄, similarly to traffic trajectories, can also
be visualized on the edges, see Fig. 8.

For a positive 𝑄 on 𝐸, let us define

𝜋𝑢 :=
∑︁

𝑣∈𝑉
𝑞𝑢𝑣 =

∑︁

𝑣∈𝑉
𝑞𝑣𝑢, 𝑢 ∈ 𝑉,

𝑝𝑢𝑣 :=
𝑞𝑢𝑣
𝜋𝑢

, 𝑢, 𝑣 ∈ 𝑉.
(5.1)

Note that 𝜋𝑣 > 0 for all 𝑣 ∈ 𝑉 by Theorem 3.1. Then, 𝑃 = (𝑝𝑢𝑣) defines a 𝐺-
compatible Markov kernel with s.d. 𝜋 on 𝐺. Thus, a Markov traffic defined by the
quadruple (𝐺,𝑃,𝜋, 𝑘) can be introduced by an equivalent way through the triplet
(𝐺,𝑄, 𝑘).

With the help of 2D s.d., we can assign a p.d. to any Markov traffic on the
space of traffic configurations which are defined on the edges of the road network.
Namely, let the traffic configuration ℎ = (ℎ𝑢𝑣)𝑢⇒𝑣 be a non-negative integer valued
function on 𝐸 ∪ 𝑆. Here, ℎ𝑢𝑣 denotes the number of vehicles on the edge (𝑢, 𝑣)
where 𝑢, 𝑣 ∈ 𝑉 such that 𝑢⇒ 𝑣. We define the two-dimensional distribution 𝜎 on
the set of traffic configurations ℎ with size 𝑘 (𝑘 ∈ N), i.e., where

∑︀
𝑢⇒𝑣 ℎ𝑢𝑣 = 𝑘.

Similarly to (4.1), the two-dimensional distribution 𝜎 induced by a p.d. 𝜋 on 𝐺 as
its 𝑘-fold convolution has a multinomial distribution with parameter 𝑘 and 𝑄, i.e.,
for all ℎ, we have

𝜎(ℎ) := 𝑘!
∏︁

𝑢⇒𝑣

𝑞ℎ𝑢𝑣
𝑢𝑣

ℎ𝑢𝑣!
.
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In fact, 𝜎 describes the 2D s.d. of a Markov traffic with size 𝑘. One can easily
see that the concept of 2D s.d. can also be extended for the second-order Markov
traffic.

3: 2/11

2: 4/111: 2/11 4: 2/11

5: 1/11

1/11

1/11

1/111/11

2/11

1/11

1/11

1/22

1/22

1/11

1/22

1/22

Figure 4. The two-dimensional stationary distribution (on edges)
with its equidistributed marginals (on vertices) for the Markov ker-
nel in Fig. 1. One can easily check that the sums of probabilities
written on the edges in and out each vertex are equal, respectively.

The simulation algorithm presented in this paper is based on the 2D s.d. defined
on the road graph. However, it is not an easy task to find a matrix 𝑄 which satisfies
properties (i)-(iii) on a sparse graph. Hence, at first, we propose a method for
finding such 𝑄 which is closest to a given mask matrix 𝑀 on 𝐺 in the least square
sense. The role of the mask matrix is to specify the weight of edges by modeling
the odds of consecutive occurrences of cars on the terminal points of edges in the
road network. For example, these weights may stem from observed trajectories for
the traffic in a time period.

Let us observe a random sample of trajectories {𝑋𝑖}, 𝑖 = 1, . . . , 𝑘, of size 𝑘
defined by 𝑋𝑖

1 ⇒ 𝑋𝑖
2 ⇒ . . . ⇒ 𝑋𝑖

𝑛𝑖
, 𝑖 = 1, . . . , 𝑘, where 𝑛𝑖 denotes the length of

the 𝑖th trajectory. The total sample size is given by 𝑛 := 𝑛1 + . . .+ 𝑛𝑘. Define the
total two-dimensional consecutive empirical frequencies as:

𝑛𝑢𝑣 :=

𝑘∑︁

𝑖=1

𝑛𝑖−1∑︁

𝑗=1

𝐼(𝑋𝑖
𝑗 = 𝑢,𝑋𝑖

𝑗+1 = 𝑣), (5.2)

𝑢, 𝑣 ∈ 𝑉 , where 𝐼 denotes the indicator function. Plainly, 𝑛𝑢𝑣 is the number of
consecutive pairs (𝑢, 𝑣) (𝑢, 𝑣 ∈ 𝑉 ) in the trajectories. One can see that the support
of the two-dimensional frequency matrix 𝑁 := (𝑛𝑢𝑣)𝑢,𝑣∈𝑉 is a subset of 𝐸 ∪ 𝑆.
Clearly, 1⊤𝑁1 = 𝑛− 𝑘, where 𝑛− 𝑘 is the corrected sample size. One can also see
that the vectors 𝑁⊤1−𝑁1 and 1 are orthogonal. In this case, the matrix 𝑁 is a
good candidate for the role of the mask matrix 𝑀 .

We define the optimality criteria for determining𝑄 by means of the least squares
distance between matrices over 𝐺. Let 𝐴 = (𝑎𝑢𝑣)𝑢,𝑣∈𝑉 and 𝐵 = (𝑏𝑢𝑣)𝑢,𝑣∈𝑉 such
that 𝑎𝑢𝑣 = 𝑏𝑢𝑣 = 0 for all 𝑢, 𝑣 ∈ 𝑉 where 𝑢; 𝑣. The least square distance between
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𝐴 and 𝐵 is defined as

‖𝐴−𝐵‖2𝐺 :=
∑︁

𝑢,𝑣:𝑢⇒𝑣

|𝑎𝑢𝑣 − 𝑏𝑢𝑣|2.

In fact, ‖ · ‖𝐺 is the Frobenius norm of the matrices of dimension |𝑉 | × |𝑉 | which
vanish on the entries outside of 𝐸 ∪ 𝑆.

To formulate our main result, we need some basic facts on the spectral theory of
directed graphs, see [28] for details. The symmetric unnormalized graph Laplacian
matrix 𝐿 of a digraph 𝐺 is defined as 𝐿 := 𝐷 − 𝐴 − 𝐴⊤, where 𝐴 denotes the
adjacency matrix of 𝐺 and 𝐷 := diag{𝑑+ + 𝑑−}.
Theorem 5.1. Let 𝑀 be a non-negative matrix on 𝐺. Then, there is a unique
pair (𝑄,κ), where the matrix 𝑄 on 𝐺 satisfies properties (i)-(iii) and κ ≥ 0, which
minimizes the error function ‖κ𝑄 −𝑀‖2𝐺. Moreover, the unique solution to this
optimization problem is derived as

κ :=1⊤𝑀1 + (𝑑− − 𝑑+)⊤𝜆,

𝑄 :=κ−1(𝑀 + (1𝜆⊤ − 𝜆1⊤) ∘𝐴),

where 𝜆 = (𝜆𝑣)𝑣∈𝑉 is called Lagrange vector and defined as a unique solution to
the vector linear equation 𝐿𝜆 = (𝑀−𝑀⊤)1 which satisfies the constraint 1⊤𝜆 = 0
(i.e.,

∑︀
𝑣∈𝑉 𝜆𝑣 = 0), and ∘ denotes the entrywise (Hadamard) product of matrices.

The proof of Theorem 5.1 is based on the Lagrange method, see Appendix in
[4]. One can easily see that the error function at the optimum equals to the sum
of squared differences (SSD) of the Lagrange vector defined by

SSD :=
∑︁

𝑢→𝑣

(𝜆𝑢 − 𝜆𝑣)2.

The fundamental statement of Theorem 5.1, as one of the main results of this
paper, is that the optimal 2D s.d. 𝑄 is a low-dimensional perturbation of the mask
matrix 𝑀 . This perturbation term and the normalizing constant κ depend on two
components through a unique solution to a vector linear equation. The coefficient
matrix of the linear equation is the Laplacian matrix 𝐿 of the road graph which
depends only on the graph structure of the road network and independent from
the mask matrix. Thus, 𝐿 can be computed and stored in advance for a given road
network. Contrarily, the constant vector of the linear equation depends only on
the marginals of the mask matrix, however, it does not depend on its entries and
mainly on the road network itself.

After having defined or determined a 2D s.d. 𝑄 on a road network 𝐺, a simple
simulation algorithm for generating random trajectories on 𝐺 is the following. A
trajectory 𝑡 of length ℓ is a generalized path 𝑣0 ⇒ 𝑣1 ⇒ . . . ⇒ 𝑣ℓ−1, 𝑣𝑖 ∈ 𝑉 ,
𝑖 = 0, 1, . . . , ℓ − 1, which is stored in an ordered list as 𝑡 = [𝑣0, 𝑣1, . . . , 𝑣ℓ−1]. Note
that 𝑣𝑖 = 𝑣𝑖+1 is also allowed for any index 𝑖, i.e., a vehicle may stay in place after
a timestep. The temporary set of generated trajectories is stored in a dictionary 𝐷
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which consists of key-value pairs (𝑣, 𝑇𝑣). Here, the key 𝑣 ∈ 𝑉 identifies a node in the
road graph, and the value 𝑇𝑣 = [𝑡0, 𝑡1, . . . , 𝑡𝑛𝑣−1] is an ordered list of trajectories
𝑡𝑗 , 𝑗 = 0, 1, . . . , 𝑛𝑣 − 1, of length 𝑛𝑣 such that the last element of all trajectories in
𝑇𝑣 is 𝑣, i.e., the trajectories end at the node 𝑣. In fact, 𝑇𝑣 is a list of lists for each
𝑣 ∈ 𝑉 . Let 𝑇 denote the final set of trajectories as the output of the algorithm. By
generating random pairs (𝑢, 𝑣) from 𝑄 successively, 𝐷 is updated, and then 𝑇 is
derived in the following way. If 𝑇𝑢 is not empty, then let the trajectory 𝑡 be given
by appending 𝑣 to the first trajectory in 𝑇𝑢. Moreover, let us delete this trajectory
from the list 𝑇𝑢. If the length of 𝑡 is large enough, then let us add it to 𝑇 , otherwise
add it to the list 𝑇𝑣. If 𝑇𝑢 was empty then append the list [𝑢, 𝑣] to 𝑇𝑣.

Algorithm 1: Trajectory simulation.
Input: 𝑄: two-dimensional stationary distribution

𝑚: maximum trajectory length
𝑛: number of simulated consecutive pairs

Output: T: list of trajectories
/* initialization */
𝐷 = {}; /* temporary dictionary */
𝑇 = [ ];
/* iterating over simulated pairs */
for 𝑖 = 1 to 𝑛 do

pick a random pair (𝑢, 𝑣) ∼ 𝑄;
if 𝐷[𝑢] is not empty then

𝑡 = 𝐷[𝑢][0]; /* temporary trajectory */
append node 𝑣 to 𝑡;
delete the first element of 𝐷[𝑢];

else
𝑡 = [𝑢, 𝑣];

end
if length(𝑡) = 𝑚 then

append 𝑡 to 𝑇 ;
else

if 𝑣 ∈ 𝐷 then
append 𝑡 to 𝐷[𝑣];

else
append (𝑣, 𝑡) to 𝐷;

end
end

end
/* appending the trajectories in temporary dictionary to the output

*/
for 𝑣 in 𝐷 do

append 𝐷[𝑣] to 𝑇 ;
end
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Having finished the random generation of pairs, let us append the trajectories of
whole 𝐷 to the final set 𝑇 . One can easily see that the longer trajectories are at the
head of 𝑇 . A pythonic pseudo-code of the above procedure is in Algorithm 1. After
the simulation, the generated trajectories can be visualized by using a digital map
system, e.g., Google Maps or OpenStreetMap. Finally, we note that, in a typical
step of the algorithm, a trajectory moves from the first position of a trajectory list
to the last position of an other one. This is a kind of mixing which helps to avoid
the formation of very unbalanced trajectories.

6. Results

In our work, OpenStreetMap (OSM) was used which is a community project to
build a free map of the world. OSM data is available under the Open Data Com-
mons Open Database License (ODbL). The representation and storing of map data
is based on only three modeling primitives: nodes, ways, and relations.4 A node
represents a geographical entity with GPS coordinates. A way is an ordered list of
at least two nodes. A relation is an ordered list of nodes, ways, and/or relations.
Users can export map data at the OSM web site manually, selecting a rectangular
region of the map. OSM uses OSM XML and PBF formats for exporting map
data. Software libraries for parsing and working with OSM data are available for
several programming languages.5

We started our processing by building a graph from the OSM map of Debrecen
in the bounding box defined by the coordinates N47.4771, W21.5565, N47.571,
W21.6918, see Fig. 5. Because we only need those nodes that can be reached by
vehicles, we had to filter the OSM file and collect only specific types of way nodes.
In the OSM file, a way is a sequence of OSM nodes, so naturally, the nodes of ways
become nodes in the graph. For every node we store the node’s OSM ID and its
coordinates. We also insert an edge into the graph to connect each pair of nodes
that follow each other in a way. We used the PyOsmium library for processing the
OSM files and the NetworkX Python library for building the graph. The result
of this processing is an aperiodic strongly connected road network of Debrecen
augmented by the ideal vertex 0. The descriptive statistics of edges of the road
graph are: Min=0.3395, Q1=10.7906, Med=24.7830, Mean=49.9052, Q3=67.6021,
Max=1167.4902 (in meters). The degree distributions of this road network are
visualized in Fig. 6.

To evaluate the performance of the proposed algorithm a simple simulation
study was conducted at different sample sizes for the road network of Debrecen.
In the simulations, we kept the length of trajectories low and the number of tra-
jectories high compared to the size of the road network. By our experience, the
real traffic trajectories posses these properties. All simulations were carried out in
Python. The codes and datasets of our simulation are available upon request.

We have also implemented the model in the OOCWC system. Regarding RCE,
4http://wiki.openstreetmap.org/wiki/Elements
5https://wiki.openstreetmap.org/wiki/Frameworks
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we have performed several modifications. First, we extended the operation of RCE
to be able to handle kernel files for transition probability matrices and 2D stationary
distributions, respectively. These kernel files can be loaded to the RCE software, so
all nodes of the simulation graph will have the corresponding transition probability
vector from the Markov kernel file. For this, we had to extend the shared memory
segment of RCE.
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Figure 5. The map of the observed area. The graph created from
the OSM data has 14,465 nodes, 29,770 edges, and covers a total of

799.4 km of road. The size of the area is about 106 km2.
© OpenStreetMap contributors.

For a visual explanation of the transition probability vector, see Fig. 7. We
are at the graph vertex (or intersection) of OSM node ID 26755459 (with GPS
coordinates 47.5417164, 21.6097831). From this node, we can move towards nodes
1402222987, 1402222861, 1534652124, and 7834632455. The transition to each
node has a certain probability, see Table 2.

We generated trajectories using Algorithm 1. For this, we created a 𝑄 for Deb-
recen, but since we have no real-world traffic data, we generated random values for
the 2D stationary distribution. To compare our results, we generated trajectories
using the same algorithm for Porto, Portugal. In case of Porto, we could calculate
a 𝑄 that is approximated based on real-world data, namely, the Taxi Trajectory
Prediction dataset, following the methods described in paper [4]. One can easily
see on Fig. 8 that the trajectories generated based on a real 𝑄 have more realistic
shapes (in case of Porto, see the left subfigure in Fig. 8), while the others are quite
random (in case of Debrecen, see the right subfigure in Fig. 8b). An interesting
question arises: can we tell if a 𝑄 reflects the real traffic system of a city? We
assume that a 𝑄 can be validated with trajectories generated from it. If these
trajectories reflect the real traffic in a certain level, we can accept 𝑄. Elaborating
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this validation technique is one of our future work.
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Figure 6. The degree distribution (first: in-vertices, second: out-
vertices, third: in-edges, fourth: out-edges) histograms of the

Debrecen map road graph.

Table 2. Transitions of intersection 26755459.

Neighbor node Transition Probability
1402222987 0.24
1402222861 0.32
1534652124 0.26
7834632455 0.18

Sum 1

Figure 7. A visual explanation of transitions of intersection
26755459. TP means transition probability, nodes are highlighted
with red. Base map and data from OpenStreetMap and Open-
StreetMap Foundation. © OpenStreetMap contributors. Anno-

tated by the authors.
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Figure 8. Generated trajectories in Porto (left: 𝑛 = 200,000,000;
𝑚 = 75) and Debrecen (right: 𝑛 = 50,000,000; 𝑚 = 35) simulated

with Algorithm 1.

7. Conclusions

In this paper we have described various graph models for proper road networks and
introduced the concept of Markov traffic. By tools of Markov chain theory, we have
proven the existence and uniqueness of a stationary distribution for any Markov
traffic on strongly connected and aperiodic road networks. We have also derived an
explicit formula for the stationary distribution and the two-dimensional stationary
distribution. Finally, we have proposed a simulation algorithm for generating ran-
dom trajectories which follows the two-dimensional stationary distribution which
being closest to a given mask matrix on the road network.

To test our theories, we have implemented the proposed model in our simulation
program (RCE) using OpenStreetMap. The whole project (including RCE) is
available for download.6

Future work will focus on the further improvements and the possible applica-
tions of our simulation algorithms, e.g., modelling the pollution or energy consump-
tion in Smart Cities.
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6https://github.com/rbesenczi/Crowd-sourced-Traffic-Simulator/blob/master/
justine/install.txt
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Appendix

In order to demonstrate the results of this paper we present a simple toy example
implemented in Python. Consider the road network 𝐺 = (𝑉,𝐸) on Fig. 1, where
𝑉 := {1, 2, 3, 4, 5} and 𝐸 := {(1, 2), (2, 1), (2, 3), (3, 4), (4, 2), (4, 5), (5, 2)}. Then
|𝑉 | = 5 and |𝐸| = 7. The adjacency matrix 𝐴 of 𝐺, where we denote the vertices
as well, can be derived as:

𝐴 :=

1 2 3 4 5
1 0 1 0 0 0
2 1 0 1 0 0
3 0 0 0 1 0
4 0 1 0 0 1
5 0 1 0 0 0

.

Clearly, 𝐺 is a strongly connected digraph. Since 1 → 2 → 1 and 2 → 3 → 4 → 2
are cycles of length 2 and 3, respectively, we have 𝑝𝑒𝑟(𝐺) = 1 and thus 𝐺 is
aperiodic. The first power 𝑘 that 𝐴𝑘 > 0 is 𝑘 = 6 and

𝐴6 :=

⎡
⎢⎢⎢⎢⎣

2 2 2 1 1
2 4 2 2 1
2 3 2 1 1
3 4 3 2 1
2 2 2 1 1

⎤
⎥⎥⎥⎥⎦
.

The entries of this matrix are the number of directed walks of length 6 between
the pairs of vertices. One can see that the in- and outdegree of vertices are given
as 𝑑− = (1, 3, 1, 1, 1)⊤ and 𝑑+ = (1, 2, 1, 2, 1)⊤, respectively.

Define the Markov kernel 𝑃 on the road network 𝐺 as:

𝑃 :=

1 2 3 4 5
1 1/2 1/2 0 0 0
2 1/4 1/2 1/4 0 0
3 0 0 1/2 1/2 0
4 0 1/4 0 1/2 1/4
5 0 1/2 0 0 1/2

.

Fig. 1 displays the Markov kernel 𝑃 denoting the transition probabilities on the
edges and its s.d. 𝜋 denoting on the vertices. Note that 𝜋 = 1/11(2, 4, 2, 2, 1)⊤ and
the 2D s.d. is given by:

𝑄 =
1

22

⎡
⎢⎢⎢⎢⎣

2 2 0 0 0
2 4 2 0 0
0 0 2 2 0
0 1 0 2 1
0 1 0 0 1

⎤
⎥⎥⎥⎥⎦
.
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One can easily check that the marginals of 𝑄 coincide to 𝜋.
We compute the 2D s.d. least square approximation of the adjacency matrix 𝐴

by Theorem 5.1. The symmetric unnormalized graph Laplacian matrix 𝐿 of the
road network 𝐺 is given as:

𝐿 =

⎡
⎢⎢⎢⎢⎣

2 −2 0 0 0
−2 5 −1 −1 −1
0 −1 2 −1 0
0 −1 −1 3 −1
0 −1 0 −1 2

⎤
⎥⎥⎥⎥⎦
.

The eigenvalues are (0, 1.55, 2, 4, 6.45). The multiplicity of the smallest eigenvalue
0 is 1 which shows that the road network is strongly connected. The generalized
(Moore-Penrose) inverse of 𝐿 can be derived as

𝐿−1 =

⎡
⎢⎢⎢⎢⎣

0.44 0.04 −0.16 −0.16 −0.16
0.04 0.14 −0.06 −0.06 −0.06
−0.16 −0.06 0.365 −0.01 −0.135
−0.16 −0.06 −0.01 0.24 −0.01
−0.16 −0.06 −0.135 −0.01 0.365

⎤
⎥⎥⎥⎥⎦
.

Then, by solving the vector linear equation 𝐿𝜆 = 𝑑+ − 𝑑−, we have Lagrange
multiplicators 𝜆 = (−0.2,−0.2, 0.05, 0.3, 0.05). One can see that the sum of multi-
plicators is 0. Thus, the 2D s.d. 𝑄𝐴 to the adjacency matrix 𝐴 is

𝑄𝐴 =
1

26

⎡
⎢⎢⎢⎢⎣

0 4 0 0 0
4 0 5 0 0
0 0 0 5 0
0 2 0 0 3
0 3 0 0 0

⎤
⎥⎥⎥⎥⎦

with stationary marginals 𝜋𝐴 = 1/26(4, 9, 5, 5, 3)⊤. The error square of the ap-
proximation is SSD = 0.5.

Proof of formula (4.5). For all 𝑔 ∈ ℱ𝑘 we have by formulas (4.1) and (4.2) and
the multinomial theorem that

∑︁

𝑓∈ℱ𝑘

𝜚(𝑓)𝑅(𝑓 , 𝑔) = 𝑘!
∑︁

𝑓∈ℱ𝑘

∏︁

𝑢∈𝑉
𝜋𝑓𝑢𝑢

∑︁

𝐾∈ℳ (𝑓 ,𝑔)

∏︁

𝑢,𝑣:𝑢⇒𝑣

𝑝𝑘𝑢𝑣
𝑢𝑣

𝑘𝑢𝑣!

= 𝑘!
∑︁

𝑓∈ℱ𝑁

∑︁

𝐾∈ℳ (𝑓 ,𝑔)

∏︁

𝑢,𝑣:𝑢⇒𝑣

(𝜋𝑢𝑝𝑢𝑣)
𝑘𝑢𝑣

𝑘𝑢𝑣!
= 𝑘!

∑︁
∑︀

𝑢∈𝑉

𝑘𝑢𝑣=𝑔𝑣

∏︁

𝑢,𝑣:𝑢⇒𝑣

(𝜋𝑢𝑝𝑢𝑣)
𝑘𝑢𝑣

𝑘𝑢𝑣!

= 𝑘!
∏︁

𝑣∈𝑉
(𝑔𝑣!)

−1

(︃∑︁

𝑢∈𝑉
𝜋𝑢𝑝𝑢𝑣

)︃𝑔𝑣
= 𝑘!

∏︁

𝑣∈𝑉

𝜋𝑔𝑣𝑣
𝑔𝑣!

= 𝜚(𝑔).
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