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Abstract

This paper presents numerical methods for finding high order concen-
trated matrix-exponential (ME) distributions, whose squared coefficient of
variation (SCV) is very low. Due to the absence of symbolic construction
to obtain the most concentrated ME distributions, non-linear optimization
problems are defined to obtain high order concentrated matrix-exponential
(CME) distributions . The number of parameters to optimize increases with
the order in the “full” version of the optimization problem. For orders, where
“full” optimization is infeasible (𝑛 > 184), a “heuristic” optimization proce-
dure, optimizing only 3 parameters independent of the order, was proposed
in [6].

In this work we present an enhanced version of this heuristic optimization
procedure, optimizing only 6 parameters independent of the order, which
results in CME distributions with lower SCV than the existing 3-parameter
method. The SCV gain of the new procedure compared to the old one is

∗This work is partially supported by the OTKA K-123914 and the NKFIH BME NC TKP2020
projects.
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approximately 1.66 and it is almost independent of the order. The range
of the applicability of the heuristic optimization methods extends to order
𝑛 = 5000.

To further extend the range of available CME distributions, we also pro-
pose a parameter extrapolation approach, which provides CME distributions
until order 𝑛 = 20000. The SCV of the obtained order 20000 CME distribu-
tion is ≈ 10−9.

Keywords: Squared coefficient of variation, optimization, concentrated matrix
exponential distributions, extrapolation

AMS Subject Classification: 65K10, 90C31

1. Introduction

Highly concentrated matrix-exponential functions are useful in many research ar-
eas, for example, in numerical inverse Laplace transform (NILT) methods [5], as
well in numerical inverse Z-transform (NIZT) methods [7]. Recently, Akar et al.
[1], proposed the ME-fication technique, in which a concentrated matrix exponenti-
ation distribution replaces the Erlang distribution for approximating deterministic
time horizons.

Concentrated ME distributions of order 𝑁 , with 𝑁 = 2𝑛+ 1,1 are abbreviated
as CME(𝑁). CME distributions successfully constructed in [6] in the range of 𝑁 =
369, . . . , 2001 are based on a heuristic numerical optimization procedure optimizing
3 parameters independent of the order. This preliminary result indicated that
the minimal SCV of CME(𝑁) is less than 1/𝑁2. The reasons for applying a
heuristic approach are that there is no symbolic construction available to obtain
the most concentrated ME distribution, and the full numerical optimization-based
approaches (i.e., where the number of parameters to optimize is increasing with
𝑁) get to be prohibitively complex for 𝑁 > 369 according to [6]. In this work
we aim at improving the heuristic optimization procedure presented in [6], which
we refer to as 3-parameter optimization. The proposed enhanced optimization
procedure optimizes 6 parameters (independent of the order) and we will refer to
it as 6-parameter optimization method.

The rest of the paper is organized as follows. In Section 2 we provide a brief
introduction of ME distributions and discuss the definition of SCV and the opti-
mization problem to obtain its minimum. In Section 3 we review the optimization
methods proposed for SCV minimization in the literature and discuss their appli-
cability. Section 4 introduces the proposed enhanced SCV optimization procedure
with 6 parameters and Section 5 discusses its numerical properties. Section 6
presents the parameter extrapolation approach to extend the availability of CME
distributions up to order 𝑛 = 20000. Finally, Section 7 concludes the paper.

1Both of these two order definitions are present in the related literature. 𝑁 , “the cardinality of
the describing matrix”, is more commonly used in phase type and matrix exponential distribution
related literature, while 𝑛, “the number of complex conjugate eigenvalue pairs” is more commonly
used in NILT related literature.
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2. Matrix exponential distributions

Definition 2.1. Order 𝑁 ME functions (referred to as ME(𝑁)) are given by

𝑓(𝑡) = 𝛼𝑒A𝑡(−A)1, (2.1)

where 𝛼 is a real row vector of size 𝑁 , A is a real matrix of size 𝑁 ×𝑁 and 1 is
the column vector of ones of size 𝑁 .

Definition 2.2. If 𝑓(𝑡) ≥ 0,∀𝑡 ≥ 0, and 𝛼 is such that 𝛼1 = 1 then 𝑓(𝑡) is the
probability density function of a ME distribution of order 𝑁 .

According to (2.1), vector 𝛼 and matrix A define a matrix exponential function.
We refer to the pair (𝛼,A) as matrix representation in the sequel.

An ME distribution is said to be concentrated when its squared coefficient of
variation

𝑆𝐶𝑉 (𝑓(𝑡)) =
𝜇0𝜇2

𝜇2
1

− 1, (2.2)

is low. In (2.2), 𝜇𝑖 denotes the 𝑖th moment, defined by 𝜇𝑖 =
∫︀∞
𝑡=0

𝑡𝑖𝑓(𝑡)𝑑𝑡. We
note that the SCV according to (2.2) is insensitive to multiplication and scaling,
i.e. 𝑆𝐶𝑉 (𝑓(𝑡)) = 𝑆𝐶𝑉 (𝑐𝑓(𝜆𝑡)).

The optimization problem to obtain the minimal SCV of ME(𝑁) can be for-
mulated as

min𝛼,A 𝑆𝐶𝑉 (𝑓(𝑡))

subject to 𝑓(𝑡) ≥ 0, ∀𝑡 > 0.

Although matrix-exponential functions have been used for many decades, there
are still many questions open regarding their properties. Such an important ques-
tion is how to decide efficiently if a matrix-exponential function is non-negative
for ∀𝑡 > 0. In general, 𝑓(𝑡) ≥ 0,∀𝑡 > 0 does not necessarily hold for given (𝛼,A)
representation, and it is rather difficult to check. A potential numerical solution
for checking this property is proposed in [9].

Due to the difficulty of checking the constraints of the above constrained opti-
mization problem, its solution is an open problem currently.

3. Concentrated ME distributions

A possible way to simplify the constrained optimization problem is to search for
the minimum in a special subset of ME(𝑁), which is non-negative by construction.
Horváth et al. in [6] suggest such a subset which is characterized by

𝑓(𝑡) = 𝑐𝑓+(𝜆𝑡), (3.1)

Enhanced optimization of high order concentrated matrix-exponential distributions 7



where 𝑓+(𝑡) is an exponential cosine-square function with order 𝑛 defined as

𝑓+(𝑡) = 𝑒−𝑡
𝑛∏︁

𝑗=1

cos2
(︂
𝜔𝑡− 𝜑𝑗

2

)︂
, (3.2)

where 𝜔 ≥ 0 and 0 ≤ 𝜑𝑗 < 2𝜋 for 𝑗 ∈ {1, . . . , 𝑛}.
In [6] the authors conjectured that the density function of the most concentrated

ME distribution of order 𝑁 belongs to this special class of ME(𝑁), but the validity
of this conjecture is not proved even for the smallest non-obvious case, 𝑁 = 3.

An exponential cosine-square function is a non-negative (due to its construction)
matrix exponential function and [8, Appendix A] presents how to obtain the matrix
representation of size 𝑁 = 2𝑛+1 associated with 𝑓+(𝑡) in (3.2). Consequently, the
set of exponential cosine-square functions of order 𝑛 is a special subset of ME(𝑁)
(where 𝑁 = 2𝑛+ 1).

In this paper, we make use the fact that exponential cosine-square functions
can also be represented in the following hyper-exponential form [6]

𝑓+(𝑡) = 𝑒−𝑡
𝑛∏︁

𝑗=1

cos2
(︂
𝜔𝑡− 𝜑𝑗

2

)︂
=

2𝑛∑︁

𝑘=0

𝜂𝑘𝑒
−𝛽𝑘𝑡, 𝑡 ≥ 0, (3.3)

where the 𝜂𝑘, 𝛽𝑘 (𝑘 = 0, . . . , 2𝑛) coefficients contain complex conjugate pairs.
Generally, calculating the 𝜇0, 𝜇1, 𝜇2 moments based on (3.2), is not an easy task
due to computational complexity caused by the product of the cosine square terms.
Instead calculating the 𝜇0, 𝜇1, 𝜇2 moments based on (3.3) is much easier since

𝜇𝑖 =

∞∫︁

𝑡=0

𝑡𝑖
2𝑛∑︁

𝑘=0

𝜂𝑘𝑒
−𝛽𝑘𝑡𝑑𝑡 =

2𝑛∑︁

𝑘=0

𝑖!𝜂𝑘

𝛽𝑖+1
𝑘

, (3.4)

3.1. Full optimization of the 𝑓+(𝑡) parameters

In the sequel, we utilize the fact that multiplication and scaling (with 𝑐 and 𝜆
in (3.1)) does not effect the SCV and optimize the SCV of 𝑓+(𝑡) instead of 𝑓(𝑡).
𝑓+(𝑡) in (3.2) is defined by 𝑛+1 parameters: the frequency 𝜔 and the zeros 𝜑𝑗 for
𝑗 = 1, . . . , 𝑛. Unfortunately, 𝑆𝐶𝑉 (𝑓+(𝑡)) is not a simple function of the parameters.
For a given 𝑛 to find 𝑓+(𝑡) with minimal SCV, i.e.

min
𝜔,𝜑1,...,𝜑𝑛

𝑆𝐶𝑉 (𝑓+(𝑡))

is still a hard non-linear optimization problem, where the number of parameters to
optimize is 𝑛+ 1.

Numerical methods for the solution of this problem are discussed in [6]. The
main findings reported there are that evolution strategy based optimization pro-
vided the best numerical results. The solution of the problem with the CMA-ES

8 S. Al-Deen Almousa, M. Telek



method [4] is fast, but does not find the best optimum compared to the BIPOP-
CMA-ES method [3], which is much slower. The applicability of the two methods
are 𝑛 ≤ 74 (𝑁 ≤ 149) in case of the BIPOP-CMA-ES method and 𝑛 ≤ 184
(𝑁 ≤ 369) in case of the CMA-ES method. For these orders the respective the
optimization procedures take several days to terminate on an average PC. The com-
putational complexity of these procedures increases super linearly with the order
𝑛, which inhibits the application of these procedure for higher orders.

3.2. Heuristic optimization of the 𝑓+(𝑡) parameters

To go beyond order 𝑛 = 184, [6] proposed a sub-optimal, 3-parameter heuristic
optimization procedure, that reduce the complexity of the optimization problem
by reducing the number of parameters to optimize to three, independent of the
order.

Figure 2 displays the location of the the 𝜑𝑗 parameters obtained by the full
optimization method for 𝑛 = 74. As it is visible in the figure, there is a gap
between the 𝜑𝑗 parameters at around 𝑝 ≈ 5.2 and the size of that gap, which is
the maximum value in Figure 1 is around 𝑤 ≈ 0.28. The heuristic optimization
procedure proposed in [6] assumes that the 𝜑𝑗 parameters are equidistant below
and above that gap. Figure 1 and 2 display how good this assumption is compared
to the fully optimized 𝜑𝑗 parameters.

Since the 𝜑𝑗 parameters are located between 0 and 2𝜋 and the number of
parameters are 𝑛, this assumption allows to determine the 𝜑𝑗 parameters based on
𝑝 and 𝑤 according to the following expression

𝜑𝑗 =

{︂
(𝑗 − 1/2)𝑑 if 𝑗 ≤ 𝑖,
(𝑗 − 1/2)𝑑+ 𝑤 if 𝑗 > 𝑖.

(3.5)

where

𝑑 =
2𝜋 − 𝑤
𝑛

, 𝑖 =

⌊︂
𝑝− 𝑤/2

𝑑
+

1

2

⌋︂
. (3.6)

With the use of (3.5), 𝑓+(𝑡) is defined by the parameters 𝜔, 𝑝 and 𝑤 and the
related optimization problem is

min𝜔,𝑝,𝑤 𝑆𝐶𝑉 (𝑓+(𝑡)),

subject to: 0 < 𝑝− 𝑤/2 < 𝑝+ 𝑤/2 < 2𝜋, 𝜔 > 0.

The solution of this optimization problem is computed by the CMA-ES method
up to 𝑛 = 1000 in [6]. Moreover, in this work we expand this solution up to
𝑛 = 5000.

Enhanced optimization of high order concentrated matrix-exponential distributions 9



4. Enhanced heuristic optimization of 𝑆𝐶𝑉 (𝑓+(𝑡))
with 6 parameters

Figure 1 and 2 suggests that the equidistant location of the 𝜑𝑗 parameters according
to (3.5) is not flexible enough to obtain similar low SCV as obtained with the
full optimization method. Starting from this assumption, we try to locate the 𝜑𝑗
parameters in a more flexible way. To this end we introduce two different power
functions below and above the gap of the 𝜑𝑗 parameters as follows

𝜑𝑗(𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝑖, 𝛾, 𝛿) =

{︂
𝑎1 + 𝑏1𝑗

𝛾 for 1 ≤ 𝑗 ≤ 𝑖,
𝑎2 + 𝑏2𝑗

𝛿 for 𝑖+ 1 ≤ 𝑗 ≤ 𝑛. (4.1)

The auxiliary parameters, 𝑎1, 𝑏1, 𝑎2, 𝑏2, can be transformed to a set of more
expressive parameters based on the following relations

𝜑1 = 0, 𝜑𝑖 = 𝑝− 𝑤/2, 𝜑𝑖+1 = 𝑝+ 𝑤/2, 𝜑𝑛+1 = 2𝜋. (4.2)

Substituting these relations into (4.1) results in the following function for the 𝜑𝑗
parameters

𝜑𝑗(𝑝, 𝑤, 𝑖, 𝛾, 𝛿) =

⎧
⎨
⎩

(𝑝−𝑤/2)𝑗𝛾
(𝑖𝛾−1) − 𝑝−𝑤/2

(𝑖𝛾−1) for 1 ≤ 𝑗 ≤ 𝑖,
2𝜋 − (𝑗𝛿−(𝑛+1)𝛿)(2𝜋−𝑝−𝑤/2)

((𝑖+1)𝛿−(𝑛+1)𝛿)
for 𝑖+ 1 ≤ 𝑗 ≤ 𝑛.

(4.3)

In (4.3) the parameters are constrained by

0 < 𝑝− 𝑤/2 < 𝑝+ 𝑤/2 < 2𝜋, 𝛾 > 0, 𝛿 > 0.

The intuitive meaning of the parameters in (4.3) are as follows: the meaning of
𝑝, 𝑤, 𝜔, and 𝑖 are the same as in the 3-parameter optimization method, i.e.

• 𝑖: is the number of 𝜑𝑗 parameters left to the gap,

• 𝑝, 𝑤: are the midpoint of the gap and its width,

while 𝛾 and 𝛿 are shape parameters defining the power series of the 𝜑𝑗 parameters
below and above the gap.

Based on (4.3), which defines the 𝜑𝑗 parameters based on 5 parameters, the
optimization of 𝑆𝐶𝑉 (𝑓+(𝑡)) for a given order 𝑛 is the following 6-parameter opti-
mization problem

min𝜔,𝑝,𝑤,𝑖,𝛾,𝛿 𝑆𝐶𝑉 (𝑓+(𝑡))

subject to: 0 < 𝑝− 𝑤/2 < 𝑝+ 𝑤/2 < 2𝜋, 𝛾 > 0, 𝛿 > 0, 𝜔 > 0,

where 𝑝, 𝑤, 𝑖, 𝛾, 𝛿 define the 𝜑𝑗 parameters according to (4.3) and the 𝜑𝑗 parameters
and 𝜔 define 𝑓+(𝑡) according to (3.2).

To solve this optimization problem we propose to compute the SCV according
to Algorithm 1 and obtain the optimum by the CMA-ES method using Algorithm

10 S. Al-Deen Almousa, M. Telek



1 as the objective function. The procedure to obtain 𝜂𝑖, 𝛽𝑖 and the required high
precision arithmetic are detailed in [6]. Here we only recall that all computations
can be performed with standard double precision arithmetic except the ones indi-
cated to be “high precision”. In those cases, to obtain results in 16 digits precision,
the required numerical precision is 0.647𝑛+ 17.478 digits for ME(2𝑛+ 1).

Algorithm 1 The objective function of the heuristic method.
1: procedure ComputeSCV(𝜔, 𝑝, 𝑤, 𝑖, 𝛾, 𝛿)
2: Obtain 𝜑𝑗 for 𝑗 ∈ {1, . . . , 𝑛} by (4.3)
3: Compute 𝜂𝑖, 𝛽𝑖 (high precision) by (3.3)
4: Compute 𝜇𝑖 (high precision) by (3.4)
5: Compute 𝑆𝐶𝑉 by (2.2)
6: return 𝑆𝐶𝑉
7: end procedure

5. Numerical properties

The behaviour of the 𝜑𝑗 parameters obtained by the proposed 6-parameter heuris-
tic method is also depicted in Figure 1 and 2. The figures suggest, that the 𝜑𝑗
parameters obtained by the 6-parameter optimization method better approximate
the behaviour of the 𝜑𝑗 parameters obtained by full optimization than the ones of
the 3-parameter method.

10 20 30 40 50 60 73
0

0.1

0.2

0.3

0.4

𝑗

𝜑
𝑗
+
1
−
𝜑
𝑗

BIPOP-CMA-ES
3-parameter heuristic
6-parameter heuristic

Figure 1. Difference of consecutive 𝜑𝑗 values obtained by full opti-
mization, 3-parameter optimization and the proposed 6-parameter

optimization for order 𝑛 = 74.

Moreover, Figure 2 displays how the distribution of 𝜑𝑗 locations are influenced

Enhanced optimization of high order concentrated matrix-exponential distributions 11



by the shaping parameters 𝛾, 𝛿, and getting closer (compared to the 3-parameter
case) to the fully optimized ones. This improvement in the positioning of the
𝜑𝑗 parameters leads to a significant SCV reduction compared to the 3-parameter
method as illustrated in Figure 3.
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Figure 2. The location of the 𝜑𝑗 parameters obtained by full opti-
mization, 3-parameter optimization and the proposed 6-parameter

optimization for order 𝑛 = 74.
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Figure 3. The minimal SCV values obtained by full optimization,
3-parameter optimization and the proposed 6-parameter optimiza-

tion as a function of order 𝑛 in log-log scale.

In the depicted range the gain (the ratio of the SCV obtained by the two
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methods) is approximately 1.66 and it is almost independent of the order. The
proposed heuristic optimization resulted in almost the same SCV values as the
ones obtained by the full optimization method in the range where full optimization
is feasible and beyond that order (𝑛 > 184) the 6-parameter optimization results
seem to follow the same decay trend.

We believe with some confidence in the possibility of expanding the heuristic
optimization for orders larger than 𝑛 = 5000, using a more powerful computing
device.

Figure 4 depicts the running time of the heuristic optimization procedure on
an average PC clocked at 2.9 GHz as a function of the order 𝑛.
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Figure 4. Running time of the heuristic parameter optimization
procedures for different orders in log-log scale.

6. Extrapolation of the parameters of heuristic op-
timization

The high computational costs of the heuristic optimization methods, plotted in
Figure 4, inhibits their application for orders higher than 𝑛 = 5000. In this sec-
tion, we intend to obtain CME distributions for orders 𝑛 > 5000 by extrapolating
parameters of the heuristic optimization procedures.

Let v(𝑛) denote the parameter values obtained from the heuristic optimization
method for order 𝑛, that is, for the 3-parameter method v(𝑛) = {𝜔(𝑛), 𝑝(𝑛), 𝑤(𝑛)}
and for the 6-parameter method v(𝑛) = {𝜔(𝑛), 𝑝(𝑛), 𝑤(𝑛), 𝑖(𝑛), 𝛾(𝑛), 𝛿(𝑛)}. Fur-
ther more, let 𝒩 = {𝑛1, 𝑛2, . . . , 𝑛𝐾} be the set of 𝐾 orders for which the parameter
is available (the heuristic optimization is performed) 𝑛𝐾 = 5000 in our case and
the other evaluated orders are visible in Figure 4.
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6.1. Extrapolation methods

To extrapolate the v(𝑛) vector for 𝑛 > 5000 we considered the following extrapo-
lation approaches.

• Element-wise extrapolation of v(𝑛)
In this set of methods the elements of v(𝑛) are extrapolated independent of
each others.

– Polynomial extrapolation (𝑘 + 1 parameters):

𝑣𝑖(𝑛) = 𝑎𝑖 + 𝑏𝑖𝑛+ 𝑐𝑖𝑛
2 + . . .+ 𝑧𝑖𝑛

𝑘, (6.1)

where 𝑣𝑖(𝑛) is the 𝑖th element of v(𝑛) and 𝑖 ∈ {1, 2, 3} in case of the
3-parameter method and 𝑖 ∈ {1, 2, . . . , 6} in case of the 6-parameter
method.

– Power function extrapolation (3 parameters):

𝑣𝑖(𝑛) = 𝑎𝑖𝑛
𝑏𝑖 + 𝑐𝑖. (6.2)

– Exponential extrapolation (3 parameters):

𝑣𝑖(𝑛) = 𝑎𝑖𝑒
𝑏𝑖𝑛 + 𝑐𝑖. (6.3)

In the element-wise extrapolation, we apply the following distance measure
for 𝑣𝑖(𝑛)

𝒟𝑖 =
1

𝐾

∑︁

𝑛∈𝒩
|𝑣𝑖(𝑛)− 𝑣𝑖(𝑛)|. (6.4)

That is, in power function and exponential extrapolation, the optimal ex-
trapolation parameters are obtained as

{𝑎*𝑖 , 𝑏*𝑖 , 𝑐*𝑖 } = argmin{𝑎𝑖,𝑏𝑖,𝑐𝑖}𝒟𝑖, (6.5)

and in polynomial extrapolation, the {𝑎𝑖, 𝑏𝑖, . . . , 𝑧𝑖} parameters are obtained
similarly.

• Vector-wise extrapolation of v(𝑛)

– Vector polynomial extrapolation ((𝑚+ 𝑘)𝑚 parameters):

v̂(𝑛) =
(︀
a+ b𝑛+ c𝑛2 + . . .+ z𝑛𝑘

)︀
G, (6.6)

where each row sum of G is one (and this way G contains (𝑚−1)𝑚 free
parameters), 𝑚 is the number of elements of v. 𝑚 = 3 or 6 depending
on the applied heuristic optimization.
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– Matrix power function extrapolation ((𝑚+ 2)𝑚 parameters):

v̂(𝑛) = aDiag⟨𝑛𝑏1 , . . . , 𝑛𝑏𝑚⟩G+ c. (6.7)

– Matrix exponential extrapolation ((𝑚+ 2)𝑚 parameters):

v̂(𝑛) = aDiag⟨𝑒𝑏1𝑛, . . . , 𝑒𝑏𝑚𝑛⟩G+ c. (6.8)

In case of vector-wise extrapolation we apply the 𝐿2 vector norm as the
distance measure

𝒟 =
1

𝐾

∑︁

𝑛∈𝒩
||v(𝑛)− v̂(𝑛)||2 =

1

𝐾

∑︁

𝑛∈𝒩

⎯⎸⎸⎷
𝑚∑︁

𝑖=1

(v𝑖(𝑛)− v̂𝑖(𝑛))
2
. (6.9)

That is, in Matrix power and Matrix exponential extrapolation, the optimal
parameters are obtained as

{a*,b*, c*,G*} = argmin{a,b,c,G}𝒟 (6.10)

and the Matrix polynomial case is optimized similarly according to its pa-
rameters.

We note that the results obtained by any of these methods are sensitive for 𝒩 ,
the set of orders which are considered in the parameter estimations. That is, dif-
ferent extrapolation parameters are obtained by the same extrapolation procedure
for different 𝒩 sets. Generally, we used the optimization results between orders
400 and 5000, that is, 400 ≤ 𝑛 ≤ 5000 for ∀𝑛 ∈ 𝒩 .

The goodness of an extrapolation approach can be judged by computing the
SCV obtained from the extrapolated parameters and checking if the trend of decay
for the given order 𝑛 > 5000 follows the trend obtained by the heuristic method for
order 𝑛 ≤ 5000 and plotted in Figure 3. Based on this goodness measure, we found
all extrapolation approaches inappropriate except the element-wise power func-
tion extrapolation for all parameters, whose results are presented in the following
subsection.

6.2. Element-wise power function extrapolation
Below, we present the results of the element-wise power function extrapolation
method which we obtained by the CF tool of Matlab Curve Fitting Toolbox [2].

6.2.1. Extrapolation for the 3-parameter heuristic method

As discussed in [6] and in subsection 3.2, the 3-parameter heuristic optimization
procedure minimizes the SCV as a function of 𝜔, 𝑝, 𝑤. The procedure can be
applied with reasonable computation time (c.f. Figure 4) up to order 𝑛 = 5000.
Beyond this limit we apply the element-wise power function extrapolation according
to (6.2), (6.4), and (6.5).
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Table 1. The optimal extrapolation parameters for 𝜔, 𝑝 and 𝑤.

𝑎*𝑖 𝑏*𝑖 𝑐*𝑖 𝒟𝑖
�̂�(𝑛) 25.03 -1.017 0 2.045E-06
𝑝(𝑛) -2.691 -0.2467 6.029 3.876E-03
�̂�(𝑛) 0.8919 -0.2399 0.1737 1.377E-05
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Figure 5. Curve fitting for 𝜔(𝑛) using a power function according
to (6.2).

Table 1 summarizes the results for all the three parameters and Figure 5 demon-
strate the quality of the obtained result for the 𝜔 parameter.

Based on the extrapolation parameters in Table 1 and the associated extrap-
olation model in (6.2) we can extrapolate the 𝜔(𝑛), 𝑝(𝑛), 𝑤(𝑛) for orders larger
than 5000. Using those extrapolated �̂�(𝑛), 𝑝(𝑛), �̂�(𝑛) values, Figure 6 and Ta-
ble 2 present the associated SCV as a function of the order up to 𝑛 = 20000.
Figure 6 and Table 2 indicate that the SCV values obtained by the extrapolation
method follow the same decay trend of the heuristic optimization. For orders less
than 5000, Table 2 also compares the 𝜔(𝑛), 𝑝(𝑛), 𝑤(𝑛) values obtained from the
3-parameter heuristic method, and the �̂�(𝑛), 𝑝(𝑛), �̂�(𝑛) values provided by the
power function extrapolation method. For those orders the SCV value computed
by the 𝜔(𝑛), 𝑝(𝑛), 𝑤(𝑛) and the �̂�(𝑛), 𝑝(𝑛), �̂�(𝑛) parameters are identical in their
first 3 digits.

Based on Figure 6 and Table 2 we conclude that the extrapolation of the
�̂�(𝑛), 𝑝(𝑛), �̂�(𝑛) parameters with the element-wise power function extrapolation
provide fairly concentrated matrix exponential distributions up to order 20000,
whose SCV follows the same decay trend for as the one of the 3-parameter heuris-
tic method up to order 5000.
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Figure 6. The approximated and the heuristics SCV as a function
of order 𝑛 in log-log scale.

Table 2. Original and extrapolated parameters and the associated
SCV for the 3-parameter heuristic optimization.

Heuristic Optimization Extrapolation
𝑛 𝑤(𝑛) 𝑝(𝑛) 𝜔(𝑛) SCV �̂�(𝑛) 𝑝(𝑛) �̂�(𝑛) SCV

400 0.0563612 5.4162 0.385725 3.5945E-06 0.0565153 5.41526 0.3855761 3.5947992E-06
800 0.0278559 5.51193 0.353088 8.53737E-07 0.0279266 5.51173 0.3531175 8.538201E-07
1200 .0184659 5.56361 0.336537 3.69091E-07 0.0184899 5.56096 0.3364873 3.691452E-07
1500 0.014703 5.58534 0.328039 2.32831E-07 0.014735 5.58603 0.328002 2.32849E-07
2000 0.0109708 5.61548 0.317745 1.28656E-07 0.010997 5.61638 0.317712 1.28668E-07
2500 0.00874565 5.63895 0.310221 8.12596E-08 0.008765 5.63848 0.310205 8.12665E-08
3000 0.0072661 5.65621 0.304338 5.58463E-08 0.007281 5.65565 0.304363 5.58511E-08
3500 0.00621258 5.66986 0.299541 4.06814E-08 0.006225 5.66958 0.299619 4.06848E-08
4000 0.00542217 5.68131 0.295500 3.09232E-08 0.005434 5.68123 0.295650 3.09269E-08
4500 0.0048099 5.69091 0.292034 2.42819E-08 0.004821 5.69119 0.292252 2.42852E-08
5000 0.00432189 5.69975 0.289008 1.95615E-08 0.004331 5.69986 0.289293 1.9564E-08
10000 - - - - 0.002140 5.75159 0.271585 4.73132E-09
15000 - - - - 0.001417 5.77800 0.262512 2.06641E-09
20000 - - - - 0.001057 5.79519 0.256589 1.14904E-09

6.2.2. Extrapolation for the 6-parameter heuristic method

We applied the same extrapolation approach for the parameters of the 6-parameter
heuristic method using the element-wise power function approximation according
to (6.2), (6.4), and (6.5). The obtained optimal extrapolation parameter values are
summarized in Table 3. Using the associated �̂�(𝑛), 𝑝(𝑛), �̂�(𝑛), �̂�(𝑛), 𝛾(𝑛), 𝛿(𝑛)
functions, we also computed the SCV up to order 15000. The results are plot-
ted in Figure 6. Unfortunately, the SCV values obtained by this 6-parameter

Enhanced optimization of high order concentrated matrix-exponential distributions 17



extrapolation methods do not follow the same decay as the one of the 6-parameter
heuristic method up to 𝑛 = 5000. At around, 𝑛 = 15000 the SCV obtained from
the 6-parameter extrapolation gets to be as high as the one obtained from the
3-parameter extrapolation. Most probable, the reason for this behaviour is the
instability caused by the higher number of extrapolated parameters.

Table 3. Optimal extrapolation parameters based on the 6-para-
meter heuristic optimization method according to (6.2).

𝑎*𝑖 𝑏*𝑖 𝑐*𝑖 𝒟𝑖
�̂�(𝑛) 21.59 -1.017 0 1.958E-03
𝑝(𝑛) -26.35 -0.9762 5.653 1.963E-02
�̂�(𝑛) 0.8952 -0.2458 0.1318 4.484E-03
�̂�(𝑛) 0.9001 1 -0.7137 1.569
𝛾(𝑛) 3.631 -0.76579 0.9988 3.98E-03
𝛿(𝑛) 10.48 -0.4475 0.8504 1.393E-01

Figure 7 plots the time to compute the SCV as a function of the order on a
regular PC. The computation time is practically identical for both methods because
the most expensive step of the computation is to transform the cosine-square form
into the hyper-exponential form according to (3.3), which is need in both cases.
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Figure 7. Running time of the parameter approximation proce-
dures for different orders in log-log scale.

Our full C++ implementation for the 3 and 6-parameter heuristic optimization
methods is reachable at webspn.hit.bme.hu/~almousa/tools/CME_heur_approx.
zip. The procedure uses extended floating point arithmetic when needed and it
also contain the CMA-ES method, which is the optimization engine applied in the
3 and 6-parameter heuristic optimization methods
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7. Conclusion

We propose an efficient 6-parameter heuristic SCV optimization procedure for con-
centrated matrix exponential distributions. The SCV values resulted by this 6-
parameter optimization procedure are rather close to the ones obtained by the full
optimization methods when both methods are feasible to compute, and seem to fol-
low the same SCV decay trend for larger orders. Due to the exponential increase of
the computation time as a function of the order, the applicability of the proposed
heuristic optimization method extends to order 𝑛 = 5000.

For larger orders, we also propose a parameter extrapolation approach which
allowed us to obtain CME distributions up to order 20000, such that the decay of
the SCV follows the same trend as the one of the optimization procedures up to
order 5000.
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Abstract

Modeling and simulating the traffic flow in large urban road networks are
important tasks. A mathematically rigorous stochastic model proposed in [8]
is based on the synthesis of the graph and Markov chain theories. In this
model, the transition probability matrix describes the traffic dynamics and
its unique stationary distribution approximates the proportion of the vehicles
at the segments of the road network. In this paper various Markov models
are studied and a simulation method is presented for generating random
traffic trajectories on a road network based on the two-dimensional stationary
distribution of the models. In a case study we apply our method to the
central region of the city of Debrecen by using the road network data from
the OpenStreetMap project which is available publicly.
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1. Introduction

Recently, the research and development of Smart City applications have become
more important by providing services to inhabitants which can make everyday life
easier [15]. These applications are based on emerging technologies such as big data
analytics, cloud computing, and complex sensor systems (IoT) that can support
their operation. By the year 2050, 70% of Earth’s population is expected to live in
cities [5] whose infrastructures will face new challenges, e.g., in the field of urban
traffic. In the past few years, many developments have occurred in the automobile
industry, e.g., autonomous (driverless) and pure electric cars are being introduced.
Since more and more people live in urban areas, solutions for problems of dense
traffic such as air pollution and congestion are highly demanding [20, 24, 30].

This research presented in this paper follows our development of a traffic sim-
ulation platform initiative called rObOCar World Championship (or OOCWC for
short) [2, 3]. OOCWC is a multiagent-oriented environment for creating urban
traffic simulations. The traffic simulations are performed by one of its components
called Robocar City Emulator (RCE), which is an open source software released un-
der the GNU GPL v3 and is available on GitHub.1 RCE uses the OpenStreetMap
(OSM) database and processes it with the Osmium Library. The traffic simulation
model of RCE is based on the Nagel-Schreckenberg (NaSch) model [21]. The re-
sult of this processing is a routing map graph and a Boost Graph Library graph
which can be visualized by various map viewers. For a detailed description of
the operation of RCE, see [2]. There exist several traffic simulation platforms,
e.g., Multi-Agent Transport Simulation [14], Simulation of Urban Mobility [18],
Aimsun,2 and PTV Vissim3. The main focus of their simulation algorithms is on
microscopic traffic events, while our software system focuses only on the traffic flow
on the road network of the whole city.

In [8] a mathematically rigorous stochastic model is proposed for investigating
the traffic flow on a road network which is based on the synthesis of discrete time
Markov chains and graph theory. In this model the transition probability matrix
describes the dynamics of the traffic while its unique stationary distribution cor-
responds to the traffic equilibrium (or steady) state on the road network. In our
previous paper [4], the concepts of Markov traffic and two-dimensional stationary
distribution are introduced and a parameter estimation method is proposed by us-
ing the weighted least squares (WLS) approach. To investigate complex systems,
the joint application of Markov chains and large graphs is well known, see [7, 10,
19].

Our contributions in this paper are as follows. Using the approach in [4], we

1https://github.com/nbatfai/robocar-emulator
2https://www.aimsun.com/
3http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/
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present various Markov models for modeling traffic flow on different road graph
models based on, e.g., open or closed and digraph or line digraph views. We
prove the existence and uniqueness of a stationary distribution as a solution of
the global balance equation, see Theorem 3.1. We define the configuration space
of Markov traffic, describe the transition mechanism and prove the ergodicity of
Markov traffic, see Theorem 4.1. Finally, we propose a simulation method for gen-
erating random trajectories for a Markov traffic whose two-dimensional distribution
is closest to a prescribed mask matrix in the least squares sense, see Theorem 5.1.
The results of this paper together with those obtained in [4], which contains some
additional proofs, show that the Markovian approach still works when the scale of
the road graph is significantly enlarged compared to such small one as ‘De Uithof’,
which is a district in the city of Utrecht in Netherlands, see [11].

Several approaches exist for traffic flow simulation and prediction, some recent
surveys are [22, 27, 31], but a few of them are based on Markov models, see [8, 23].

This paper is structured as follows. In section 2 we present various graph
models of road networks. Section 3 is devoted to the probability distributions and
Markov kernels on road networks. Section 4 introduces the notion of Markov traffic,
describes its stationary distribution and proves its ergodicity. A simulation method
is presented in section 5. In section 6 we discuss our findings, and in section 7 we
conclude the paper. The Appendix provides a toy example and a proof.

2. Graph modeling of road networks

Recall that the ordered pair 𝐺 = (𝑉,𝐸) is a directed graph (digraph), where 𝑉
is a finite set of vertices and 𝐸 is a set of ordered pairs, called directed edges, of
vertices. In the sequel, vertices (or nodes) are denoted by 𝑢, 𝑣, 𝑤, edges (or arcs or
arrows) are denoted by 𝑒, 𝑓, 𝑔. For a directed edge 𝑒 = (𝑣, 𝑤) ∈ 𝐸 we also use the
notation 𝑣 → 𝑤. We suppose that 𝐺 is a simple digraph, i.e., it does not contain
multiple arrows. For details, see the textbook [1].

A road network 𝐺 is defined as a simple directed graph, 𝐺 = (𝑉,𝐸), where 𝑉
is a set of nodes representing the terminal points of road segments, and 𝐸 is a set
of directed edges denoting road segments, see [25]. A road segment 𝑒 = (𝑣, 𝑤) ∈ 𝐸
is a directed edge in a road network graph, with two terminal points 𝑣 and 𝑤. The
vehicles move on this edge from 𝑣 to 𝑤. The road network 𝐺 represents the road
system of a city.

Let 𝑆 denote the diagonal set of 𝑉 , i.e., 𝑆 := {(𝑣, 𝑣)|𝑣 ∈ 𝑉 }. From a practical
point of view, we suppose that 𝐸 ∩ 𝑆 = ∅, i.e., there is no loop 𝑣 → 𝑣 in the road
network in order to avoid that a vehicle is able to move in an infinite cycle. For
𝑣 ∈ 𝑉 , define 𝑣− := {𝑒 ∈ 𝐸 | ∃𝑢 ∈ 𝑉 : 𝑒 = (𝑢, 𝑣)} and 𝑣+ := {𝑒 ∈ 𝐸 | ∃𝑤 ∈ 𝑉 : 𝑒 =
(𝑣, 𝑤)}, i.e., 𝑣− and 𝑣+ are the sets of edges in and out the node 𝑣, respectively.
Then, 𝑑𝑒𝑔−(𝑣) = |𝑣−| and 𝑑𝑒𝑔+(𝑣) = |𝑣+| are the indegree and outdegree of node
𝑣, respectively.

Let L(𝐺) = (𝑉 ′, 𝐸′) be the line digraph (line road network, network line graph,
see [9]) associated to 𝐺, see Section 4.5 in [1]. Here, 𝑉 ′ = 𝐸 and the set 𝐸′ consists
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of the ordered pairs (𝑒, 𝑓) where 𝑒, 𝑓 ∈ 𝐸 such that there exist 𝑢, 𝑣, 𝑤 ∈ 𝑉 that
𝑒 = (𝑢, 𝑣) and 𝑓 = (𝑣, 𝑤), i.e., 𝑢 → 𝑣 → 𝑤 is a path of length 2 (dipath) in
𝐺. The elements of 𝐸′ can be described by triplets (𝑢, 𝑣, 𝑤), where 𝑢, 𝑣, 𝑤 ∈ 𝑉 ,
(𝑢, 𝑣), (𝑣, 𝑤) ∈ 𝐸, and for a directed edge in L(𝐺) we use the notation (𝑢, 𝑣) →
(𝑣, 𝑤) too.

The digraph model of a road network assigns the vehicles moving in a city to the
vertices (first-order or primal network). Contrarily, the line digraph model assigns
the vehicles to the edges (second-order or dual network), see [26, 29]. When we are
studying issues that are associated with the crossings (vertices) we will be concerned
with the adjacency relationships of crossings, and so with the road network. On
the other hand, when we are studying issues that associated with road segments
we will be concerned with the adjacency relationships of road segments, and so our
analyses will involve the line road network.

The digraphs 𝐺 and L(𝐺) can be characterized by their degree distributions.
The pairs (𝑖, 𝑛+𝑖 ) form the frequency histogram for the outdegree distribution of
𝐺 where 𝑛+𝑖 := |{𝑣 ∈ 𝑉 | 𝑑𝑒𝑔+(𝑣) = 𝑖}|. The indegree frequency histogram can
be defined similarly as (𝑖, 𝑛−𝑖 ), where 𝑛−𝑖 := |{𝑣 ∈ 𝑉 | 𝑑𝑒𝑔−(𝑣) = 𝑖}|. The pairs
(𝑖,𝑚+

𝑖 ) form the frequency histogram for the outdegree distribution of L(𝐺) where
𝑚+
𝑖 :=

∑︀
𝑣∈𝐺+

𝑖
𝑑𝑒𝑔−(𝑣) and 𝐺+

𝑖 := {𝑣 ∈ 𝑉 | 𝑑𝑒𝑔+(𝑣) = 𝑖}. (Note that 𝑛+𝑖 =

|𝐺+
𝑖 |.) Similarly, the pairs (𝑖,𝑚−

𝑖 ) form the frequency histogram for the indegree
distribution of L(𝐺) where 𝑚−

𝑖 :=
∑︀
𝑣∈𝐺−

𝑖
𝑑𝑒𝑔+(𝑣) and 𝐺−

𝑖 := {𝑣 ∈ 𝑉 | 𝑑𝑒𝑔−(𝑣) =

𝑖}. For the city of Debrecen (described later in this paper), the above mentioned
degree distributions can be seen in Fig. 6. These histograms corroborate the fact
that Debrecen’s road network is a sparse graph since there is no node with higher
in- and outdegree than 4.

Recall that a sequence 𝑣1, . . . , 𝑣ℓ ∈ 𝑉 , ℓ ∈ N, is called walk of length ℓ if
𝑣1 → 𝑣2 → · · · → 𝑣ℓ. A walk is called path if its elements are different vertices.
For a pair 𝑢, 𝑣 ∈ 𝑉, 𝑢 ̸= 𝑣, it is said that 𝑣 is reachable from 𝑢 if there exists a
walk 𝑣1, 𝑣2, . . . , 𝑣ℓ such that 𝑢 = 𝑣1 and 𝑣 = 𝑣ℓ. Clearly, if 𝑣 is reachable from 𝑢,
then there is a path from 𝑢 to 𝑣. A digraph 𝐺 is said to be strongly connected
(diconnected) if every vertex is reachable from every other vertex. Clearly, the
line digraph of a strongly connected digraph is also strongly connected. Namely,
if 𝑒 = (𝑢, 𝑣) ∈ 𝑉 ′(= 𝐸) and 𝑓 = (𝑤, 𝑧) ∈ 𝑉 ′ are arbitrary such that 𝑒 ̸= 𝑓 , then,
since 𝐺 is strongly connected, there exists a walk (or a path) of length ℓ in 𝐺
such that 𝑣 = 𝑣1 → 𝑣2 → . . . → 𝑣ℓ = 𝑤, where 𝑣1, . . . , 𝑣ℓ ∈ 𝑉 , and thus we have
𝑒 = (𝑢, 𝑣) → (𝑣1, 𝑣2) → . . . → (𝑣ℓ−1, 𝑣ℓ) → (𝑤, 𝑧) = 𝑓 , i.e., there exists a walk
(or a path) of length ℓ in L(𝐺) between the vertices 𝑒, 𝑓 ∈ 𝑉 ′. If 𝑢 → 𝑣 → 𝑢
for a pair 𝑢, 𝑣 ∈ 𝑉 then we have (𝑢, 𝑣) → (𝑣, 𝑢) → (𝑢, 𝑣) in the line digraph,
i.e., vehicles can turn back at vertex 𝑢 into 𝑣. Sometimes the traffic regulations
do not allow this kind of reversal, i.e., the edge set 𝐸′ in L(𝐺) must not contain
some triplet (𝑢, 𝑣, 𝑢), while some of these triplets are needed that L(𝐺) be strongly
connected. By deleting all of the unnecessary triplets (𝑢, 𝑣, 𝑢), 𝑢, 𝑣 ∈ 𝑉 , such that
the remaining line digraph be still strongly connected we get the minimal strongly
connected line digraph of 𝐺. This line digraph is denoted by ML(𝐺). For example,
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the vertices of ML(𝐺) for 𝐺 in Fig. 1 are given in Table 1.
Recall that a cycle 𝐶 ⊂ 𝑉 in digraph 𝐺 is a path 𝑣1 → 𝑣2 → . . . → 𝑣ℓ → 𝑣1.

Here ℓ(𝐶) = ℓ is called the length of 𝐶. A digraph 𝐺 is said to be aperiodic if the
greatest common divisor of the lengths of its cycles is one. Formally, the period of
𝐺 is defined as 𝑝𝑒𝑟(𝐺) := gcd{ℓ > 0 : ∃𝐶 ⊂ 𝑉 cycle such that ℓ(𝐶) = ℓ}. Then, 𝐺
is called aperiodic if 𝑝𝑒𝑟(𝐺) = 1. Clearly, if a digraph 𝐺 is aperiodic then its line
digraph L(𝐺) is also aperiodic. This statement follows from the following fact: if
𝑣1 → 𝑣2 → . . . → 𝑣ℓ → 𝑣1 is a cycle then (𝑣1, 𝑣2) → (𝑣2, 𝑣3) → . . . → (𝑣ℓ, 𝑣1) →
(𝑣1, 𝑣2) is a cycle in L(𝐺). Thus, if ℓ > 0 and there exists a cycle 𝐶 ⊂ 𝑉 such that
ℓ(𝐶) = ℓ then there exists a cycle 𝐶 ′ ⊂ 𝑉 ′ such that ℓ(𝐶 ′) = ℓ.

3: 2/11

2: 4/111: 2/11 4: 2/11

5: 1/11

1/2

1/2

1/41/4

1/2

1/2

1/2

1/4

1/4

1/2

1/2

1/2

Figure 1. A Markov kernel (on edges) with its stationary distri-
bution (on vertices with node’s id) on a simple road network.

Table 1. An example for a Markov kernel on the minimal line
digraph of the road network in Fig. 1.

(1,2) (2,3) (3,4) (4,2) (2,1) (4,5) (5,2)
(1,2) 1/2 1/2 0 0 0 0 0
(2,3) 0 1/2 1/2 0 0 0 0
(3,4) 0 0 1/2 1/4 0 1/4 0
(4,2) 0 1/4 0 1/2 1/4 0 0
(2,1) 1/2 0 0 0 1/2 0 0
(4,5) 0 0 0 0 0 1/2 1/2
(5,2) 0 1/4 0 0 1/4 0 1/2

Let 𝐴 = (𝑎𝑢𝑣)𝑢,𝑣∈𝑉 denote the adjacency matrix of the digraph 𝐺, i.e., 𝑎𝑢𝑣 = 1
if and only if (𝑢, 𝑣) ∈ 𝐸 and 0 otherwise. The number of directed walks from
vertex 𝑢 to vertex 𝑣 of length 𝑘 is the entry in the 𝑢-th row and the 𝑣-th column
of the matrix 𝐴𝑘. For example, in Fig. 1, the number of directed walks of length
6 from vertex 2 to vertex 4 is 2, see Appendix 7. One can easily check that 𝐺 is
strongly connected if and only if there is a positive integer 𝑘 such that the matrix
𝐼 + 𝐴 + · · · + 𝐴𝑘 is positive, i.e., all the entries of this matrix are positive. The
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indegree and outdegree of a vertex 𝑣 can be expressed by the adjacency matrix
as 𝑑𝑒𝑔−(𝑣) =

∑︀
𝑢∈𝑉 𝑎𝑢𝑣 and 𝑑𝑒𝑔+(𝑣) =

∑︀
𝑢∈𝑉 𝑎𝑣𝑢. Let us introduce the vectors

𝑑− := (𝑑𝑒𝑔−(𝑣))𝑣∈𝑉 and 𝑑+ := (𝑑𝑒𝑔+(𝑣))𝑣∈𝑉 . Then, we have 𝑑− = 𝐴𝑇1 and
𝑑+ = 𝐴1 where 1 := (1)𝑣∈𝑉 is the constant unit function. It is well known that
the adjacency matrix 𝐴 of an aperiodic, strongly connected graph 𝐺 is primitive,
i.e., irreducible and has only one eigenvalue of maximum modulus. Primitivity is
equivalent to the following quasi-positivity: there exists 𝑘 ∈ N such that the matrix
𝐴𝑘 > 0, see Section 8.5 in [13].

In order to model the cases when vehicles leave or enter the city, we augment 𝑉
by a new ideal vertex 0 and define 𝑉 := 𝑉 ∪ {0}, see [12]. Moreover, let 𝐸 denote
the augmentation of 𝐸 by directed edges (0, 𝑣) and (𝑣, 0) for getting into and out of
the city, respectively. Note that, for 𝐸, it is not allowed to contain the loop (0, 0).
The augmentation 𝐺 = (𝑉 ,𝐸) of 𝐺 is called the closure of the road network 𝐺.
For 𝑒 = (𝑣, 𝑤) ∈ 𝐸 we also use the notation 𝑣 → 𝑤. In what follows, we suppose
that there exist 𝑢, 𝑣 ∈ 𝑉 such that 𝑢→ 0 and 0→ 𝑣.

Each definition, including strong connectedness, periodicity, line digraph, given
for 𝐺 can be extended for 𝐺 in a natural way. Note that in the augmented line
digraph L(𝐺) = (𝑉

′
, 𝐸

′
) the elements of the edge set 𝐸

′
can be described by triplets

(𝑢, 𝑣, 𝑤), where 𝑢, 𝑣, 𝑤 ∈ 𝑉 and if 𝑣 = 0 then 𝑢,𝑤 ̸= 0 and if 𝑢 or 𝑤 is 0 then 𝑣 ̸= 0

because triplets (0, 0, 𝑣), (𝑣, 0, 0), and (0, 0, 0) are excluded from 𝐸
′
. One can easily

see that if 𝐺 is strongly connected then its closure 𝐺 is also strongly connected.
Moreover, the strongly connected components of 𝐺, if there exist more than 1,
can be connected through the ideal vertex 0, resulting in a strongly connected 𝐺.
Thus, the augmented line digraph will also be strongly connected. Clearly, if G is
aperiodic then 𝐺 is aperiodic too.

In the rest of this paper, it is assumed that the road network is closed by
augmenting with the ideal vertex 0.

3. Probability distributions and Markov kernels on
road networks

On a road network, two kinds of probability distributions can be defined by consid-
ering the set 𝑉 or 𝐸 as the state space, respectively. However, the Markov kernels
on the line road network must be defined with particular care.

A probability distribution (p.d.) on 𝑉 is the vector 𝜋 := (𝜋𝑣)𝑣∈𝑉 where 𝜋𝑣 ≥ 0
for all 𝑣 ∈ 𝑉 and

∑︀
𝑣∈𝑉 𝜋𝑣 = 1. We may think of 𝜋𝑣 as the proportion of all

vehicles which drive through the crossing 𝑣 with respect to all vehicles in the city.
A Markov kernel or transition probability matrix on 𝑉 is defined as a real kernel
𝑃 := (𝑝𝑢𝑣)𝑢,𝑣∈𝑉 such that 𝑝𝑢𝑣 ≥ 0 for all 𝑢, 𝑣 ∈ 𝑉 and

∑︀
𝑣∈𝑉 𝑝𝑢𝑣 = 1 for all 𝑢 ∈ 𝑉 .

The quantity 𝑝𝑢𝑣 ∈ [0, 1] is called the transition probability from vertex 𝑢 to vertex
𝑣. In fact, 𝑃 is a stochastic matrix on 𝑉 and we assume that its support is the set

26 N. Bátfai, R. Besenczi, P. Jeszenszky, M. Szabó, M. Ispány



𝐸 ∪ 𝑆. The sum condition for Markov kernel 𝑃 can be rewritten as:
∑︁

𝑤:𝑣→𝑤

𝑝𝑣𝑤 + 𝑝𝑣𝑣 = 1, 𝑣 ∈ 𝑉. (3.1)

A p.d. 𝜋 is a stationary distribution (s.d.) of the kernel 𝑃 if
∑︀
𝑢∈𝑉 𝜋𝑢𝑝𝑢𝑣 = 𝜋𝑣

for all 𝑣 ∈ 𝑉 . This so-called global balance equation can be expressed as:
∑︁

𝑢:𝑢→𝑣

𝜋𝑢𝑝𝑢𝑣 + 𝜋𝑣𝑝𝑣𝑣 = 𝜋𝑣, 𝑣 ∈ 𝑉. (3.2)

Fig. 1 presents a Markov kernel with its s.d. on a simple road network.
Since the vehicles are moving along the road segments of the road network 𝐺,

it is natural to choose 𝐸 to be the state space. In this case, to define probability
distributions on the set of vertices again, we have to consider the line digraph L(𝐺)
(or ML(𝐺)). Formally, a probability distribution (p.d.) on L(𝐺) is the vector
𝜋′ := (𝜋′

𝑒)𝑒∈𝐸 where 𝜋′
𝑒 ≥ 0 for all 𝑒 ∈ 𝐸 and

∑︀
𝑒∈𝐸 𝜋

′
𝑒 = 1. If we want to

emphasize the vertices of the original road network 𝐺, instead of the edges, then
the notation 𝜋′

𝑒 = 𝜋′
𝑢𝑣 is also used where 𝑒 = (𝑢, 𝑣) ∈ 𝐸. We may think of 𝜋′

𝑒 as
the proportion of the vehicles at the road segment 𝑒 with respect to all vehicles in
the city. Note that 𝐺 endowed with 𝜋′ is a weighted digraph which is often called
a network in itself as well.

A transition probability matrix (or Markov kernel) on 𝐸, i.e., on the line digraph
L(𝐺), can be defined as a real kernel 𝑃 ′ := (𝑝′𝑒𝑓 )𝑒,𝑓∈𝐸 such that 𝑝′𝑒𝑓 ≥ 0 for all
𝑒, 𝑓 ∈ 𝐸 and

∑︀
𝑓∈𝐸 𝑝

′
𝑒𝑓 = 1 for all 𝑒 ∈ 𝐸. A p.d. 𝜋′ on 𝐸 is a s.d. of the kernel 𝑃 ′ if∑︀

𝑒∈𝐸 𝜋
′
𝑒𝑝

′
𝑒𝑓 = 𝜋′

𝑓 for all 𝑓 ∈ 𝐸. Since 𝐺 represents a road system we may suppose
that if 𝑒 ̸= 𝑓 then 𝑝′𝑒𝑓 > 0 implies that (𝑒, 𝑓) ∈ 𝐸′, i.e., there exist 𝑢, 𝑣, 𝑤 ∈ 𝑉 such
that 𝑒 = (𝑢, 𝑣) and 𝑓 = (𝑣, 𝑤), and hence, 𝑢→ 𝑣 → 𝑤 is a walk of length 2. In this
case, we use the notation 𝑝′𝑒𝑓 = 𝑝′𝑢𝑣𝑤 as well. In fact, 𝑝′𝑢𝑣𝑤 denotes the probability
that a vehicle on the road segment (𝑢, 𝑣) will go further to the road segment (𝑣, 𝑤)
in the next time point. Moreover, in the case of 𝑒 = 𝑓 = (𝑢, 𝑣), let 𝑝′𝑒𝑒 = 𝑝′𝑢𝑣 be
the probability that a vehicle remains on the same road segment in the next time
point which can be non-zero as well. Thus, since 𝑃 ′ is a Markov kernel, we have
that, for all 𝑢→ 𝑣, ∑︁

𝑤:𝑣→𝑤

𝑝′𝑢𝑣𝑤 + 𝑝′𝑢𝑣 = 1 (3.3)

and the global balance equation is given as:
∑︁

𝑢:𝑢→𝑣

𝜋′
𝑢𝑣𝑝

′
𝑢𝑣𝑤 + 𝜋′

𝑣𝑤𝑝
′
𝑣𝑤 = 𝜋′

𝑣𝑤 (3.4)

for all 𝑣 → 𝑤.
An example for the Markov kernel 𝑃 ′ on the minimal line digraph ML(𝐺) of

the road network 𝐺 in Fig. 1 is shown in Table 1. Fig. 2 shows the unique s.d. 𝜋′

of the Markov kernel 𝑃 ′.
Probability distributions and Markov kernels on the closure 𝐺 of an open road

network 𝐺 can be defined similarly by considering the set 𝑉 or 𝐸 as the state space,
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respectively. Note that 𝜋0 denotes the proportion of the number of vehicles which
drive in or out of the city’s roads at a time point. Moreover, for any Markov kernel
𝑃 on 𝑉 it is supposed that 𝑝00 = 0, i.e., the vehicles cannot move from 0 to 0, thus
they either enter to the road network or leave the road network. Equations (3.1)
and (3.2) remain true, too. Equation (3.1) can be rewritten as

∑︁

𝑤∈𝑉 :𝑣→𝑤

𝑝𝑣𝑤 + 𝑝𝑣0 + 𝑝𝑣𝑣 = 1, 𝑣 ∈ 𝑉,
∑︁

𝑤∈𝑉 :0→𝑤

𝑝0𝑤 = 1.

The global balance equation (3.2) for the s.d. can be rewritten as
∑︁

𝑢∈𝑉 :𝑢→𝑣

𝜋𝑢𝑝𝑢𝑣 + 𝜋0𝑝0𝑣 + 𝜋𝑣𝑝𝑣𝑣 = 𝜋𝑣, 𝑣 ∈ 𝑉, 0→ 𝑣,

∑︁

𝑢∈𝑉 :𝑢→𝑣

𝜋𝑢𝑝𝑢𝑣 + 𝜋𝑣𝑝𝑣𝑣 = 𝜋𝑣, 𝑣 ∈ 𝑉, 0 9 𝑣,

∑︁

𝑢∈𝑉 :𝑢→0

𝜋𝑢𝑝𝑢0 = 𝜋0.

3
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Figure 2. The stationary distribution of the Markov kernel
in Table 1.

We can define Markov kernels on the line digraph L(𝐺) of the augmented road
network 𝐺, and thus on the augmented edge set 𝐸 similarly to the case of L(𝐺).
Note that (𝑒, 𝑓) ∈ 𝐸

′
implies that 𝑒 = (𝑢, 𝑣) and 𝑓 = (𝑣, 𝑤) where 𝑢, 𝑣, 𝑤 ∈ 𝑉

excluding the triplets (0, 0, 𝑣), (𝑣, 0, 0), and (0, 0, 0). We shall also use the notation
𝑝′𝑢𝑣𝑤 = 𝑝′𝑒𝑓 if 𝑒 = (𝑢, 𝑣) and 𝑓 = (𝑣, 𝑤) and 𝑝′𝑢𝑣 = 𝑝′𝑒𝑒 if 𝑒 = (𝑢, 𝑣). However, three
additional conditions should be added. The first one is that 𝑝′𝑢0𝑢 = 0 for all 𝑢 ∈ 𝑉
such that 𝑢 → 0 → 𝑢. This means that if a vehicle is on the edge (𝑢, 0), i.e., it
leaves the city at vertex 𝑢 then it cannot be on the edge (0, 𝑢) at the next time
point, i.e., it cannot enter at vertex 𝑢 in the road network again, immediately. The
second one is that 𝑝′0𝑣0 = 0 for all 𝑣 ∈ 𝑉 such that 0 → 𝑣 → 0, i.e., vehicles can
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enter and leave the city at node 𝑣. This means that if a vehicle enters the city
then it cannot leave the city at the next time point. Finally, the third one is that
𝑝′𝑢0 = 𝑝′0𝑣 = 0 for all 𝑢, 𝑣 ∈ 𝑉 such that 𝑢→ 0 and 0→ 𝑣. That is a vehicle cannot
remain on the road network at the edge (𝑢, 0) after two consecutive time points
and if a vehicle enters into the road network at the edge (0, 𝑣) (or at the vertex 𝑣)
the first time then it does not remain on this edge after the next time point and it
goes further immediately in the road network. Under these conditions, equations
(3.3) and (3.4) remain true. Equation (3.3) can be rewritten as:

∑︁

𝑤∈𝑉 :𝑣→𝑤

𝑝′𝑢𝑣𝑤 + 𝑝′𝑢𝑣0 + 𝑝′𝑢𝑣 = 1, 𝑢, 𝑣 ∈ 𝑉, 𝑢→ 𝑣,

∑︁

𝑤∈𝑉 :𝑣→𝑤

𝑝′0𝑣𝑤 = 1, 𝑣 ∈ 𝑉, 0→ 𝑣,

∑︁

𝑣∈𝑉 ∖{𝑢}:0→𝑣

𝑝′𝑢0𝑣 = 1, 𝑢 ∈ 𝑉, 𝑢→ 0.

Equation (3.4) can be rewritten as:
∑︁

𝑢∈𝑉 :𝑢→𝑣

𝜋′
𝑢𝑣𝑝

′
𝑢𝑣𝑤 + 𝜋′

0𝑣𝑝
′
0𝑣𝑤 + 𝜋′

𝑣𝑤𝑝
′
𝑣𝑤 = 𝜋′

𝑣𝑤, 𝑣, 𝑤 ∈ 𝑉, 𝑣 → 𝑤,

∑︁

𝑢∈𝑉 :𝑢→𝑣

𝜋′
𝑢𝑣𝑝

′
𝑢𝑣0 + 𝜋′

𝑣0𝑝
′
𝑣0 = 𝜋′

𝑣0, 𝑣 ∈ 𝑉, 𝑣 → 0,

∑︁

𝑢∈𝑉 ∖{𝑤}:𝑢→0

𝜋′
𝑢𝑣𝑝

′
𝑢0𝑤 + 𝜋′

0𝑤𝑝
′
0𝑤 = 𝜋′

0𝑤, 𝑤 ∈ 𝑉, 0→ 𝑤.

The s.d. in all cases, i.e., for Markov kernels on road networks, line road networks
and their closures, can be derived by solving the above appropriate linear equations
numerically. It turns out that there is a direct connection between the existence
and uniqueness of s.d. of the Markov kernels 𝑃 and 𝑃 ′ and the strongly connected
property of the physical road network 𝐺 if the Markov and graph structures are
compatible with each other.

The Markov kernel 𝑃 on 𝑉 is called 𝐺-compatible if, for any 𝑢, 𝑣 ∈ 𝑉 such that
𝑢 ̸= 𝑣, 𝑝𝑢𝑣 > 0 if and only if (𝑢, 𝑣) ∈ 𝐸. Similarly, the Markov kernel 𝑃 ′ on 𝐸 is
called 𝐺-compatible if it is L(𝐺)-compatible Markov kernel on L(𝐺), i.e., for any
𝑒, 𝑓 ∈ 𝐸 such that 𝑒 ̸= 𝑓 , 𝑝′𝑒𝑓 > 0 if and only if (𝑒, 𝑓) ∈ 𝐸′. This is equivalent to
the statement that 𝑝′𝑢𝑣𝑤 > 0, 𝑢, 𝑣, 𝑤 ∈ 𝑉 , if and only if (𝑢, 𝑣), (𝑣, 𝑤) ∈ 𝐸. Since
(𝑒, 𝑓) ∈ 𝐸′ if and only if there exist 𝑢, 𝑣, 𝑤 ∈ 𝑉 such that 𝑒 = (𝑢, 𝑣) and 𝑓 = (𝑣, 𝑤)
we can define the 𝐺-compatibility of a Markov kernel 𝑃 ′ as, for any 𝑒, 𝑓 ∈ 𝐸 such
that 𝑒 ̸= 𝑓 , 𝑝′𝑒𝑓 > 0 if and only if there exist 𝑢, 𝑣, 𝑤 ∈ 𝑉 such that 𝑒 = (𝑢, 𝑣) and
𝑓 = (𝑣, 𝑤).

Clearly, if 𝑃 is 𝐺-compatible then the strong connectivity of 𝐺 implies that the
Markov kernel (the transition matrix) 𝑃 is irreducible. Thus, by Theorem 1 in [16],
see also Theorem 3.1 and 3.3 in Chapter 3 of [6] the following theorem holds.
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Theorem 3.1. If a road network 𝐺 is strongly connected then there is a unique sta-
tionary distribution 𝜋 (𝜋′) to any 𝐺-compatible Markov kernel 𝑃 (𝑃 ′). Moreover,
this distribution satisfies 𝜋𝑣 > 0 for all 𝑣 ∈ 𝑉 (𝜋′

𝑢𝑣 > 0 for all (𝑢, 𝑣) ∈ 𝐸).

The main consequence of this theorem is that, in case of any physical road
network augmented by the ideal vertex 0, all of the Markov kernels defined on the
road network that has positive transition probability on all roads have unique s.d.

4. Markov traffic on road networks

Let (Ω,𝒜 ,P) be a probability space. A sequence {𝑋𝑡}𝑡∈Z+
of 𝑉 -valued r.v.’s is a

Markov chain on the state space 𝑉 if the Markov property holds:

P(𝑋𝑡 = 𝑣𝑡|𝑋𝑡−1 = 𝑣𝑡−1, . . . , 𝑋0 = 𝑣0) = P(𝑋𝑡 = 𝑣𝑡|𝑋𝑡−1 = 𝑣𝑡−1)

for all 𝑡 ∈ N, 𝑣0, . . . , 𝑣𝑡 ∈ 𝑉 . If 𝑋,𝑋 ′ are 𝑉 -valued r.v.’s then for the conditional
distribution 𝑃 = (𝑝𝑣𝑣′)𝑣,𝑣′∈𝑉 , 𝑝𝑣𝑣′ := P(𝑋 = 𝑣|𝑋 ′ = 𝑣′), 𝑣, 𝑣′ ∈ 𝑉 , we shall also
use the notation 𝑋|𝑋 ′. Clearly, 𝑋|𝑋 ′ is a Markov kernel on 𝑉 . Similarly, a Markov
chain {𝑌𝑡}𝑡∈Z+ of 𝐸-valued r.v.’s can also be defined through the Markov kernel
𝑌 |𝑌 ′ on the state space 𝐸.

In what follows, we suppose that the road network 𝐺 is strongly connected
and the Markov kernel 𝑃 is 𝐺-compatible on 𝑉 with unique s.d. 𝜋. The Markov
chain {𝑋𝑡}𝑡∈Z+

on 𝑉 is called Markov random walk on the road network 𝐺 with
Markov kernel 𝑃 if for its initial distribution 𝜋𝑋0 = 𝜋 and transition probabilities
𝑋𝑡|𝑋𝑡−1 ∼ 𝑃 for all 𝑡 ∈ N. The set of 𝑘 (𝑘 ∈ N) mutually independent Markov
random walks on 𝐺 with Markov kernel 𝑃 is called Markov traffic of size 𝑘 and it
is denoted by the quadruple (𝐺,𝑃,𝜋, 𝑘). Similarly, {𝑌𝑡}𝑡∈Z+

is a Markov random
walk on the line road network if it is a Markov chain on the state space 𝐸 such
that 𝜋′

𝑌0
= 𝜋′ and 𝑌𝑡|𝑌𝑡−1 ∼ 𝑃 ′ for all 𝑡 ∈ N.

A Markov random walk is the movement of a random vehicle which follows the
stochastic rules defined by the Markov kernel. For a pair 𝑢, 𝑣 ∈ 𝑉 , the notation
𝑢 ⇒ 𝑣 means that (𝑢, 𝑣) ∈ 𝐸 ∪ 𝑆, i.e., either 𝑢 → 𝑣 or 𝑢 = 𝑣. One can see that
𝑋𝑡 ⇒ 𝑋𝑡+1 ⇒ . . .⇒ 𝑋𝑡+𝑛 for all 𝑡 and 𝑛 ∈ N. {𝑋𝑡}𝑡∈Z+

is also called a first-order
random walk on the road network where a vehicle moves from vertex 𝑢 to vertex
𝑣 with probability 𝑝𝑢𝑣. On the other hand, {𝑌𝑡}𝑡∈Z+ may be referred as a second-
order random walk where the vehicles move from edge to edge, i.e., we have to
consider where the vehicle came from, the vertex visited before the current vertex.
The second-order random walk has also been considered in graph analysis, see [29].

The state space of a first-order Markov traffic can be modeled by the function
space ℱ where 𝑓 ∈ ℱ is a non-negative integer valued function on 𝑉 , i.e., 𝑓 =
(𝑓𝑣)𝑣∈𝑉 such that 𝑓𝑣 ∈ {0, 1, 2, . . .} for all 𝑣 ∈ 𝑉 . The function 𝑓 is called a traffic
configuration or a counting function and 𝑓𝑣 measures the number of vehicles at
vertex 𝑣 ∈ 𝑉 . Let |𝑓 | denote the size of the traffic configuration 𝑓 defined by
|𝑓 | :=

∑︀
𝑣∈𝑉 𝑓𝑣. The size of a traffic configuration counts the number of vehicles

on the road network at a time. Let ℱ𝑘 (𝑘 ∈ N) denote the subset of traffic
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configurations of size 𝑘. A p.d. 𝜚 on ℱ is a function 𝜚 : ℱ → [0, 1] such that∑︀
𝑓 𝜚(𝑓) = 1. For a p.d. 𝜋 on the road network 𝐺, let 𝜚 denote a multinomial

distribution on ℱ𝑘 with parameters 𝑘 and 𝜋, see Chapter 35 in [17]. Thus, we
have

𝜚(𝑓) := 𝑘!
∏︁

𝑣∈𝑉

𝜋𝑓𝑣𝑣
𝑓𝑣!

(4.1)

for all 𝑓 ∈ ℱ𝑘. In fact, 𝜚 is the 𝑘-fold convolution of 𝜋. By formula (4.1) the
probability of any complex event of the traffic can be computed.

A Markov kernel 𝑅 on ℱ𝑘 is a function ℱ𝑘 × ℱ𝑘 → [0, 1] such that, for all
𝑓 ∈ ℱ𝑘,

∑︀
𝑔∈ℱ𝑘

𝑅(𝑓 , 𝑔) = 1. We demonstrate that every Markov kernel 𝑃 induces
a natural Markov kernel on ℱ𝑘. The matrix 𝐾 = (𝑘𝑢𝑣)𝑢,𝑣∈𝑉 is called transport
matrix from traffic configuration 𝑓 to 𝑔 on the road network 𝐺 if 𝐾 : 𝑉 × 𝑉 → N0

such that 𝑘𝑢𝑣 > 0 implies 𝑢⇒ 𝑣,
∑︀
𝑣∈𝑉 𝑘𝑢𝑣 = 𝑓𝑢 for all 𝑢 ∈ 𝑉 , and

∑︀
𝑢∈𝑉 𝑘𝑢𝑣 = 𝑔𝑣

for all 𝑣 ∈ 𝑉 . In fact, 𝐾 has row and column marginals 𝑓 and 𝑔, respectively, and,
heuristically, 𝐾 defines a way for transporting the vehicles from configuration 𝑓
into 𝑔 on the road network. An example for a transport matrix can be seen in
Fig 3. For a pair 𝑓 , 𝑔 ∈ ℱ𝑘 let ℳ (𝑓 , 𝑔) denote the set of all transport matrices
from 𝑓 to 𝑔. Define the Markov kernel 𝑅 on ℱ𝑘 in the following way:

𝑅(𝑓 , 𝑔) :=
∏︁

𝑢∈𝑉
𝑓𝑢!

∑︁

𝐾∈ℳ (𝑓 ,𝑔)

∏︁

𝑢,𝑣:𝑢⇒𝑣

𝑝𝑘𝑢𝑣
𝑢𝑣

𝑘𝑢𝑣!
(4.2)

where 𝑓 , 𝑔 ∈ ℱ𝑘. Then, 𝑅 maps a p.d. 𝜚 into the p.d. 𝑅𝜚 on the state space ℱ𝑘

in the following way:
(𝑅𝜚)(𝑔) :=

∑︁

𝑓∈ℱ𝑘

𝜚(𝑓)𝑅(𝑓 , 𝑔) (4.3)

for all 𝑔 ∈ ℱ𝑘. To check that 𝑅 is a Markov kernel indeed we note that, by the
multinomial theorem,

∑︁

𝑔∈ℱ𝑘

𝑅(𝑓 , 𝑔) =
∏︁

𝑢∈𝑉
𝑓𝑢!

∑︁
∑︀

𝑣∈𝑉

𝑘𝑢𝑣=𝑓𝑢

∏︁

𝑢,𝑣:𝑢⇒𝑣

𝑝𝑘𝑢𝑣
𝑢𝑣

𝑘𝑢𝑣!
=
∏︁

𝑢∈𝑉

(︃∑︁

𝑣∈𝑉
𝑝𝑢𝑣

)︃𝑓𝑢
= 1. (4.4)

Moreover, one can easily see similarly to (4.4), by the multinomial theorem, that
if 𝜋 is a s.d. of the Markov kernel 𝑃 , then the p.d. 𝜚 defined by (4.1) is the s.d. of
the induced Markov kernel 𝑅 defined by (4.2). Namely, we have the global balance
equation ∑︁

𝑓∈ℱ𝑘

𝜚(𝑓)𝑅(𝑓 , 𝑔) = 𝜚(𝑔) (4.5)

for all 𝑔 ∈ ℱ𝑘. (For the proof see Appendix.)
Note that the concepts of traffic configuration and induced Markov kernel on

them can be extended to the case of second-order Markov traffic by using the
function space of non-negative integer valued functions on 𝐸 as state space.
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Figure 3. A transport matrix (on edges) on the road network
in Fig. 1 from configuration 𝑓 = (1, 3, 3, 2, 1) (left in vertices) to

configuration 𝑔 = (1, 2, 2, 3, 2) (right in vertices) with 𝑘 = 10.

The applicability of the Markov traffic model is based on its ergodicity. Let 𝜚0

be an initial p.d. on ℱ𝑘 and let us define the 𝑛th absolute p.d. 𝜚𝑛 on ℱ𝑘 by the
recursion 𝜚𝑛 := 𝑅𝜚𝑛−1, 𝑛 ∈ N, where 𝑅 is a Markov kernel on ℱ𝑘 induced by a
𝐺-compatible Markov kernel 𝑃 on 𝐺, see formula (4.2). One can prove that the
irreducibility and aperiodicity of 𝑃 imply the same properties for 𝑅, respectively.

Our main result on ergodicity of Markov traffic, which follows from the ergod-
icity of irreducible aperiodic Markov chains, is the following theorem. Note that
the 𝑛th power of 𝑅 is defined recursively as 𝑅𝑛𝜚 := 𝑅(𝑅𝑛−1𝜚), 𝑛 = 2, 3, . . ., by
formula (4.3).

Theorem 4.1. Let 𝐺 be a strongly connected and aperiodic road network and 𝑃
be a 𝐺-compatible Markov kernel. Then, there is a unique stationary distribution 𝜚
to the Markov traffic described by the Markov kernel 𝑅 on ℱ𝑘 induced by 𝑃 which
has the form (4.1).

Moreover, the Markov traffic is ergodic in the sense that we have

𝑅𝑛(𝑓 , 𝑔)→ 𝜚(𝑔)

as 𝑛→∞ for all 𝑓 , 𝑔 ∈ ℱ𝑘 and, for all initial p.d. 𝜚0 on ℱ𝑘,

𝜚𝑛(𝑓)→ 𝜚(𝑓)

as 𝑛→∞ for all 𝑓 ∈ ℱ𝑘.

By the ergodic theorem, Theorem 4.1 implies that the p.d. 𝜋 on 𝐺 can be
unfolded by the limit of state space averages in time as

1

𝑘

∑︁

𝑓∈ℱ𝑘

𝑓𝑣𝜚𝑛(𝑓)→ 𝜋𝑣

as 𝑛 → ∞ for all 𝑣 ∈ 𝑉 . This formula follows from the well-known fact that the
expectation vector of a multivariate distribution with parameters 𝑘 and 𝜋 is equal
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to 𝑘𝜋, see formula (35.6) in [17]. Similar results hold for any 𝐺-compatible Markov
kernel 𝑃 ′ on 𝑉 ′ = 𝐸.

These results guarantee that the unique s.d. of a 𝐺-compatible Markov kernel
can be approximated and thus explored by long run behavior of absolute p.d.’s on
the traffic configurations of the road network.

5. Simulation by two-dimensional stationary distri-
bution

A Markov traffic can be reparametrized by using its two-dimensional stationary
distribution. Let us define the two-dimensional distribution 𝑄 = (𝑞𝑢𝑣) on 𝑉 × 𝑉
as 𝑞𝑢𝑣 := 𝜋𝑢𝑝𝑢𝑣, 𝑢, 𝑣 ∈ 𝑉 . One can see that 𝑄 satisfies the following properties:
(i) 𝑞𝑢𝑣 ≥ 0 for all 𝑢, 𝑣 ∈ 𝑉 and 𝑞𝑢𝑣 = 0 for all 𝑢, 𝑣 ∈ 𝑉 such that (𝑢, 𝑣) /∈ 𝐸 ∪ 𝑆;
(ii)

∑︀
𝑢,𝑣∈𝑉 𝑞𝑢𝑣 = 1 (i.e., 𝑄 is a normalized matrix on 𝑉 ); and (iii)

∑︀
𝑣∈𝑉 𝑞𝑢𝑣 =∑︀

𝑣∈𝑉 𝑞𝑣𝑢 for all 𝑢 ∈ 𝑉 (i.e., 𝑄 has equidistributed marginals). 𝑄 is called the
two-dimensional stationary distribution (2D s.d.) of the Markov traffic. Clearly, if
𝑃 is 𝐺-compatible, then 𝑄 is positive on 𝐸, i.e., 𝑞𝑢𝑣 > 0 for all (𝑢, 𝑣) ∈ 𝐸.

𝑄 can also be considered as a p.d. on the state space 𝐸 ∪ 𝑆, i.e., if we extend
the set 𝑉 ′ of vertices of L(𝐺) as 𝑉 ′ = 𝐸 ∪ 𝑆, on the line road network. Thus, we
can think of 𝑄 as the distribution of the vehicles on the edges of the road network,
see formula (11) in [8]. The distribution 𝑄, similarly to traffic trajectories, can also
be visualized on the edges, see Fig. 8.

For a positive 𝑄 on 𝐸, let us define

𝜋𝑢 :=
∑︁

𝑣∈𝑉
𝑞𝑢𝑣 =

∑︁

𝑣∈𝑉
𝑞𝑣𝑢, 𝑢 ∈ 𝑉,

𝑝𝑢𝑣 :=
𝑞𝑢𝑣
𝜋𝑢

, 𝑢, 𝑣 ∈ 𝑉.
(5.1)

Note that 𝜋𝑣 > 0 for all 𝑣 ∈ 𝑉 by Theorem 3.1. Then, 𝑃 = (𝑝𝑢𝑣) defines a 𝐺-
compatible Markov kernel with s.d. 𝜋 on 𝐺. Thus, a Markov traffic defined by the
quadruple (𝐺,𝑃,𝜋, 𝑘) can be introduced by an equivalent way through the triplet
(𝐺,𝑄, 𝑘).

With the help of 2D s.d., we can assign a p.d. to any Markov traffic on the
space of traffic configurations which are defined on the edges of the road network.
Namely, let the traffic configuration ℎ = (ℎ𝑢𝑣)𝑢⇒𝑣 be a non-negative integer valued
function on 𝐸 ∪ 𝑆. Here, ℎ𝑢𝑣 denotes the number of vehicles on the edge (𝑢, 𝑣)
where 𝑢, 𝑣 ∈ 𝑉 such that 𝑢⇒ 𝑣. We define the two-dimensional distribution 𝜎 on
the set of traffic configurations ℎ with size 𝑘 (𝑘 ∈ N), i.e., where

∑︀
𝑢⇒𝑣 ℎ𝑢𝑣 = 𝑘.

Similarly to (4.1), the two-dimensional distribution 𝜎 induced by a p.d. 𝜋 on 𝐺 as
its 𝑘-fold convolution has a multinomial distribution with parameter 𝑘 and 𝑄, i.e.,
for all ℎ, we have

𝜎(ℎ) := 𝑘!
∏︁

𝑢⇒𝑣

𝑞ℎ𝑢𝑣
𝑢𝑣

ℎ𝑢𝑣!
.
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In fact, 𝜎 describes the 2D s.d. of a Markov traffic with size 𝑘. One can easily
see that the concept of 2D s.d. can also be extended for the second-order Markov
traffic.

3: 2/11

2: 4/111: 2/11 4: 2/11

5: 1/11

1/11

1/11

1/111/11

2/11

1/11
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Figure 4. The two-dimensional stationary distribution (on edges)
with its equidistributed marginals (on vertices) for the Markov ker-
nel in Fig. 1. One can easily check that the sums of probabilities
written on the edges in and out each vertex are equal, respectively.

The simulation algorithm presented in this paper is based on the 2D s.d. defined
on the road graph. However, it is not an easy task to find a matrix 𝑄 which satisfies
properties (i)-(iii) on a sparse graph. Hence, at first, we propose a method for
finding such 𝑄 which is closest to a given mask matrix 𝑀 on 𝐺 in the least square
sense. The role of the mask matrix is to specify the weight of edges by modeling
the odds of consecutive occurrences of cars on the terminal points of edges in the
road network. For example, these weights may stem from observed trajectories for
the traffic in a time period.

Let us observe a random sample of trajectories {𝑋𝑖}, 𝑖 = 1, . . . , 𝑘, of size 𝑘
defined by 𝑋𝑖

1 ⇒ 𝑋𝑖
2 ⇒ . . . ⇒ 𝑋𝑖

𝑛𝑖
, 𝑖 = 1, . . . , 𝑘, where 𝑛𝑖 denotes the length of

the 𝑖th trajectory. The total sample size is given by 𝑛 := 𝑛1 + . . .+ 𝑛𝑘. Define the
total two-dimensional consecutive empirical frequencies as:

𝑛𝑢𝑣 :=

𝑘∑︁

𝑖=1

𝑛𝑖−1∑︁

𝑗=1

𝐼(𝑋𝑖
𝑗 = 𝑢,𝑋𝑖

𝑗+1 = 𝑣), (5.2)

𝑢, 𝑣 ∈ 𝑉 , where 𝐼 denotes the indicator function. Plainly, 𝑛𝑢𝑣 is the number of
consecutive pairs (𝑢, 𝑣) (𝑢, 𝑣 ∈ 𝑉 ) in the trajectories. One can see that the support
of the two-dimensional frequency matrix 𝑁 := (𝑛𝑢𝑣)𝑢,𝑣∈𝑉 is a subset of 𝐸 ∪ 𝑆.
Clearly, 1⊤𝑁1 = 𝑛− 𝑘, where 𝑛− 𝑘 is the corrected sample size. One can also see
that the vectors 𝑁⊤1−𝑁1 and 1 are orthogonal. In this case, the matrix 𝑁 is a
good candidate for the role of the mask matrix 𝑀 .

We define the optimality criteria for determining𝑄 by means of the least squares
distance between matrices over 𝐺. Let 𝐴 = (𝑎𝑢𝑣)𝑢,𝑣∈𝑉 and 𝐵 = (𝑏𝑢𝑣)𝑢,𝑣∈𝑉 such
that 𝑎𝑢𝑣 = 𝑏𝑢𝑣 = 0 for all 𝑢, 𝑣 ∈ 𝑉 where 𝑢; 𝑣. The least square distance between
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𝐴 and 𝐵 is defined as

‖𝐴−𝐵‖2𝐺 :=
∑︁

𝑢,𝑣:𝑢⇒𝑣

|𝑎𝑢𝑣 − 𝑏𝑢𝑣|2.

In fact, ‖ · ‖𝐺 is the Frobenius norm of the matrices of dimension |𝑉 | × |𝑉 | which
vanish on the entries outside of 𝐸 ∪ 𝑆.

To formulate our main result, we need some basic facts on the spectral theory of
directed graphs, see [28] for details. The symmetric unnormalized graph Laplacian
matrix 𝐿 of a digraph 𝐺 is defined as 𝐿 := 𝐷 − 𝐴 − 𝐴⊤, where 𝐴 denotes the
adjacency matrix of 𝐺 and 𝐷 := diag{𝑑+ + 𝑑−}.
Theorem 5.1. Let 𝑀 be a non-negative matrix on 𝐺. Then, there is a unique
pair (𝑄,κ), where the matrix 𝑄 on 𝐺 satisfies properties (i)-(iii) and κ ≥ 0, which
minimizes the error function ‖κ𝑄 −𝑀‖2𝐺. Moreover, the unique solution to this
optimization problem is derived as

κ :=1⊤𝑀1 + (𝑑− − 𝑑+)⊤𝜆,

𝑄 :=κ−1(𝑀 + (1𝜆⊤ − 𝜆1⊤) ∘𝐴),

where 𝜆 = (𝜆𝑣)𝑣∈𝑉 is called Lagrange vector and defined as a unique solution to
the vector linear equation 𝐿𝜆 = (𝑀−𝑀⊤)1 which satisfies the constraint 1⊤𝜆 = 0
(i.e.,

∑︀
𝑣∈𝑉 𝜆𝑣 = 0), and ∘ denotes the entrywise (Hadamard) product of matrices.

The proof of Theorem 5.1 is based on the Lagrange method, see Appendix in
[4]. One can easily see that the error function at the optimum equals to the sum
of squared differences (SSD) of the Lagrange vector defined by

SSD :=
∑︁

𝑢→𝑣

(𝜆𝑢 − 𝜆𝑣)2.

The fundamental statement of Theorem 5.1, as one of the main results of this
paper, is that the optimal 2D s.d. 𝑄 is a low-dimensional perturbation of the mask
matrix 𝑀 . This perturbation term and the normalizing constant κ depend on two
components through a unique solution to a vector linear equation. The coefficient
matrix of the linear equation is the Laplacian matrix 𝐿 of the road graph which
depends only on the graph structure of the road network and independent from
the mask matrix. Thus, 𝐿 can be computed and stored in advance for a given road
network. Contrarily, the constant vector of the linear equation depends only on
the marginals of the mask matrix, however, it does not depend on its entries and
mainly on the road network itself.

After having defined or determined a 2D s.d. 𝑄 on a road network 𝐺, a simple
simulation algorithm for generating random trajectories on 𝐺 is the following. A
trajectory 𝑡 of length ℓ is a generalized path 𝑣0 ⇒ 𝑣1 ⇒ . . . ⇒ 𝑣ℓ−1, 𝑣𝑖 ∈ 𝑉 ,
𝑖 = 0, 1, . . . , ℓ − 1, which is stored in an ordered list as 𝑡 = [𝑣0, 𝑣1, . . . , 𝑣ℓ−1]. Note
that 𝑣𝑖 = 𝑣𝑖+1 is also allowed for any index 𝑖, i.e., a vehicle may stay in place after
a timestep. The temporary set of generated trajectories is stored in a dictionary 𝐷
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which consists of key-value pairs (𝑣, 𝑇𝑣). Here, the key 𝑣 ∈ 𝑉 identifies a node in the
road graph, and the value 𝑇𝑣 = [𝑡0, 𝑡1, . . . , 𝑡𝑛𝑣−1] is an ordered list of trajectories
𝑡𝑗 , 𝑗 = 0, 1, . . . , 𝑛𝑣 − 1, of length 𝑛𝑣 such that the last element of all trajectories in
𝑇𝑣 is 𝑣, i.e., the trajectories end at the node 𝑣. In fact, 𝑇𝑣 is a list of lists for each
𝑣 ∈ 𝑉 . Let 𝑇 denote the final set of trajectories as the output of the algorithm. By
generating random pairs (𝑢, 𝑣) from 𝑄 successively, 𝐷 is updated, and then 𝑇 is
derived in the following way. If 𝑇𝑢 is not empty, then let the trajectory 𝑡 be given
by appending 𝑣 to the first trajectory in 𝑇𝑢. Moreover, let us delete this trajectory
from the list 𝑇𝑢. If the length of 𝑡 is large enough, then let us add it to 𝑇 , otherwise
add it to the list 𝑇𝑣. If 𝑇𝑢 was empty then append the list [𝑢, 𝑣] to 𝑇𝑣.

Algorithm 1: Trajectory simulation.
Input: 𝑄: two-dimensional stationary distribution

𝑚: maximum trajectory length
𝑛: number of simulated consecutive pairs

Output: T: list of trajectories
/* initialization */
𝐷 = {}; /* temporary dictionary */
𝑇 = [ ];
/* iterating over simulated pairs */
for 𝑖 = 1 to 𝑛 do

pick a random pair (𝑢, 𝑣) ∼ 𝑄;
if 𝐷[𝑢] is not empty then

𝑡 = 𝐷[𝑢][0]; /* temporary trajectory */
append node 𝑣 to 𝑡;
delete the first element of 𝐷[𝑢];

else
𝑡 = [𝑢, 𝑣];

end
if length(𝑡) = 𝑚 then

append 𝑡 to 𝑇 ;
else

if 𝑣 ∈ 𝐷 then
append 𝑡 to 𝐷[𝑣];

else
append (𝑣, 𝑡) to 𝐷;

end
end

end
/* appending the trajectories in temporary dictionary to the output

*/
for 𝑣 in 𝐷 do

append 𝐷[𝑣] to 𝑇 ;
end

36 N. Bátfai, R. Besenczi, P. Jeszenszky, M. Szabó, M. Ispány



Having finished the random generation of pairs, let us append the trajectories of
whole 𝐷 to the final set 𝑇 . One can easily see that the longer trajectories are at the
head of 𝑇 . A pythonic pseudo-code of the above procedure is in Algorithm 1. After
the simulation, the generated trajectories can be visualized by using a digital map
system, e.g., Google Maps or OpenStreetMap. Finally, we note that, in a typical
step of the algorithm, a trajectory moves from the first position of a trajectory list
to the last position of an other one. This is a kind of mixing which helps to avoid
the formation of very unbalanced trajectories.

6. Results

In our work, OpenStreetMap (OSM) was used which is a community project to
build a free map of the world. OSM data is available under the Open Data Com-
mons Open Database License (ODbL). The representation and storing of map data
is based on only three modeling primitives: nodes, ways, and relations.4 A node
represents a geographical entity with GPS coordinates. A way is an ordered list of
at least two nodes. A relation is an ordered list of nodes, ways, and/or relations.
Users can export map data at the OSM web site manually, selecting a rectangular
region of the map. OSM uses OSM XML and PBF formats for exporting map
data. Software libraries for parsing and working with OSM data are available for
several programming languages.5

We started our processing by building a graph from the OSM map of Debrecen
in the bounding box defined by the coordinates N47.4771, W21.5565, N47.571,
W21.6918, see Fig. 5. Because we only need those nodes that can be reached by
vehicles, we had to filter the OSM file and collect only specific types of way nodes.
In the OSM file, a way is a sequence of OSM nodes, so naturally, the nodes of ways
become nodes in the graph. For every node we store the node’s OSM ID and its
coordinates. We also insert an edge into the graph to connect each pair of nodes
that follow each other in a way. We used the PyOsmium library for processing the
OSM files and the NetworkX Python library for building the graph. The result
of this processing is an aperiodic strongly connected road network of Debrecen
augmented by the ideal vertex 0. The descriptive statistics of edges of the road
graph are: Min=0.3395, Q1=10.7906, Med=24.7830, Mean=49.9052, Q3=67.6021,
Max=1167.4902 (in meters). The degree distributions of this road network are
visualized in Fig. 6.

To evaluate the performance of the proposed algorithm a simple simulation
study was conducted at different sample sizes for the road network of Debrecen.
In the simulations, we kept the length of trajectories low and the number of tra-
jectories high compared to the size of the road network. By our experience, the
real traffic trajectories posses these properties. All simulations were carried out in
Python. The codes and datasets of our simulation are available upon request.

We have also implemented the model in the OOCWC system. Regarding RCE,
4http://wiki.openstreetmap.org/wiki/Elements
5https://wiki.openstreetmap.org/wiki/Frameworks
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we have performed several modifications. First, we extended the operation of RCE
to be able to handle kernel files for transition probability matrices and 2D stationary
distributions, respectively. These kernel files can be loaded to the RCE software, so
all nodes of the simulation graph will have the corresponding transition probability
vector from the Markov kernel file. For this, we had to extend the shared memory
segment of RCE.
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Figure 5. The map of the observed area. The graph created from
the OSM data has 14,465 nodes, 29,770 edges, and covers a total of

799.4 km of road. The size of the area is about 106 km2.
© OpenStreetMap contributors.

For a visual explanation of the transition probability vector, see Fig. 7. We
are at the graph vertex (or intersection) of OSM node ID 26755459 (with GPS
coordinates 47.5417164, 21.6097831). From this node, we can move towards nodes
1402222987, 1402222861, 1534652124, and 7834632455. The transition to each
node has a certain probability, see Table 2.

We generated trajectories using Algorithm 1. For this, we created a 𝑄 for Deb-
recen, but since we have no real-world traffic data, we generated random values for
the 2D stationary distribution. To compare our results, we generated trajectories
using the same algorithm for Porto, Portugal. In case of Porto, we could calculate
a 𝑄 that is approximated based on real-world data, namely, the Taxi Trajectory
Prediction dataset, following the methods described in paper [4]. One can easily
see on Fig. 8 that the trajectories generated based on a real 𝑄 have more realistic
shapes (in case of Porto, see the left subfigure in Fig. 8), while the others are quite
random (in case of Debrecen, see the right subfigure in Fig. 8b). An interesting
question arises: can we tell if a 𝑄 reflects the real traffic system of a city? We
assume that a 𝑄 can be validated with trajectories generated from it. If these
trajectories reflect the real traffic in a certain level, we can accept 𝑄. Elaborating
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this validation technique is one of our future work.
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Figure 6. The degree distribution (first: in-vertices, second: out-
vertices, third: in-edges, fourth: out-edges) histograms of the

Debrecen map road graph.

Table 2. Transitions of intersection 26755459.

Neighbor node Transition Probability
1402222987 0.24
1402222861 0.32
1534652124 0.26
7834632455 0.18

Sum 1

Figure 7. A visual explanation of transitions of intersection
26755459. TP means transition probability, nodes are highlighted
with red. Base map and data from OpenStreetMap and Open-
StreetMap Foundation. © OpenStreetMap contributors. Anno-

tated by the authors.
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Figure 8. Generated trajectories in Porto (left: 𝑛 = 200,000,000;
𝑚 = 75) and Debrecen (right: 𝑛 = 50,000,000; 𝑚 = 35) simulated

with Algorithm 1.

7. Conclusions

In this paper we have described various graph models for proper road networks and
introduced the concept of Markov traffic. By tools of Markov chain theory, we have
proven the existence and uniqueness of a stationary distribution for any Markov
traffic on strongly connected and aperiodic road networks. We have also derived an
explicit formula for the stationary distribution and the two-dimensional stationary
distribution. Finally, we have proposed a simulation algorithm for generating ran-
dom trajectories which follows the two-dimensional stationary distribution which
being closest to a given mask matrix on the road network.

To test our theories, we have implemented the proposed model in our simulation
program (RCE) using OpenStreetMap. The whole project (including RCE) is
available for download.6

Future work will focus on the further improvements and the possible applica-
tions of our simulation algorithms, e.g., modelling the pollution or energy consump-
tion in Smart Cities.
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6https://github.com/rbesenczi/Crowd-sourced-Traffic-Simulator/blob/master/
justine/install.txt
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Appendix

In order to demonstrate the results of this paper we present a simple toy example
implemented in Python. Consider the road network 𝐺 = (𝑉,𝐸) on Fig. 1, where
𝑉 := {1, 2, 3, 4, 5} and 𝐸 := {(1, 2), (2, 1), (2, 3), (3, 4), (4, 2), (4, 5), (5, 2)}. Then
|𝑉 | = 5 and |𝐸| = 7. The adjacency matrix 𝐴 of 𝐺, where we denote the vertices
as well, can be derived as:

𝐴 :=

1 2 3 4 5
1 0 1 0 0 0
2 1 0 1 0 0
3 0 0 0 1 0
4 0 1 0 0 1
5 0 1 0 0 0

.

Clearly, 𝐺 is a strongly connected digraph. Since 1 → 2 → 1 and 2 → 3 → 4 → 2
are cycles of length 2 and 3, respectively, we have 𝑝𝑒𝑟(𝐺) = 1 and thus 𝐺 is
aperiodic. The first power 𝑘 that 𝐴𝑘 > 0 is 𝑘 = 6 and

𝐴6 :=

⎡
⎢⎢⎢⎢⎣

2 2 2 1 1
2 4 2 2 1
2 3 2 1 1
3 4 3 2 1
2 2 2 1 1

⎤
⎥⎥⎥⎥⎦
.

The entries of this matrix are the number of directed walks of length 6 between
the pairs of vertices. One can see that the in- and outdegree of vertices are given
as 𝑑− = (1, 3, 1, 1, 1)⊤ and 𝑑+ = (1, 2, 1, 2, 1)⊤, respectively.

Define the Markov kernel 𝑃 on the road network 𝐺 as:

𝑃 :=

1 2 3 4 5
1 1/2 1/2 0 0 0
2 1/4 1/2 1/4 0 0
3 0 0 1/2 1/2 0
4 0 1/4 0 1/2 1/4
5 0 1/2 0 0 1/2

.

Fig. 1 displays the Markov kernel 𝑃 denoting the transition probabilities on the
edges and its s.d. 𝜋 denoting on the vertices. Note that 𝜋 = 1/11(2, 4, 2, 2, 1)⊤ and
the 2D s.d. is given by:

𝑄 =
1

22

⎡
⎢⎢⎢⎢⎣

2 2 0 0 0
2 4 2 0 0
0 0 2 2 0
0 1 0 2 1
0 1 0 0 1

⎤
⎥⎥⎥⎥⎦
.
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One can easily check that the marginals of 𝑄 coincide to 𝜋.
We compute the 2D s.d. least square approximation of the adjacency matrix 𝐴

by Theorem 5.1. The symmetric unnormalized graph Laplacian matrix 𝐿 of the
road network 𝐺 is given as:

𝐿 =

⎡
⎢⎢⎢⎢⎣

2 −2 0 0 0
−2 5 −1 −1 −1
0 −1 2 −1 0
0 −1 −1 3 −1
0 −1 0 −1 2

⎤
⎥⎥⎥⎥⎦
.

The eigenvalues are (0, 1.55, 2, 4, 6.45). The multiplicity of the smallest eigenvalue
0 is 1 which shows that the road network is strongly connected. The generalized
(Moore-Penrose) inverse of 𝐿 can be derived as

𝐿−1 =

⎡
⎢⎢⎢⎢⎣

0.44 0.04 −0.16 −0.16 −0.16
0.04 0.14 −0.06 −0.06 −0.06
−0.16 −0.06 0.365 −0.01 −0.135
−0.16 −0.06 −0.01 0.24 −0.01
−0.16 −0.06 −0.135 −0.01 0.365

⎤
⎥⎥⎥⎥⎦
.

Then, by solving the vector linear equation 𝐿𝜆 = 𝑑+ − 𝑑−, we have Lagrange
multiplicators 𝜆 = (−0.2,−0.2, 0.05, 0.3, 0.05). One can see that the sum of multi-
plicators is 0. Thus, the 2D s.d. 𝑄𝐴 to the adjacency matrix 𝐴 is

𝑄𝐴 =
1

26

⎡
⎢⎢⎢⎢⎣

0 4 0 0 0
4 0 5 0 0
0 0 0 5 0
0 2 0 0 3
0 3 0 0 0

⎤
⎥⎥⎥⎥⎦

with stationary marginals 𝜋𝐴 = 1/26(4, 9, 5, 5, 3)⊤. The error square of the ap-
proximation is SSD = 0.5.

Proof of formula (4.5). For all 𝑔 ∈ ℱ𝑘 we have by formulas (4.1) and (4.2) and
the multinomial theorem that

∑︁

𝑓∈ℱ𝑘

𝜚(𝑓)𝑅(𝑓 , 𝑔) = 𝑘!
∑︁

𝑓∈ℱ𝑘

∏︁

𝑢∈𝑉
𝜋𝑓𝑢𝑢

∑︁

𝐾∈ℳ (𝑓 ,𝑔)

∏︁

𝑢,𝑣:𝑢⇒𝑣

𝑝𝑘𝑢𝑣
𝑢𝑣

𝑘𝑢𝑣!

= 𝑘!
∑︁

𝑓∈ℱ𝑁

∑︁

𝐾∈ℳ (𝑓 ,𝑔)

∏︁

𝑢,𝑣:𝑢⇒𝑣

(𝜋𝑢𝑝𝑢𝑣)
𝑘𝑢𝑣

𝑘𝑢𝑣!
= 𝑘!

∑︁
∑︀

𝑢∈𝑉

𝑘𝑢𝑣=𝑔𝑣

∏︁

𝑢,𝑣:𝑢⇒𝑣

(𝜋𝑢𝑝𝑢𝑣)
𝑘𝑢𝑣

𝑘𝑢𝑣!

= 𝑘!
∏︁

𝑣∈𝑉
(𝑔𝑣!)

−1

(︃∑︁

𝑢∈𝑉
𝜋𝑢𝑝𝑢𝑣

)︃𝑔𝑣
= 𝑘!

∏︁

𝑣∈𝑉

𝜋𝑔𝑣𝑣
𝑔𝑣!

= 𝜚(𝑔).

44 N. Bátfai, R. Besenczi, P. Jeszenszky, M. Szabó, M. Ispány



English language learning by visualizing the
literary content of a knowledge base in the

three-dimensional space∗

István Károly Bodaa, Erzsébet Tóthb

aDebrecen Reformed Theological University,
Department of Mathematics and Informatics

boda.istvan@drhe.hu
bUniversity of Debrecen, Faculty of Informatics

toth.erzsebet@inf.unideb.hu

Submitted: January 9, 2021
Accepted: April 7, 2021

Published online: May 18, 2021

Abstract
In our paper we would like to present and visualize the details of the data

structure and organization of our three-dimensional virtual library model
(3DVLM). The current implementation of the model is based on the features
of the three-dimensional virtual space of the MaxWhere Seminar System [23]
which provides carefully arranged smartboards in the 3D space for hypertext-
based content.

Keywords: Three-dimensional virtual library model (3DVLM), MaxWhere
Seminar System, Callimachus and the Library of Alexandria, text-based En-
glish language learning

AMS Subject Classification: 68U05, 68U35, 68T05, 91E10, 91E40

1. Introduction

The overall aim of the three-dimensional virtual library model (3DVLM) is to pro-
vide for the library users selected verbal and multimedia content in the virtual 3D
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space (and in parallel in the hypertextual 2D space). In general, the 3DVLM can be
considered as a human-computer interaction-based application in the framework of
CogInfoCom research [1, 2] focusing on the efficient organization and visualization
of the presented content in order to help preserve and transmit classical cultural
heritage and to support autonomous and text-based English language learning [15].

The 3DVLM is intended to achieve two basic goals:

• first, giving a general introduction and overview of the classical heritage which
the European culture is based on. In this respect, the users can have access
to selected texts about Callimachus who was one of the most productive
and influential Hellenistic scholar-poets of his age. In addition, the library
contains selected literary texts by Callimachus and other prominent authors
(e.g. epigrams, lyric poems, anecdotes etc.). Because an average user of
the library may have difficulties in understanding the provided literary texts,
the library provides the readers with supporting materials (e.g. vocabulary
items, concordances and quotes, selected parts of relevant Wikipedia entries,
commentaries etc.) which help them to understand and interpret (and in turn
enjoy) the preprocessed primary texts. Note that the co-reference and/or
intertextual relationships are represented, in the first place, by hypertext
links between the primary texts and the supporting materials;

• second, the virtual library is intended to support language learning by care-
fully preparing and commenting the provided texts in order that the users,
and especially the young members of the generation CE with supposed in-
termediate or advanced English language skills can easily acquire the accu-
mulated knowledge and preserved values that the ancient authors created
centuries ago. Although the content and structure of the virtual library fo-
cus, in the first place, on the improvement of reading as one of the four basic
language skills, the first goal of the 3DVLM outlined above naturally involves
the development of the learners’ cultural awareness.

The learning philosophy of the model is to help the readers understand and
interpret the primary texts of the virtual library ‘at once’, supplying them with
the necessary knowledge represented by secondary materials covering the relevant
linguistic or dictionary, generic, encyclopedic and background knowledge. Because
the efficient (i.e. easy, simple, self-evident, user-friendly etc.) access to the primary
texts and the associated secondary materials is essential in the learning process, we
tried to structure, arrange and visualize the compiled material by using different
and varied colors and typography (e.g. font and paragraph styles, images, graphics,
icons, lists, tables, graphs, spatial maps, etc.). Note that exploiting the excellent
and spectacular features of the MaxWhere 3D environment might possibly motivate
the members of the generation CE in itself, and therefore encouraging and urging
them to enhance their knowledge (being either linguistic or cultural). In addition,
the importance of English language skills is undoubtedly crucial in the Internet era
for everyone who wants to access and benefit from the global information sources
available. Therefore we firmly hope that our potential users will, either immediately
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or eventually, make up their mind, and gradually improve their English competence
in the course of reading, understanding and memorizing the preprocessed material
provided by our virtual library.

We would like to provide a brief overview of similar research directions, there
are several other CogInfoCom researches related to educational opportunities in
virtual reality, and especially in the MaxWhere Seminar System.

• VR, in general, provides efficient virtual workspace for education even in in-
dustrial or company-based environment (e.g. dual education, VR simulations
for special training etc. [3, 22]). As “a desktop virtual environment for ed-
ucation, learning and working” [5], the MaxWhere Seminar System seems
to be especially suitable to develop educational content in the virtual 3D
space [18], and to provide personalized, customizable learning environment
and paths [19].

• The MaxWhere system opens up a wide range of excellent and spectacular
opportunities when we want to choose the most appropriate 3D space for a
special application. There are several existing 3D spaces available, and new
ones are being published from time to time. Due to its inherent flexibility,
the system enables the development of new 3D environments where various
objects, places, buildings, rooms etc. can be constructed or reconstructed,
along with the plausible and striking arrangement of different smartboards
[17, 24].

• According to in-depth studies, there are more benefits of the MaxWhere
Seminar System. It is a substantial benefit of the 3D virtual workspace that
it can display some extra information permanently for its users in designated
smartboards [4]. In addition to the immersive experience that a well-designed
VR environment can offer, the different navigation methods of the MaxWhere
Seminar System provide a heightened sense of spatial presence for its users
[5, 6].

• The elaborated 3D spaces of the MaxWhere system can be metaphorically
considered as a “memory palace” [16] where the conceptual mapping of the
various concepts of the presented content to specific parts or components
of the virtual 3D environment, representing a unique spatial arrangement
and/or temporal ordering of 3D objects [16], can greatly help the learners
memorize the concepts, their insights, and in turn the whole material to be
learned (by memorizing individual properties of the 3D objects with or with-
out following a pre-determined scenario). Moreover, it was demonstrated by
published experiments that when using MaxWhere 3D spaces for educational
purposes its users have remarkably more effective memory recall, better com-
prehension and faster activity than using 2D web-based content [21].

All those benefits can be extensively exploited when we would like to design and
create an interactive learning material in the 3D space. Therefore the emerging
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VR applications for educational purposes would have true potential, and they are
supposed to achieve fast progress in the near future. If this is so, we can, by all
means, consider “virtually augmented, interactive education” [2] in the 3D space as
one of the major research areas of CogInfoCom.

In our paper we would like to focus on the data structure and organization of
the current implementation of the 3DVLM. For those, who are interested in the
three-dimensional virtual library model, we recommend our previous publications
[7–15] where further details can be found. Note that the 2D version of the library
is available in the internet [20].

2. Structure patterns of the model

The content, organization and presentation of the virtual library model are equally
important for supporting efficient English language learning. In our paper we would
like to focus on the data structure and organization of the virtual library model se-
lecting, introducing and illustrating typical structure patterns by visualizing them.
Each pattern follows the binary relation form 𝜌(x,y) where the domain (X) and
codomain (Y) of the relation depend on the type of the pattern introduced. For
example, in the simplest pattern both X and Y are sets containing primary texts
(about Callimachus etc.) represented by slides and denoted by S01, S02, etc. That
is,

X ≡ {S01, S02, . . . } and Y ≡ {S01, S02, . . . },

where the element ‘x’ is associated to the element ‘y’ if and only if there is a
hypertext link from the slide ‘x’ to the slide ‘y’. As we shall see later, the ac-
tual representation of the link can differ according to the context (e.g. a link can
be represented by a keyword or “key phrase” within the slide, a link symbol, a
recommended link at the bottom of the slide etc.).

In the next subsections, we would like to introduce the most important structure
patterns of the 3DVLM. We developed a kind of “navigation map” for the main
items of the virtual library which can serve as a practical tool for visualizing the
main patterns.

The selected items of the virtual library and the most typical relationships be-
tween them are illustrated on the interactive navigation page of the virtual library
[20]. Here each item is identified by a simple code (e.g. the first slide about Cal-
limachus is identified by S01, the second slide by S02 etc.) which are associated
by a hypertext link to the exact location (e.g. an URL#anchor) where the referred
item can be found. Therefore the page actually represents a kind of “navigation
map” for the main items of the virtual library (see Fig. 1).

Because each structure pattern corresponds to a given type of relationship be-
tween certain items of the library, the navigation page is a convenient way of
presenting a quick overview of the main patterns.

48 I. K. Boda, E. Tóth



Figure 1. The navigation map of the current implementation of
the 3DVLM.

2.1. Links between primary texts [DLINK]

This basic structure pattern represents links between primary texts presented in
separate web pages or slides. As a general rule, from each slide we can step to the
next slide which enables sequential access to the presented content. In the current
implementation of the 3DVLM the list of primary texts (identified by S01, S02
etc.) is as follows:

• Callimachus [ S01 ]

• Callimachus in Alexandria [ S02 ]

• The Great Library of Alexandria [ S03 ]

• The Pinakes [ S04 ]

– The collection of the Great Library [ S41 ]

– Callimachus’ classification system [S42 ]

– The structure of the Pinakes [ S43 ]

• The works of Callimachus [ S05 ]

The codes of the primary texts and the relationship between them can be seen in
the selected part of the navigation map of the 3DVLM (see Fig. 2).

The hypertext link is represented by the title of the linked slide (e.g. S02 )
placed at the bottom of the linking slide (e.g. S01 ), under a horizontal line (e.g.
“Callimachus in Alexandria →”, see Fig. 5).
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Figure 2. A selected part of the navigation map including primary
texts.

2.2. Links between primary and/or secondary texts [ELINK]

This structure pattern represents links between primary texts and/or secondary
texts (both presented in separate web pages or slides). The main function of the
secondary texts is to explain certain concepts which might be unknown or unclear
to an average user (that is, those texts represent encyclopedic knowledge). In
the current implementation of the 3DVLM, there are slides about Cyrene (X12 ),
Alexandria (X23 ), the Ptolemaic Dynasty (X21 ) etc. The hypertext link is rep-
resented by a special symbol (showing two parallel arrows pointing to different
directions, �) placed immediately after the keyword or key phrase which is asso-
ciated to the linked text. In the slide about Callimachus ( S01 ) the link symbol
can be seen after Cyrene (pointing to the corresponding slide X12 ), the Library of
Alexandria (pointing to the corresponding slide X23 ) etc. (see Fig. 3).

Figure 3. A selected part of the slide about Callimachus ( S01 )
illustrating VLINK (. . . ), XLINK ( * ) and ELINK (�).

2.3. Links between slides and vocabulary items [VLINK]

This structure pattern represents links between different kind of texts (e.g. primary
texts, secondary texts, thesaurus pages etc. presented in separate slides) and vo-
cabulary items. The main function of vocabulary items is to explain certain words
(rare words, proper nouns, abbreviations etc.) which might be unknown or un-
clear to an average user (that is, those items represent dictionary knowledge in the
usual form of dictionary entries including pronunciation, different forms, explana-
tion etc.). The hypertext link to a vocabulary item is represented by a dotted line
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(. . . ) under the keyword or key phrase which is associated to the linked vocabu-
lary entry. In the slide about Callimachus in Fig. 3, the dotted link symbol can
be seen under Callimachus, c., BC, native, colony, Cyrene, Alexandria, patronage
etc. The vocabulary item which the uncountable noun “patronage” is associated to
can be seen in Fig. 4. Note that the links to the vocabulary items, because of their
quantity, are not presented in the navigation page.

Figure 4. The vocabulary item about “patronage”.

2.4. Links between keywords (key phrases) and various notes
[XLINK and CLINK]

This structure pattern (being either XLINK or CLINK) represents links between
keywords (or key phrases) and notes which might reveal some additional informa-
tion (e.g. definitions, explanations, commentaries, context, pronunciation, meaning,
synonyms and antonyms, sentence samples, selected concordances etc.) about the
corresponding keyword or key phrase. The main difference between XLINK and
CLINK is, on the one hand, the place of the note within the page where the key-
word or key phrase can be found. On the other hand, in XLINK the notes have
mainly explanatory function, whereas in CLINK the notes are usually background
materials (revealing possible contexts etc.).

In both XLINK and CLINK, the hypertext link to the note is represented by
an asterisk (*) which is placed immediately after the keyword or key phrase which
is associated to the corresponding note.

In the first structure pattern type (XLINK), notes are presented in the form
of numbered endnotes, and placed usually in the same slide where the associated
keywords can be found (although links to the notes from other slides are quite
possible). In the slide about Callimachus in Fig. 3, there is an asterisk after the
key phrase (c. 310/305 – c. 240 BC) which is explained as “Callimachus was born
around 305 BC and died around 240 BC” in the endnote denoted by [1] (see Fig. 5).

Note that although both the explanatory notes which XLINKS point to (e.g.
[1] Callimachus was born. . . ) and RLINKS which point to specific reference items
(e.g. . . .Hellenistic age. 1 and . . . the Muses. 2 ) are numbered in superscript
position which might lead to some confusion. To avoid this, both the way we mark
the numbers and their position are completely different : in case of explanatory
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notes, we use square brackets before and after the numbers, and the numbers are
placed at the end of page; in case of RLINKS, however, we use border-boxes (i.e.
four border edges) around the numbers and they are placed right after the content
which represents a specific reference (to a given bibliographic item or source in
another page).

Figure 5. The note no. [1] for (c. 310/305 – c. 240 BC) illustrating
XLINK the source of which can be seen in Fig. 3, represented by an
asterisk ( * ). There is a link at the bottom of the slide to another
slide (entitled “Callimachus in Alexandria”) illustrating DLINK.

In the second structure pattern type (CLINK), the additional information which
a selected keyword or key phrase is associated to is placed immediately under the
sentence or paragraph containing the keyword or key phrase. For example, in the
thesaurus page (T02 ) the key phrase “ESL class” (emphasized by colored borders
and having an asterisk as a link symbol) is associated to a short text (extracted
from a web page) providing a broader context of the sentence which contains the
key phrase (“In an ESL class, you would be assisting the main TEACHER who
plans the lessons and is primarily responsible for the class.”, see Fig. 6).

Figure 6. A selected part of the thesaurus page (T02 ) containing
concordances about “responsible for”. The figure illustrates VLINK

(. . . ), CLINK (� and *), and RLINK (⇒).

The structure and function of thesaurus pages will be explained later in sub-
section 2.5.

Where a concordance is selected from one of the primary or secondary texts it
is emphasized by colored background. In such cases, the source text itself provides
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the broader context of the concordance, so it can serve as a kind of “note” (in
the sense we used before) for the concordance. Although this case can also be
considered as a CLINK structure pattern type, the hypertext link to the source
text is represented by the same symbol that we are using in the ELINK pattern
type (showing two parallel arrows pointing to different directions). For example, the
first concordance in Fig. 6 (“CALLIMACHUS was responsible for producing
a bibliographic survey based upon the contents of the Library.”) can be found in
the slide about Callimachus ( S01 ) and therefore the link, presented by the sign �
placed immediately after the concordance, is pointing to this slide.

2.5. Links between thesaurus pages [TLINK]

This structure pattern represents links between vocabulary items and thesaurus
pages. While vocabulary entries represent dictionary knowledge, thesaurus pages
represent chiefly generic knowledge (which, in our case, expressed by semantic re-
lationships between certain words or phrases). Thesaurus pages contain a selected
bunch of concordances and quotations, all of which fit a given microcontext, that
is, one or two collocation patterns built of semantically related words or phrases
upon a specific subject or meaning. For example, the thesaurus page (T02 ) is
organized around words or phrases concerning “people with respect to responsi-
bility, motivation and commitment”, and the concordances or quotations in the
page fit either the collocation pattern [adj+noun] or [noun+BE+adj/pp] (e.g.
enthusiastic person; determined woman; resolute leader; etc; He is eager, willing,
and compliant to . . . ; Callimachus was determined not to . . . ; the students are
. . . highly motivated; Callimachus was responsible for . . . ; etc.). Note that we can
have direct access to all thesaurus pages through the navigation map (see Fig. 1)
where the corresponding codes of the thesaurus pages (T01 , T02 , . . . , T05 , T06 ,
. . . etc.) can be found in the middle of the page around the code CPT (which
is the abbreviation of “Collocation PaTterns”, and identifies a separate web page
containing all collocation patterns used in the virtual library).

As an example, let us select the first slide ( S01 ) about Callimachus, and seek
for the key sentence “CALLIMACHUS was responsible for producing a bibli-
ographic survey based upon the contents of the Library.” (W02 ) (see Fig. 7).

Figure 7. Another part of the slide about Callimachus ( S01 )
showing the selected key sentence (W02 ).

English language learning by visualizing the literary content . . . 53



Clicking the dotted phrase “responsible for” in the page, we can go to the corre-
sponding vocabulary page (see Fig. 8) where we can find two links to the relevant
microcontexts in the corresponding thesaurus page (T02 ) (see Fig. 6). As we can
see, the hypertext link to a thesaurus page is represented by an expression con-
taining the key phrase “responsible for ” (marked by colored background, and
introduced by the symbol ⇒) which is associated to the linked thesaurus page.

Note that the navigation page (see Fig. 1) shows explicitly the code of the
key sentence (W02 ), and in turn illustrates the indirect relationship (that is, the
above-mentioned two-step relationship through the corresponding vocabulary page)
between the first slide ( S01 ) and the thesaurus page (T02 ).

Figure 8. The vocabulary item about “responsible for” illustrating
TLINK.

2.6. Links between various content units and reference items
[RLINK]

This structure pattern represents links between various content units from the
library (that is, sentences, concordances, quotations, paragraphs, texts etc. from
primary texts, secondary texts, thesaurus pages and notes) and reference items
which describe the original source of the content units (printed and electronic
books, journals, newspapers, Wikipedia and dictionary entries, various web pages
and electronic materials available in the internet etc.). The hypertext link to a
reference item is represented by either a reference number in superscript position
(e.g.1) in slides, or a double arrow in superscript position (⇒) in thesaurus pages.
The link symbols are placed immediately after the corresponding content unit. For
example, in the slide about Callimachus ( S01 ) in Fig. 5 there are two references:
the first is a Wikipedia entry (57th item), and the second is a chapter from a book
(219th item) (see Fig. 9).

Another example is the concordance “In an ESL class, you would be assisting
the main TEACHER who plans the lessons and is primarily responsible for the
class.” in the thesaurus page T02 in Fig. 6. Here the referred item is a web page
(363rd item) (see Fig. 10).

The reference items, that is, the bibliographic descriptions of all sources having
been referred to from the content of the virtual library, are available in a separate
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Figure 9. References from the slide about Callimachus ( S01 ) to
the 57th and 219th reference items illustrating RLINK.

Figure 10. Reference from the thesaurus page (T02 ) to the 363rd

reference item illustrating RLINK.

web page REF . In the current implementation of the 3DVLM there are more than
370 reference items. Although the code of the reference page does appear in the
navigation map (in the top right corner), the individual links to the reference items
are not presented there.

Figure 11. Reference from the top of the timeline page (TIM ) to
the 357th reference item illustrating RLINK.

Although we have had a comprehensive overview of the most important struc-
ture patterns of the virtual library model, there are some additional features. For
example there is a timeline page (TIM) of the most important events (“histori-
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cal milestones”), an index page of selected keywords (KWI ), and a category page
which describes the main categories of the hierarchical classification scheme (CLA)
of the ancient Library of Alexandria. Note that this famous scheme, referred to
as “Pinakes”, was invented by Callimachus in the 3rd century BC. In the current
implementation of the 3DVLM each content unit of those pages has a hypertext
link to a selected item in the reference page (e.g. to a relevant Wikipedia entry)
where additional information can be found about the content (see Fig. 11).

3. Final remarks

Although the current implementation of the model in the MaxWhere Seminar Sys-
tem uses the 3D Castle space, the model, because of its flexible organization, is
fully compatible with other MaxWhere 3D spaces. In the 3D Castle space the
content of the virtual library is presented in carefully arranged smartboards (see
Fig. 12 and Fig. 13). With a special care we have developed the navigation map
which presents the various kinds of relationships between the content units of the
virtual library and thus making the retrieval of these units more effective for the
users.

In our paper we provided a brief overview of how the content of the virtual
library is organized. We emphasized and visualized those features of the model
which might be useful for the possible users of the virtual library, focusing especially
on the needs of English language learners who, we firmly hope, are going to have
strong interest in and motivation about the ancient culture and heritage.

Figure 12. The content of the virtual library in the 3D Castle
space of the MaxWhere Seminar System (1).
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Figure 13. The content of the virtual library in the 3D Castle
space of the MaxWhere Seminar System (2).
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Abstract

As many research projects face the need to manage a large amount of gen-
erated research-specific data, usually with a specific structure, the demand
for visualization systems is common. Likewise, the emerging data volume
could turn substantially transparent cast in a visual appearance. Also, the
non-trivial character of the dataset made the construction of a custom vi-
sualization necessary. Taking the possessed requirements into account, we
designed a tool for processing the simulation data and handling the issue
resulted from the indirectness with a previously analyzed barycentric conver-
sion method. The system also visualizes the microscopic organism’s behavior
and supports a straightforward data analysis through several built-in tools.
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1. Introduction

Dealing with a massive volume of research-specific data is a common problem in
the case of a broad spectrum of research projects. It may be about searching for
anomalies, patterns, or even visual forms of data; it usually leads to a visualization
system’s demand. Inspecting the microscopic world is a perfect example as the
users need to extract new knowledge regarding the ecosystem’s nature [4].

As our research aimed to explore various aspects of the microscopic organ-
isms’ behavior in a well-defined environment [2, 3], we encountered the problem
mentioned above. The research-specific data volume could, with high probability,
provide for us some higher-level properties presented visually, being difficult to ob-
serve otherwise. Thanks to the non-trivial characteristics of our output datasets,
no out-of-the-box solution could be put into practice, which led us to design a
visualization system satisfying the condition set.

This work’s main purpose is to demonstrate our visualization framework’s cre-
ation process and operation to visualize microscopic organisms’ movement and
behavior. The framework first needs to deal with the input dataset’s indirectness
and obtain the environmental elements’ per-frame locations. We realized this by
building on a method using barycentric coordinates to convert from local to global
coordinates.

The object locating problem derives from the fact that the simulation dataset
includes a frame sequence describing an organism’s step-by-step movement indi-
rectly, by the environment’s behavior. Each frame consists of the environmental
change from the previous step described from the organism’s perspective. Consid-
ering this information, we had the demand for locating every element in the global
world.

First, we would like to present the starting problem in Section 2 by describing
the environmental elements and the data structure. Next, we give a brief overview
of the method applied to the organism localization in its world in Section 3. We also
demonstrate the implementation details and its features here. We continue with
the system’s evaluation throughout several test cases and present their accuracy
profile in Section 4 and close our paper with a conclusion in Section 5.

2. Problem definition

2.1. Environment description

The project aims to visualize a schematic, microscopic, free-moving organism that
locomotes in a 3D watery environment. In this size range and environment, viscous
forces dominate over inertial forces; thus, locomotion occurs in the realm of the so-
called low Reynolds numbers (e.g., [6]), where locomotion is essentially a sort of
“creeping” through the water. The environment also contains stimuli relevant for
the animal modeled by point-like light sources representing food.

The scene to be visualized involves several elements. In the center of the picture,
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there is a moving organism having in our case a microscopic size. The organism is
built up of its main body and several sensors with fixed fields of view. Different
simulations may vary in the number, the field of view, and the positioning of the
sensors on the organism-body.

The organism senses one particular food if it falls into the field of view of at
least one sensor and its intensity is high enough to be relevant. The animal moves
around the space, possibly perceiving some of the foods, even consuming them.
The organism “eats” a piece of food if its locomotion trajectory intersects the given
food point, which is much smaller than the animal. Thus, to eat food, the animal
has to have a precisely oriented locomotion.

Figure 1 presents the main elements in the organism simulation. The main
object located in origin represents the organism, which has a 𝛾 angle of view.
Points 𝐹𝑖 (𝑖 = 1, 2, . . . , 5) mark the food positions in the environment.

Figure 1. Schematic overview of the main elements involved in the
simulation of the organism.

The foods’ fixed lifetimes are supposed to imitate food consumption by other
competitors in the space leading to the fact that some foods can expire. A food may
disappear after the consumption by either our organism or one of the competitors
(the food’s lifetime has expired).

2.2. Data structure

The simulation system’s only purpose is to simulate the organism’s behavior in
its environment and its attitude to the foods. As it is only concerned with the
simulation, the system does not provide any visual feedback. In each of the cases,
the system’s output is a single dataset describing the step-by-step movement stored
in a JSON format.
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As Figure 2 shows, the data file contains the organism’s structural description.
It has a fixed size, several sensors, and an angle of view. The description also
includes the spherical coordinates for the sensors, which indicate their position on
the organism-body in its local coordinate system. In this example, the organism
has four sensors distributed evenly with an 85-degree angle of view.

"structure" : {
"size" : 0.05,
"sensors" : [

{ "theta" : 0.523599, "phi" : 0.0 },
{ "theta" : 0.523599, "phi" : 1.5708 },
{ "theta" : 0.523599, "phi" : 3.14159 },
{ "theta" : 0.523599, "phi" : 4.71239 }

],
"angleofview" : 85

}

Figure 2. Example output of the simulation framework, describing
the structure of the organism.

Step-by-step movement data follow the structural description of the organism.
The frame sequence consisting of the steps defines the organism’s movement, each
frame having the same structure. As Figure 3 presents, a frame object contains
several attributes, such as the frame number, rotation vector, translation vector,
and the food collection. A food object includes its coordinates relative to the
organism, an intensity value, and a reset index, which indicates the potential food
repositioning.

"frames" : [
{ "frame_num" : 0,

"rv" : [0, 0, 0],
"tv" : [0, 0, 0],
"foods" : [

{ "x" : -1.08496, "y" : 0.838925,
"z" : 1.13508, "i" : 0.587424,
"reset" : 1,

}, ...
]

}, ...
]

Figure 3. Example simulation output, describing the per-frame
state of the simulated environment.
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3. Visualization framework

3.1. Method for determining animal location

As the data sequence lacked the current organism positions, we needed to extract
these location vectors from the indirect description of the movement relative to
the organism. To this end, we implemented a previously presented mathematical
method [1] for the conversion from local to the global coordinate system.

As presented in this prior work, solving the problem using the matrix-based
approach leads to a higher overall floating-point error propagation, which is a
direct result of relying on earlier frames. The strength of the barycentric method
proposed in the previous work lies in the capability of avoiding such precision issues
and in the ability to locate the object in the global system entirely without any
information from earlier frames.

To apply the barycentric method to the problem at hand, we used the food po-
sitions (defined in the organism’s local coordinate system) as the required reference
positions. Such an approach was made possible by our prior knowledge about the
simulated environment; in every input frame we have five food points, which satis-
fies the constraints for obtaining the barycentric coordinates of a three-dimensional
point.

With the thus-constructed reference frame available, the proposed method con-
sists of two main steps. The purpose of the first step is to determine the barycentric
coordinates of the central object in its local coordinate system. To this end, we
relied on the fact that the input positions were relative to the organism; the direct
consequence of this property is that the main object’s location is always (0, 0, 0).
Building on [5, p. 46] (with several simplifications) as a starting point, and using
the mentioned information, we could determine the barycentric coordinates for use
in the next step.

The second step of the barycentric method consists of applying the previously
determined barycentric coordinates, which is the moving organism’s actual global
position in the current step. This step requires a static basis in the global coordinate
system. Assuming that the organism starts its path in the global origin, we own
the information that the origins of the global and the organism’s local coordinate
systems are the same in the first frame, which also means that the positions in
the whole scene are in the global coordinate system in the starting moment. With
this knowledge in our hands, we can form the required static basis by taking the
first frame’s food positions. Thus, we can obtain the moving organism’s global
position by converting the obtained barycentric coordinates back to the global
system concerning the formed basis.

3.2. Food regeneration problem

One issue with our previously described usage of the barycentric approach is that
the reference basis’s food positions are not always stationary. As we described
earlier, the reference foods can arbitrarily disappear and reappear in other places,
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making it necessary to update the static basis after every changing food locations.
Every food has a randomly generated, fixed lifetime in our simulation, repre-

senting its other competitors’ consumption. As a result, a food can disappear either
because the moving organism consumed it or because its lifetime expired, meaning
that another animal consumed it.

There is always a replacement for the missing food with a new one at a new
location. The newly appeared food point’s location is also in the organism’s local
coordinate system, like every other one. When this situation occurs, we have to
form a new reference basis with potentially new objects. To facilitate this, we can
only rely on food positions for which we can obtain the global coordinates, but
since we might not necessarily have required information about their world space
positions (since they might have just appeared), we have to obtain their world
space positions the same way as we calculate the position of the moving object.
As it can be seen in Figure 4, the object locating problem always starts with an
examination for food regeneration. The conversion is possible since every frame is
guaranteed to contain more than four surrounding points, so if one disappears, we
use the remaining ones as the reference points for the barycentric coordinates.

Is there food regeneration?

Obtain the barycentric 
coordinates of the organism

Determining the barycentric
coordinates of the newly

appeared food

New frame

Locate the organism in the 
global coordinate system

Determine the sensor positions
relative to the organism

Locating the organism in the
global coordinate system

Updating the static basis with
the new food position

Determine the barycentric
coordinates of the newly

appeared food

Locate the newly appeared
food in the global coordinate

system

Update the static basis with 
the new food position Locate the organism in the 

global coordinate system

Obtain the barycentric 
coordinates of the sensors

Yes No

Figure 4. Building blocks of the localization method extended by
the regeneration problem.

In the first step, we calculate the barycentric coordinates for the new reference
objects based on the remaining four points of the frame, then use these to compute
new global coordinates by weighting the world space positions of said remaining
points the same way we did for the main object, as described in Section 3.1. In the
last step, the newly calculated positions have to be stored as a new reference basis
to use them later for the barycentric calculations.
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3.3. Implementation

Considering all the requirements described in Section 2 and properties of the bary-
centric method, we constructed a tool to process the datasets resulting from the
organism simulation, to determine the necessary global positions and visualize the
results in a three-dimensional scene. Figure 4 presents the entire process for locat-
ing the object (including the ability to handle regenerated food points).

Throughout the framework’s implementation, we considered it essential to pro-
vide a system capable of delivering an interactive visualization environment, which
serves as an efficient means of exploring the input data with user-driven mecha-
nisms.

We implemented the visualization system using OpenGL in C++. Figure 5
shows an example output of the framework with the main elements. As shown in
this example, the simulation objects are represented by spheres in our framework,
mimicking the model described in Section 2.1. The object colors serve as a way for
the efficient and unequivocal identification of the particular food objects and the
sensors located on the organism-body.

Figure 5. Example output of the visualization framework. In this
scenario, the central, white sphere representing the moving organ-
ism perceives the red food with two sensors and the blue food with
one sensor. The translucent haloes around the sensed foods and the

links to the appropriate sensor visualize the perceptions.

3.4. Features

While designing the framework, we implemented several functionalities that pro-
vide the necessary tools for the users for an easy and transparent data analysis,
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which offers an accessible way to answer their questions. First, we made the nav-
igation in the frame sequence to any desired moment, both in the forward and
backward direction. Similarly, there is a possibility of freezing the simulation at
any time to move around the scene so that the user can examine the organism’s
momentary behavior from multiple viewpoints. Furthermore, the camera can be
repositioned arbitrarily into any existing sensor, narrowing down the viewpoint
only to the region that the selected sensor perceives. The user can also manage
specific visualization settings through the graphical user interface, such as object
sizes, line widths, and object visibilities, which eases their ability to focus on any
simulation aspect.

From the perspective of visual analytics, the marking of the food visibilities was
essential. As already mentioned, the organism sensed one particular food if it falls
into its field of view and has an intensity high enough to be relevant. First, foods
perceived by at least one sensor are marked by a translucent halo with an adjustable
size. Furthermore, we link the foods sensed with a line to the sensor(s) perceiving
them, so it is easy to analyze which food the organism chooses for consumption and
which direction the organism selects for movement. A bounding box surrounds the
environment representing the maximum possible extent of the foods and animal
positions from the loaded dataset.

Figure 6 shows two different moments from the same dataset visualization with
a zoomed-in viewpoint. The halos and the links can easily determine the food
visibilities. On the left side, three different sensors sense all of the three perceptible
foods. By comparison, the organism perceives only two of the foods on the right
side, but it senses the red one with all of the four sensors.

Figure 6. Two scenarios from the visualization framework with a
zoomed in point of view with different food perceptions.

4. Results

To obtain our visualization system’s accuracy profile, we analyzed its precision
characteristics through several different test scenarios. Since the datasets resulting
from the simulation do not provide the true location information necessary for such
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a comparison, we first had to produce a suitable basis for the precision measure-
ments. To this end, we generated multiple different artificial animal movements,
which established a baseline for testing the accuracy of the proposed barycentric
approach.

Figure 7 shows the movement paths in three of the aforementioned, custom
generated test scenarios. Thanks to the absence of the organism’s physiological
properties and the surrounding environment’s essential attributes, these object
movements tend to be simpler and rule-following than the real-life organism be-
havior. Black lines visualize the generated movement paths, and the orange points
mark the reference food positions.

a) b) c)

Figure 7. Artificially generated movement paths. a) Periodic
movement with a few direction changes b) Spiral movement c) Fully

random movement with random rotations.

As the previous test cases provided us a ground-truth data for the resulting
organism locations to be compared to, we concluded the precision measurements
of the system in Figure 8 and Figure 9. The red line marks the location difference
for the spiral movement, the green for the periodic movement with a few direction
changes, while the blue for the random movement. Figure 8 presents these cases
without any food replacement, while Figure 9 presents the precision in the same
cases, but with a food regeneration in every 200 frames. The magnitude of the
object positions extends to approximately 14–15 units. In Figure 8 and Figure 9
can be seen that the precision difference is about three to five magnitudes lower in
each of the cases.

The analysis of the resulting error metrics showed that the reconstruction error
and the average distance of the reference points from the animal correlate in each
frame. This is best illustrated by the oscillation of the error in the case of the
spiral movement with regenerating foods, where the reference points tend to get
clustered after a number of food regenerations, which leads to a constantly alter-
nating increase and decrease of the average animal-food distances as the animal
traverses the spiral path.

Finally, we evaluated our visualization system on real-life datasets, which de-
scribed a specific organism’s movement in their well-defined environment. We show
a few of such datasets in Figure 10. Specific cases differed in the attributes of the
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organism and the movement lengths. The tested datasets’ organisms contained
varying numbers of sensors in a potentially different alignment in each input sce-
nario. The dataset owners validated the output of the system in these cases.
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Figure 8. Precision measurements for the artificially generated
movement paths shown in Figure 7 without food regeneration.
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Figure 9. Precision measurements for the artificially generated
movement paths shown in Figure 7 with a food regeneration in

every 200 frames.

a) b) c)

Figure 10. Movement paths generated using real-life datasets.
The three paths are traversed by organisms with different sensor

positions.
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5. Conclusion

In this paper we presented our framework’s creation process and operation, aiming
to visualize microscopic organisms’ movement and behavior in a well-defined envi-
ronment. Considering all the requirements demonstrated in this work and putting
the proposed barycentric method in [1] into practice, we created a research-specific
data processing tool, dealing with the speciality arising from the type of data and
delivering the results’ visualization in a three-dimensional scene. It facilitates ef-
ficient analysis of the input data through real-time, user-driven mechanisms such
as simulation freezing, scene inspection from multiple viewpoints, using analytical
tools, and managing visualization-specific settings.

We first demonstrated the problem leading to our system’s demand by a world
description and presenting the special data structure. Then we gave a brief overview
of the method building on barycentric coordinates for the conversion process that
originates from the need to go from local to global coordinates. Building on the
barycentric method, we could solve the problem given by the research-specific
datasets’ non-trivial characteristics. Next, we presented the implementation de-
tails and our framework’s operation throughout the description of unique features
making a transparent and straightforward data analysis possible.

As soon as the system’s design process was finished, we installed it to the
main research project regarding the properties of microscopic organisms’ behavior.
During its operation, our tool provided for us a wide range of higher-level knowledge
through transforming our simulation data into a visual form, which would otherwise
has been left unnoticed by the tool. We could exploit a great benefit in the moments
when a portion of food was just being consumed in front of our organism. The
recognition of which direction the organism chose to replan its way for the nutrition
was a cardinal question, and along with several issues, they would not have been
observable without any visual representation.
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Abstract

Researchers often use theoretical models which provide a relatively sim-
ple, yet concise and effective way of modelling various phenomena. However,
it is a well-known fact that the more complex the model, the more complex
the mathematical description is. For this reason, theoretical models generally
avoid large complexity and aim for the simplest possible definition, which al-
though makes models mathematically more manageable, in practice it also
often leads to sub-optimal performance. Furthermore, the data collected dur-
ing the observations usually contain confounding factors, for which a simple
theoretical model can not be prepared. Overall, mathematical models are
usually too rigid and sophisticated, and therefore cannot really deal with
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sudden changes in the environment. The application of artificial intelligence,
however, provides a good opportunity to develop complex models that can
combine the basic capabilities of the theoretical models with the ability to
learn more complex relationships. It has been shown [16] that with neu-
ral networks, we can build such models that can approximate mathematical
functions. Trained artificial neural networks are thus able to behave like the-
oretical models developed for different fields, while still retaining their overall
flexibility, which guarantees an overall better performance in a complex real-
world environment.

The aim of our study is to show our notion that we can create an architec-
ture using neural networks, which is able to approximate a given theoretical
model, and then further improve it with the help of real data to suit the real
world and its various aspects better. In order to validate the functionality of
the architecture developed by us, we have selected a simple theoretical model,
namely the Kermack-McKendrick one [4] as the base of our research. This is
an SIR [2] model, which is a relatively simple compartmental epidemic model,
based on differential equations that can be used well for infections that spread
very similarly to influenza or COVID. However, on one hand, the SIR model
relies too heavily on its parameters, with slight changes in them leading to
drastic overall changes of the S, I and R curves, and on the other hand, the
simplicity of the SIR model distorts its accuracy in many cases. In our paper,
by using the SIR model, we will show that the architecture described above
can be a valid approach to modeling the spread of a given disease (such as
influenza or COVID-19). To this end, we detail the accuracy of our models
with different settings and configurations and show that it performs better
than both a simple mathematical model and a plain neural network with
randomly initialized weights.

Keywords: Deep learning, neural networks, mathematical models, approxi-
mation, parameter optimization, SIR model

1. Introduction

The appearance of COVID-19 made 2020 a very memorable year. It affected nearly
all of the countries in the world, leading to quarantines and regulations that the
people of the 21st century have never experienced before, while also delivering a
heavy blow to the global economy, thus resulting in people losing their jobs. Not
only that, the number of people dying due to this disease has also reached heights
that was previously unimaginable. Therefore, it goes without saying that examin-
ing and researching this disease is of utmost importance to better understand its
mechanics and driving forces.

Pure mathematical models have been very frequently used for modeling the
spread of diseases like influenza [9, 12], measles [17] and so on. This is mainly due
to their simplicity and mathematical foundations, which guarantees a compact,
yet concise, effective and simple-to-explain model. However, the accuracy of pure
mathematical models, such as SIR [4], SIS [1], SEIR [7], SEIRS [5], is often sub-
optimal, which is precisely due to this simplicity. The prediction curve of an SIR
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model for example is a simple bell-shaped curve, which means that a single SIR
model cannot perform well when examining diseases like COVID-19, that have
multiple waves. One possible solution to that problem is to fit multiple SIR models
to the data. However, that is not optimal either, because we need to manually
group the data into segments first, and then fit the SIR models to these groups.
Selecting these groups manually however is not a trivial task, as the grouping affects
the fitting phase, meaning that a bad grouping results in worse fitting and therefore
yields worse results. This can easily be solved by using neural networks, since they
can generalize well and achieve state-of-the-art accuracy in just about every field
of science. One problem with using pure neural network models is the lack of
quality data. For example, even though almost a year has passed since the initial
outbreak of COVID-19, there are only around 200-300 data points per country to
learn from, since data was usually gathered on a daily basis. Another problem is
that COVID data often have huge amounts of noise due to how the recording of
the daily cases took place and other factors. These can however heavily affect both
the training phase (since the network will be much likely have a higher bias) and
the performance of the network (since it will not be able to generalize well).

The goal of our research is to show that mathematical models, which are used
frequently in investigating disease spread, epidemiology and even COVID-19 [15],
can be applied to the training of neural network models as a pretraining step,
resulting in a more accurate model. In our paper we show that if we train a neural
network first on an SIR model, then train it further on real data, this method
outperforms not only the original mathematical model, but also a neural network
trained only on real data. This is because this way the neural network not only
has access to more data (SIR data and real data), but the initial training phase
(approximating the SIR model) is mathematically well-defined and the data points
are not noisy, unlike the real data. This way, the neural network will have a solid
set of weights before being trained on real data, that are roughly equivalent to a
mathematical SIR model, making the second part of the training much smoother
and easier. We also show that a neural network trained in this way can easily
overcome the biggest obstacle of SIR models described above, which is not being
able to forecast multiple waves by making predictions regarding the second wave
of COVID-19 by training the models only on the first wave and evaluated on the
second wave.

In this paper we outline a simple architectural solution regarding the model by
using a simple neural network as the base. The data that the models operate on
contain the daily number of newly infected patients and all the models were trained
on data constructed from the original data by using a sliding window approach.
This means that the models receive the number of infected people in the last 𝑡 days,
and predict that for the next 𝑇 days. In other words, inputs were of length 𝑡, and
the outputs were of length 𝑇 , where each element was the number of newly infected
people on a given day. We have used different values for 𝑡 and 𝑇 , respectively to
achieve even better performances. Since due to the nature of the model, there
will be multiple predictions for a given day, we also outline an aggregated solution
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that combines the outputs of a single model for a given day by taking the mean
of the predicted values. It is important to note that while in this paper we focus
on deterministic models, due to its simple nature our proposed architecture can be
used for stochastic models as well without any further restrictions.

The rest of the paper is organized as follows. In section 2 we present the SIR
model and talk about its parameters and their effects on the performance of the
model. In section 3 we briefly describe how the data used in the research was
gathered. In section 4 we present our proposed two-step architecture and how it
can be applied in practice. In section 5 we show how this architecture can be
used on a simple and easier Influenza dataset, then in section 6 we show how these
models achieve better results than normal neural networks whose weights have been
initialized randomly for COVID-19 data. Finally, in the last section we summarize
the results of our research.

2. SIR model

SIR is a general virus spread model that can be interpreted easily. The model can
be described with an ordinary differential equation and has only a few parame-
ters. Furthermore, in terms of behaviour it is a non-linear system. It is primarily
recommended to be used for viruses where infected individuals cannot develop
long-lasting immunity after recovery. This theoretical approach with regard to the
spread of viruses was first described by William Ogilvy Kermack and Anderson
Gray McKendrick and became generally known as the Kermack – McKendrick the-
ory. We used this model in our research because currently, for both influenza and
COVID-19, the scientific consensus is that, based on the behavioral characteristics
of the virus, individuals cannot get sustained immunity after recovering.

The classic SIR model can be considered as a system of the following differential
equations:

𝑑𝑆

𝑑𝑡
=
𝛽𝐼𝑆

𝑁
𝑑𝐼

𝑑𝑡
=
𝛽𝐼𝑆

𝑁
− 𝛾𝐼

𝑑𝑅

𝑑𝑡
= 𝛾𝐼

with the following notation of the parameters:

• 𝑆: Number of susceptible individuals.

• 𝐼: Number of infectious individuals.

• 𝑅: Number of recovered individuals.

• 𝑁 : Total population.

• 𝑡: A given moment in time.
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• 𝛽: Potential exposure rate per capita. Namely, it describes how many addi-
tional individuals a particular infected can infect at a given point in time.

• 𝛾: Rate of recovery, which is practically the recovery/death rate and 1/𝛾 is
the infectious period.

We only need to study the equations for two of the three variables 𝑆, 𝐼 and 𝑅,
because

𝑑𝑆

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
= 0,

which follows from the fact that

𝑆(𝑡) + 𝐼(𝑡) +𝑅(𝑡) = 𝑁.

For the basic reproduction number, we have

𝑅(0) =
𝛽

𝛾
.

3. Countries and data

For our research, we used infection data regarding influenza and COVID-19 viruses.
For influenza-related studies, we examined the data published by the World Health
Organization (WHO) between 2018 and 2019. WHO makes the data FluNet1 [14]
available by year and every record in the dataset consists of weekly values.

For COVID-19, we were working on data for new cases published by the Johns
Hopkins Coronavirus Research Center [3]. Johns Hopkins University actualizes
the data every day and makes it available on the open humanitarian data sharing
platform (HDX). On the provided HDX platform, the start date of public dataset2
[11] is 22 January, 2020.

Furthermore, for both COVID-19 and influenza we tested our proposed architec-
ture on data for several different countries, like Austria, China, Croatia, Germany,
Hungary, Japan, Romania. The full list of countries considered can be seen in
the corresponding sections of the paper (Section 5 and 6). Our experimental re-
sults first focus on Hungary by comparing the Hungarian data with the ones of
its neighbors. Then we extend our study to developed, leading countries providing
presumably the most accurate data.

In case of the SIR model, one of the most important parameters is the popula-
tion of the studied area. The knowledge of the population is essential for the SIR
model because one of the starting conditions for calculating the theoretical model
is the number of infectious individuals. Population data for the countries were
collected from a public (total population) database3 [13] which is currently main-
tained by the World Bank. In the analysis, we used the most recent and available
population data for 2019 for both viruses.

1https://www.who.int/influenza/gisrs_laboratory/flunet/en/
2https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases
3https://data.worldbank.org/indicator/SP.POP.TOTL?name_desc=false

Replacing the SIR epidemic model with a neural network and . . . 77



4. Two-step architecture

In this section, we describe the mechanism of our proposed two-step architecture.
First, we detail how we used the SIR model and how we extracted the optimal 𝛾
and 𝛽 parameters for the model. Then, we present how we applied this fitted SIR
model for training a more robust neural network model.

4.1. Determining the optimal parameters

A properly parameterized SIR model already has an acceptable prediction capabil-
ity by itself. So when we approximate a theoretical model with a neural network,
primarily this capability of the theoretical model is needed to be learnt. Namely,
we would like to keep all information in the machine-learned model that can be
extracted from the theoretical model. Furthermore, with the neural network, we
aim to further improve such parameterized SIR models that best describe the real
data. Accordingly, the first step in creating our own models was to find the 𝛾 and 𝛽
parameters that generate such theoretical models which fit the real data the best.

Figure 1. A slice from the big solution space (left) and a SIR curve
fitted to the German data (right).

In the case of SIR, we have a non-linear least-squares minimization problem
with a large solution space due to the peculiarities of the SIR model, as it can
be seen on Figure 1. There are several methods for solving such problems, like
gradient descent, Gauss-Newton algorithm, Levenberg-Marquardt algorithm [6, 8],
or differential evolution [10]. In the experimental phase, we compared several
solution methods (BFGS, Newton, brute force, etc.) out of which the Levenberg-
Marquardt algorithm (LMA) and differential evolution algorithms (DEA) proved
to be the most efficient ones. LMA is a fast and effective algorithm finding an
ideal solution even if started from initial values relatively far from the optimum.
Because of this property, it is applicable to determine proper starting parameters
and their associated parameter range. DEA is proved to be slower than LMA, but
starting with the same initial parameters, it generally finds a better solution than
LMA. Because of its construction, DEA works more efficiently in the case of large
solution spaces, like those occurring in optimization of SIR models.
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Overall, our experience shows that both methods are well applicable to the curve
fitting problem and can be used to find the optimal SIR model fitting best to real
data (see Figure 1). Levenberg-Marquardt algorithm is especially advantageous
because of its speed and the differential evolution algorithm is effective in further
refining the existing near-optimal parameters.

4.2. Approximation
For approximating the spread of infectious disease, we apply a two-step architec-
ture. First, we fit a SIR model to the given data (e.g. by searching for the optimal
𝛽 and 𝛾 values). Then, we fit a neural network to the (infected) curve 𝐼 of this
SIR model, following the mechanism (concentrating only on curve 𝐼) of most of
the methods applied in this field. This approach, of course, led to shorter training
times and easier convergence. After the neural network obtained a set of weights
that was roughly equivalent to the given SIR model (the predictions were close
to the curve 𝐼 of the SIR model), we decreased the learning rate and trained the
neural network on real data. This step is applied to make sure that the weights
of the neural network do not change substantially, which could have resulted in a
model that no longer resembles the original SIR model. Another advantage of the
decreased learning rate is that the impact of the noise present in real data can be
reduced in this way.

Figure 2. The basic workflow of the two-step architecture.

This approach (see Figure 2) has quite a few benefits compared to training a
neural network directly on real data. First of all, the amount of noise generated
throughout the training phase is considerably reduced, thanks to the model being
taught on a much smoother and mathematically well-defined function, which is the
output of the SIR model. The shape of the infected curve (𝐼) for a given SIR model
is bell-shaped, with no irregularities and noise, hence it is easier for neural networks
to be trained on. Moreover, since the network has a solid set of weights after the
first phase is finished and the learning rate is smaller during the second phase,
the irregularities present in real data do not affect the training as much as they
would normally. This fact, along with the ability of an SIR model to approximate
the original data fairly well, leads to a more controlled training, during which the
network can first extract meaningful information about the nature of the disease,
and then it has access to a more irregular dataset for further training. Another huge
advantage of this architecture is the increased amount of data available during the
learning phase. It is beneficial when the available dataset contains only a handful
of records (as in case of the Influenza dataset in our study). However, by pre-
training on a mathematical model that behaves roughly the same, we can generate
the necessary data points to obtain such a starting set of weights that only needs
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to be further refined on real data, hence leading to a smoother and more controlled
training process.

During the experiments, we used a simple dense network with three hidden
layers of 20, 40, 20 neurons and ReLU activation function in each layer. We focused
on this simpler architecture instead of using more sophisticated ones like RNNs,
LSTMs or GRUs to show that the proposed architecture can be used for a variety
of problems. This time, we made the model function similar to a simple RNN by
feeding it data containing several timesteps as input but this is not required; the
architecture itself can be used for non-time step series data as well. Additionally, for
handling time series data, we have considered using a neural network that does not
only receive the data for the previous day and predicts the next day, but receives
a sequence of 𝑡 days as input, and makes predictions regarding a sequence of 𝑇
days. We hand-picked the potential values for 𝑡 and 𝑇 , respectively, according to
recent public forecasts that focus on the recent past and near future and kept 𝑇
smaller than 𝑡, since predicting more days than what the network has information
on would be impractical.

5. Influenza

To demonstrate the basic idea behind the architecture, we decided to start by
showing how it can be used for known diseases, like Influenza. For these diseases,
there are already some mathematically defined models, which are used heavily in
practice due to their simplicity and good overall performances. Therefore, we will
show how one such model, the SIR model performs on data for a few selected
countries and how we can further improve the performance by using our proposed
two-step architecture.

To measure the efficiency of these models, we used the available data of Ger-
many, Hungary and Romania for the influenza season 2019 (starting from the winter
of 2018 and ending in the spring of 2019). We chose these countries specifically
from a bigger pool of countries by selecting those that had a data roughly resem-
bling an SIR curve (see Figure 3). Our aim is to show that we can improve the
overall performance of the original mathematical model even in cases where they
perform relatively well.

Figure 3. A comparison between real influenza data and the fitted
SIR curves for Germany, Hungary and Romania.
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The dataset we used contained the weekly number of newly infected people for
any given time step. Since the data was aggregated at a weekly level, we used the
configuration 𝑡 ∈ {2, 4}, 𝑇 = 1 for the neural network model. This way, it could
process some relatively recent information (the last 2 or 4 weeks) without relying
too much on older information (where 𝑡 > 4), while keeping the model relatively
simple (𝑇 = 1) and suitable for showcasing the potential of the architecture.

The predictions were evaluated by calculating the mean square error (MSE)
and root mean square error (RMSE) metrics. Furthermore, for every country and
configuration, we trained five different neural networks to calculate the spread of
the errors. Table 1 shows the summarized results of both the SIR and the two-
step architecture considering a confidence level of 95% (𝑝 = 0.05, 𝑛 = 5, using
𝑡-statistics).

Table 1. The results of the SIR and the two-step architecture on
the influenza dataset.

Country Model t T MSE RMSE
Germany SIR - - 603.88 24.57
Germany Two-step 2 1 176.66± 49.96 13.23± 1.79

Germany Two-step 4 1 170.67± 29.50 13.04± 1.14

Hungary SIR - - 276.92 16.64
Hungary Two-step 2 1 184.58± 21.57 13.57± 0.79

Hungary Two-step 4 1 127.41± 15.36 11.28± 0.67

Romania SIR - - 1452.93 38.12
Romania Two-step 2 1 877.12± 124.16 29.58± 2.05

Romania Two-step 4 1 1178.39± 175.33 34.28± 2.54

Figure 4. A comparison between the original SIR model (left) and
one of the 𝑡 = 4, 𝑇 = 1 models (right) for Germany.

It can be seen that by using our proposed two-step neural network architecture,
we were able to drastically decrease the overall error in our predictions. The im-
provements were the most drastic for the German and Romanian data, since while
the SIR model fit relatively well to the real data, there were still a number of data
points that were far away from the curves 𝐼 of the models (see Figure 4). This
shows that using our proposed architecture can further increase the overall per-
formance even in cases where the original mathematical model performs well and
thus can be a plausible solution for tackling the spread of some diseases to achieve
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state-of-the-art results. In the next section, we will show how this approach can
be used for predicting the spread of COVID-19.

6. Covid-19

To fully demonstrate the capabilities of the proposed architecture, we ran some
experiments on COVID-19 data. We think that choosing this disease can better
showcase the performance and reliability of our architecture, since at the time of
writing this paper there are no mathematical models that can perform really well
on COVID-19 data. As outlined previously, there are several factors, such as the
numerous waves, noise in the data, regulations that make predicting COVID-19
hard or impossible for a single simple mathematical model and our architecture
aims to overcome these hardships. Moreover, these factors make training a neural
network harder, too, since the noise present in the dataset may mislead the networks
during the training phase.

Figure 5. A model with the configuration 𝑡 = 7, 𝑇 = 3 and its
predictions (red & orange) for Hungary.

During the experiments, we used different values for 𝑇 and 𝑡, respectively to
find out how many days’ worth of data can better describe the disease as well as to
improve the overall performance. Namely, we used the configurations {(𝑡, 𝑇 ) | 𝑡 ∈
{14, 7, 3} and 𝑇 ∈ {7, 3, 1} and 𝑇 < 𝑡}, since the available data was aggregated at
a daily level. This way, we experimented with how many days the model should
take into account when making predictions and find out whether increasing the size
of the input resulted in any substantial performance gains. We also tried changing
the output size to experiment with whether doing so could make the model more
reliable by having it constantly focus on a series of next days. The dataset that we
used contained the number of newly infected people for any given time step.

We found that using 𝑡 > 14 made the training of the model much harder and
resulted in models that performed worse due to making the model more complex
and it focuses too much on days too far away and therefore does not contribute to
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the current number of infected people. For a similar reason, we observed that when
𝑇 was closer to 𝑡, the overall performance plummeted, since the model simply did
not have enough information to make accurate long-term predictions. Moreover, we
found that when 𝑇 > 3, the quality of the predictions regarding the future started
to deteriorate, suggesting that predictions with a larger output window size for the
COVID-19 dataset are not yet feasible. Instead, we suggest that it is better to use
smaller 𝑇 values instead of trying to make long-term predictions (see Figure 5).

We trained all the models on the first wave of COVID-19 for any given country.
This means that we first fit a SIR model to the data of the first wave, then approx-
imated the curve 𝐼 with a neural network, then trained it further on the real data
of the first wave. Then, we tested the models on the second wave of COVID-19 for
the given country. To test the overall reliability and performance of our proposed
architecture, we compared its results with a plain neural network that was not ini-
tialized with weights similar to an SIR model but simply trained on the available
COVID-19 data. These plain neural networks were also trained in the exact same
way: first fit to the first wave of the real data and then tested on the second wave.
We repeated each experiment for a given (𝑡, 𝑇 ) pair a total of 𝑛 times to measure
how the results fluctuated. During our research, we found the number 10 to be the
best for this purpose: the samples gathered proved to be representative enough to
reliably calculate the overall error while the time required to train the models was
still manageable. Tables 2, 3, 4 and 5 show the summarized results of both the
two-step architecture (denoted as “Two-step”) and the plain neural network models
(denoted as “Plain”), calculated with a confidence level of 95% (𝑝 = 0.05, 𝑛 = 10,
using t-statistics) for Hungary and Germany. We deliberately put more focus on
these two countries since we wanted to examine how the spread of the disease can
be modelled for Hungary and for a more developed country, like Germany. The
results regarding the other countries can be found in Appendix, calculated with a
confidence level of 95% but with a lower sample size of 3 (𝑝 = 0.05, 𝑛 = 3, using
t-statistics).

It can easily be seen that the results of the proposed architecture are generally
way better than that of a simple, randomly initialized neural network. It shows that
having the model learn a less complex and mathematically better defined function
that roughly resembles the target data may be a beneficial pre-training step and
could yield potentially better results when trained further on real data compared
to models that are trained only on the latter. Another important note is that the
target mathematical function does not need to match precisely with the real data,
as it was the case for our research regarding COVID-19: the only important part
is that it should contain some key information (in this case the bell-shape curve
hinting that the number of diseases should keep increasing until a certain point
and then start decreasing from then on) that can provide a strong foundation for
the network to build upon in the second phase of the training. This approach also
makes it harder for the model to focus on dispensable features due to the first
step containing the differential equations in its loss function. Another interesting
point is that training the network on a SIR model for the first wave is proved to

Replacing the SIR epidemic model with a neural network and . . . 83



Table 2. Hungary - first wave errors.

t-T Model
First wave errors

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 86.84 ± 20.39 - 9.21 ± 1.05 -
Plain 271.51 ± 52.64 - 16.35 ± 1.54 -

7-1 Two-step 107.55 ± 19.33 - 10.29 ± 0.99 -
Plain 186.41 ± 31.68 - 13.57 ± 1.16 -

3-1 Two-step 98.51 ± 11.96 - 9.89 ± 0.59 -
Plain 141.14 ± 16.04 - 11.85 ± 0.68 -

14-7 Two-step 99.04 ± 31.11 78.53 ± 25.20 9.75 ± 1.49 8.66 ± 1.40
Plain 301.53 ± 70.00 210.27 ± 57.76 17.19 ± 1.87 14.30 ± 1.79

14-3 Two-step 84.98 ± 12.25 66.66 ± 15.06 9.18 ± 0.63 8.07 ± 0.92
Plain 290.72 ± 40.98 272.25 ± 104.48 16.98 ± 1.18 15.93 ± 3.24

7-3 Two-step 92.60 ± 20.33 81.15 ± 24.65 9.53 ± 1.01 8.82 ± 1.39
Plain 214.27 ± 70.07 168.69 ± 73.63 14.30 ± 2.34 12.40 ± 2.92

Table 3. Hungary - second wave errors.

t-T Model
Second wave errors

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 17249.43 ± 5150.43 - 129.28 ± 17.47 -
Plain 31268.19 ± 7438.15 - 174.67 ± 20.78 -

7-1 Two-step 17881.75 ± 2883.75 - 132.85 ± 11.48 -
Plain 25712.03 ± 5261.55 - 159.01 ± 15.62 -

3-1 Two-step 12987.38 ± 448.37 - 113.93 ± 1.97 -
Plain 27127.49 ± 3578.38 - 164.07 ± 10.91 -

14-7 Two-step 12825.61 ± 1246.62 30125.69 ± 9607.12 113.02 ± 5.48 169.84 ± 26.97
Plain 37160.11 ± 27293.57 51981.83 ± 5450.44 180.53 ± 50.97 227.41 ± 12.30

14-3 Two-step 14273.22 ± 2687.75 36985.18 ± 18002.58 118.57 ± 11.01 182.28 ± 46.23
Plain 54495.87 ± 43075.81 42304.32 ± 11569.83 210.89 ± 75.48 202.34 ± 27.83

7-3 Two-step 13117.43 ± 2038.86 25895.53 ± 9037.72 113.91 ± 8.97 156.67 ± 27.69
Plain 76711.68 ± 51465.54 53237.65 ± 23834.57 247.41 ± 93.88 221.32 ± 49.19

be really beneficial for predicting even the second wave, not only surpassing the
original mathematical model but also proving that the network can learn important
features present in the mathematical model which it can use to recognize similar
patterns in future data and remarkably surpass the performance of plain neural
networks.

Overall, this two-step approach made the training of the model easier and more
manageable, since it is always easier to fine-tune a network to fit to a mathe-
matically well-defined function. This also reduced the amount of noise the net-
works faced during training thanks to first being trained on a mathematical model
and then switching to the real data with a smaller learning rate and an already
robust set of weights instead of random ones. Moreover, we did not need any
pre-configured network even though we basically pre-train the model, since the
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Table 4. Germany - first wave errors.

t-T Model
First wave errors (Germany)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 153052.79 ± 58837.38 - 379.54 ± 71.56 -
Plain 207112.48 ± 60990.25 - 446.17 ± 67.64 -

7-1 Two-step 129618.92 ± 35071.52 - 354.20 ± 48.64 -
Plain 204516.15 ± 43125.16 - 447.09 ± 47.91 -

3-1 Two-step 112975.97 ± 13019.34 - 335.10 ± 19.68 -
Plain 156238.49 ± 44879.63 - 386.93 ± 56.88 -

14-7 Two-step 111459.81 ± 39019.06 73770.07 ± 24833.80 324.50 ± 59.19 265.40 ± 43.53
Plain 151080.24 ± 46846.55 218403.27 ± 112174.08 378.65 ± 66.20 441.36 ± 115.85

14-3 Two-step 113579.63 ± 29820.44 105877.50 ± 41614.79 332.29 ± 42.41 315.94 ± 58.69
Plain 250274.30 ± 97146.08 243237.79 ± 132332.29 485.23 ± 91.82 460.28 ± 133.57

7-3 Two-step 116270.58 ± 26964.29 138751.71 ± 56922.80 336.79 ± 40.20 358.14 ± 77.22
Plain 165839.62 ± 64844.88 184524.62 ± 85200.30 393.65 ± 78.66 412.91 ± 89.32

Table 5. Germany - second wave errors.

t-T Model
Second wave errors (Germany)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 386211.34 ± 55594.07 - 618.70 ± 44.12 -
Plain 350296.40 ± 59203.48 - 588.17 ± 49.78 -

7-1 Two-step 373297.62 ± 40519.73 - 609.47 ± 32.37 -
Plain 378415.93 ± 36600.51 - 613.73 ± 29.51 -

3-1 Two-step 396793.00 ± 23700.56 - 629.43 ± 18.60 -
Plain 538979.60 ± 393800.78 - 684.51 ± 83.92 -

14-7 Two-step 244444.79 ± 55772.79 268252.21 ± 90832.01 489.20 ± 53.98 508.17 ± 75.45
Plain 595380.90 ± 453947.98 268208.75 ± 66890.82 680.48 ± 274.30 510.72 ± 64.73

14-3 Two-step 284438.69 ± 34150.12 365277.10 ± 121480.28 531.59 ± 32.42 592.98 ± 88.09
Plain 336347.85 ± 60559.36 404303.46 ± 128238.32 575.86 ± 51.85 624.77 ± 89.13

7-3 Two-step 286050.18 ± 27531.60 352900.11 ± 38205.91 533.76 ± 25.53 592.47 ± 32.73
Plain 593034.40 ± 519253.12 326211.38 ± 56222.30 677.37 ± 276.24 567.29 ± 49.99

mathematical model can be relatively easily defined. This in turn provided a fast
and cheap, yet effective way of using transfer learning.

7. Conclusion

In this paper we outlined a new two-step approach for training more accurate and
reliable neural networks. The key idea we used was to let the model first train
on a simplified version of the real data, which was a mathematical model adjusted
to a part of the real data (i.e. the first wave in the case of COVID-19) and was
defined by differential equations. This way, the models could first grasp the most
important aspects of the data (i.e. spread, nature, bell-like shape etc.) without
being affected by the outliers and noise being present in the real data, and then
learn further on real data once their set of weights was already solid enough.
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First, we showed how this approach performs on one simpler problem, which
was predicting the weekly number of influenza patients and how it delivered better
results than mathematical models that are currently used for this problem. Then
we went one step further and showed how this approach fares with much noisier
COVID-19 data, which currently no mathematical models can predict reliably. We
summarized the results of the architecture for a number of countries and various
configurations by changing the input and output size of the model and showed how
it performs better than simple neural networks that are only trained on real data.

We also showed how this approach can combine the benefits of the two main
pillars which were the mathematical models and the neural networks. For this, we
showed how one model trained using this architecture can not only surpass plain
neural networks that are initialized randomly but how the features regarding the
spread of the disease extracted from the first wave can help with making predictions
for the second wave, surpassing the original mathematical model, too, which could
only predict a single wave.

Lastly, we presented how this method could be used as an easier type of transfer
learning, where we do not need to download large pretrained neural networks, but
can instead choose a mathematical model that roughly resembles the real data and
have the neural network learn on that function. It is important to note that there
are no restrictions regarding this mathematical model as it can be any kind of model
as long as its outputs can be compared to a neural network’s outputs. Therefore
this architecture can be used in a number of disciplines and can be applied to
solving a variety of problems. We also showed how this mathematical model does
not need to perfectly fit the real data and how it is enough if the key features of
the real data (spread, nature, etc.) are encoded in the mathematical model. This
can save a lot of time during the training process while also giving the model a
better mathematical foundation.
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Appendix

This chapter contains the results for the COVID-19 data for all countries except
for Germany and Hungary, which were both shown previously. For these tables,
we used 𝑛 = 3, meaning that we ran the experiments a total of 3 times, unlike for
Germany and Hungary, where 𝑛 was 10. This is because while we mainly focused
on those countries, we still experimented with others. The summarized results were
calculated with a confidence level of 95% (𝑝 = 0.05, 𝑛 = 3, using t-statistics).

t-T Model
First wave errors (Austria)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 1515.32 ± 1319.10 - 38.52 ± 17.00 -
Plain 12725.54 ± 11505.19 - 111.64 ± 49.19 -

7-1 Two-step 2295.17 ± 1322.18 - 47.68 ± 14.21 -
Plain 8658.42 ± 11595.28 - 90.89 ± 60.53 -

3-1 Two-step 1598.95 ± 760.34 - 39.87 ± 9.28 -
Plain 2745.88 ± 2389.63 - 51.90 ± 21.95 -

14-7 Two-step 2047.91 ± 577.55 2660.89 ± 1619.78 45.20 ± 6.50 51.30 ± 16.40
Plain 15398.78 ± 33313.03 13124.99 ± 23690.55 114.48 ± 145.72 106.34 ± 129.65

14-3 Two-step 2321.18 ± 2669.21 1034.83 ± 1040.80 47.34 ± 27.18 31.66 ± 17.30
Plain 11627.03 ± 8161.38 12458.17 ± 8198.15 107.07 ± 38.76 110.97 ± 36.35

7-3 Two-step 1320.84 ± 1098.38 2026.87 ± 1669.98 36.03 ± 14.56 44.64 ± 17.87
Plain 3612.96 ± 1323.07 3141.33 ± 8950.15 59.99 ± 11.23 49.56 ± 79.61

t-T Model
Second wave errors (Austria)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 18278.89 ± 20982.18 - 132.27 ± 85.15 -
Plain 24284.74 ± 13589.91 - 155.20 ± 42.67 -

7-1 Two-step 12566.70 ± 5288.75 - 111.82 ± 23.95 -
Plain 19281.21 ± 14584.62 - 137.85 ± 50.74 -

3-1 Two-step 8440.83 ± 1662.04 - 91.82 ± 9.00 -
Plain 9971.46 ± 1728.25 - 99.82 ± 8.61 -

14-7 Two-step 19226.29 ± 13849.41 36166.18 ± 9576.15 137.75 ± 48.30 190.00 ± 24.82
Plain 54091.63 ± 102159.87 44140.50 ± 19431.46 221.47 ± 216.03 209.57 ± 45.36

14-3 Two-step 18191.20 ± 16938.29 49582.47 ± 41318.60 133.37 ± 61.15 220.71 ± 89.60
Plain 22559.15 ± 7545.53 27781.21 ± 15107.42 149.98 ± 24.76 165.96 ± 47.05

7-3 Two-step 13647.95 ± 5141.28 16497.89 ± 530.98 116.61 ± 21.58 128.44 ± 2.06
Plain 50650.52 ± 161764.05 40733.20 ± 78861.44 194.40 ± 345.02 192.02 ± 86.11

t-T Model
First wave errors (Croatia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 220.89 ± 106.47 - 14.81 ± 3.67 -
Plain 393.09 ± 242.98 - 19.71 ± 6.34 -

7-1 Two-step 224.54 ± 49.53 - 14.97 ± 1.68 -
Plain 473.41 ± 435.75 - 21.51 ± 10.02 -

3-1 Two-step 190.21 ± 30.08 - 13.79 ± 1.09 -
Plain 342.16 ± 210.90 - 18.41 ± 5.54 -

14-7 Two-step 196.23 ± 64.71 176.65 ± 6.04 13.99 ± 2.27 13.29 ± 0.23
Plain 544.45 ± 796.18 486.36 ± 571.65 22.45 ± 19.40 21.67 ± 12.41

14-3 Two-step 170.69 ± 75.34 159.45 ± 59.65 13.03 ± 2.82 12.60 ± 2.40
Plain 686.58 ± 475.52 392.85 ± 341.94 26.01 ± 9.55 19.61 ± 8.69

7-3 Two-step 197.37 ± 120.24 186.21 ± 54.89 13.98 ± 4.21 13.63 ± 2.00
Plain 654.83 ± 521.17 288.30 ± 173.74 25.34 ± 10.80 16.89 ± 5.31

t-T Model
Second wave errors (Croatia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 4974.64 ± 5811.28 - 69.13 ± 42.51 -
Plain 4165.83 ± 300.80 - 64.54 ± 2.32 -

7-1 Two-step 4749.04 ± 2851.06 - 68.60 ± 20.10 -
Plain 3323.75 ± 1121.54 - 57.56 ± 9.88 -

3-1 Two-step 3577.49 ± 421.19 - 59.80 ± 3.52 -
Plain 3999.04 ± 1063.80 - 63.18 ± 8.43 -

14-7 Two-step 4858.05 ± 1388.48 7928.49 ± 2046.42 69.62 ± 9.83 88.96 ± 11.53
Plain 9508.23 ± 19872.40 4747.52 ± 3963.52 90.82 ± 107.99 68.17 ± 30.58

14-3 Two-step 4142.48 ± 2595.50 5816.76 ± 3388.36 64.04 ± 19.68 75.91 ± 22.41
Plain 15893.52 ± 25960.88 6649.36 ± 5851.83 119.34 ± 123.66 80.64 ± 36.75

7-3 Two-step 3483.77 ± 985.94 5306.68 ± 2668.54 58.96 ± 8.39 72.61 ± 17.87
Plain 15097.58 ± 26632.08 8454.94 ± 6991.72 114.68 ± 134.20 91.13 ± 37.35

t-T Model
First wave errors (Japan)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 31173.83 ± 12835.80 - 176.14 ± 37.05 -
Plain 26445.08 ± 7112.04 - 162.46 ± 22.21 -

7-1 Two-step 2172.84 ± 2015.93 - 45.98 ± 23.26 -
Plain 3966.92 ± 2946.28 - 62.54 ± 22.68 -

3-1 Two-step 1163.46 ± 903.46 - 33.81 ± 13.69 -
Plain 1789.36 ± 940.17 - 42.13 ± 11.50 -
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14-7 Two-step 1135.15 ± 984.16 1174.94 ± 414.79 33.35 ± 14.56 34.22 ± 6.09
Plain 3861.56 ± 9161.62 5227.93 ± 6190.41 57.64 ± 70.66 70.98 ± 41.86

14-3 Two-step 1845.98 ± 2939.82 1679.00 ± 2505.62 41.63 ± 32.39 39.72 ± 30.66
Plain 5590.88 ± 6236.25 4202.21 ± 10617.89 73.60 ± 40.12 59.36 ± 79.26

7-3 Two-step 2214.84 ± 359.38 3048.57 ± 680.96 47.05 ± 3.85 55.18 ± 6.13
Plain 2938.19 ± 4027.50 3394.17 ± 3026.15 52.38 ± 42.42 57.68 ± 25.01

t-T Model
Second wave errors (Japan)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 31173.83 ± 12835.80 - 176.14 ± 37.06 -
Plain 26445.08 ± 7112.04 - 162.45 ± 22.21 -

7-1 Two-step 36345.59 ± 14877.43 - 190.23 ± 38.48 -
Plain 27978.35 ± 11084.69 - 166.89 ± 34.01 -

3-1 Two-step 30483.74 ± 3487.63 - 174.57 ± 9.94 -
Plain 28974.52 ± 5629.58 - 170.13 ± 16.69 -

14-7 Two-step 34384.30 ± 11577.81 97623.25 ± 257667.12 185.15 ± 30.74 284.64 ± 392.01
Plain 174277.57 ± 577842.89 104793.24 ± 185061.89 351.93 ± 683.19 311.15 ± 271.78

14-3 Two-step 43934.07 ± 16622.80 149252.23 ± 46094.94 209.19 ± 40.18 385.83 ± 59.77
Plain 46122.41 ± 13903.01 59816.83 ± 37494.31 214.51 ± 31.86 243.26 ± 76.98

7-3 Two-step 37621.15 ± 9175.78 44685.11 ± 5812.97 193.81 ± 23.56 211.34 ± 13.72
Plain 170816.99 ± 583602.03 41983.28 ± 30683.75 346.46 ± 685.63 203.51 ± 72.44

t-T Model
First wave errors (Romania)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 2003.19 ± 1241.37 - 44.50 ± 14.49 -
Plain 2854.63 ± 2958.38 - 52.67 ± 27.29 -

7-1 Two-step 1892.33 ± 1360.64 - 43.19 ± 15.78 -
Plain 3562.15 ± 1736.53 - 59.50 ± 14.41 -

3-1 Two-step 2334.57 ± 750.72 - 48.25 ± 7.65 -
Plain 2831.42 ± 1387.99 - 53.05 ± 12.74 -

14-7 Two-step 2094.13 ± 1347.42 4506.94 ± 4762.57 45.49 ± 5.27 65.93 ± 38.55
Plain 2777.60 ± 2285.47 2595.81 ± 1950.88 52.25 ± 20.99 50.53 ± 19.92

14-3 Two-step 2120.78 ± 741.48 9232.91 ± 14948.22 45.97 ± 8.23 91.09 ± 93.08
Plain 5255.90 ± 2531.97 4891.36 ± 3755.55 72.28 ± 17.06 69.37 ± 27.12

7-3 Two-step 1876.50 ± 1312.50 2116.70 ± 1138.65 43.03 ± 15.08 45.81 ± 12.81
Plain 4089.11 ± 1796.34 3370.65 ± 2518.38 63.78 ± 13.96 57.58 ± 22.50

t-T Model
Second wave errors (Romania)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 71877.76 ± 45011.52 - 266.62 ± 85.63 -
Plain 98788.67 ± 96281.68 - 310.52 ± 147.90 -

7-1 Two-step 85973.31 ± 45135.96 - 292.12 ± 76.88 -
Plain 110134.85 ± 55830.77 - 330.67 ± 85.71 -

3-1 Two-step 76012.83 ± 22299.81 - 275.38 ± 40.37 -
Plain 111523.80 ± 45812.08 - 333.22 ± 67.23 -

14-7 Two-step 47787.30 ± 31708.20 235030.18 ± 303607.15 217.30 ± 72.52 470.78 ± 352.09
Plain 57212.18 ± 8566.19 190334.16 ± 274741.94 239.12 ± 18.06 425.03 ± 299.34

14-3 Two-step 70061.01 ± 21365.08 437848.72 ± 772867.92 264.37 ± 39.91 617.43 ± 724.00
Plain 118355.19 ± 92843.39 128156.15 ± 64752.80 341.25 ± 132.73 356.81 ± 88.27

7-3 Two-step 92617.64 ± 59595.46 162631.00 ± 270817.29 302.72 ± 95.06 389.54 ± 317.54
Plain 109021.98 ± 48827.75 175688.98 ± 294938.94 329.31 ± 73.05 404.48 ± 334.46

t-T Model
First wave errors (Slovakia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 364.20 ± 363.90 - 18.79 ± 10.15 -
Plain 850.22 ± 276.73 - 29.12 ± 4.70 -

7-1 Two-step 254.09 ± 105.92 - 15.90 ± 3.28 -
Plain 417.64 ± 232.20 - 20.35 ± 5.57 -

3-1 Two-step 245.41 ± 42.92 - 15.66 ± 1.37 -
Plain 272.86 ± 75.48 - 16.50 ± 2.32 -

14-7 Two-step 364.77 ± 512.76 419.50 ± 208.44 18.62 ± 12.91 20.42 ± 5.01
Plain 910.09 ± 693.09 753.42 ± 723.37 29.90 ± 12.14 27.05 ± 14.20

14-3 Two-step 356.35 ± 381.45 371.54 ± 568.87 18.57 ± 10.29 18.41 ± 17.34
Plain 918.37 ± 333.55 1428.92 ± 243.88 30.25 ± 5.46 37.79 ± 3.26

7-3 Two-step 358.69 ± 102.05 332.77 ± 262.37 18.92 ± 2.74 18.08 ± 7.43
Plain 391.13 ± 252.35 322.46 ± 302.11 19.67 ± 6.26 17.71 ± 9.06

t-T Model
Second wave errors (Slovakia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 14912.62 ± 7672.64 - 121.66 ± 32.10 -
Plain 16968.34 ± 14892.37 - 128.98 ± 55.54 -

7-1 Two-step 17242.32 ± 6597.18 - 131.05 ± 25.08 -
Plain 19465.78 ± 10695.60 - 138.97 ± 37.73 -

3-1 Two-step 16635.98 ± 1603.47 - 128.96 ± 6.19 -
Plain 26667.26 ± 8118.43 - 163.09 ± 25.29 -

14-7 Two-step 4511.25 ± 1665.30 9543.07 ± 6423.34 67.04 ± 12.68 97.08 ± 33.07
Plain 6347.09 ± 3009.71 12430.07 ± 5152.36 79.43 ± 18.69 111.23 ± 23.33

14-3 Two-step 12988.05 ± 3375.90 17975.61 ± 13027.75 113.86 ± 14.64 133.18 ± 47.01
Plain 16988.85 ± 6788.30 17755.88 ± 6476.31 130.07 ± 25.53 133.02 ± 23.89

7-3 Two-step 13405.69 ± 950.71 19663.17 ± 12020.02 115.78 ± 4.09 139.55 ± 41.78
Plain 30500.83 ± 60495.42 25222.86 ± 15568.28 166.17 ± 163.52 157.98 ± 49.47
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t-T Model
First wave errors (Slovenia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 77.79 +- 26.09 - 8.81 +- 1.46 -
Plain 194.75 +- 189.55 - 13.75 +- 7.30 -

7-1 Two-step 94.58 +- 35.24 - 9.71 +- 1.83 -
Plain 163.92 +- 141.55 - 12.66 +- 5.73 -

3-1 Two-step 69.73 +- 6.29 - 8.35 +- 0.38 -
Plain 120.07 +- 36.98 - 10.94 +- 1.68 -

14-7 Two-step 83.68 +- 40.57 84.27 +- 36.23 9.12 +- 2.28 9.16 +- 1.93
Plain 169.05 +- 139.79 124.69 +- 139.62 12.88 +- 5.40 10.99 +- 5.97

14-3 Two-step 66.58 +- 37.72 65.08 +- 44.48 8.13 +- 2.29 8.02 +- 2.76
Plain 246.59 +- 106.49 148.34 +- 131.93 15.66 +- 3.48 12.03 +- 5.72

7-3 Two-step 85.38 +- 40.53 93.02 +- 31.76 9.21 +- 2.22 9.63 +- 1.68
Plain 115.81 +- 50.61 132.63 +- 70.59 10.73 +- 2.41 11.47 +- 3.12

t-T Model
Second wave errors (Slovenia)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 1022.18 +- 930.44 - 31.60 +- 14.72 -
Plain 1247.82 +- 457.40 - 35.26 +- 6.55 -

7-1 Two-step 1266.76 +- 701.12 - 35.44 +- 10.01 -
Plain 1349.53 +- 894.06 - 36.53 +- 11.92 -

3-1 Two-step 1106.60 +- 194.35 - 33.25 +- 2.91 -
Plain 1506.04 +- 601.12 - 38.73 +- 7.66 -

14-7 Two-step 543.05 +- 220.61 1123.13 +- 974.21 23.25 +- 4.76 33.18 +- 14.26
Plain 526.60 +- 136.71 1116.75 +- 832.46 22.93 +- 2.94 33.16 +- 12.51

14-3 Two-step 785.70 +- 31.57 1328.43 +- 1375.75 28.03 +- 0.56 35.94 +- 18.37
Plain 1202.36 +- 524.14 2294.93 +- 3308.89 34.58 +- 7.76 46.53 +- 34.71

7-3 Two-step 1164.56 +- 828.97 1303.17 +- 444.59 33.88 +- 12.38 36.04 +- 6.26
Plain 1544.92 +- 935.20 1535.80 +- 171.83 39.10 +- 12.14 39.18 +- 2.20

t-T Model
First wave errors (Switzerland)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 1650.36 ± 1237.49 - 40.28 ± 16.00 -
Plain 26767.85 ± 31289.39 - 159.86 ± 24.61 -

7-1 Two-step 1751.15 ± 1829.87 - 41.11 ± 23.86 -
Plain 3134.05 ± 3333.79 - 55.16 ± 29.07 -

3-1 Two-step 1434.07 ± 1915.86 - 36.71 ± 28.35 -
Plain 1829.81 ± 184.46 - 42.77 ± 2.17 -

14-7 Two-step 10433.31 ± 28717.23 19846.34 ± 30024.83 90.86 ± 141.96 135.19 ± 120.53
Plain 38316.98 ± 37304.36 81278.59 ± 58801.01 192.92 ± 100.77 283.09 ± 102.70

14-3 Two-step 4861.04 ± 3697.90 8565.31 ± 6611.52 69.15 ± 27.21 91.75 ± 36.96
Plain 15490.40 ± 34452.23 23939.43 ± 68419.65 109.28 ± 181.19 136.68 ± 220.61

7-3 Two-step 2204.43 ± 1265.82 1479.59 ± 1492.09 46.73 ± 13.81 37.84 ± 21.07
Plain 2454.06 ± 4000.73 6121.91 ± 12599.90 47.31 ± 44.66 69.21 ± 111.02

t-T Model
Second wave errors (Switzerland)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 114978.94 ±33095.94 - 338.71 ± 48.59 -
Plain 127891.97 ± 13207.35 - 357.57 ± 18.58 -

7-1 Two-step 128959.18 ± 59863.34 - 358.11 ± 81.48 -
Plain 118014.09 ± 4629.21 - 343.52 ± 6.74 -

3-1 Two-step 143138.45 ± 17755.58 - 378.26 ± 23.46 -
Plain 128062.63 ± 15330.01 - 357.79 ± 21.30 -

14-7 Two-step 33776.03 ± 18393.62 35900.58 ± 19553.14 183.07 ± 49.24 188.68 ± 52.65
Plain 46881.59 ± 19283.71 70863.13 ± 43875.14 216.03 ± 44.51 264.83 ± 82.05

14-3 Two-step 43197.12 ± 23294.05 45179.99 ± 10374.36 207.01 ± 56.27 212.41 ± 24.12
Plain 65516.57 ± 73767.49 56636.31 ± 30539.63 251.92 ± 137.84 236.98 ± 66.57

7-3 Two-step 47442.24 ± 12857.64 45676.70 ± 9910.13 217.59 ± 29.78 213.58 ± 23.50
Plain 58206.81 ± 89425.72 47090.02 ± 39493.20 234.25 ± 175.72 215.08 ± 87.70

t-T Model
First wave errors (USA)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 1.21e+07 ± 1.55e+07 - 3403.95 ±2147.00 -
Plain 9.91e+06 ± 2.53e+06 - 3086.60 ±1874.68 -

7-1 Two-step 2.07e+07 ± 8.19e+06 - 4543.58 ± 881.82 -
Plain 2.02e+07 ± 8.00e+06 - 4482.86 ± 872.58 -

3-1 Two-step 1.20e+07 ± 1.28e+06 - 3458.82 ± 186.73 -
Plain 1.61e+07 ± 6.62e+06 - 4004.74 ± 808.62 -

14-7 Two-step 1.53e+07 ± 1.02e+07 5.83e+07 ± 1.11e+08 3885.53 ± 1263.98 7287.40 ± 6927.27
Plain 9.50e+06 ± 4.62e+06 1.44e+07 ± 1.91e+07 3072.02 ± 773.72 3717.61 ± 2396.30

14-3 Two-step 7.50e+06 ± 6.73e+06 8.11e+07 ± 3.09e+08 2705.74 ± 1281.45 7015.28 ± 17171.39
Plain 1.42e+07 ± 9.26e+06 1.11e+08 ± 2.21e+08 3749.55 ± 1252.22 10010.71 ± 9951.60

7-3 Two-step 2.37e+07 ± 8.17e+06 3.71e+07 ± 5.44e+07 4863.90 ± 824.99 5926.72 ± 4242.28
Plain 4.04e+08 ± 8.25e+08 1.23e+08 ± 2.91e+08 17765.36 ± 28567.51 10076.78 ± 13949.80

t-T Model
Second wave errors (USA)

Test set MSE Test set RMSE
Next Day Aggregated Next Day Aggregated

14-1 Two-step 4.63e+07 ± 6.02e+07 - 6653.56 ± 4331.68 -
Plain 5.43e+07 ± 6.71e+07 - 7199.30 ± 4825.38 -

7-1 Two-step 5.29e+07 ± 2.24e+07 - 7258.06 ± 1566.00 -
Plain 4.67e+07 ± 7.05e+06 - 6835.16 ± 511.52 -
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3-1 Two-step 3.50e+07 ± 2.77e+06 - 5918.34 ± 235.20 -
Plain 4.39e+07 ± 3.25e+07 - 6578.76 ± 2375.17 -

14-7 Two-step 5.69e+07 ± 4.11e+07 2.79e+08 ± 4.44e+08 7494.99 ± 2638.09 16168.56 ± 12595.59
Plain 7.91e+07 ± 9.11e+07 1.20e+08 ± 8.87e+07 8745.85 ± 4903.62 10872.10 ± 4007.51

14-3 Two-step 3.40e+07 ± 7.37e+06 3.23e+08 ± 1.16e+09 5831.17 ± 637.36 14644.18 ± 31712.39
Plain 5.43e+07 ± 2.65e+07 5.03e+08 ± 7.40e+08 7340.15 ± 1856.98 21833.43 ± 15675.72

7-3 Two-step 6.91e+07 ± 6.30e+07 1.59e+08 ± 2.90e+08 8228.62 ± 3641.60 12046.02 ± 11162.70
Plain 1.21e+09 ± 2.51e+09 3.78e+08 ± 1.01e+09 30522.01 ± 51160.81 17268.64 ± 27200.69
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Abstract
In this paper we propose some parametric and non-parametric post-pro-

cessing methods for calibrating wind speed forecasts of nine Weather Research
and Forecasting (WRF) models for locations around the cities of Valparaíso
and Santiago de Chile (Chile). The WRF outputs are generated with different
planetary boundary layers and land-surface model parametrizations and they
are calibrated using observations from 37 monitoring stations. Statistical cal-
ibration is performed with the help of ensemble model output statistics and
quantile regression forest (QRF) methods both with regional and semi-local
approaches. The best performance is obtained by the QRF using a semi-
local approach and considering some specific weather variables from WRF
simulations.
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1. Introduction

Numerical weather prediction (NWP) models have been used for many years in
research and operational weather forecasting due to their advantage to simulate
the state of the atmosphere in any region of the globe at high spatial and tem-
poral resolutions. The Weather Research and Forecasting (WRF) model [32, 37]
is one of the most widely used systems, which has received strong support by the
atmospheric science community over the years. However, despite its continuous
improvement and successful use, the model still presents biases in the prediction
of near-surface variables; specifically, in the prediction of wind speed over com-
plex terrain [23, 33, 35], which may be related to the smoothed topography used
in the model and the misrepresentation of small-scale atmospheric processes [19,
23]. Those limitations negatively influence obtaining accurate predictions of sur-
face wind speed and direction, which are used in a large number of applications in
Chile, such as wind energy [24, 28], air-quality [6, 33, 36], and precipitation over
the Andes cordillera [9].

In the last 15 years several statistical post-processing models have been devel-
oped to obtain sharp and calibrated forecasts, e.g. the non-homogeneous regres-
sion or ensemble model output statistics [EMOS; 13], which method provides full
predictive distribution of the future weather quantity using a single parametric
distribution with parameters connected to the ensemble members.

Recently, some studies have been focused on the use of machine learning tech-
niques for statistical post-processing. [39] introduced a new post-processing method
based on quantile regression forests (QRF), which is a generalization of random
forests and allows the estimation of conditional quantiles from the cumulative dis-
tribution function (CDF) in an efficient and simple way. This approach has the
important advantage of allowing the inclusion of other features as predictors in
the post-processing model. One can also mention [34], where QRF is applied to
improve 2m temperature forecasts and a flexible alternative using a neural network
is also proposed.

In [7], we evaluated two parametric models for calibrating surface temperature
forecasts from nine WRF simulations at 19 meteorological stations in Santiago city.
Now, the main aim of this study is to compare the forecast skill of some parametric
and non-parametric post-processing methods to calibrate the wind speed using both
regional and semi-local approaches at 37 monitoring stations around Valparaíso and
Santiago city. Furthermore, the importance of each simulation and that of other
weather variables from WRF included as predictors in QRF are examined on the
basis of the continuous ranked probability score (CRPS).

The paper is organized as follows. Section 2 provides a description of data from
meteorological stations, WRF configurations and variables included in the study,
and a preliminary statistical analysis considering the error forecast and verification
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rank. Methods for modeling wind speed and some verification tools are described
in Section 3. The results of statistical post-processing are given in Section 4 with
a comparison of the various approaches and with specification of the importance
of ensemble members and other included variables. Finally, Section 5 presents the
major results and some possible future extensions.

2. Description of the data and preliminary analysis

Nine WRF simulations were generated for the period between 1 June 2017 and
30 January 2018 to predict wind speed at 37 meteorological stations, around Val-
paraíso and Santiago cities, using the same configurations of [7]. The WRF sim-
ulations and the data from monitoring stations are briefly described below. A
preliminary analysis of the forecasts is also provided.

2.1. WRF configurations and data description
The Advanced Research WRF core (ARW-WRF) [37] Version 3.7.1 was employed
to generate a nine-member forecast ensemble using three nested domains at 18 km,
6 km and 2 km horizontal resolutions (see Figure 1a) and 44 vertical levels with
variable resolution between 60 and 200 m from 1 June 2017 to 30 January 2018
at 3 hour time steps from 00 UTC to 21 UTC. The detailed description of nine
ensemble members is presented in [7].

(a) (b)

Figure 1. (a) Representation of the domains 1, 2 and 3 used in
the WRF model at 18 km, 6 km, and 2 km horizontal resolutions
respectively and (b) Altitude map and the location of monitoring

stations represented with red points.

The ensemble members differ both in the applied planetary boundary layer
(PBL) and land-surface model (LSM) parametrizations. The Land-surface pro-
cesses are represented by the 5-layer [8], Noah [5] and Pleim-Xiu [31] schemes;
we use the Mellor-Yamada-Janjic (MYJ) [18], Yonsei University (YSU) [16] and
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Mellor-Yamada Nakanishi and Ninno 2.5 level (MYNN) [29] schemes to represent
the PBL and surface layer processes.

The rest of the parametrizations are kept the same in all simulations: Kain-
Fritsch (Kain-F) [20] cumulus parametrization, the Rapid Radiative Transfer Model
(RRTMG) [17] to represent the long wave and short wave radiative processes, and
the WRF single-moment 3-class (WSM3) [15] scheme to represent microphysics
processes.

The initial and boundary conditions were provided by the Final Operational
Global Analysis (FNL) at 0.25 × 0.25 degrees horizontal resolution every 6 hours
to obtain the variables described in Table 1 from the highest resolution domain
(d3).

Table 1. The variables included in the study from the highest
resolution domain (d3) of WRF simulations.

Nomenclature Description Unit
XLONG Longitude degree-east
XLAT Latitude degree-north
U10 Zonal (East-West) wind component at 10 m m s−1

V10 Meridional (North-South) wind component at 10 m m s−1

T2 Temperature at 2 m K
PSFC Surface pressure Pa
Q2 Specific humidity at 2 m kg kg−1

VAR Orographic variance
LU Land use category

HGT Terrain height m

Wind speed and relative humidity forecasts are obtained from the predictions
of variables described in Table 1: 10 m wind speed equals WS =

√
U102 + V102

and it is expressed in m s−1, whereas 2 m relative humidity is obtained using an
approximation of equations presented by [3], namely

RH = Q2/
(︀
(𝑝𝑞0/PSFC) exp{𝑎2(T2− 𝑎3)/(T2− 𝑎4)}

)︀
, (2.1)

where 𝑝𝑞0 = 379.91, 𝑎2 = 17.27, 𝑎3 = 273.16 and 𝑎4 = 35.86. The values obtained
by equation (2.1) are normed to 1 and referred to as percents.

Finally, the corresponding 3 hourly verifying observations of 10 m wind speed
for the same time period 1 June 2017 - 30 January 2018 measured in 37 monitoring
stations around Valparaíso and Santiago city (see Figure 1b) were downloaded
from the Dirección Meteorológica de Chile (http://www.meteochile.gob) and
the National System for Air Quality (https://sinca.mma.gob.cl/). The stations
have different altitudes represented in meters from 0 to 3000 m, see Figure 1 (b).

2.2. Preliminary data analysis
Consider first the dependence of the forecast error of an individual member of the
WRF ensemble forecast on the location of the monitoring station. In Figure 2 the
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box-plots of forecast errors corresponding to different stations are given, arranged
in ascending order of station altitude. The median error at all stations is close to
0; however, as expected, stations above 2000 m located in the mountain zone of
Santiago de Chile exhibit the highest forecast errors (last two boxplots in Figure 2),
which is nicely in line with the results of [25].

Figure 2. Forecast error at each station sorted by the altitude
in meters.

(a) (b)

Figure 3. (a) Verification rank histogram for the total period and
(b) the percentage of observed values included in the range of the

ensemble forecasts at each hour for the all period.

Further, to get an idea about the calibration, Figures 3a,b show the verification
rank histogram of raw wind speed ensemble forecasts and the coverage for the
different observation times, respectively. The verification rank is the rank of the
validating observation with respect to the corresponding ensemble members and in
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the case of proper calibration it should be uniformly distributed (see e.g. Section
9.7.1 [42]), whereas the coverage is the proportion of observed values included in
the range of the forecasts. Since, the resulted histogram doesn’t follow a uniform
distribution as confirmed by the high value of the 𝜒2 test statistic, a great difference
between the observed and the expected frequencies is supposed to exist. In addition,
there is no observation hour when the coverage exceeds 50% with the lowest value
of 41.99% at 21 UTC (see Figure 3b), which proportions are far from the nominal
80% coverage of a calibrated 9-member ensemble forecast.

These preliminary results indicate that the ensemble forecasts are biased and
not properly calibrated calling for some form of statistical post-processing.

3. Methodology

As wind speed data are characterized by non-negative values and the observations
do not follow a symmetric law, they cannot be described by a normal distribution as
temperature or air pressure. For this reason, to model wind speed the use of skewed
and non-negative distributions, such as a truncated normal [1, 41], log-normal [2]
or gamma [38] distribution are proposed.

Some post-processing approaches to calibrate wind speed forecasts and the tools
to assess the forecast skill of the models are described below.

3.1. EMOS using truncated normal distribution
The Ensemble Model Output Statistics (EMOS) or non-homogeneous regression
approach, proposed by [13], is one of the most used parametric post-processing
techniques. EMOS models for various weather variables differ in the predictive
distribution family and in the link functions connecting the parameters of the
predictive distribution to the ensemble members. Following [41], as parametric
family we consider a truncated normal (TN) distribution 𝒩0(𝜇, 𝜎) with location 𝜇,
scale 𝜎 > 0 and cut-off equal at 0, defined by probability density function (PDF)

𝑓(𝑥 | 𝜇, 𝜎) :=

{︃
1
𝜎𝜑((𝑥− 𝜇)/𝜎)/Φ(𝜇/𝜎), if 𝑥 ≥ 0,

0, otherwise,
(3.1)

[41], where 𝜑 and Φ are the PDF and the cumulative distribution function (CDF)
of a standard normal distribution, respectively.

The TN EMOS predictive distribution considering 9 WRF ensemble members
is defined as

𝒩0(𝑎0 + 𝑎1𝑓1 + · · ·+ 𝑎9𝑓9, 𝑏0 + 𝑏1𝑆
2), where 𝑆2 :=

1

8

9∑︁

𝑘=1

(𝑓𝑘 − 𝑓)2,

with 𝑓 denoting the ensemble mean. Location parameters 𝑎0, 𝑎1, . . . , 𝑎9 ∈ R,
𝑎1, . . . , 𝑎9 ≥ 0 and scale parameters 0 ≤ 𝑏0, 𝑏1 ∈ R are estimated over the training
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data consisting of ensemble members and verifying observations from the preceding
𝑛 days (rolling training period) by optimizing the mean of a certain proper verifi-
cation score (see [41] for more details), which in our case is the continuous ranked
probability score (CRPS) described in detail in Section 3.2.

3.2. Diagnostics

[11] defines the aim of statistical post-processing as maximization of the sharpness
of the predictive distribution subject to calibration, where the latter expresses
a statistical consistency between forecasts and observations, whereas the former
indicates the forecast accuracy.

For doing a simultaneous evaluation of calibration and sharpness, [12] suggests
the use of the continuous ranked probability score (CRPS), which for a given CDF
𝐹 (𝑦) and observation 𝑥 is defined as

CRPS(𝐹, 𝑥) :=

∞∫︁

−∞

(︀
𝐹 (𝑦)− 1{𝑦≥𝑥}

)︀2
d𝑦 = E|𝑋 − 𝑥| − 1

2
E|𝑋 −𝑋 ′|,

where 1{𝑦≥𝑥} denotes the indicator function which is 1 if 𝑦 ≥ 𝑥 and 0 otherwise,
while 𝑋 and 𝑋 ′ are independent random variables with CDF 𝐹 and finite first
moment. For wind speed, similar to observations and forecasts, this score is ex-
pressed in m s−1 and it is a negatively oriented scoring rule, that is the smaller the
better. For comparing predictive performance of different probabilistic forecasts
one usually considers the mean CRPS over all forecasts and observations of the
verification data denoted by CRPS.

In addition, to assess the relative improvement of a forecast with respect to a
given reference forecast, one can calculate the continuous ranked probability skill
score (CRPS.S) [12],

CRPS.S = 1− CRPS

CRPSref
,

where CRPSref denotes the mean CRPS of the reference forecast over the verifica-
tion data.

Further, calibration can also be investigated by examining the coverage of the
(1 − 𝛼)100% central prediction interval with 𝛼 ∈ (0, 1), i.e. by calculating the
proportion of validating observations located between the lower and upper 𝛼/2
quantiles of the predictive distribution. In the case of proper calibration the cover-
age should be around (1−𝛼)100%, and in order to provide a fair comparison with
the raw ensemble one usually chooses the value of 𝛼 to match the nominal coverage
of the raw ensemble (80 % for the 9-member ensemble).

The predictive performance of point forecasts can be assessed by considering
the root mean of the squared error 𝑆𝐸(𝑥, 𝑦) = (𝑥 − 𝑦)2 (RMSE) and mean of
the absolute error 𝐴𝐸(𝑥, 𝑦) = |𝑥 − 𝑦| (MAE) based on the forecast 𝑦 and the
observation 𝑥 [10, 30] taken over all forecast cases in the verification data.
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Finally, the probability integral transform (PIT) histograms (see e.g. [42]) might
be used for a visual perception of the improvement in calibration compared with
the raw ensemble. The PIT is the value of the predictive CDF evaluated at the
validating observation and for a calibrated forecast PIT has to follow a uniform
law on the [0, 1] interval. Hence, the PIT histogram is the continuous counterpart
of the verification rank histogram of the raw ensemble.

3.3. Quantile Regression Forests
As an alternative to parametric post-processing, [39] and [34] recently applied the
Quantile Regression Forest (QRF) model for calibrating ensemble forecasts. This
model was originally introduced by [26] as an extension of the random forest theory
[4], by presenting an algorithm for computing the estimated distribution of the
variable of interest, in our case the wind speed. The algorithm consists of an
iterative process which splits the training data and every split minimizes the sum
of the variance of the response variable. One of the disadvantages of this method
is that the process of growing trees might lead to overfitting as mentioned in [22].
However, [39] suggested to solve this problem by tuning the number of trees.

Different predictors can be used in the implementation of the QRF (see for
example [39] and [34]); here we consider two cases. For the first one the only
predictors are the nine wind speed forecasts from the WRF model. In the second
case this set is extended by the mean, standard deviation, minimum and maximum
of some variables presented in Table 1 (U10, V10, T2, PSFC, and RH) in addition
to the orographic variance (VAR), land use (LU), HGT, and the observed altitude
(Alt_st), forming a total of 24 covariates. In particular, our implementation is
based on the R package quantregForest.

The QRF model also allows to determine the importance of the predictor 𝑝𝑗 by
the random permutation method introduced in the context of random forests by
[4]. The importance is computed by the mean CRPS of the difference between the
forecast 𝐹 conditional to the permuted predictor and the unpermuted features, i.e.

Imp(𝑝𝑗) =
1

𝑆𝑇

𝑆∑︁

𝑠=1

𝑇∑︁

𝑡=1

(︀
CRPS(𝐹 | 𝑋𝑝𝑗

𝑠,𝑡, 𝑦𝑠,𝑡)− CRPS(𝐹 | 𝑋𝑠,𝑡, 𝑦𝑠,𝑡)
)︀
, (3.2)

where 𝑋𝑝𝑗
𝑠,𝑡 denotes the vector of predictors at time 𝑡 and station 𝑠 for the permuted

predictor (see [34] for more details). The higher the value of Imp(𝑝𝑗), the more
important the predictor 𝑝𝑗 .

3.4. Spatial selection of training data
For selecting the geographical composition of the training data for post-processing
methods, [41] defines the local and regional approaches. By regional or global we
mean that forecast/observation pairs of all stations from the training period are
used to estimate the parameters of a given parametric model or perform a non-
parametric calibration, while the local approach uses only the information of the
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observation site at hand. Although the local approach in general results in better
predictive performance, it requires longer training periods to avoid numerical sta-
bility issues [21]. Hence, we focus on regional estimation and on the novel semi-local
approach proposed by [21]. Semi-local modeling takes the advantages of regional
and local forecasting by clustering the observation stations based on climatologi-
cal characteristics and the distribution of forecast errors of the training data and
performing a global estimation within each cluster. Clustering is performed with
the help of a 𝑘-means algorithm [14] and clusters may vary as the training window
slides.

4. Results

In order to exclude the effect of natural daily variation in wind speed, calibration
approaches described in Sections 3.1 and 3.3 were run separately for each forecast
hour using an optimal training period length and both regional and semi-local
approaches.

4.1. Selection of the training data

Selection of an appropriate set of training data is necessary for successful cali-
bration. This selection procedure includes the choice of the length of the rolling
training period and the geographical composition of the training set.

The optimal length of the training period is obtained by verifying the forecasts
against observations for different training periods with the help of various scoring
rules [12]. We investigated the mean CRPS and nominal coverage of the regional
EMOS predictive distribution for the time period from 29 September 2017 to 30
January 2018 separately at each forecast hour using training periods of length
55, 60, 65, . . . , 120 days. Based on the corresponding figures of the mean CRPS
and nominal coverage plotted against the training period length (not shown) we
decided to choose a training period of length 65 days for calibrating wind speed
forecasts of the WRF simulations. This length of the training period leaves 179
calendar days between 5 August 2017 and 30 January 2018 for forecast verification.

As mentioned in Section 3.4, EMOS and QRF modeling were performed using
regional and clustering-based semi-local training. In the latter approach stations
were grouped into 3 clusters using 24 features, where half of the features were
obtained as equidistant quantiles of the climatological CDF, whereas the other half
as equidistant quantiles of the empirical CDF of the forecast error over the training
period [21]. Note that each verification day and forecast hour had an individual
clustering of the 37 monitoring stations.

4.2. Comparison of the post-processed forecasts

EMOS and QRF calibration of WRF ensemble forecasts is performed using the
optimal 65 day rolling training period and regional and semi-local approaches to
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spatial selection of training data. In what follows EMOS_C and QRF_C will
denote the semi-local EMOS and QRF methods, respectively, in order to distinguish
them from the corresponding regional approaches. Note that EMOS model (3.1)
has 12 parameters to be estimated from the training data.

Further, as mentioned is Section 3.3, QRF method is implemented in two dif-
ferent ways. In the first case, referred to as QRF, we use just the nine wind speed
forecasts from the WRF model, whereas in the second case (QRF_M), this set is
extended by several other variables (see Section 3.3) resulting in a total of 24 co-
variates. Both cases were tested with different arguments and we decided to make
use of the model with 300 trees and a minimum size of 5 for terminal leaves, since
these arguments provided smaller scores. Further, the implementations of QRF
and QRF_M differ from each other in the number of variables randomly sampled
as candidates at each split; one for QRF and three for QRF_M were the best
options.

Figure 4. Mean CRPS vs. EMOS by hours for all stations.

Consider first Figure 4 showing the CRPS.S values with respect to the regional
EMOS approach as function of the forecast hour. The use of semi-local estimation
in EMOS modeling improves the calibration at each hour and the same applies for
QRF modeling. QRF models perform slightly better than the corresponding EMOS
approaches and the best QRF forecasts are obtained by adding other features
as predictors to the regression model (QRF_M and QRF_C_M). Although the
(QRF_M and QRF_C_M) provided better predictions than all the other methods
(see Figure 4), the results could be further improved buy adding new covariates, for
example using the wind speed forecasts instead of the U10 and V10 components.
Note that the ranking of the different methods is completely consistent, the different
graphs do not cross.
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Table 2. Overall scores for the different models computed
in the study.

Models CRPS MAE RMSE Coverage
Ensemble 1.1715 1.4470 1.9949 43.95
EMOS 0.6078 0.8333 1.2443 82.12
EMOS_C 0.5108 0.7121 1.0361 80.29
QRF 0.5794 0.7968 1.1827 89.15
QRF_C 0.4939 0.6867 0.9817 88.18
QRF_M 0.4441 0.6143 0.9021 90.69
QRF_C_M 0.4318 0.5992 0.8781 89.65

(a) (b) (c)

(d) (e) (f)

Figure 5. PIT histograms of post-processed forecasts (a) EMOS
and (b) EMOS-C, and verification rank histogram of: (c) QRF, (d)

QRF-C, (e) QRF-M, (f) QRF-C-M.

A similar ranking of the post-processing methods can be derived from the over-
all scores of Table 2. All post-processing approaches outperform the raw WRF
ensemble in all scores with a wide margin, and the lowest CRPS, MAE and RMSE
belong to QRF_M and QRF_C_M combined with slightly high coverage values.

Finally, as mentioned in Section 3.2, PIT and verification rank histograms allow
us to visualize the improvement in calibration, and the goodness of fit to the cor-
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responding uniform distribution can be quantified by the value of the 𝜒2 statistic
(the smaller the better). According to Figure 5, all post-processing methods can
successfully correct the underdispersion of the raw WRF ensemble forecast (see
Figure 3a) turning it into a slight overdispersion indicated by the hump shape of
the histograms. However, none of PIT histograms looks close to uniformity, prob-
ably due to the small sample size [40]. EMOS forecast are slightly biased and from
the competing QRF approaches QRF-C seems to have the best calibration with
𝜒2 = 1647.9.

4.3. Importance features results
Additionally to the comparison of the post-processing methods, the QRF model
allows to determine the importance of each predictor by considering the CRPS as
verification score using equation (3.2). Figure 6 shows that the observed altitude
(Alt-st) and the terrain height from WRF model are the most important variables
in the QRF-M. The zonal near-surface wind component (U10) seems to be more
important than the meridional wind component (V10), and the surface pressure
(PSFC), orographic variance (VAR) and the deviation of surface temperature (T2)
are also included in the first ten most important features.

Figure 6. Importance of the forecasts considering the CRPS score.

5. Conclusions

In this work some parametric and non-parametric post-processing methods for cal-
ibrating 9-member 3 hourly WRF wind speed ensemble forecasts are investigated.
The WRF ensemble forecasts were generated by different planetary boundary lay-
ers and land-surface model parametrizations in order to model wind speed at 37
monitoring stations around Valparaíso and Santiago city for the period between
1 June 2017 and 30 January 2018. In order to choose the optimal training pe-
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riod length (65 days in this study) a regional EMOS model has been tested with
training periods of different lengths. EMOS and QRF modeling is performed both
regionally and using a clustering-based semi-local approach, the different forecast
hours are treated separately in order to exclude the natural daily variation in wind
speed.

Compared with raw WRF ensemble forecasts, all post-processing approaches
result in a substantial improvement in calibration of probabilistic and accuracy of
point forecasts. From the competing approaches to calibration, the semi-local QRF
model considering other weather variables from WRF simulations exhibits the best
overall predictive performance.

The importance of the predictors for QRF using a permutation method is also
investigated, where from the additional covariates the altitude of the station occurs
to be the most important. These results are crucial in choosing the parametrization
for the WRF model in order to improve wind predictions in Chile.

As a next step we are planning to explore other machine learning methods in
addition to different parametrizations. Further, it would be very interesting to
evaluate the performance of EMOS models with additional predictors using the
boosting approach proposed by [27].
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Abstract

In this paper we study the possibility to use the artificial neural networks
for trees classification based on real and approximated values of the sap flow
density flux describing water transport in trees. The data sets were generated
by means of a new tree monitoring system TreeTalker©. The Fourier series-
based model is used for fitting the data sets with periodic patterns. The
multivariate regression model defines the functional dependencies between
sap flow density and temperature time series. The paper shows that Fourier
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coefficients can be successfully used as elements of the feature vectors required
to solve different classification problems. Here we train multilayer neural
networks to classify the trees according to different types of classes. The
quality of the developed model for prediction and classification is verified by
numerous numerical examples.

Keywords: TreeTalker monitoring system, Fourier coefficients, neural net-
work, classification of trees

AMS Subject Classification: 65C60, 62M10

1. Introduction

In the last decade, monitoring systems, which can be treated as a part of smart
technologies and are used for generating large amounts of data sets from a network
of sensors, have evolved rapidly. This work is a continuation of a previous survey
related to a new sensor tree monitoring system TreeTalker© (TT) [12]. The TT
is a system used for real-time ecological forest plantation monitoring made with
the concept of the Internet of Things (IoT). It is responsible for collecting data
from all sensors, which are fixed to trees, and transforming the analog signal to
meaningful variables. With this system a database was created which is expected to
be published shortly. It includes, among other things like temperature, humidity
of the air and wood, spectral characteristics of the canopy, radial growth of the
trunk, and data from accelerometer about 3D position of trunk, a large amount of
information on the sap density flux describing water transport process in different
tree species that also differ in age, health status, metric characteristics, etc.

We report in this paper our first experiments carried out on data sets extracted
by the TT monitoring system as well as on the estimated values of the density
flux and dedicated to trees classification. Classification is a very common use
case of a machine learning. Artificial neural networks [6, 9] (NN) are parts of a
supervised machine learning which are most popular in different problems of data
classification, pattern recognition, regression, clustering, time series forecasting.
Some of applications of the NN to the real data sets can be found, e.g. in [1, 4]. We
study the possibility to use NN for classifying the trees of different species within
the same age group and visual-tree-assessment (VTA) score, the same species but
with different age groups and/or VTA scores as well as with trunk diameters. As
classification features we use Fourier coefficients obtained by fitting the truncated
Fourier series to the sapflow density flux data sets. This paper also shows that in
addition to the Fourier coefficients obtained directly for the sap density function,
coefficients estimated using multivariate regression on air temperature data can
also be successfully used to classify trees. Thus, it is possible to simulate the
sap flow process of a particular tree species. In the long term, this approach,
which incorporates data generated by the TT with the proposed Fourier coefficient
estimation method, can be used to trace ecological anomalies in the health status
of an individual tree or entire forest area.

The rest of the paper is organized as follows. In Section 2 we describe the data
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sets and methods. In Sections 3 we study the problem of trees classification which
is based on Fourier coefficients estimated in observable time period. Final remarks
are given in Section 4.

2. Data sets and methods

In most cases, data is collected hourly, but in Russian conditions, 1.5 hours are rec-
ommended. The performance of TreeTalkers is being tested at several sites all over
Eurasia continent from Spain to China, with a wide variety of tree species, climate,
topography, and land use with multiple tests of device reliability in terms of sensors
operational limits of the sensors, data transmission, and battery effectiveness. In
May 2019, 60 TT sensors were installed on different species of trees growing in
different areas, belonging to different age groups with varying VTA scores sum-
marized in Table 1. Data from all devices was collected till the end of November
2019 and stored on a remote web server. All data for basic variables was 3 sigma
filtered, runaways were eliminated and gap filled with linear 4D interpolation for
gaps smaller than 4 measurements. Sapwood area data was combined with TT
data, and individual tree sap flux was calculated utilizing R software. While there
are several papers where modern modeling techniques implemented for predicting
evapotranspiration of planted areas with environmental data [7, 11, 14], there are
very limited amount of papers about individual tree sap flow modeling [10]. Tak-
ing into account growing trend of IoT devices used in environmental monitoring [3,
13] modeling of one of the main physiological tree characteristics can be of great
interest. This metric is in many cases a very contrasting reflection of the degree to
which individual qualitative factors influence the state of the tree. As an example,
consider Figure 1, which shows the sap density functions for two tree species: Salix
alba and Acer platanoides. In first case we have three classes (III,2), (IV,2) and
(IV,3), where trees differ in age group and VTA factor. In second case trees belong
to the same age group but differ in VTA value according to four classes, (VI,1),
(VI,2), (VI,3) and (VI,4). As can be seen, the functions 𝑦flux,𝑡 have a significant
difference, depending on the respective class. Thus, it can be expected that this
characteristic can be successfully applied for classification.

The data sets for the the air temperature (tair) and the sapflow density flux
(flux) are represented respectively in form of time series �⃗�tair = (𝑦tair,1, 𝑦tair,2, . . . )
and �⃗�flux = (𝑦flux,1, 𝑦flux,2, . . . ) and with time-ordered sequence of observations.
These time series are characterized by fluctuations which exhibit a periodic nature
with a cycle length 𝑇 . Each cycle includes mostly 𝑁 = 16 measurements that are
made at equally spaced time intervals ∆𝑡 = 1.5ℎ. The total time within a cycle is
then 𝑇 = 𝑁∆𝑡 = 24ℎ. Since the fluctuations may have different amplitudes and
shapes within each period, the data sets can not be treated as pure periodic ones,
i.e. in general case 𝑦tair,𝑡0 ̸= 𝑦tair,𝑡0+𝑘𝑇 and 𝑦flux,𝑡0 ̸= 𝑦flux,𝑡0+𝑘𝑇 for all 𝑘 ∈ N. The
data preprocessing step includes the denoising by locally data smoothing. We use
for that a low pass filter which passes signals with a frequency lower than a selected
cutoff frequency 𝜔𝑐 = 0.9. Smaller values of 𝜔𝑐 result in greater smoothing.
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Figure 1. Sapflow density flux 𝑦𝑡 Salix alba (a)
and Acer platanoides (b).

Table 1. Key elements of the database.

Sorts Area Age VTA score
Acer fraxinifolium MS-7 IV,IV 2,3
Acer platanoides OL-1,OL-2,OL-3,MS-6 III,IV,VI 1,2,3,4
Aesculus flava OL-3 VI 3
Betula pendula OL-1,MS-4,MS-6 IV,VI 1,2,3
Carpinus betulus OL-4 IV 2
Fraxinus excelsior OL-3 VI 3
Fraxinus ornus OL-3 VI 2
Juglans mandshurica OL-3 VI 3
Junglas cinerea OL-3 VI 2
Larix decidua MS-6 IV,VI 2
Larix sibirica OL-2,OL-3,MS-6 V,VI 2,3,4
Malus domestica OL-3 IV 3
Picea abies OL-1,MS-4 IV,V,VI 1,2,3
Pinus sylvestris OL-1 III,IV,VI 2,3
Populus nigra OL-3,MS-7 VI 2,3
Populus tremula OL-1 III,VI 1,2
Prunus avium OL-3 VI 2
Pyrus commutis OL-3 VI 2
Quercus Rrobur OL-2,OL-3,MS-4 VI 2,3,4
Robinia pseudoacacia OL-3 IV 2
Salix alba OL-3,MS-5 III,IV,VI 2,3
Tilia cordata OL-1,OL-2,OL-3,MS-4,MS-6 III,IV,VI 1,2,3,4

A truncated Fourier series can be used to find approximations for periodic functions
of the air temperature 𝑓tair(𝑡) and the sapflow density 𝑓flux(𝑡) with a fundamental
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period 𝑇 that passes through all of the points,

𝑓tair(𝑡) ≈ 𝑎0 +

𝑚∑︁

𝑛=1

[︁
𝑎𝑛 cos

(︁2𝜋𝑛𝑡

𝑇

)︁
+ 𝑏𝑛 sin

(︁2𝜋𝑛𝑡

𝑇

)︁]︁
,

𝑓flux(𝑡) ≈ 𝛼0 +
𝑚∑︁

𝑛=1

[︁
𝛼𝑛 cos

(︁2𝜋𝑛𝑡

𝑇

)︁
+ 𝛽𝑛 sin

(︁2𝜋𝑛𝑡

𝑇

)︁]︁
. (2.1)

The coefficients 𝑎𝑛, 𝑏𝑛 and 𝛼𝑛, 𝛽𝑛 can not be explicitly derived since the func-
tions 𝑓tair(𝑡) and 𝑓flux(𝑡) are not available in explicit form and hence they must
be estimated. We have only data �⃗�tair = (𝑦tair,1, 𝑦tair,2, . . . , 𝑦tair,𝑛𝑠)′ and �⃗�flux =
(𝑦flux,1, 𝑦flux,2, . . . , 𝑦flux,𝑛𝑠

)′ generated by the sensors. The known periodic patterns
of the approximated functions 𝑓tair(𝑡) and 𝑓flux(𝑡) are expressed through vectors of
parameters �⃗� = (𝑎0, 𝑎1, . . . , 𝑎𝑚, 𝑏1, . . . , 𝑏𝑚)′ and �⃗� = (𝛼0, 𝛼1, . . . , 𝛼𝑚, 𝛽1, . . . , 𝛽𝑚)′.
These parameters are estimated using the method of the linear least squares

𝑖𝑇∑︁

𝑡=(𝑖−1)𝑇

(𝑦tair,𝑡 − 𝑓tair(𝑡))2 ⇒ min
�⃗�
,

𝑖𝑇∑︁

𝑡=(𝑖−1)𝑇

(𝑦flux,𝑡 − 𝑓flux(𝑡))2 ⇒ min
�⃗�
, 1 ≤ 𝑖 ≤ 𝑛𝑝,

where 𝑛𝑝 = 𝑛𝑠

𝑁 is a number of cycles of length 𝑇 within the observations with a
total sample size 𝑛𝑠.

For trees classification the feature vectors (𝛼𝑖,0, 𝛼𝑖,1, . . . , 𝛼𝑖,𝑚, 𝛽𝑖,1, . . . , 𝛽𝑖,𝑚) of
the Fourier coefficients (2.1) in an observable period 1 ≤ 𝑖 ≤ 𝑛𝑝 are used. Recall
that in the previous paper [5] we presented a method for predicting the density
flux during the day based on data on air temperature during the observed cycle.
For this purpose, Fourier series and a multivariate regression model were used,
establishing the functional relationship between the respective Fourier coefficients
for temperature data sets and density flux values,

𝛼𝑖,𝑛 = 𝜃0,𝑛 + 𝜃1,𝑛𝑎𝑖,0 +

𝑚∑︁

𝑗=1

[𝜃𝑗+1,𝑛𝑎𝑖,𝑗 + 𝜃𝑚+𝑗+1,𝑛𝑏𝑖,𝑗 ], 0 ≤ 𝑛 ≤ 𝑚, (2.2)

𝛽𝑖,𝑛 = 𝜃0,𝑛+𝑚 + 𝜃1,𝑛+𝑚𝑎𝑖,0 +
𝑚∑︁

𝑗=1

[𝜃𝑗+1,𝑛+𝑚𝑎𝑖,𝑗 + 𝜃𝑚+𝑗+1,𝑛+𝑚𝑏𝑖,𝑗 ], 1 ≤ 𝑛 ≤ 𝑚,

where 1 ≤ 𝑖 ≤ 𝑛𝑝, 𝜃𝑘 = (𝜃0,𝑘, 𝜃1,𝑘, . . . , 𝜃2𝑚+1,𝑘)′, 0 ≤ 𝑘 ≤ 2𝑚, denotes the vector of
parameters of the multidimensional regression model. We discuss here the results of
experiments carried out on data sets extracted by the TT monitoring system as well
as on the estimated values of the density flux and dedicated to trees classification.
We study the possibility to use artificial neural networks to classify the trees of
the same species but with different age groups and visual-tree-assessment (VTA)
scores. As classification features we use a predicted Fourier coefficients of the
sap flow density flux approximation function. In the long term, this approach
which incorporates data generated by the TT with the proposed Fourier coefficient
estimation method can be used to determine the anomalous state of a tree or
generally monitor forest ecology.
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As was mentioned above, as features for trees classification we use the sets of
vectors 𝑆, consisting of eleven original coefficients of the truncated Fourier series
fitted to the density flux function 𝑦flux,𝑡. Moreover, the classifier will be applied
also to the sets 𝑆 for the predicted coefficients of the function 𝑦flux,𝑡 by using the
multiple regression (2.2) for the Fourier coefficients of the air temperature data
𝑦tair,𝑡. The data sets for the classification problem were prepared in form of the set
of mappings,

𝑆 = {(𝛼𝑖,0, 𝛼𝑖,1, . . . , 𝛼𝑖,𝑚, 𝛽𝑖,1, . . . , 𝛽𝑖,𝑚)→ Class 𝑁 : 1 ≤ 𝑖 ≤ 𝑛𝑝},
𝑆 = {(�̂�𝑖,0, �̂�𝑖,1, . . . , �̂�𝑖,𝑚, 𝛽𝑖,1, . . . , 𝛽𝑖,𝑚)→ Class 𝑁 : 1 ≤ 𝑖 ≤ 𝑛𝑝},

where 𝑚 = 5 and 𝑛𝑝 is a number of observable periods. 70% of samples 𝑆 and 𝑆 is
referred to as training data and the rest – as validation data. The data were chosen
so that the sample in each class was more or less balanced, i.e. the sample size in
each class did not differ significantly. The multilayer neural network is used for the
data classification. It can be formally defined as a function 𝑓 : �⃗�→ �⃗�, which maps
an input vector �⃗� of dimension 2𝑚+ 1 to an estimate output �⃗� ∈ R𝑁𝑐 of the class
number 𝑁 = 1, . . . , 𝑁𝑐. The network is decomposed into 6 layers as illustrated in
Figure 2, each of which represents a different function mapping vectors to vectors.
The successive layers are: a linear layer with an output vector of size 𝑘, a nonlinear
elementwise activation layer, other three linear layers with output vectors of size
𝑘, and a nonlinear normalization layer.

Figure 2. Architecture of the neural network.

The first layer is an affine transformation

�⃗�1 = 𝑊1�⃗�+ �⃗�1,

where �⃗�1 = R2𝑚+1 is the output vector, 𝑊 ∈ R2𝑚+1×𝑘=30 is the weight matrix,
�⃗�1 ∈ R2𝑚+1 is the bias vector. The rows in 𝑊1 are interpreted as features that are
relevant for differentiating between corresponding classes. Consequently, 𝑊1�⃗� is a
projection of the input �⃗� onto these features. The second layer is an elementwise
activation layer which is defined by the nonlinear function �⃗�2 = max(0, �⃗�1) setting
negative entries of 𝑞1 to zero and uses only positive entries. The next three layers
layers are another affine transformations,

�⃗�𝑖 = 𝑊𝑖�⃗�𝑖−1 + 𝑏𝑖,
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where �⃗�𝑖 ∈ R𝑘,𝑊𝑖 ∈ R𝑘×𝑘, and 𝑏𝑖 ∈ R𝑘, 𝑖 = 3, 4, 5. The last layer is the normaliza-
tion layer �⃗� = softmax(�⃗�5), which componentwise is of the form

𝑦𝑁 =
𝑒𝑞5𝑁∑︀
𝑁 𝑒

𝑞5𝑁
, 𝑁 = 1, . . . , 𝑁𝑐.

The last layer normalizes the output vector �⃗� with the aim to get the values between
0 and 1. The output �⃗� can be treated as a probability distribution vector, where
the 𝑁th element 𝑦𝑁 represents the likelihood that �⃗� belongs to class 𝑁 .

The neural networks in our experiments are trained by the ADAM (adaptive
moment estimation method) [8] which is a modification of stochastic gradient de-
scent (SGD). The neural network toolbox in Mathematica© of the Wolfram Re-
search is used. We verify the classifier which should be accurate enough to be
used to predict new output from verification data. The algorithm was ran many
times on samples and networks with different sizes. In all cases the results were
quite positive and indicate the potential of machine learning methodology for trees
classification problem based on the estimated Fourier coefficients.

To follow the classification progress, we summarize the results in form of a con-
fusion matrix evaluated on the trained and verification data. with these matrices it
is possible to observe the relations between the classifier outputs and the true ones.
Each row of these matrices represents the instances in a predicted value while each
column represents the instances in an actual value. Different statistical measures
of the performance of a binary classification, such as the overall accuracy (ACC),
sensitivity (true positive rate – TPR), specificity (true negative rate – TNR) as
well as F-1 Scores which is the harmonic mean of precision and sensitivity. For
more details about these measures, refer to [2]. Note that in multi-class classifica-
tion problem we calculate the F-1 Score per class in a one-vs-rest manner, i.e. we
estimate successful occurrence of the class as if there are individual classifiers for
each class.

3. Experiments

Five main examples are discussed in this section.

Example 3.1. In this example, we test the feasibility of using the data to classify
tree varieties within the same age group and VTA score. Data for four tree varieties
such as Acer platanoides,Betula pendula,Salix albe and Tilla cordata in the age
group IV and with the VTA score 2 were selected for 4-class classification problem
as is shown in Table 2.

The Figure 3 shows the confusion matrices evaluated using data set 𝑆 and 𝑆
for real and estimated Fourier coefficients of the data flux density function 𝑦flux,𝑡.
Obviously, the matrices are diagonally dominant and the frequencies of correctly
recognized classes are almost identical. Four statistical quantities described above,
which are used to represent some aspect of a classification quality, are summarized
in Table 3. The quality of the classification is quite high, the overall accuracy is over
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than 85%. The quality metrics per class take also the high values. Moreover, the
classification of trees according to the estimated Fourier coefficients exhibits slightly
reduced values for quality parameters, but the difference is quite insignificant.

Table 2. Classes within the same age group IV and VTA score 2.

Class 𝑁 Sort Age group VTA score
1 Acer platanoides IV 2
2 Betula pendula IV 2
3 Salix albe IV 2
4 Tilia cordata IV 2
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Figure 3. Confusion matrices for sorts classification based on 𝑆
(a) and 𝑆 (b) data sets.

Table 3. Classification performance.

XXXXXXXXXXData
Metric ACC TPR TNR F-1 Scores

𝑆 0.8571

1→ 0.8500 1→ 0.9412 1→ 0.8095
2→ 0.8800 2→ 0.9625 2→ 0.8800
3→ 0.7353 3→ 1.000 3→ 0.8474
4→ 1.000 4→ 0.9114 4→ 0.8814

𝑆 0.8298

1→ 0.7143 1→ 0.9955 1→ 0.7843
2→ 0.9375 2→ 0.8974 2→ 0.7692
3→ 0.9375 3→ 0.9355 3→ 0.9091
4→ 0.7222 4→ 0.9864 4→ 0.8125

Based on the available samples, it can thus be stated that the sap flow process varies
considerably among the different tree varieties. We believe that by obtaining an
appropriate trained neural network for each tree variety of a certain age group and
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VTA score, it is feasible to recognize anomalies in the growth process of a particular
tree, which in turn will make it possible to produce an environmental health map
of forest plantations in urban parks or large forest areas outside of cities.

The experiments carried out comparing different tree varieties in terms of sap
density values show the possibility to use not only the real values obtained directly
by the TT monitoring system, but also their estimates obtained by multivariate lin-
ear regression as a functional relationship between air temperature and sap density
values. This allows considerable savings in the purchase and installation of a large
number of sensors, as a sensor network of a limited number of devices installed on
different types of trees will be sufficient to cover large areas.

Example 3.2. Consider data sets with 𝑛𝑝 observable periods for Salix albe. We
divide the data set into three subgroups according to Table 4.

Table 4. Classes of Salix albe.

Class 𝑁 Age group VTA score
1 IV 2
2 IV 3
3 III 2
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Figure 4. Confusion matrices for classification of Salix alba based
on 𝑦flux,𝑡 (a) and 𝑦flux,𝑡 (b).

The trees of this species can belong to different age groups and have different
VTA scores. Figure 4 illustrates two confusion matrices which are obviously di-
agonally dominant. As we can see, factors such as age group and VTA have a
significant influence on the values of the density flux function. As can be seen in
Table 5, the classification accuracy reaches more than 90% and the overall accu-
racy is almost indistinguishable from the qualitative characteristics for each class.
The results of experiments were quite positive and indicate the potential of ma-
chine learning methodology for trees classification problem based on the Fourier
coefficients for the fitted density flux data.
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Table 5. Classification performance.

XXXXXXXXXXData
Metric ACC TPR TNR F-1 Scores

Salix albe,𝑆 0.9009
1→ 0.8333 1→ 0.9787 1→ 0.9000
2→ 1.000 2→ 0.9382 2→ 0.8889
3→ 0.9629 3→ 0.9459 3→ 0.9123

Salix albe,𝑆 0.8514
1→ 0.8148 1→ 0.9348 1→ 0.8713
2→ 0.9000 2→ 0.9125 2→ 0.8000
3→ 0.9231 3→ 0.9459 3→ 0.8889

Example 3.3. Next we study the possibility to classify the trees of the same species
according to different age groups but with the equal VTA scores. The presented
experiment includes the gathered data for Tilia cordata and the task is to provide
a classification according to the classes in Table 6.

Table 6. Classes of Tilia cordata.

Class 𝑁 Age group VTA score
1 III 3
2 IV 3
3 VI 3
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Figure 5. Confusion matrices for classification of Tilia cordata
based on real 𝑦flux,𝑡 (a) and estimated 𝑦flux,𝑡 (b) density flux func-

tion.

The Figure 5 shows two confusion matrices in a 3-class classification problem.
As we see here, the matrices are also diagonally dominated but nevertheless there
are non-zero false positive and false negative elements. The overall accuracy to-
gether with other quality characteristics per class are summarized in Table 7. In
this example we obtained over 79% accuracy for trees classification. The age clas-
sification of other tree species yielded fairly similar results. Hence a the sapflow
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density can be treated as a characteristic for determining the age of a tree. This
result can also be considered encouraging given the high noise content of the raw
data, erroneous measurements, and missing values within individual classes. The
use of Fourier coefficients derived from air temperature for classification can also
be considered acceptable, although of course the quality is slightly degraded and
in average is near 74%. During the experiments, we also noticed that when the
VTA score is increased, the trees are more accurately classified according to the
age group. Finally, it can be noticed that the higher the age of the trees, the more
closely the sap density function takes on values. Classification then becomes in this
case a more difficult task. This can be seen from the low values of the classification
quality characteristics for classes 2 and 3 in Table 7.

Table 7. Classification performance.

XXXXXXXXXXData
Metric ACC TPR TNR F-1 Scores

𝑦flux,𝑡 0.7937
1→ 0.8421 1→ 0.7619 1→ 0.9762
2→ 0.8302 2→ 0.8461 2→ 0.8649
3→ 0.6857 3→ 0.7500 3→ 0.8511

𝑦flux,𝑡 0.7430
1→ 0.8571 1→ 0.8163 1→ 0.7500
2→ 0.7619 2→ 0.8367 2→ 0.7111
3→ 0.6429 3→ 0.9762 3→ 0.7659

Example 3.4. Now we will fix the age group and try to classify the trees by VTA
scores only. Consider data sets for Acer platanoides. The data were divided into
four subgroups according to Table 8.

Table 8. Classes of Acer platanoides.

Class 𝑁 Age group VTA score
1 VI 1
2 VI 2
3 VI 3
4 VI 4

The confusion matrices in Figure 6, although diagonally dominant, contain
many non-zero elements outside the main diagonal. The reason is, that there was
not much variation in the density flux data in each group. Therefore, we consider
the classification accuracy of more than 75% as a very good result, taking into
account that VTA is still a somewhat subjective characteristic. Table 9 shows
that some classes are better recognized than others. This is not surprising, as
it is obvious that in addition to age group and VTA there are other factors that
influence the value of juice density, such as trunk diameter. In the following example
we investigate the task of classification according to this characteristic.
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Figure 6. Confusion matrices for classification of Acer platanoides
based on data set 𝑆 (a) and 𝑆 (b).

Table 9. Classification performance.

XXXXXXXXXXData
Metric ACC TPR TNR F-1 Scores

Acer platanoides,𝑆 0.7571

1→ 0.7000 1→ 0.9200 1→ 0.7368
2→ 0.7000 2→ 0.8750 2→ 0.7500
3→ 1.000 3→ 0.9649 3→ 0.9286
4→ 0.7143 4→ 0.9048 4→ 0.5556

Acer platanoides,𝑆 0.7000

1→ 0.6500 1→ 0.9200 1→ 0.7027
2→ 0.6333 2→ 0.8333 2→ 0.6786
3→ 0.9230 3→ 0.8947 3→ 0.7742
4→ 0.7143 4→ 0.9365 4→ 0.5039

Example 3.5. In this example we try to classify the trees by trunk diameter based
on the density flux information with fixed factors of the age group and the VTA
score. Two tree species are selected for the illustration: Betula pendula and Tilia
cordata.

Table 10. Classes of Betula pendula (a) and Tilia cordata (b).

Class 𝑁 Diam Age VTA
1 25.46 VI 1
2 26.73 VI 1
3 30.24 VI 1

(a)

Class 𝑁 Diam Age VTA
1 37.87 VI 2
2 48.76 VI 2
3 51.24 VI 2

(b)

Three different classes for each species are enumerated respectively in Table 10.
Here we see that the quality of classification by trunk diameter is slightly higher
than by age group, although these two factors have a large positive correlation for
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almost all the tree species under consideration. As features we use here only the
Fourier coefficients of data sets of type 𝑆 obtained by fitting the truncated Fourier
series to the density flux data sets. But we expect that the results will be similar
to the case of the estimated Fourier coefficients. The results of classification are
illustrated as usual in form of the confusion matrices in Figure 7 and in Table 11
of performance measures.
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Figure 7. Confusion matrices for classification of Betula pendula
(a) and Tilia cordata based on real 𝑦flux,𝑡 density flux function.

Table 11. Classification performance.

XXXXXXXXXXData
Metric ACC TPR TNR F-1 Scores

Betula pendula,𝑆 0.8000
1→ 0.8750 1→ 0.9629 1→ 0.8750
2→ 0.8000 2→ 0.8000 2→ 0.6956
3→ 0.7647 3→ 0.9444 3→ 0.8387

Tilia cordata,𝑆 0.8333
1→ 0.9000 1→ 0.8462 1→ 0.7816
2→ 0.7857 2→ 0.9545 2→ 0.8461
3→ 0.8333 3→ 0.9583 3→ 0.8677

Here we see that the quality of classification by trunk diameter is more than
80% which is slightly higher than the classification by the age group, although these
two factors have a large positive correlation for almost all the tree species under
consideration.

4. Conclusion

On the basis of the proposed experiments, it can be noticed that the temperature
observations can be mapped to the values of the sap flow density flux through
the corresponding Fourier coefficients which is resulting in high quality predic-
tions. Moreover, the estimated coefficients for the function approximating the sap
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flow density have a good potential to be used as feature vector in trees classifi-
cation tasks even within the same species. From this we can draw a conclusion
about the perspective to use the TreeTalker equipment together with the proposed
mathematical approach for solving problems of trees monitoring and anomaly state
recognition. Moreover, if a tree’s sapflow density pattern does not match what a
healthy tree with similar characteristics should have, this can be seen as an indirect
sign of problems with soil, groundwater or the general environment. As new data
become available, we plan to continue our research on tree classification based on
the monitoring system. We will also take into account the reviewer’s suggestion re-
lated to the use of alternative classifiers and a comparative analysis of classification
quality.
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Abstract

In this paper machine learning methods are studied for classification data
containing some misleading items. We use ensembles of known noise correc-
tion methods for preprocessing the training set. Preprocessing can be either
relabeling or deleting items detected to have noisy labels. After preprocess-
ing, usual convolutional networks are applied to the data. With preprocess-
ing, the performance of very accurate convolutional networks can be further
improved.

Keywords: Label noise, deep learning, classification
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1. Introduction

In recent years, deep neural networks have reached very impressive performance in
the task of image classification. However, these models require very large datasets
with labeled training examples, and such datasets are not always available. The
labeling process is often very expensive, or it is very difficult even for experts in
a particular field. That is what can lead to the use of databases with label noise,
which contain incorrectly labeled instances. Therefore, it is important to examine
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training on this kind of datasets. According to a widely accepted assumption, deep
networks learn consistent, simple patterns in the beginning, and then it is followed
by the learning of the harder examples with possibly incorrect labels [2]. So treating
the label noise in the training set can lead to a better generalization ability instead
of its overfitting to the wrong examples. A lot of studies address the noisy label
problems, for example, [1] is an extensive survey of a broad range of the existing
methods.

In this work we investigate the possibilities of improving a classifier (which is
an ensemble of deep neural networks) by handling the label noise in the training
dataset. We classify with an ensemble of convolutional neural networks (CNNs).
At the start, we train that ensemble on the original training dataset. Then we
are going to apply a label noise cleansing technique on the training data. Finally,
we take a CNN ensemble with the same structure as our original CNN ensemble,
and train it on the new dataset gained after treating the label noise. We evaluate
and compare the performance of the ensemble classifiers and draw conclusions.
As our main goal is to study label correcting neural networks for preprocessing
purpose, so here we use only simple ensemble building methods. The effect of more
sophisticated voting systems (see, e.g. [7]) on our two-phase classification method
can be studied later.

We conduct experiments on the MNIST dataset [6]. MNIST is a database of
handwritten digits, it consists of images with 28× 28 grayscale pixels. The size of
the training set is 60 000 examples and the test set has 10 000 samples. However,
MNIST contains some misleading items. To support it, some examples that might
be considered as mislabeled images can be seen on Figure 1.

Label: 3 Label: 5 Label: 9 Label: 5

Figure 1. Some misleading images in the MNIST dataset.

We shall consider the misleading items as inaccurately labelled ones so we can
apply some known methods elaborated to handle noisy labels.

2. Methods to detect and correct label noise

In the beginning, let us define some notations. We denote vectors with bold (e.g. x)
letters and matrices with capital (e.g. 𝑋) letters. Specifically, 1 corresponds to a
vector of all-ones. In the 𝑐-dimensional space, the term of hard-label and soft-
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label spaces are used, they are denoted by ℋ = {y : y ∈ {0, 1}𝑐,1ᵀy = 1} and
𝒮 = {y : y ∈ [0, 1]𝑐,1ᵀy = 1}, respectively. It is easy to see that ℋ contains
one-hot vectors, and the elements of 𝒮 are discrete probability distributions.

In an image classification problem with 𝑐 classes, we have a training set of 𝑛
images: 𝑋 = {x1,x2, . . . ,x𝑛} with the corresponding ground-truth

𝑌 𝐺𝑇 = {y𝐺𝑇1 ,y𝐺𝑇2 , . . . ,y𝐺𝑇𝑛 }

labels. y𝐺𝑇𝑖 ∈ ℋ represents the class of x𝑖 with a 1 in the coordinate corresponding
to that class.

Using a neural network with the cross entropy loss function, the model can be
trained by minimizing

ℒ = − 1

𝑛

𝑛∑︁

𝑖=1

𝑐∑︁

𝑗=1

y𝐺𝑇𝑖𝑗 log 𝑠𝑗(𝜃,x𝑖),

where 𝜃 is the set of the network parameters, y𝐺𝑇𝑖𝑗 is the 𝑗-th element of y𝐺𝑇𝑖 and
𝑠𝑗 is the 𝑗-th element of the network’s softmax output. If the clean labels are given,
we only have to minimize this function with respect to 𝜃.

However, in this noisy label setting, the ground-truth labels are not known,
only

𝑌 = {y1,y2, . . . ,y𝑛}

is given, which is the set of noisy labels. But the goal is the same: our task is to
train the model to predict the true labels.

2.1. A joint optimization framework

The first technique we have used is the framework in Tanaka et al. [8]. The authors
of that paper suggest a two-stage approach. The noise correction is made in the
first phase by jointly optimizing the weights of a neural network and the labels
of the training data. During this joint optimization process they train a classifier
and correct the wrong labels at the same time. It is made possible by repeating
alternating steps of updating the network parameters and the training labels. In
the early stages, the training goes in the usual way, but a high learning rate is
used, because it prevents the learning of noisy labels. When the classifier has
achieved a reasonable accuracy, they start the repetition of the two alternating
steps mentioned before. The first is the well known update of the network weights
by the stochastic gradient descent method. In the other step, they update the
labels. And from now on, a more complex loss function is used, two regularization
terms are added to the classification loss to prevent certain anomalies. Once this
label correction is done, the authors start the training over in the second step with
the recently obtained new labels and without the two regularization terms of the
loss function. The new labels are considered as clean and the trained network is
considered as accurate.
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In [8] the noisy label problem is formulated as the joint optimization of the
network parameters and the labels:

min
𝜃,𝑌
ℒ(𝜃, 𝑌 |𝑋).

The loss function is

ℒ(𝜃, 𝑌 |𝑋) = ℒ𝑐(𝜃, 𝑌 |𝑋) + 𝛼ℒ𝑝(𝜃|𝑋) + 𝛽ℒ𝑒(𝜃|𝑋), (2.1)

where ℒ𝑝(𝜃|𝑋), ℒ𝑒(𝜃|𝑋) are the regularization losses, and 𝛼, 𝛽 are hyper-param-
eters. The ℒ𝑐(𝜃, 𝑌 |𝑋) classification loss is made with the Kullback-Leibler diver-
gence of the labels and the softmax outputs:

ℒ𝑐(𝜃, 𝑌 |𝑋) =
1

𝑛

𝑛∑︁

𝑖=1

𝐷𝐾𝐿(y𝑖||s(𝜃,x𝑖)),

where

𝐷𝐾𝐿(y𝑖||s(𝜃,x𝑖)) =

𝑐∑︁

𝑗=1

𝑦𝑖𝑗 log

(︂
𝑦𝑖𝑗

𝑠𝑗(𝜃,x𝑖)

)︂
.

[8] introduces two possible ways to update the labels at the end of the epochs:
the hard-label method and the soft-label method. In the first case, the new labels
are one-hot vectors, too. A 𝑦 ∈ ℋ is updated in the following way:

𝑦𝑖𝑗 =

{︃
1, if 𝑗 = arg max𝑘 𝑠𝑘(𝜃,x𝑖),

0, otherwise.

In the second case, the new labels are the softmax outputs:

y𝑖 = 𝑠(𝜃,x𝑖).

Tanaka et al. [8] experienced that the soft-label method performed better than the
hard-label method. In experiments, sudden changes in the labels were prevented
by the use of a relatively high momentum (0.9), and the new soft labels were not
single softmax outputs, but the average of softmax outputs in the last 10 epochs.

Finally, we describe regularization terms in the loss function of [8]. The regu-
larization loss ℒ𝑝(𝜃|𝑋) is needed to prevent the assignment of all labels to a single
class. If we only minimize ℒ𝑐(𝜃, 𝑌 |𝑋) with respect to 𝜃 and 𝑌 , this is a trivial
solution. To solve this issue, we use the prior distribution 𝑝 of the classes in the
entire training set. We do not let the distribution of the updated labels be much
different from 𝑝, so we introduce the Kullback-Leibler divergence of 𝑝 and 𝑠(𝜃,𝑋)
as a loss function term:

ℒ𝑝 =

𝑐∑︁

𝑗=1

𝑝𝑗 log
𝑝𝑗

𝑠𝑗(𝜃,𝑋)
.

𝑠(𝜃,𝑋) is approximated by calculating the mean of softmax outputs over each
mini-batch.
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After the start of label updating in the case of soft labels, it might happen that
the network output is the same as the soft label for most of the training examples,
and it stops the learning process. That is why the entropy loss ℒ𝑒(𝜃|𝑋) is needed.

ℒ𝑒(𝜃|𝑋) = − 1

𝑛

𝑛∑︁

𝑖=1

𝑐∑︁

𝑗=1

𝑠𝑗(𝜃,x𝑖) log 𝑠𝑗(𝜃,x𝑖)

This entropy term forces the probability distribution of the soft labels to concen-
trate to a single class.

This noise correcting and training process needs a background network. To this
end, the PreAct ResNet [5] was used in [8]. It is a modification of the famous ResNet
network [4]. Residual Networks give a simple yet groundbreaking solution to the
vanishing gradient problem. They use identity shortcuts, which let the data skip
one or more layers. Obviously, the error back-propagation is the point where these
models can really take advantage of these shortcuts. The pre-activation residual
blocks [5] let the gradients flow throughout the PreAct ResNet even more easily.
Such networks may have hundreds of layers and researchers consider them more
accurate than ResNets.

It is important to note that this framework does not depend on the background
network structure, it can be used with any background network. From now on,
this technique will be referred to as Tanaka’s method.

2.2. Probabilistic end-to-end noise correction

The second method we have used is introduced in [10]. This framework is called
PENCIL (probabilistic end-to-end noise correction in labels). This technique uses
soft labels, too. So the labels of the images are not fixed categorical values, but
distributions among all possible labels. Similarly to [8], the labels are updated
iteratively during the training of a classifier. But those updates are made with
back-propagation instead of the moving average of softmax outputs.

For every image x𝑖, a label distribution y𝑑𝑖 ∈ 𝒮 is maintained and updated.
These distributions are the estimations of the y𝐺𝑇𝑖 clean labels. The y𝑑𝑖 ∈ 𝒮 values
are initialized based on the given noisy labels y𝑖. The initialization goes in the
following way. An additional label ̃︀y𝑖 is used to assist y𝑑𝑖 . ̃︀y𝑖 is initialized by
multiplying the given y𝑖 with a large constant:

̃︀y𝑖 = 𝐾y𝑖.

(𝐾 is the same value for all 𝑖, in [10] 𝐾 is 10). ̃︀y𝑖 is then transformed into a
probability distribution with softmax. This will be the value of y𝑑𝑖 :

y𝑑𝑖 = softmax(̃︀y𝑖).

The loss function terms are also similar to [8], but there are important dif-
ferences. The authors showed that Kullback-Leibler divergence with interchanged
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arguments is more suitable for this noise correction task than the classic form. So
here the classification loss ℒ𝑐 is the following:

ℒ𝑐 =
1

𝑛

𝑛∑︁

𝑖=1

𝐷𝐾𝐿(s(𝜃,x𝑖)||y𝑑𝑖 ),

where

𝐷𝐾𝐿(s(𝜃,x𝑖)||y𝑑𝑖 ) =
𝑐∑︁

𝑗=1

𝑠𝑗(𝜃,x𝑖) log

(︃
𝑠𝑗(𝜃,x𝑖)

𝑦𝑑𝑖𝑗

)︃
.

As we have seen before, we have to prevent the assignment of all instances to
a single class if we begin the update of the labels. It should not be allowed for the
estimated label distribution y𝑑𝑖 to be much different from the original y𝑖. Therefore,
in [10] a cross entropy loss term is introduced between label distribution and the
noisy label. It is called compatibility loss:

ℒ𝑜(Y,Y𝑑) = − 1

𝑛

𝑛∑︁

𝑖=1

𝑐∑︁

𝑗=1

𝑦𝑖𝑗 log 𝑦𝑑𝑖𝑗 ,

where Y is the set of given noisy labels, and Y𝑑 is the set of the estimated labels.
There is one more issue to prevent during the label correction: if 𝑠(𝜃,x𝑖) is equal

to y𝑑, it stops the training and label updating process, so the softmax outputs need
to be forced to concentrate on a single class. An entropy loss is suitable for this
requirement:

ℒ𝑒(𝑠(𝜃,x)) = − 1

𝑛

𝑛∑︁

𝑖=1

𝑐∑︁

𝑗=1

𝑠𝑗(𝜃,x𝑖) log 𝑠𝑗(𝜃,x𝑖).

This term is exactly the same as ℒ𝑒 in [8].
The PENCIL loss function is a weighted sum of these terms:

ℒ =
1

𝑐
ℒ𝑐(𝑠(𝜃,x),Y𝑑) + 𝛼ℒ𝑜(Y,Y𝑑) +

𝛽

𝑐
ℒ𝑒(𝑠(𝜃,x)), (2.2)

where 𝛼 and 𝛽 are two hyperparameters.
The training with PENCIL begins with a fixed, high learning rate, because it

helps not to overfit to noisy labels. In the next stage, the label correction starts
with the (2.2) loss function. y𝑑 is updated by updating ̃︀y. The advantage of this
labeling is that ̃︀y can be updated freely without any constraint while y𝑑 is always
a probability distribution. It is important to note that a very large learning rate is
needed to update ̃︀y. Finally, the network is fine-tuned with only the classification
loss.

In the paper [10] the PreAct ResNet is used as a background network, but the
PENCIL framework can also be used with any neural network.
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3. Our experiments

Tanaka et al. [8] made experiments on CIFAR-10 with synthetic label noise, and a
real-world dataset, in which almost 40 percent of the labels are wrong [9]. Yi and
Wu [10] have also conducted experiments with synthetic label noise and real-world
datasets.

In our work, we use a preprocessed dataset without adding synthetic label
noise. However, we do not treat it as a perfectly clean training set. We suppose
the existence of a certain, but not too large amount of label noise in MNIST. As
mentioned before, we train an ensemble of CNN classifiers before and after the label
noise cleansing. We perform this correction with the first phase of the method seen
in section 2.1, and the technique in 2.2. To further enhance this procedure, we have
also used an ensemble for this label noise cleansing, too. Our goal is to examine
its effect on the dataset, the learning process, and the accuracy.

We implemented our experiments with the Python-based deep learning frame-
work Tensorflow and the Keras library. Our first task was to implement the loss
functions (2.1) and (2.2). Then we built a custom training loop for both frame-
works to update the labels. In the case of PENCIL, the main task was to write
the code for the backpropagation to update ỹ. Tensorflow’s Gradient Tape made
it easy for us. For the joint optimization framework (Tanaka’s method) we used
the average of the last 10 epoch’s output for the updating.

The CNN ensembles are built up with very accurate convolutional neural net-
works [3]. A Keras summary of such a CNN can be seen in the appendix. We used
this CNN with structure in Table 8 as the background network of the label noise
cleansing frameworks, too.

3.1. Comparison of the two cleansing frameworks

In order to get a better result we increased our dataset with 60 000 augmented
images, where the augmentation was a little amount of random shift and rotation.
In our experiments the first step was to train a base-model with the cross entropy
loss function with a high learning rate (lr = 1). After 20 epochs we saved our
model and used it for both frameworks as a base-model. As a second step, we
continued with the label changing phase of the two methods. Table 1 shows the
parameters we used and how they worked on the different frameworks in this stage.
In the last two columns, we show how many labels were detected as incorrect on
the whole dataset and in parentheses we show only the detected labels from the
original dataset. The last column corresponds to an ensemble of a PENCIL and a
Tanaka network, which was made by taking the average of the softmax outputs.

We also wanted to examine how differently the detection works in the case of
these two frameworks. Table 2 contains the number of images, which were classified
into the same new class according to the pairwise intersections of Tanaka, PENCIL
and the ensemble of them. The table shows that different methods detect mostly
the same label noise. Figure 2 shows some seemingly mislabeled training images,
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which were found by both frameworks. The subcaptions contain the new labels
and the highest scores generated by the cleansing methods. The Tanaka process
seems to be more confident than PENCIL according to the higher peak scores. It
can be generally concluded on the whole set of detected instances.

Table 1. Noisy label detection of ensembles on the training set
with 120 000 samples.

Framework 𝛼 𝛽 lr 𝜆 epochs Detected labels Ensemble
PENCIL 0.05 0.6 0.1 600 30 71 (28)

75 (36)
Tanaka 1.1 0.6 0.05 - 20 116 (59)

Table 2. The number of identically detected images.

PENCIL Tanaka
Tanaka 54 (24) -

Ensemble 55 (24) 74 (36)

Original label: 3
New label: 5
Tanaka: 0.899
PENCIL: 0.641

Original label: 5
New label: 3
Tanaka: 0.897
PENCIL: 0.638

Original label: 9
New label: 4
Tanaka: 0.901
PENCIL: 0.643

Original label: 5
New label: 6
Tanaka: 0.887
PENCIL: 0.598

Figure 2. Some detected images with new labels and the
corresponding scores of Tanaka and PENCIL.

Then in this experiment we wanted to investigate how the exclusion of the
detected labeled inputs affects the goodness of the CNN. Here we use a single very
accurate CNN with structure in Table 8. In Table 3 we show that how the different
training datasets performed with the same weight initialized models. The table
contains the performance of our CNN model trained on the original augmented
dataset and on its cleaned versions. Of course, they were evaluated on the test
dataset. In Table 3, column ’Original’ contains the results of the CNN without
cleaning the training set. Columns ’Tanaka’ and ’PENCIL’ contain the result
of the CNN after cleaning with the Tanaka and PENCIL methods, respectively.
’Ensemble’ means that the cleaning was made by an ensemble of a Tanaka and a
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PENCIL network, with weighting the same way as the previous case. The * symbol
denotes the cases when we deleted the detected items only from the artificially
created part of the training dataset. We repeated each experiment 30 times and
in each case with a learning rate of 0.1 and a momentum of 0.2 for 30 epochs. In
Table 3 we show the best, the worst and the mean of the 30 repetitions.

Table 3. Training with cleaned labels.

Original Tanaka Tanaka* PENCIL PENCIL* Ensemble Ensemble*
Max 99.70% 99.67% 99.64% 99.68% 99.65% 99.64% 99.60%
Mean 99.57% 99.56% 99.55% 99.49% 99.40% 99.57% 99.44%
Min 99.30% 99.40% 99.34% 99.35% 99.36% 99.37% 99.34%

We can see that the result depends on the cleaning method. We can also see
that removing the misleading items makes the classification more stable in the
following sense. The minimum is higher and the range is smaller after the use of
each cleaning method than for the original raw dataset. For the original dataset
the minimum is 99.30% and the range is 99.70 − 99.40 = 0.40% while for Tanaka
the minimum is 99.40% and the range is 0.27%. However, such simple cleaning
techniques do not improve the average and the maximal performance.

3.2. Possibilities of improving a CNN ensemble classifier
Our final goal was to examine the opportunities of making an already accurate CNN
ensemble classifier even better. An ensemble of 3 convolutional neural networks
was trained before and after label noise cleansing. In our ensemble, 3 CNNs with
structure in Table 8 were used. For fair comparison, these networks were initialized
with the same weights in each case. All of them were trained with a learning rate
of 0.1 and a momentum of 0.2 for 30 epochs.

The treating of the label noise was carried out in the following way: 3 networks
were trained with both frameworks. We took the average of the label estimations
of the 6 networks and applied the NumPy argmax function. These were the new
labels corresponding to the training examples.

In the following experiment the training data was slightly increased with 24 000
augmented images, so the training set consisted of 84 000 examples in this setting.
For both noise cleansing frameworks, the training of the models began with 20
epochs using the cross entropy loss function and a momentum of 0.3. In the second
phase, the momentum was set to 0.5 for the networks with Tanaka’s method and
0.1 for both of PENCIL’s optimizers, because of the nature of these techniques.
The other parameters can be seen in Table 4. Of course, the number of epochs
in this table means the number of epochs in this phase. In the ’Detected labels’
column, there is the number of labels detected as noisy by the ensemble of the
3 networks corresponding to the methods. In parentheses, the number of noisy
labels are shown in the original dataset. The last column contains the results of
ensembling all the 6 networks.

Ensemble noisy label detection on MNIST 133



Table 4. Noisy label detection of ensembles on the training set
with 84 000 samples.

Framework 𝛼 𝛽 lr 𝜆 epochs Detected labels Ensemble
PENCIL 0.08 0.5 0.2 550 25 52 (27)

36 (24)
Tanaka 1.1 0.6 0.04 - 20 56 (32)

In the next part of the experiment, the different options of label noise handling
are investigated. Table 5 contains the test performance of the CNN ensembles
trained on this augmented dataset with the original labels, relabeling and deletion.
These results correspond to 20 runs in each case with the same 20 × 3 weight set
initialization. The first and third rows show the best and weakest performances,
while the second line contains the mean of the 20 test accuracies.

Table 5. Performance of the CNN ensemble with different noise
handling options.

CNN ensemble CNN ensemble CNN ensemble
before after relabeling after deletion

Max 99.68% 99.71% 99.72%
Mean 99.663% 99.675% 99.673%
Min 99.58% 99.61% 99.60%

Finally, we wanted to investigate the opportunities of this CNN ensemble im-
provement by using only the original 60 000 samples. In this setting, the parameters
of the noise detecting ensemble are the same as before and this table corresponds
to 3 PENCIL and 3 Tanaka networks, too. The number of labels detected as wrong
are visible below and the performance of the CNN ensembles are shown in Table 7,
in the same way as in Table 5.

Table 6. Noisy label detection of ensembles on the original MNIST
dataset.

Framework Detected labels Ensemble
PENCIL 29

21
Tanaka 24

Table 7. Performance of the CNN ensemble with different noise
handling options on the original MNIST.

CNN ensemble CNN ensemble CNN ensemble
before after relabeling after deletion

Max 99.67% 99.69% 99.71%
Mean 99.647% 99.654% 99.658%
Min 99.58% 99.57% 99.59%
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4. Conclusions

Machine learning methods developed for classification data with label noise can be
applied to handle datasets containing some misleading items. These machine learn-
ing methods can be used for preprocessing the training data. After preprocessing
any usual classification tool can be applied. Deleting some misleading items in the
preprocessing phase is more promising than relabeling them. With preprocessing
we can further improve the performance of very accurate convolutional networks,
too. For preprocessing, ensembles of different noise correction methods (like the
method of Tanaka et al. [8] and PENCIL of [10]) are promising. However, we have
to be careful with relabeling and with removal of relabeled items, too. Relabeling
means adding information to the training set artificially. If we relabel too many
images, it may happen that we mislead the classifier with those modified labels.
The removal of the relabeled examples is also dangerous: it can cause information
loss that degrades the performance of our models. (With high noise rates, it is
obviously a wrong choice.) We can improve a classifier with those operations only
if we find the right amount of training data to relabel or delete.
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Appendix

Table 8. The Keras summary of the CNN that we used.

Model: "sequential"
_____________________________________________________________________________
Layer (type) Output Shape Param #
=============================================================================
conv2d (Conv2D) (None, 26, 26, 32) 320
_____________________________________________________________________________
batch_normalization (BatchNormalization) (None, 26, 26, 32) 128
_____________________________________________________________________________
conv2d_1 (Conv2D) (None, 24, 24, 32) 9248
_____________________________________________________________________________
batch_normalization_1 (BatchNormalization) (None, 24, 24, 32) 128
_____________________________________________________________________________
conv2d_2 (Conv2D) (None, 12, 12, 32) 25632
_____________________________________________________________________________
batch_normalization_2 (BatchNormalization) (None, 12, 12, 32) 128
_____________________________________________________________________________
dropout (Dropout) (None, 12, 12, 32) 0
_____________________________________________________________________________
conv2d_3 (Conv2D) (None, 10, 10, 64) 8496
_____________________________________________________________________________
batch_normalization_3 (BatchNormalization) (None, 10, 10, 64) 256
_____________________________________________________________________________
conv2d_4 (Conv2D) (None, 8, 8, 64) 36928
_____________________________________________________________________________
batch_normalization_4 (BatchNormalization) (None, 8, 8, 64) 256
_____________________________________________________________________________
conv2d_5 (Conv2D) (None, 4, 4, 64) 102464
_____________________________________________________________________________
batch_normalization_5 (BatchNormalization) (None, 4, 4, 64) 256
_____________________________________________________________________________
dropout_1 (Dropout) (None, 4, 4, 64) 0
_____________________________________________________________________________
flatten (Flatten) (None, 1024) 0
_____________________________________________________________________________
dense (Dense) (None, 128) 131200
_____________________________________________________________________________
batch_normalization_6 (BatchNormalization) (None, 128) 512
_____________________________________________________________________________
dropout_2 (Dropout) (None, 128) 0
_____________________________________________________________________________
dense_1 (Dense) (None, 10) 1290
=============================================================================
Total params: 327,242
Trainable params: 326,410
Non-trainable params: 832
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Chronic disease progression models are governed by two main parameters:
preclinical intensity and sojourn time. The estimation of these parameters
helps in optimizing screening programs (with an additional parameter: sen-
sitivity of the screens), and we examine their effect in improving survival.
Multiple approaches exist for estimating these parameters. However, these
models are based on strong underlying assumptions. Our main aim is to in-
vestigate the effect of these assumptions. For this purpose, we developed a
simulator to mimic a breast cancer screening program while directly observing
the exact onset and the sojourn time of the disease. We then examine the per-
formance of the model under different parameterizations and investigate the
effects of different models on the sensitivity, the inter-screening intervals and
misspecification of the used parametric distributions. Our results indicate a
strong correlation among the estimated parameters. Besides, the underlying
assumptions have a strong effect on the overall performance of the model.
These findings shed a light on the seemingly discrepant results obtained by
different authors using the same data sets but different assumptions.

Keywords: Disease progression, likelihood, screening sensitivity, sojourn time

∗The project has been supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.2-16-2017-00015).

Annales Mathematicae et Informaticae
53 (2021) pp. 139–155
doi: https://doi.org/10.33039/ami.2021.03.001
url: https://ami.uni-eszterhazy.hu

139



1. Introduction

Statistical modeling of natural disease progression aids in understanding its dynam-
ics and forecasting its incidence rates. This allows better prevention and treatment
plans which improves survival. However, in many cases, some data is not observ-
able, as some diseases have an asymptomatic phase in which the patient does not
know he has the sickness yet.

In the model proposed by Shen and Zelen [12], the natural progression of a
disease is regarded as a three state model (see Figure 1): individuals progress from
a disease free state 𝑆𝑓 to the preclinical state 𝑆𝑝, when the disease has become
onset but is still asymptomatic, i.e. the person has the disease but it has not
shown any symptoms. The final state of the disease from this point of view is
when it manifests itself through clinical symptoms, thus it is called the clinical
state 𝑆𝑐.

𝑆𝑓 𝑆𝑝 𝑆𝑐

Figure 1. Progression in the three state model.

The flow in the process is governed by the preclinical intensity and the sojourn
time. The preclinical intensity is the probability of moving from the disease free
state to the preclinical one during (𝑡, 𝑡 + 𝑑𝑡). Equivalently, it is the waiting time
in the disease free state 𝑆𝑝. The sojourn time is defined as the amount of time
spent in the preclinical state 𝑆𝑝, in other words it is the time needed for the disease
to show itself by means of clinical symptoms. However, directly observing sojourn
time is not feasible as the exact time of onset is unknown. The sojourn time is then
estimated through modelling, mostly by assuming it is a random variable with a
specified distribution, see e.g. [16, 17].

Early detection methods such as screening allows discovering the disease before
any symptoms appear. Screening sensitivity, defined as the probability of detec-
tion given that the patient is in 𝑆𝑝, is crucial in determining the efficiency of the
screening program.

The parameters of interest in such a process are the preclinical intensity, the
sojourn time and screening sensitivity. The estimation of these parameters is es-
sential to optimize screening intervals and to correct lead time bias, that is defined
as the apparent increase in survival due to early detection by means of screening.

In this paper we aim to investigate the identifiability of the parameters govern-
ing the process in different setups. For that purpose, a simulator is developed to
record the exact onset and sojourn times of patients. This allows us to assess the
accuracy of the estimators by comparing the estimated values to the real ones.

The theoretical basis of disease progression models under periodic screening was
set by Zelen and Feinleib [17] and Prorok [10]. Later, Shen and Zelen [12] intro-
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duced two models to estimate the parameters governing disease progression. The
first describes stable diseases that are assumed to have incidence and prevalence in-
dependent of time or age. The other incorporates time dependence of incidence and
prevalence to the model (these cases are called non stable diseases). We investigate
the common cases, when incidence is age-dependent.

Wu et al. [16] further extended the results by allowing both the transition
probability from the disease-free state and the sensitivity to be age-dependent.
They assume that the sojourn time follows a loglogistic distribution, the preclinical
intensity has a lognormal distribution and the sensitivity is age-dependent, the age-
dependence is incorporated by assuming that the sensitivity has a logistic function
form.

Generally, these models are built by deriving the probabilities of cases being
detected by screening or symptoms, this allows the forming a likelihood function
from which parameters can be estimated by classical methods such as maximization
of the likelihood function, a least squares approach or a Bayesian one. However,
many questions can be raised about the effects of the assumptions one makes when
modelling such a scenario.

The paper is organized as follows: we lay the model foundations in Section
2. Next, we setup the simulations in Section 3, we then present our simulation
based on results in Section 4. We then show the reasons behind the discrepancy
of estimates in the literature in Section 5. Finally, we summarize our findings in
Section 6.

2. The model

We will use the generalized model proposed by Wu et al. [16] in this paper. Now,
to lay the setup of the model, we suppose an individual becomes onset at a random
time 𝑋 where 𝑋 is a random variable with a (possibly) defective density 𝑓𝑋(𝑥).
Introduce 𝑟 ≤ 1 as the lifetime risk, which is the probability of a person to get
the disease i.e.

∫︀∞
0
𝑓𝑋(𝑥) d𝑥 = 𝑟. After a case becomes onset, we suppose that it

stays in the preclinical state for a random amount of time 𝑌 (called sojourn time)
independent of 𝑋, where 𝑌 is a random variable with pdf 𝑓𝑌 (𝑦) and survivor
function 𝑄𝑌 (𝑦). Let 𝑍 = 𝑋 + 𝑌 denote the time of diagnosis. As 𝑋 and 𝑌 are
assumed independent, the density of 𝑍 in the absence of screening is given by the
convolution of 𝑋 and 𝑌 , namely: 𝑓𝑍(𝑧) =

∫︀ 𝑧
0
𝑓𝑋(𝑥)𝑓𝑌 (𝑧 − 𝑥) d𝑥.

If no screens are organized, i.e. the patient only knows that he has the sickness
when symptoms are exhibited, then one can only observe the time of diagnosis 𝑍
and the likelihood function would simply be the product of the densities 𝑓𝑍(𝑧𝑖).
The identifiablity of the parameters in such a setup is a serious concern, for instance
if both 𝑋 and 𝑌 are normally distributed, there are infinitely many parameters
which can generate the same distributions. We currently investigate the theoretical
aspects of identifiability which we will publish in a separate paper.

Suppose now that a screening program consisting of 𝐾 screens is organized for a
population which is stratified by age at the first screen 𝑡1 where 𝑡1 = 𝑡min, . . . , 𝑡max.
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Let us define ∆ as the inter-screening time and assume that all participants are
disease free at age 𝑡0 before the first screen (we assume 𝑡0 = 0). Denote by 𝑡𝑖 =
𝑡1 + (𝑖 − 1)∆ the age at the 𝑖𝑡ℎ screen and by (𝑡𝑖−1, 𝑡𝑖) the 𝑖𝑡ℎ screening interval.
Denote the sensitivity of a screen by 𝜉(𝑡) and suppose it is a parametric function of
the age at screening. The aim is to build a likelihood function using the probabilities
of detection by screens and by showing symptoms.

Under this setup, the probability of detection at the first screen for those aged
𝑡1 at the first screen denoted by 𝐷1,𝑡1 is given by cases which have moved to 𝑆𝑝 in
(𝑡0, 𝑡1) and stayed there till they are screened positively. Therefore:

𝐷1,𝑡1 = 𝜉(𝑡1)

𝑡1∫︁

𝑡0

𝑓𝑋(𝑥)𝑄𝑌 (𝑡1 − 𝑥) d𝑥.

In order to determine the probability of detection at the 𝑘𝑡ℎ screen, let us
discretize the timeline into intervals of the form (𝑡𝑖−1, 𝑡𝑖). Denote by 𝐷

(𝑖)
𝑘,𝑡1

the
contribution of cases which have moved to 𝑆𝑝 in the 𝑖𝑡ℎ screening interval to the
probability of detection at the 𝑘𝑡ℎ screen for 𝑖 = 1, . . . ,𝐾. That is given by cases
which have been falsely screened negative in all the previous screens and they did
not show symptoms before the 𝑘𝑡ℎ screen when they were finally screened positively.
Hence:

𝐷
(𝑖)
𝑘,𝑡1

=

⎧
⎨
⎩
𝜉(𝑡𝑘)

[︁
(1− 𝜉(𝑡𝑖)) · · · (1− 𝜉(𝑡𝑘−1))

]︁∫︀ 𝑡𝑖
𝑡𝑖−1

𝑓𝑋(𝑥)𝑄𝑌 (𝑡𝑘 − 𝑥) d𝑥, if 𝑖 < 𝑘,

𝜉(𝑡𝑘)
∫︀ 𝑡𝑘
𝑡𝑘−1

𝑓𝑋(𝑥)𝑄𝑌 (𝑡𝑘 − 𝑥) d𝑥, if 𝑖 = 𝑘.
(2.1)

Hence, the probability of detection at the 𝑘𝑡ℎ screen is given by the sum of
contributions:

𝐷𝑘,𝑡1 =

𝑘∑︁

𝑖=1

𝐷
(𝑖)
𝑘,𝑡1

.

A similar approach is used to determine the probability of showing symptoms
in the 𝑘𝑡ℎ screening interval. Denote by 𝑓 (𝑖,𝑘)𝑍𝑡1

the contribution of cases which have
moved to 𝑆𝑝 in (𝑡𝑖−1, 𝑡𝑖) to the probability of showing symptoms between (𝑧, 𝑧+𝑑𝑧)
where 𝑡𝑘−1 < 𝑧 < 𝑡𝑘. Therefore:

𝑓
(𝑖,𝑘)
𝑍𝑡1

(𝑧) =

⎧
⎨
⎩

∫︀ 𝑧
𝑡𝑘−1

𝑓𝑋(𝑥)𝑓𝑌 (𝑧 − 𝑥) d𝑥, if 𝑘 = 𝑖,
∫︀ 𝑡𝑖
𝑡𝑖−1

𝑓𝑋(𝑥)𝑓𝑌 (𝑧 − 𝑥) d𝑥
∏︀𝑘−1
𝑗=𝑖 (1− 𝜉(𝑡𝑗)), if 𝑘 > 𝑖.

(2.2)

Hence, the probability of a case to show symptoms between 𝑧 and 𝑧 + 𝑑𝑧 for
𝑡𝑘 < 𝑧 < 𝑡𝑘+1 is given by:

𝑓𝑘𝑍𝑡1
(𝑧) =

𝑘∑︁

𝑖=1

𝑓
(𝑖,𝑘)
𝑍𝑡1

(𝑧). (2.3)
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The probability for a case to show symptoms between 𝑡𝑘−1 and 𝑡𝑘 for individuals
aged 𝑡1 at the first screen denoted by 𝐼𝑘,𝑡1 is given by integrating Equation (2.3),
i.e.

𝐼𝑘,𝑡1 =

𝑡𝑘∫︁

𝑡𝑘−1

𝑓𝑘𝑍𝑡1
(𝑧) d𝑧.

For a screening program consisting of 𝐾 screens and participants age at first screen
ranging between 𝑡min, . . . , 𝑡max, Wu et al. [16] used the count data (𝑛𝑘,𝑡1 , 𝑠𝑘,𝑡1 , 𝑟𝑘,𝑡1)
to form a likelihood function similar to a multinomial distribution, where 𝑛𝑘,𝑡1 is
the number of participants in screen 𝑘 who were aged 𝑡1 at program entry, 𝑠𝑘,𝑡1 is
the number of screen detected cases on screen 𝑘 from those aged 𝑡1 at screen entry
and 𝑟𝑘,𝑡1 is the number of symptomatic cases in the 𝑘𝑡ℎ screening interval from
those aged 𝑡1 at program entry. The likelihood is of the form:

𝐿1 =

𝑡max∏︁

𝑡1=𝑡min

𝐾∏︁

𝑘=1

𝐼
𝑟𝑘,𝑡1

𝑘,𝑡1
𝐷
𝑠𝑘,𝑡1

𝑘,𝑡1
(1−𝐷𝑘,𝑡1 − 𝐼𝑘,𝑡1)𝑛𝑘,𝑡1

−𝑠𝑘,𝑡1
−𝑟𝑘,𝑡1 .

Our important suggestion is that we propose to incorporate the exact dates
of diagnosis of symptomatic patients (𝑧𝑖) in the likelihood function if they are
available, as they carry important information. Then the likelihood is of the form:

𝐿2 =

𝑡max∏︁

𝑡1=𝑡min

𝐾∏︁

𝑘=1

[︃
𝐷
𝑠𝑘,𝑡1

𝑘,𝑡1
(1−𝐷𝑘,𝑡1 − 𝐼𝑘,𝑡1)𝑛𝑘,𝑡1

−𝑠𝑘,𝑡1
−𝑟𝑘,𝑡1

𝑟𝑘,𝑡1∏︁

𝑖=1

𝑓𝑘𝑍𝑡1
(𝑧𝑖)

]︃
.

After specifying the parametric distributions of the preclinical and the sojourn
time, we obtain the maximum likelihood estimates through nonlinear minimization
of the negative log-likelihood. The variances of the parameter estimators can be
approximated using the observed Fisher information matrix. We expect this to be
more accurate for larger sample sizes.

3. Simulation setup

In order to investigate the identifiability of the parameters, we simulated disease
progression data mimicking a breast cancer screening program using different on-
set and sojourn time distributions. The aims are: checking the identifiability of
the parameters, examining the improvement in the model performance if the ex-
act date of the diagnosis of symptomatic cases is incorporated, studying the effect
of the length of the inter-screening time and see the effects of incorrect specifica-
tions, namely if the sensitivity is falsely assumed constant or if the sojourn time
distribution is misspecified.

Breast cancer’s screening sensitivity is known to be increasing with age ([11]).
Wu et al [16] choose to model this age-dependence via a logistic function with
parameters 𝑏0 and 𝑏1. As a result, the sensitivity at age 𝑡 is then given by:

𝜉(𝑡) =
1

exp(−𝑏0 − 𝑏1(𝑡− 𝑡)) .
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Adopting the age-dependent sensitivity, we also chose the lognormal distribution
𝐿𝑁(𝜇, 𝑠2) for the onset time. This is realistic since the transition probabilities of
breast cancer to the preclinical state were estimated by Lee and Zelen [8] using age-
specific incidence rates. Wu et al [16] plotted the probabilities and found them to be
right skewed with a heavy tail, so the lognormal distribution was chosen for having
similar properties. It is also noted that the estimates of the onset distribution
parameters may depend on the model choice, so different estimates exist [9]. We
simulated our data using 𝜇 = 3.971 and 𝑠 = 2.267, these values lead to an average
age of transition of around 54 years and a standard deviation of 15 years.

Using a lognormal preclinical intensity and an age-dependent sensitivity, we
simulate progression data based on an exponential sojourn time with 𝜆 = 1/2.5
and a gamma sojourn time with shape 𝛼 = 6.25 and rate 𝛽 = 2.5 both resulting
in a mean sojourn time of 2.5 years and a unit variance (gamma case). For 𝑡1 =
40, . . . , 65 years, we simulate 2 data sets for each distribution, one with 𝑁1,𝑡1 =
10 000 and the other of size 𝑁1,𝑡1 = 100 000 in each cohort, this would help us
study the asymptotic performance of the model. The model is then run on each of
the data sets, with and without including the exact date of diagnosis.

We also run a simplified simulation mimicking the model used by Duffy et al
[3] in which both the onset and the sojourn times are exponentially distributed
with parameters 𝜆1 and 𝜆2 while assuming that the sensitivity is constant. From
a mathematical point of view, this model is interesting as the natural progression
(without screening) in the chain is time homogeneous. The defined parameters in
the simulations are 𝜉 = 0.75, 𝜆1 = 1/55 and 𝜆2 = 1/2.5, resulting in an average
onset age of 55 years and a mean sojourn time of 2.5 years. We also simulate two
datasets (𝑁1,𝑡1 = 10 000 and 𝑁1,𝑡1 = 100 000).

In order to test the goodness of fit, we will use Pearson’s chi-squared test, which
measures the distance between the observed and the expected counts. However,
the chi-squared distance is just an illustrative measure, used only for showing the
magnitude of the differences. Asymptotically, this distance is 𝜒2 distributed with
𝐾 · (𝑡max− 𝑡min)− 𝑣 degrees of freedom, where 𝑣 is the number of parameters , but
we experienced large deviations for the small sample sizes due to the large number
of classes.

In order to establish confidence regions for the parameters, we will use the
likelihood ratio statistic, which assesses the goodness of fit of two competing sta-
tistical models based on the ratio of their likelihoods. The likelihood ratio statis-
tic can be expressed as a function of the difference between the loglikelihoods
𝐿𝑅 = 2(𝑙(𝜃)− 𝑙(𝜃)), where 𝑙(𝜃) is the value of the loglikelihood at the maximum.

The finite sample distributions of likelihood-ratio tests are generally unknown.
However, under the null hypothesis (𝜃 = 𝜃0), 𝐿𝑅 converges in distribution to
a 𝜒2-distribution (by Wilks’ theorem [15]). That allows defining the asymptotic
confidence region 𝐶(𝜃) as:

𝐶(𝜃) = {𝜃 : 2(𝑙(𝜃)− 𝑙(𝜃)) < 𝜒2
0.95(𝑣)}.

The simulation and the nonlinear minimization of the negative loglikelihood
are carried out using the statistical software R. However, since the integrals in
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Equation (2.1) and (2.2) usually do not have a closed form, the integration has to
be carried out numerically. This can be computationally expensive, especially as
we include the date of diagnosis. For that reason, we use the package Rcpp [4] to
carry out the numerical integration in C++ using the package CUBA by Hahn [5].
The negative of the log likelihood is then minimized using the optim function, that
is carried out using the “L-BFGS-B” algorithm [1]. In each scenario, we present the
actual parameters, the estimates based on the count and full models for both data
sets, the negative loglikelihood at the maximum (𝐿max) and the likelihood based
on the actual parameters (𝐿𝑎𝑐𝑡𝑢𝑎𝑙).

4. Results

4.1. Exponential sojourn time

4.1.1. Exponentially distributed onset

Let us start with the results of the simplest case, in which a constant sensitivity is
assumed along with exponential 𝑋 and 𝑌 . The results are presented in Table 1, it
is clear that the model does not perform well for a small sample size.

In the first block of Table 1, the results for the small data set are presented,
we noticed that the estimates for both the count based and full model are similar
but not accurate at all. The sensitivity and the average onset age are highly
overestimated and the mean sojourn time is underestimated.

Table 1. Estimates of the sensitivity, onset and sojourn time pa-
rameters for exponentially distributed 𝑋 and 𝑌 .

-Loglikelihood Sensitivity Onset Sojourn time
Maximum Actual 𝜉 1/𝜆1 1/𝜆2

Actual 0.75 55 2.5
∆ = 1 Count data 27 957.9 27 973.9 0.964 67.694 2.110

𝑁𝑡1 = 10 000 Full data 27 950.4 27 975.9 1.000 59.443 2.081
∆ = 1 Count data 240 181.8 240 184.2 0.779 54.408 2.431

𝑁𝑡1 = 100 000 Full data 239 864.6 239 866.7 0.778 54.381 2.431

Increasing the sample size to 𝑁𝑡1 = 100 000 (second block of Table 1), we
observed a significant improvement in the accuracy of the models. The results of
the count based model and the full model are almost identical, estimates for 1/𝜆1
and 1/𝜆2 are accurate.

When we studied the profile likelihood of the onset, it became clear that multiple
parameters can maximize the likelihood and that the confidence region is vast. This
can be seen in Figure 2, where we plot the negative loglikelihood fixing 𝜉 and 𝜆2 to
the estimated values and variating 𝜆1. The confidence region for the average onset
age 1/𝜆2 is [49.31;71.67] for the small data set and [48.7;61.07] for the large one.
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The reason behind this large region is the exponential onset, that is very dense
near 0 and decays quickly. Since we only start observing patients older than
𝑡min=40 years old and follow them up for 10 years, there is no information about
the densest interval (0, 𝑡min), it is difficult for the model to estimate 𝜆1 for a small
sample size. The dissimilarity to the actual density within the observation period
is not detectable. Increasing the sample size allows better estimation of the pa-
rameters although the confidence region is still sizable. In this scenario, one can
think of the disease progression as a flow process with the parameters controlling
the rate of flow between states, accordingly, there are different flow rates which
generate the same output.
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Figure 2. Profile likelihood of the average onset for the small data
(left) and the large one (right), the red line is the critical threshold

for the likelihood based confidence region.

Another observation is the very strong negative correlation between the sensi-
tivity and the sojourn time estimators (the correlation measured using the observed
Fisher information matrix between 𝑏0 and 𝜉 is around −0.8). Although they are
assumed independent in the model, screening acts as a censoring mechanism, once
a case is detected, the rest of its sojourn time cannot be observed. What happens
then is that the model preserves a good fit in one of two ways, the first is by re-
turning a high sensitivity estimate and a low sojourn time meaning that cases stay
a short time in the preclinical state but participation in a screen leads to detection
with a high probability. The second is by combining a high sojourn time estimate
with a low sensitivity, meaning that cases will stay for a longer time in the preclin-
ical state, therefore having multiple chances to participate in a screen, with screens
having a low probability of detection. We observed this negative correlation in all
of our parameterizations.

4.1.2. Lognormal onset

The results for a lognormally distributed onset time and an exponentially dis-
tributed sojourn time are presented in Table 2, plots for the sensitivity and the
sojourn time are presented in the top part of Figure 3.

For (𝑁𝑡1 = 10 000), the sensitivity and onset parameters are substantially biased
when using the count data, while using the full model results in more accurate
estimates. Increasing the number of participants to 100 000 (second block), we
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noticed a slight improvement in the performance of the count based model and a
significant improvement when using the full model.

Table 2. Estimates of the sensitivity (𝑏0, 𝑏1), onset (𝜇, 𝑠) and so-
journ time (𝜆) parameters for a lognormal 𝑋 and an exponential 𝑌 .

-Loglikelihood Sensitivity Preclinical intensity Sojourn time
Maximum Actual 𝑏0 𝑏1 𝜇 𝑠 𝜆

Actual 1.4 0.05 3.971 0.267 2.5
∆ = 1 Count data 71 777.0 71 786.6 1.971 0.081 3.969 0.253 2.236

𝑁𝑡1 =10 000 Full data 71 647.6 71 652.7 1.529 0.061 3.969 0.257 2.423
∆ = 1 Count data 712 825.7 712 851.5 1.540 0.050 3.972 0.260 2.428

𝑁𝑡1 = 100 000 Full data 711 386.6 711 408.4 1.437 0.047 3.972 0.261 2.486
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Figure 3. Sensitivity and the sojourn time density for lognormal
𝑋 and exponential 𝑌 (top), lognormal 𝑋 and gamma 𝑌 (bottom).

In order to evaluate the performance of the model and create reliable confidence
intervals for the estimators for the small dataset, we ran the simulator 50 times
and estimated the parameters based on both models. We also calculated the like-
lihood based confidence regions. The resulting confidence intervals are displayed
in Table 3. We noticed that the intervals based on the full model are tighter than
those of the count based ones. Besides, the likelihood-based confidence intervals
for the sensitivity parameters 𝑏0 and 𝑏1 are larger than those based on the simu-
lation. That is not the situation for the mean sojourn time intervals, where the
likelihood-based intervals are tighter. The strong negative correlation between the
sojourn time and the sensitivity creates a multi-centered confidence region for the
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sojourn time. Since the likelihood based intervals are built around one center, they
appear tighter than they actually are.

Table 3. Likelihood based and simulation based confidence inter-
vals for the count based and the full models.

Count based model Full model
Simulations Likelihood Simulations Likelihood

𝑏0 [1.425; 1.925] [1.612; 2.418] [1.346; 1.783] [1.296; 1.786]
𝑏1 [0.0294; 0.0808] [0.0219; 0.134] [0.0314; 0.0672] [0.0221; 0.101]

1/𝜆 [2.200; 2.663] [2.095; 2.392] [2.298; 2.590] [2.185; 2.302]

4.2. Gamma sojourn time

For a lognormal onset and a gamma distributed sojourn time, the estimates are
presented in Table 4, plots for the sensitivity and the sojourn time are shown in
the bottom part of Figure 3.

For the small data set, the sensitivity estimates are biased under both models
(bottom left part of Figure 3). Besides, estimates of the sojourn time parameters
for both models are strange at first glance. However, these parameters result in
acceptable estimates of the mean sojourn time, although the sojourn time variance
is substantially underestimated in both cases.

Table 4. Estimates of the sensitivity (𝑏0, 𝑏1), onset (𝜇, 𝑠) and
sojourn time (𝜆) parameters for a lognormal 𝑋 and gamma 𝑌 .

-Loglikelihood Sensitivity Preclinical intensity Sojourn time
Maximum Actual 𝑏0 𝑏1 𝜇 𝑠 𝛼 𝛽 E(𝑌 ) V(𝑌 )

Actual 1.4 0.05 3.971 0.267 6.25 2.5 2.5 1
∆ = 1 Count data 68 069.8 68 077.4 1.114 0.045 3.970 0.261 10.252 3.940 2.602 0.661
𝑁𝑡1 =10 000 Full data 68 040.3 68 047.3 1.181 0.047 3.970 0.261 8.407 3.259 2.580 0.792
∆ = 1 Count data 676 971.1 676 999.6 1.375 0.050 3.973 0.264 5.457 2.116 2.579 1.219
𝑁𝑡1 =100 000 Full data 676 564.9 676 595.3 1.388 0.050 3.973 0.264 5.344 2.072 2.579 1.244

Moving on to the second block (larger dataset), both models perform well and
their results are very close. However, the estimates of the sojourn time variance are
still biased, the plots in Figure 3 show that estimated sojourn time density based
on the full model is very close to the actual one although a slight bias is observed.

In general, the model seems to perform well in this case, with some slight
bias in the sensitivity and the variance of the sojourn time. However, to test the
reliability of our confidence sets, we fixed all the parameters to their estimated
values (𝑁𝑡1 =100 000) and calculated the profile likelihood for different 𝛼 and 𝛽.
The contour plot can be seen in Figure 4, which clearly shows that the likelihood-
based confidence region (black region) contains a substantial part of the line 𝛼 =
2.5𝛽.
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Figure 4. Contour plot of the loglikelihood (𝑁𝑡1 = 100000) using
the estimated sensitivity and onset parameters and variating 𝛼 and
𝛽. The black region represents the likelihood based confidence re-

gion.

The figure shows that the likelihood is near constant in the neighborhood of
the line 𝛼 = 2.5𝛽. In this neighborhood, the expected value of the gamma dis-
tributed mean sojourn time is almost constant (𝛼/𝛽 = 2.5), however, there is a
great variation of the variance (𝛼/𝛽2), which does not affect the likelihood, this
essentially means that the variance could be much larger or smaller and still fall
in the likelihood based confidence region, with the noise in the data determining
where the center of that region is. The model is then not able to estimate the
variance of the sojourn time under this setup.

To further test the ability of the model to estimate the sojourn time variance,
we generated a dataset (𝑁𝑡1 = 100 000, 𝐾 = 10) based on 𝛼 = 100 and 𝛽 = 10
resulting in a mean sojourn time of 10 years and a variance of 1. In this case, fitting
a constant sojourn time of 10 years results in a -loglikelihood of 928 675.1, almost
identical to the -loglikelihood based on the original parameters (928 674.3). This
means that for large enough parameters 𝛼0 and 𝛽0 where 𝛼0/𝛽0 = 10, the model
retains a good fit regardless of the variance, showing that there are infinitely many
parameters maximizing the likelihood. Hence, the model is not able to estimate
the variance of the sojourn time when ∆ is too small since the tail of the sojourn
time cannot be observed due to screening.

A larger inter-screening interval means that there are fewer opportunities for
an individual to participate in a screening exam, thus it will lead to a high number
of clinically detected (interval) cases and therefore more information about the
sojourn time tail, we investigate this question in the next subsection.
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4.3. Larger inter-screening time

In order to study the effect of a larger inter-screening time, we used the same
disease progression data of size 100 000 and ran a screening program consisting of
5 screens with 2 years between each screen. The results are presented in Table 5.
The models perform well in general, the estimates are more accurate than the case
where the inter-screening time is one year.

Table 5. Estimates of the process governing parameters for an
inter-screening time of 2 years.

Exponential onset and sojourn time 𝜒2
0.95(247) = 284.66

𝐿max 𝐿𝑎𝑐𝑡𝑢𝑎𝑙 𝜉 1/𝜆1 1/𝜆2

∆ = 2 Count data 215 680.9 215 681.9 0.751 55.948 2.532
𝑁𝑡1 =100 000 Full data 222 598.4 222 599.3 0.752 55.972 2.528

Lognormal onset and expontential sojourn time 𝜒2
0.95(245) = 282.51

𝐿max 𝐿𝑎𝑐𝑡𝑢𝑎𝑙 𝑏0 𝑏1 𝜇 𝑠 1/𝜆

∆ = 2 Count data 636 568.5 636 587.1 1.556 0.048 3.973 0.264 2.469
𝑁𝑡1 =100 000 Full data 658 494.9 658 512.1 1.431 0.045 3.972 0.265 2.542

Lognormal onset and gamma sojourn time 𝜒2
0.95(244) = 281.44

𝐿max 𝐿𝑎𝑐𝑡𝑢𝑎𝑙 𝑏0 𝑏1 𝜇 𝑠 𝛼 𝛽 E(𝑌 ) V(𝑌 )

∆ = 2 Count data 60 993.9 62 151.2 1.403 0.055 3.973 0.267 5.282 2.047 2.58 1.261
𝑁𝑡1 =100 000 Full data 606 678.4 618 104.1 1.381 0.053 3.973 0.267 5.506 2.132 2.582 1.211

4.4. Misspecifications

Since it is not possible to observe neither the exact onset nor the sojourn time
of breast cancer, there is a possibility that one may falsely assume the sensitivity
to be constant or model the process with an incorrect distribution. In order to
investigate the performance of the model under these false assumptions, we first
force the sensitivity to be constant by fixing 𝑏1 = 0.

To investigate the performance of the model when one misspecifies the distri-
bution of the sojourn time, the model is run on the data generated by a known
distribution, while using an incorrect distribution to model the sojourn time.

4.4.1. Constant sensitivity

Let us first use a constant sensitivity (𝑏1 = 0) and fit the count based and the
full model on the data (𝑁𝑡1 =100 000 and ∆ = 1) generated by a lognormal onset
combined with an exponential and gamma sojourn times. The results can be seen
in Table 6.

It seems that forcing the sensitivity to be constant does not have a large effect
on the estimates for an exponentially distributed sojourn time. However, the 𝜒2-
distance in both cases does not fall in the acceptance region.

In the second block of the table, where the sojourn time is gamma distributed,
a bias can be observed in the variance of the sojourn time but the full model still
performs quite well regardless of the false assumption. We also noticed that the
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𝜒2−distance for both models is extremely large and is way outside the acceptance
region.

Table 6. Estimates of the sensitivity (𝑏0), onset (𝜇, 𝑠) and sojourn
time (𝜆) parameters when forcing a constant sensitivity (𝑏1 = 0).

Distance Sensitivity Onset Sojourn time
𝜒2 𝑏0 𝜇 𝑠 𝜆

Actual 1.4 3.971 0.267 2.5
Exponential Count data 629.847 1.615 3.974 0.258 2.415

𝜒2
0.95(496) = 548.92 Full data 630.543 1.515 3.974 0.259 2.472

𝜒2 𝑏0 𝜇 𝑠 𝛼 𝛽 E(𝑌 ) V(𝑌 )

Actual 1.4 3.971 0.267 6.25 2.5 2.5 1
Gamma Count data 1200.211 1.246 3.975 0.262 8.376 3.228 2.595 0.804

𝜒2
0.95(495) = 548.87 Full data 1220.863 1.372 3.975 0.262 6.273 2.438 2.572 1.055

4.4.2. Incorrect distribution

In order to investigate the effect of misspecifying the sojourn time distribution, we
used an exponential distribution to model the data generated by a gamma sojourn
time (∆ = 1 and 𝑁𝑡1 =100 000). The results are displayed in Table 7.

Table 7. Estimates of the key parameters when misspecifying the
sojourn time distribution.

Fitting an exponential sojourn time 𝜒2
0.95(497) = 549.97

𝑌 ∼ 𝜒2 𝑏0 𝑏1 𝜇 𝑠 1/𝜆

Gamma Count data 8946.79 2.546 0.154 4.006 0.296 3.632
Full data 9048.17 2.093 0.119 4.008 0.3 3.827

When an exponential distribution is fitted to data generated by a gamma so-
journ time, the model does not perform well, the 𝜒2-distances are enormous for
both models. The estimates for the mean sojourn time are very high and both
sensitivity and preclinical intensity parameters are also highly overestimated. This
is highly problematic as the exponential distribution is the most used one in the
literature.

The likely reason behind the high mean sojourn time estimate is the inability of
the exponential distribution, which is a one parameter family, to fit the shape of a
two parameter distribution (gamma). We also noticed that in this case, the count
based model has a slightly better mean sojourn time estimate than that of the full
model, since adding the exact time of diagnosis forces the exponential distribution
to fit a density with a peak leading to worse results. The multicorrelation explains
the estimates for the sensitivity and the onset, the model adjusts by increasing
the sensitivity of screens and onset age to compensate for the inability of the
exponential distribution to fit the data.
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5. Consequences for previous results

The estimates of the mean sojourn time and the sensitivity in some famous clinical
trials are shown in Table 8. One immediately notices the discrepancy between
the estimates, there are completely different estimates based on the same data
set but using different assumptions. We aim to discuss the reasons behind this
inconsistency.

Table 8. Sojourn time and sensitivity estimates (M: mammogra-
phy, P: physical exam) for some clinical trials.

Trial Mean sojourn time Sensitivity
Health Insurance Plan of greater New York (HIP) [13] 2.5 M:0.39 P:0.47
Edinburgh [13] 4.3 M:0.63, P:0.40
Canadian National Breast Screening Study (CNBSS1) [13] 1.9 M:0.61, P:0.59
Canadian National Breast Screening Study (CNBSS2) [13] 3.1 M:0.66, P:0.39
Canadian National Breast Screening Study (CNBSS1) [2] 2.55 0.7
Canadian National Breast Screening Study (CNBSS2) [2] 3.15 0.77
Norwegian Breast Cancer Screening Program for the age group [50,59] [14] 6.1 0.58
Norwegian Breast Cancer Screening Program for the age group [60,69] [14] 7.9 0.73

Chen et al. [2] used a stable disease approach and used the gamma distribution
to model the sojourn time of breast cancer. They applied their model on the CNBSS
data. They modeled the 40–49-year-old and 50–59-year-old cohorts separately.
The sensitivity is assumed to be constant, we have shown that forcing a constant
sensitivity barely affects the rest of the parameters. However, assuming the onset
to be independent of age is not likely to hold true.

In the approach used by Wu et al [16], they used constraints on the sojourn time,
the preclinical intensity, as well as the sensitivity when maximizing the likelihood.
In other words, they run MCMC simulation on a bounded area to find a maximum,
which could force a convergence to a local maximum. They also introduced using
a loglogistic sojourn time to model the sojourn time, which has similar shape to
the lognormal distribution but has heavier tails, it also has desirable survival rate
properties.

To check the model performance under a loglogistic sojourn time, we ran the
simulator based on a scale 𝛼 = 2.336 and a shape 𝛽 = 4.951, to generate a data set
of size 𝑁𝑡1 = 100 000, the defined values lead to a mean sojourn time of 2.5 years
and unit variance. After running the count based and the full model, we noticed
that the estimates are generally accurate and the performance of the model is
similar to the gamma sojourn time case. That being said, the variance of the
sojourn time is also hard to estimate in this case.

Furthermore, we also used the loglogistic sojourn time to model the data based
on the exponential and gamma distributions. For the exponential data, the count
based model performed well, with acceptable estimates. However, the full model
fails to estimate the parameters (estimated mean sojourn time of 3.41 years), this
is caused by the inability of the loglogistic distribution to fit the exponential shape.
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On the other hand, when fitting the model to data generated by a gamma sojourn
time, the results are almost indifferentiable to actually fitting a gamma sojourn
time. Even the likelihood based on the full models are almost identical, with a
-loglikelihood of 676 562.9 when fitting a gamma distribution and 676 564.9 when
fitting a loglogistic one. This means that there is no difference between the fit of
the two distributions and one is not able to differentiate between them.

Regarding the conflicting results of the CNBSS1 studies, [13] estimated the
sensitivity for Mammography(M) and physical examination(P) independently, their
mean sojourn time estimate for the CNBSS1 trial is 1.9 years, significantly lower
than the estimate of [2] of 2.55 years, the multicorrelation and different sojourn
time distributions is possibly the reason behind the difference in the estimates.

A two parameters (entry–exit) Markov chain model is used by [3], assuming
that the incidence rate 𝜆1 and the rate of transition from the preclinical state to
the clinical one 𝜆2 are both constants. When this method is applied to the data
from the Swedish two-county study of breast cancer screening in the age group
70-74, the resulting estimate for the mean sojourn time is 2.3 years. Although the
model is very flexible in the sense that symptomatic data is not needed, we have
shown that the parameters are not identifiable in this setup.

Weedon-Fekjaer et al. used a weighted non-linear least-square regression esti-
mates based on a three step Markov chain model, then performed sensitivity anal-
ysis to determine the possible impact of opportunistic screening between regular
screening rounds. Mean sojourn time and sensitivity were estimated by non-linear
least square regression, using number of cancer cases at screening and in the inter-
val between screening examinations. Mean sojourn time was estimated as 6.1 (95%
confidence interval [CI] 5.1-7.0) years for women aged 50-59 years, and 7.9 years
(95% CI 6.0-7.9) years for those aged 60-69 years, sensitivity was estimated as 58%
(95% CI 52-64 %) and 73 % (67-78 %), respectively. We suspect that the high so-
journ time estimate is a consequence of the choice of the sojourn time distribution,
as we have shown earlier, using the exponential distribution to model a sojourn
time having a different distribution results in a very high sojourn time estimate.
Their findings also suggest that sensitivity is lower than in other programs as well
as a higher mean sojourn time, but we believe it to be a direct consequence of the
correlation between the two parameters.

6. Summary

Summing up our findings, we can state that the current models are very sensitive to
the underlying assumptions. One should take great care of using such an approach,
and multiple trials with different models are needed before in order to get reliable
results. One way to solve this problem might be to include more information in
the model to stabilize the results such as tumor growth shape and tumor size [6,
7].

Under an exponential onset and sojourn time, the parameters are not iden-
tifiable for a small sample, the acceptance region is sizable and data before the
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first screen is needed to stabilize the results. On the other hand, under a lognor-
mal onset and an exponential sojourn time, the model performs much better and
estimates are generally accurate. Overall, the model performs well in this case,
we noticed that the full model performs much better than the count-based one.
Nonetheless, it would be wiser to apply the gamma model for the sojourn time, as
it is much more flexible and it can be reduced to the exponential distribution in
case the shape estimate is close to one.

The performance of the model is satisfactory for a gamma sojourn time, however
estimates of the variance of the sojourn time are quite biased. A larger inter-
screening interval improves the variance estimate since it allows observing the tail of
the sojourn time before censoring (screening). But of course medical considerations
might be more important in practice.

We also observed a high correlation between the parameters under all param-
eterizations. Consequently, the obtained variances of the estimators are not as
reliable as we might think. On the other hand, including the exact date of diagno-
sis leads to more accurate estimates for a small sample size and a more compact
acceptance region. We recommend applying both the count and the full model,
and if they give inconsistent results, then misspecification might be the reason for
this. The likelihood based on the full model is much more sensitive to small shifts
in the parameters, since it will be magnified through the product of the likelihood
of symptomatic cases. That is not the case with the count-based model.

Higher inter-screening intervals result in less accurate estimates for the sensi-
tivity but better sojourn time variance estimates. We also noticed that the 𝜒2

distance of the count-based model was always smaller than that of the full one,
although the latter allows for better estimates. Since maximizing the count-based
likelihood is equivalent to minimizing the 𝜒2-distance, this is a sign of over-fitting.
Nonetheless, the 𝜒2-distance can serve as good indicator for misspecification or
incorrect assumptions.
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Abstract
The representative-based approximation has been widely studied in rough

set theory. Hence, rough set approximations can be defined by the sys-
tem of representatives, which plays a crucial role in set approximation. In
the authors’ previous research a possible use of the similarity-based rough
set in first-order logic was investigated. Now our focus has changed to
representative-based approximation systems. In this article the authors show
a logical system relying on representative-based set approximation. In our
approach a three-valued partial logic system is introduced. Based on the
properties of the approximation space, our theorems prove that in some cases,
there exists an efficient way to evaluate the first-order formulae.
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Nowadays a huge amount of data appear in an information system and they have
to be treated in order to get new information, to make decisions, etc. Behind the
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data there are objects with (probably different) properties. Properties are handled
in two steps: as attributes and the corresponding attribute values. In the real
practice finite number of attributes and that of the corresponding attribute values
can be used. Usually, there are more objects than combination of attribute values,
therefore more than one objects are represented by the same attribute values, and
so they are indiscernible relying on the background knowledge embedded in an
information system. Indiscernible objects have to be treated in the same way.

Pawlak’s original system of rough sets shows the consequences of indiscernibility
[10–12]. In many practical cases not only indiscernible objects have to be treated
in the same way, but objects with the same attribute values of some (and not all)
attributes. This is one of the theoretical bases of the generalizations of Pawlak’s
original theory. In rough sets theory the objects to be treated in the same way
belong to a base set. Informally in granular computing a granule contains objects
which have to be treated in the same way. Granules play – as the most fundamental
concept – a crucial role in granular computing, it means that granules (and not
objects belonging to them) are in the focus of investigations.

Representatives are used for representing a whole group of objects. In a very
general case to choose representatives (granules) is not a trivial problem. In the
case of a system relying on an indiscernible relation, any object can represent the
corresponding indiscernible set of objects. When a tolerance relation is used, then
the method of correlation clustering gives a possibility to define representatives (see
[1, 8]). Based on the different techniques to find representatives some generalization
of the approximation space must be considered.

From the logical point of view, a natural question arises: is there any possibility
to create a first-order logical system relying on representatives? If the answer is
yes, then the consequence relation can be used in order to get (or check) new
information. In this paper the authors define first-order logical semantics and
show some of its important properties.

Logical systems based on rough sets are also widely studied [9], so it seems easy
to predict the results, but the investigation should repeat when a new viewpoint ap-
pears. In this work we will use the most recent general definition of representative-
based approximation space. The main goal is to define a logical system which uses
only the representatives when a decision about a certain group of objects is made.

The structure of the paper is the following: at first, we will define the repre-
sentative-based approximation system, where instead of base sets the extension of
representatives is used. Then a one-argument first-order language is introduced
with approximation-space-based semantics. We will show how to generate approx-
imative interpretations from an existing classical one. Finally, the key properties
of our system will be discovered with the help of a few theorems.

2. Representative-based approximation spaces

Definition 2.1. The triple ⟨𝑈,𝑅,R ⟩ is a representative-based approximation space
if
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1. 𝑈 is a nonempty set of objects,

2. 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑘} where 𝑘 ≥ 1 is a set of representatives,

3. R ⊆ 𝑅× 𝑈 is a relation.

Definition 2.2. Let 𝑟𝑖 be a representative, i.e. 𝑟𝑖 ∈ 𝑅. Then

⟨⟨ 𝑟𝑖 ⟩⟩⟨𝑈,𝑅,R ⟩ = {𝑢 : 𝑟𝑖R𝑢}
is the extension of 𝑟𝑖. We shortly will write ⟨⟨ 𝑟𝑖 ⟩⟩ if it does not cause any misun-
derstanding.

There exists a general agreement to restrict ⟨⟨ 𝑟𝑖 ⟩⟩ at least saying that it shall not
be empty, but this constraint is now unnecessary. Although is straightforward that
a representative with empty extension can not be useful during the approximation.

Definition 2.3. The approximation pair ⟨ l, u ⟩ of the representative-based approx-
imation space ⟨𝑈,𝑅,R ⟩ is a pair of mappings 2𝑈 → 2𝑈 defined as follows

l(𝑆) = ∪{⟨⟨ 𝑟𝑖 ⟩⟩ : 𝑟𝑖 ∈ 𝑅 and ⟨⟨ 𝑟𝑖 ⟩⟩ ⊆ 𝑆};
u(𝑆) = ∪{⟨⟨ 𝑟𝑖 ⟩⟩ : 𝑟𝑖 ∈ 𝑅 and ⟨⟨ 𝑟𝑖 ⟩⟩ ∩ 𝑆 ̸= ∅}.

From this point, the ⟨⟨ 𝑟𝑖 ⟩⟩ extensions of the representatives can be considered
as base sets of a union-type approximation space [2].

Definition 2.4. Let ⟨𝑈,𝑅,R ⟩ be a representative-based approximation space and
𝑢 ∈ 𝑈 . Then the representative vector of 𝑢 (denoted by [𝑢 ]

⟨𝑈,𝑅,R ⟩ or simply [𝑢 ]
if it does not cause any misunderstanding) is the following:

[𝑢 ]
⟨𝑈,𝑅,R ⟩

=
⟨

[𝑢 ]
⟨𝑈,𝑅,R ⟩
1 , . . . , [𝑢 ]

⟨𝑈,𝑅,R ⟩
𝑘

⟩
where

[𝑢 ]
⟨𝑈,𝑅,R ⟩
𝑖 =

{︃
1 if 𝑢 ∈ ⟨⟨ 𝑟𝑖 ⟩⟩,
0 otherwise,

𝑖 = 1, . . . , 𝑘.

Some common properties of the approximation space can be determined by
analyzing the representative vectors:

𝜎(𝑢) =

𝑘∑︁

𝑖=1

[𝑢 ] 𝑖

• if 𝜎(𝑢) = 1 for all 𝑢 ∈ 𝑈 , then the approximation space is based on a partition
generated by R;

• if 𝜎(𝑢) = 0 for some 𝑢 ∈ 𝑈 , then the approximation space is partial, because
𝑢 is an object without any representative, and so 𝑢 /∈ l(𝑆) and 𝑢 /∈ u(𝑆) for
all 𝑆 ⊆ 𝑈 ;

• if 𝜎(𝑢) ≥ 2 for some 𝑢 ∈ 𝑈 , then the approximation space contains over-
lapping (not disjoint) extensions for some representatives. See more about
covering systems relying on tolerance relations in [14] and about general cov-
ering systems in [13, 15].
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3. One-argument first-order language

We begin the investigation with a simplified first-order language which allows one-
argument predicate parameters only. The simplified language could be easily ex-
tended with other predicate parameters [7], and it is expressive enough for further
investigations [3].

Definition 3.1. The ordered 4-tuple ⟨𝐿𝐶, 𝑉 𝑎𝑟, 𝑃𝑟𝑒𝑑, 𝐹𝑜𝑟𝑚 ⟩ is a one-argument
first-order language containing only one-argument predicate parameters if

1. 𝐿𝐶 = {¬,∧,∨,⊃,∃,∀, (, )} is the set of logical constants;

2. 𝑉 𝑎𝑟 = {𝑥1, 𝑥2, . . . } is a countably infinite set of variables;

3. 𝑃𝑟𝑒𝑑 is a nonempty set of one-argument predicate parameters;

4. 𝐿𝐶, 𝑉 𝑎𝑟, and 𝑃𝑟𝑒𝑑 are pairwise disjoint;

5. the set of formulae denoted by 𝐹𝑜𝑟𝑚 is defined inductively:

(a) if 𝑃 ∈ 𝑃𝑟𝑒𝑑 and 𝑥 ∈ 𝑉 𝑎𝑟, then 𝑃 (𝑥) ∈ 𝐹𝑜𝑟𝑚 and is an atomic formula,

(b) if 𝐴 ∈ 𝐹𝑜𝑟𝑚, then ¬𝐴 ∈ 𝐹𝑜𝑟𝑚,

(c) if 𝐴,𝐵 ∈ 𝐹𝑜𝑟𝑚 and ∘ ∈ {∧,∨,⊃}, then (𝐴 ∘𝐵) ∈ 𝐹𝑜𝑟𝑚,

(d) if 𝐴 ∈ 𝐹𝑜𝑟𝑚 and 𝑥 ∈ 𝑉 𝑎𝑟, then ∃𝑥𝐴 ∈ 𝐹𝑜𝑟𝑚 and ∀𝑥𝐴 ∈ 𝐹𝑜𝑟𝑚.

3.1. Interpretation

The conventional Aristotelian semantics of a one-argument first-order language is
very widely known, hence it is not introduced here, only the interpretation of the
language is recalled.

Definition 3.2. The pair ⟨𝑈,𝜓⟩ is an interpretation of the one-argument first-order
language ⟨𝐿𝐶, 𝑉 𝑎𝑟, 𝑃𝑟𝑒𝑑, 𝐹𝑜𝑟𝑚 ⟩ if

1. 𝑈 is a nonempty set of objects,

2. 𝜓 is a mapping 𝑃𝑟𝑒𝑑→ 2𝑈 .

In the classical first-order logic, if ⟨𝑈,𝜓 ⟩ is an interpretation on a given 𝑈 set
of objects, and 𝑃 is a one-argument predicate parameter of the language, then the
semantic value of 𝑃 is usually given as 𝜓(𝑃 ) ⊆ 𝑈 :

• 𝑢 ∈ 𝜓(𝑃 ) means that 𝑢 belongs to the positivity domain of 𝑃 , or we can say
that 𝑃 is true on 𝑢,

• 𝑢 ∈ 𝑈 ∖𝜓(𝑃 ) means that 𝑢 belongs to the negativity domain of 𝑃 , or we can
say that 𝑃 is false on 𝑢.
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Next, we define the semantics of a one-argument first-order language with the
help of a representative-based approximation space. The idea is to approximate
the positivity and negativity domains adapting the solution explained in [6]. To
do so, first we introduce the representative-based approximative interpretation.

Definition 3.3. The ordered 4-tuple ⟨𝑈,𝑅,R, 𝜚 ⟩ is an approximative interpreta-
tion of the one-argument first-order language ⟨𝐿𝐶, 𝑉 𝑎𝑟, 𝑃𝑟𝑒𝑑, 𝐹𝑜𝑟𝑚 ⟩ if

1. ⟨𝑈,𝑅,R ⟩ is a representative-based approximation space,

2. 𝜚 is a mapping such that 𝜚(𝑃 ) = ⟨ 𝜚(𝑃 )1, . . . , 𝜚(𝑃 )𝑘 ⟩ for all 𝑃 ∈ 𝑃𝑟𝑒𝑑, where

(a) 𝜚(𝑃 )ℓ ∈ {−1, 0, 1} (ℓ = 1, . . . , 𝑘); and

(b) there is no 𝑢 ∈ 𝑈 and 𝑖, 𝑗 ∈ {1, . . . , 𝑘} such that

[𝑢 ] 𝑖 ·𝜚(𝑃 )𝑖 = 1 and [𝑢 ] 𝑗 ·𝜚(𝑃 )𝑗 = −1;

where 𝑘 is the number of representatives, hence 𝑅 = {𝑟1, . . . , 𝑟𝑘}.

The 𝜚(𝑃 )𝑖 represents the relationship between the 𝑖th representative (𝑟𝑖) and
the semantic value of the one-argument predicate 𝑃 :

• if 𝜚(𝑃 )𝑖 = +1, then 𝑟𝑖 certainly belongs to the positivity domain of 𝑃 ;

• if 𝜚(𝑃 )𝑖 = −1, then 𝑟𝑖 certainly belongs to the negativity domain of 𝑃 ;

• if 𝜚(𝑃 )𝑖 = 0, then we cannot decide whether 𝑟𝑖 belongs to the positivity
domain or not. We could say that 𝑟𝑖 is in the boundary region.

The arithmetic product [𝑢 ] 𝑖 ·𝜚(𝑃 )𝑖 is used to express the connection between
an arbitrary object 𝑢 ∈ 𝑈 and the semantic value of 𝑃 with the help of the 𝑖th
representative. Our definition excludes the contradiction when different represen-
tatives of 𝑢 belong certainly to the positivity and negativity domain of 𝑃 . Now we
show a method to satisfy this condition with the help of an interpretation.

Definition 3.4. Let ⟨𝑈,𝑅,R ⟩ be a representative-based approximation space, ℒ
be a one-argument first-order language, and ⟨𝑈,𝜓 ⟩ be its interpretation. The

𝜚(𝑃 )𝑖 =

⎧
⎪⎨
⎪⎩

1 if ⟨⟨ 𝑟𝑖 ⟩⟩ ⊆ 𝜓(𝑃 ),

−1 if ⟨⟨ 𝑟𝑖 ⟩⟩ ∩ 𝜓(𝑃 ) = ∅,
0 otherwise;

function is the derived mapping from 𝜓 with respect to a given ⟨𝑈,𝑅,R ⟩.

Theorem 3.5. Let ⟨𝑈,𝑅,R ⟩ be a representative-based approximation space, ℒ be
a one-argument first-order language, and ⟨𝑈,𝜓 ⟩ be its interpretation. If 𝜚 is the
derived mapping from 𝜓 with respect to ⟨𝑈,𝑅,R ⟩, then there is no 𝑢 ∈ 𝑈 and
𝑖, 𝑗 ∈ {1, . . . , 𝑘} such that [𝑢 ] 𝑖 ·𝜚(𝑃 )𝑖 = 1 and [𝑢 ] 𝑗 ·𝜚(𝑃 )𝑗 = −1.
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Proof. If [𝑢 ] 𝑖 · 𝜚(𝑃 )𝑖 = 1 for some 𝑢 ∈ 𝑈 and 𝑖 ∈ {1, . . . , 𝑘}, then both [𝑢 ] 𝑖 = 1
and 𝜚(𝑃 )𝑖 = 1. By definition, [𝑢 ] 𝑖 = 1 when 𝑢 ∈ ⟨⟨ 𝑟𝑖 ⟩⟩ and 𝜚(𝑃 )𝑖 = 1 when
⟨⟨ 𝑟𝑖 ⟩⟩ ⊆ 𝜓(𝑃 ), so 𝑢 ∈ 𝜓(𝑃 ). Indirectly supposing that there exists a 𝑗 ∈ {1, . . . , 𝑘}
such that [𝑢 ] 𝑗 ·𝜚(𝑃 )𝑗 = −1, the following contradiction appears: [𝑢 ] 𝑗 = 1, so
𝑢 ∈ ⟨⟨ 𝑟𝑗 ⟩⟩, which means that ⟨⟨ 𝑟𝑗 ⟩⟩ ∩ 𝜓(𝑃 ) ̸= ∅, but 𝜚(𝑃 )𝑗 = −1, hence the
previous intersection should be empty.

Corollary 3.6. Let ⟨𝑈,𝑅,R ⟩ be a representative-based approximation space, ℒ
be a one-argument first-order language, ⟨𝑈,𝜓 ⟩ be its interpretation, and 𝜚 be the
derived mapping from 𝜓. Then ⟨𝑈,𝑅,R, 𝜚 ⟩ is an approximative interpretation.

The value of 𝜚(𝑃 )𝑖 – if it is derived from the ⟨𝑈,𝜓 ⟩ interpretation – shows
the relationship between the positivity domain of 𝑃 and extension ⟨⟨ 𝑟𝑖 ⟩⟩ of the 𝑖th
representative:

• If 𝜚(𝑃 )𝑖 = 1, then all members of the extension of 𝑟𝑖 (all objects represented
by 𝑟𝑖) are in the positiviy domain of 𝑃 ; 𝑃 is certainly true for all 𝑢 ∈ ⟨⟨ 𝑟𝑖 ⟩⟩.

• If 𝜚(𝑃 )𝑖 = −1, then all members of the extension of 𝑟𝑖 are in the negativity
domain of 𝑃 ; 𝑃 is certainly false for all 𝑢 ∈ ⟨⟨ 𝑟𝑖 ⟩⟩.

• If 𝜚(𝑃 )𝑖 = 0, then some members of the extension of 𝑟𝑖 belong to the positivity
domain, while others belong to the negativity domain.

3.2. Semantics

A widely used technique in rough set theory is to distinguish between optimistic
and pessimistic approaches [7]. At this point it is crucial to analyze the information
about objects, especially in the case when different representatives declare different
facts about the positivity and negativity domain of a predicate.

The tables in Fig. 1 summarize the difference of four approaches. The heads of
the tables contain the maximum and the rows contain the minimum of the set:

∆(𝑃, 𝑢) = { 𝜚(𝑃 )𝑖 : 𝑖 ∈ {1, . . . , 𝑘}, [𝑢 ] 𝑖 = 1 }

The bottom left corners are empty hence this kind of contradiction was not allowed
in Definition 3.3. If ∆ ̸= ∅, when 𝑢 has at least one representative, then the
following approaches appear:

1. Optimistic approach: we take the maximum of ∆(𝑃, 𝑢), so if there exists at
least one representative of 𝑢 that belongs to the positivity domain of 𝑃 , we
will suppose that 𝑃 is true on 𝑢.

2. Pessimistic approach: we take the minimum of ∆(𝑃, 𝑢), so we suppose that
𝑃 is true on 𝑢 only if all the representatives of 𝑢 belong to the positivity
domain of 𝑃 .
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3. Union-based approach: we say that 𝑢 belongs to the union of its representa-
tives. This implies that if at least one representative belongs to the border,
then we cannot say anything certain about 𝑢.

4. Intersection-based approach: we say that 𝑢 belongs to the intersection of
its representatives. This implies that uncertainty will appear only if all the
representatives of 𝑢 belong to the border.

∆(𝑃, 𝑢) 1 0 −1

1 1

0 1 0

−1 0 −1

Optimistic Approach

∆(𝑃, 𝑢) 1 0 −1

1 1

0 0 0

−1 −1 −1

Pessimistic Approach

∆(𝑃, 𝑢) 1 0 −1

1 1

0 0 0

−1 0 −1

Union-Based Approach

∆(𝑃, 𝑢) 1 0 −1

1 1

0 1 0

−1 −1 −1

Intersection-Based Approach

Figure 1. Managing contradicting information.

By respecting the set theoretic view of the extension of representatives (intro-
duced in Definition 2.2 and also used later in Definition 3.4), it is a straightforward
decision to adopt the intersection-based approach.

Definition 3.7. Let ⟨𝑈,𝑅,R, 𝜚 ⟩ be an approximative interpretation. The function
𝑣 : 𝑉 𝑎𝑟 → 𝑈 is an assignment relying on the approximative interpretation.

Definition 3.8. Let 𝑣 be an assignment relying on the ⟨𝑈,𝑅,R, 𝜚 ⟩ approximative
interpretation. The assignment 𝑣 [𝑥:𝑢] denotes a modified assignment which is
defined as follows:

𝑣 [𝑥:𝑢](𝑦) =

{︃
𝑢 if 𝑦 = 𝑥,

𝑣(𝑦) otherwise.

Note that we defined the assignment and the modified assignment exactly in
the same way as it was introduced in the classical first-order logic. It helps us to
compare the evaluation method later.

Definition 3.9. The semantic value of 𝑃 ∈ 𝑃𝑟𝑒𝑑 is the following

𝑈 → {0, 1/2, 1} ∪ {2}
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function:

[[𝑃 ]]
⟨𝑈,𝑅,R,𝜚 ⟩

(𝑢) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2 if [𝑢 ] 𝑖 = 0 for all 𝑖 ∈ {1, . . . , 𝑘}
1 if [𝑢 ] 𝑖 ·𝜚(𝑃 )𝑖 = 1 for some 𝑖 ∈ {1, . . . , 𝑘}
0 if [𝑢 ] 𝑖 ·𝜚(𝑃 )𝑖 = −1 for some 𝑖 ∈ {1, . . . , 𝑘}
1/2 otherwise.

As a consequence of the system’s possible partiality, logic with truth value gap
is used. The value 2 represents the lack of truth value.

Theorem 3.10. Let ⟨𝐿𝐶, 𝑉 𝑎𝑟, 𝑃𝑟𝑒𝑑, 𝐹𝑜𝑟𝑚 ⟩ be a one-argument first-order lan-
guage and ⟨𝑈,𝑅,R, 𝜚 ⟩ be its approximative interpretation relying on the represen-
tative-based approximation space ⟨𝑈,𝑅,R ⟩ where 𝜚 is the derived mapping from
𝜓; then [[𝑃 ]] (𝑢) = 1 if and only if 𝑢 ∈ l(𝜓(𝑃 )) for all 𝑢 ∈ 𝑈 .

Proof. Let us create the proof in two steps:
1. If [[𝑃 ]] (𝑢) = 1 then there exists an 𝑟𝑖 ∈ 𝑅 such that [𝑢 ] 𝑖 ·𝜚(𝑃 )𝑖 = 1 and so

𝑢 ∈ ⟨⟨ 𝑟𝑖 ⟩⟩ (based on Definition 2.4) and ⟨⟨ 𝑟𝑖 ⟩⟩ ⊆ 𝜓(𝑃 ) (based on Definition 3.4).
When ⟨⟨ 𝑟𝑖 ⟩⟩ ⊆ 𝜓(𝑃 ) then ⟨⟨ 𝑟𝑖 ⟩⟩ ⊆ l(𝜓(𝑃 )) and so 𝑢 ∈ l(𝜓(𝑃 )).

2. If 𝑢 ∈ l(𝜓(𝑃 )) then there exists an 𝑟𝑖 such that 𝑢 ∈ ⟨⟨ 𝑟𝑖 ⟩⟩ and ⟨⟨ 𝑟𝑖 ⟩⟩ ⊆ 𝜓(𝑃 )
and so [𝑢 ] 𝑖 = 1 and 𝜚(𝑃 )𝑖 = 1 therefore [[𝑃 ]] (𝑢) = 1 hence [𝑢 ] 𝑖 ·𝜚(𝑃 )𝑖 = 1.

The idea to use a partial three-valued system appeared in [4, 7].

Definition 3.11. The semantic value of the formula 𝐴 ∈ 𝐹𝑜𝑟𝑚 using the inter-
pretation ⟨𝑈,𝑅,R, 𝜚 ⟩ is denoted by [[𝐴 ]]

⟨𝑈,𝑅,R,𝜚 ⟩
𝑣 or simply [[𝐴 ]] 𝑣 and defined as

follows:

[[𝑃 (𝑥) ]]𝑣 = [[𝑃 ]] (𝑣(𝑥))

[[¬𝐴 ]] 𝑣 =

{︃
2 if [[𝐴 ]] 𝑣 = 2

1− [[𝐴 ]] 𝑣 otherwise;

[[ (𝐴 ∧𝐵) ]]𝑣 =

{︃
2 if [[𝐴 ]] 𝑣 = 2 or [[𝐵 ]] 𝑣 = 2

min{ [[𝐴 ]] 𝑣 , [[𝐵 ]] 𝑣} otherwise;

[[ (𝐴 ∨𝐵) ]]𝑣 =

{︃
2 if [[𝐴 ]] 𝑣 = 2 or [[𝐵 ]] 𝑣 = 2

max{ [[𝐴 ]] 𝑣 , [[𝐵 ]] 𝑣} otherwise;

[[ (𝐴 ⊃ 𝐵) ]]𝑣 =

{︃
2 if [[𝐴 ]] 𝑣 = 2 or [[𝐵 ]] 𝑣 = 2

max{1− [[𝐴 ]] 𝑣 , [[𝐵 ]] 𝑣} otherwise;

Let 𝒱 = {𝑢 : 𝑢 ∈ 𝑈 and [[𝐴 ]] 𝑣 [𝑥:𝑢] ̸= 2}.

[[ ∃𝑥𝐴 ]] 𝑣 =

⎧
⎨
⎩

2 if 𝒱 = ∅,
max
𝑢∈𝒱

{︁
[[𝐴 ]] 𝑣 [𝑥:𝑢]

}︁
otherwise;
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[[ ∀𝑥𝐴 ]] 𝑣 =

⎧
⎨
⎩

2 if 𝒱 = ∅,
min
𝑢∈𝒱

{︁
[[𝐴 ]] 𝑣 [𝑥:𝑢]

}︁
otherwise;

Like in the classical case, ∃ and ∀ quantifiers are defined as the generalizations
of ∨ and ∧, respectively.

4. Key properties of the approximation

Theorem 4.1. Let ℒ = ⟨𝐿𝐶, 𝑉 𝑎𝑟, 𝑃𝑟𝑒𝑑, 𝐹𝑜𝑟𝑚 ⟩ be a one-argument first-order
language and 𝐼 = ⟨𝑈,𝑅,R, 𝜚 ⟩ be an approximative interpretation of ℒ. There
exists an approximative interpretation 𝐽 = ⟨𝑈 ′, 𝑅,R′, 𝜚 ⟩ such that

|𝑈 ′| ≤ 2𝑘 and [[𝐴 ]]
𝐼
𝑣 = [[𝐴 ]]

𝐽
𝑤 for all 𝐴 ∈ 𝐹𝑜𝑟𝑚

where 𝑤(𝑥) = 𝜏(𝑣(𝑥)) for some mapping 𝜏 : 𝑈 → 𝑈 ′.

Proof. We present a construction for such an interpretation 𝐽 = ⟨𝑈 ′, 𝑅,R′, 𝜚 ⟩ and
mapping 𝜏 :

𝜏(𝑢) =

𝑘∑︁

𝑖=1

2𝑘−1 [𝑢 ]
⟨𝑈,𝑅,R ⟩
𝑖

𝑈 ′ = {𝜏(𝑢) : 𝑢 ∈ 𝑈}

R′ = {⟨ 𝑟𝑖, 𝜏(𝑢) ⟩ : ⟨ 𝑟𝑖, 𝑢 ⟩ ∈ R}.

It is clear that 𝑈 ′ ⊆ {0, 1, . . . , 2𝑘−1} so the cardinality condition of 𝑈 ′ is satisfied.
Because of the definition of the R′ relation,

[𝑢 ]
⟨𝑈,𝑅,R ⟩
𝑖 = [ 𝜏(𝑢) ]

⟨𝑈 ′,𝑅,R′⟩
𝑖 therefore [[𝑃 ]]

𝐼
(𝑣(𝑥)) = [[𝑃 ]]

𝐽
(𝑤(𝑥))

so the theorem is proved for atomic formulae and can be proved for arbitrary
formulae with the help of structural induction.

Corollary 4.2. During the evaluation process of a quantified formula, instead
of using all members of the set 𝑈 , it is enough to consider 2𝑘 objects only. It
can dramatically increase the speed of quantified formulae evaluation and so it can
reduce the computation time.

4.1. Properties of the approximation on covering systems
Theorem 4.3. The one-argument first-order language ⟨𝐿𝐶, 𝑉 𝑎𝑟, 𝑃𝑟𝑒𝑑, 𝐹𝑜𝑟𝑚 ⟩
and its approximative interpretation ⟨𝑈,𝑅,R, 𝜚 ⟩ generate a three-valued logic sys-
tem without truth value gap if ⟨𝑈,𝑅,R ⟩ is a covering approximation space.
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Proof. In case of an arbitrary atomic formula 𝑃 (𝑥) and an arbitrary approximative
interpretation ⟨𝑈,𝑅,R, 𝜚 ⟩, truth value gap (2) can appear as the semantic value
of [[𝑃 (𝑥) ]]𝑣 only if 𝜎(𝑣(𝑥)) = 0, but in a covering approximation space 𝜎(𝑢) > 0
for all 𝑢 ∈ 𝑈 . So the theorem is proved for atomic formulae and can be proved for
arbitrary formulae with the help of structural induction.

Theorem 4.4. Let ⟨𝐿𝐶, 𝑉 𝑎𝑟, 𝑃𝑟𝑒𝑑, 𝐹𝑜𝑟𝑚 ⟩ be a one-argument first-order language
and ⟨𝑈,𝑅,R, 𝜚 ⟩ be its approximative interpretation relying on the representative-
based covering approximation space ⟨𝑈,𝑅,R ⟩ where 𝜚 is the derived mapping from
𝜓, and let 𝑣 be an arbitrary assignment.

If [[𝐴 ]]
⟨𝑈,𝑅,R,𝜚 ⟩
𝑣 ∈ {0, 1} then [[𝐴 ]]

⟨𝑈,𝑅,R,𝜚 ⟩
𝑣 = |𝐴|⟨𝑈,𝜓⟩𝑣 .

Proof. First we will show, that the statement is true for any arbitrary atomic
formula:

• If [[𝑃 (𝑥) ]]𝑣 = 1 then [ 𝑣(𝑥) ] 𝑖 · 𝜚(𝑃 )𝑖 = 1 for some 𝑖 ∈ {1, . . . , 𝑘}.

– 𝑣(𝑥) ∈ ⟨⟨ 𝑟𝑖 ⟩⟩ because of [ 𝑣(𝑥) ] 𝑖 = 1
(as a consequence of Definition 2.4);

– ⟨⟨ 𝑟𝑖 ⟩⟩ ⊆ 𝜓(𝑃 ) hence 𝜚(𝑃 )𝑖 = 1 and 𝜚 is derived from 𝜓
(see Definition 3.4);

therefore 𝑣(𝑥) ∈ 𝜓(𝑃 ) so |𝑃 (𝑥)|𝑣 = 1.

• If [[𝑃 (𝑥) ]]𝑣 = 0 then [ 𝑣(𝑥) ] 𝑖 · 𝜚(𝑃 )𝑖 = −1 for some 𝑖 ∈ {1, . . . , 𝑘}.

– 𝑣(𝑥) ∈ ⟨⟨ 𝑟𝑖 ⟩⟩ because of [ 𝑣(𝑥) ] 𝑖 = 1;

– ⟨⟨ 𝑟𝑖 ⟩⟩ ∩ 𝜓(𝑃 ) = ∅ hence 𝜚(𝑃 )𝑖 = −1 and 𝜚 is derived from 𝜓;

therefore 𝑣(𝑥) /∈ 𝜓(𝑃 ) so |𝑃 (𝑥)|𝑣 = 0.

Now the theorem can be proved by using structural induction which is trivial in
case of zero order connectives and very similar in case of the quantifiers, therefore
we focused on the existentially quantified expressions only. Supposing that the
theorem is true for the formula 𝐴:

• [[ ∃𝑥𝐴 ]] 𝑣 = 1 guarantees that there exists a 𝑣 [𝑥:𝑢] modified assignment so
that [[𝐴 ]] 𝑣 [𝑥:𝑢] = 1. As we have above supposed, |𝐴|𝑣 [𝑥:𝑢] = 1 so |∃𝑥𝐴|𝑣 = 1.

• [[ ∃𝑥𝐴 ]] 𝑣 = 0 implies that [[𝐴 ]] 𝑣 [𝑥:𝑢] = 0 for all 𝑣 [𝑥:𝑢] modified assign-
ment. Therefore |𝐴|𝑣 [𝑢:𝑥] = 0 for all 𝑢 ∈ 𝑈 so |∃𝑥𝐴|𝑣 = 0. Remember
that [[𝐴 ]] 𝑣 [𝑥:𝑢] ̸= 2 if the approximative interpretation relies on a covering
approximation space as it was proved in Theorem 4.3.
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5. Conclusion and future work

In this article we have successfully shown a possible semantic background of a
one-argument first-order logical system based on a representative-based approxi-
mation. An approximative interpretation was introduced, which we can derive from
a classical first-order interpretation easily. We have compared the classical and the
approximation-based evaluation, and we have found that, at least in the case of a
covering approximation space, we can predict the semantic value of a formula by
using the approximation.

Thanks to the promising results shown in the theorems, we have the theoretical
basis for further investigations. One possible direction is to analyze the logical laws
and inference schemes of the first-order logic in case of different granule systems.
The investigation will follow the methods presented in [3, 5]. We hope that the
result of the planned research could be a calculus over a three-valued partial system
relying on the representative-based approximation space.

References

[1] L. Aszalós, T. Mihálydeák: Rough Clustering Generated by Correlation Clustering, in:
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Springer Berlin Heidelberg,
2013, pp. 315–324,
doi: https://doi.org/10.1109/TKDE.2007.1061.

[2] Z. E. Csajbók, T. Mihálydeák: General set approximation and its logical applications,
in: Jan. 2015, pp. 33–40,
doi: https://doi.org/10.14794/ICAI.9.2014.1.33.

[3] T. Kádek, T. Mihálydeák: On (in)Validity of Aristotle’s Syllogisms Relying on Rough
Sets, Annals of Computer Science and Information Systems 7 (2015), pp. 35–40.

[4] T. Mihálydeák: First-Order Logic Based on Set Approximation: A Partial Three-Valued
Approach, in: 2014 IEEE 44th International Symposium on Multiple-Valued Logic, May 2014,
pp. 132–137,
doi: https://doi.org/10.1109/ISMVL.2014.31.

[5] T. Mihálydeák: Aristotle’s Syllogisms in Logical Semantics Relying on Optimistic, Average
and Pessimistic Membership Functions, in: Rough Sets and Current Trends in Computing:
9th International Conference, RSCTC 2014, Granada and Madrid, Spain, July 9-13, 2014.
Proceedings, ed. by C. Cornelis, M. Kryszkiewicz, D. Ślęzak, E. M. Ruiz, R. Bello,
L. Shang, Cham: Springer International Publishing, 2014, pp. 59–70, isbn: 978-3-319-08644-
6,
doi: http://dx.doi.org/10.1007/978-3-319-08644-6_6.

[6] T. Mihálydeák: Logic on Similarity Based Rough Sets, in: Rough Sets, ed. by H. S.
Nguyen, Q.-T. Ha, T. Li, M. Przybyła-Kasperek, Cham: Springer International Pub-
lishing, 2018, pp. 270–283, isbn: 978-3-319-99368-3.

[7] T. Mihálydeák: Partial First-Order Logical Semantics Based on Approximations of Sets,
Non-classical Modal and Predicate Logics (2011), ed. by M. V. Petr Cintula Shier Ju,
pp. 85–90.

[8] D. Nagy, T. Mihálydeák, L. Aszalós: Similarity Based Rough Sets, in: Rough Sets:
International Joint Conference, IJCRS 2017, Olsztyn, Poland, July 3–7, 2017, Proceedings,
Part II, ed. by L. Polkowski, Y. Yao, P. Artiemjew, D. Ciucci, D. Liu, D. Ślęzak,
B. Zielosko, Cham: Springer International Publishing, 2017, pp. 94–107, isbn: 978-3-319-
60840-2,
doi: https://doi.org/10.1007/978-3-319-60840-2_7.

Dealing with uncertainty: A rough-set-based approach . . . 167



[9] P. Pagliani, M. Chakraborty: Logic and Rough Sets: An Overview, in: A Geometry of
Approximation: Rough Set Theory: Logic, Algebra and Topology of Conceptual Patterns,
Dordrecht: Springer Netherlands, 2008, pp. 169–191, isbn: 978-1-4020-8622-9,
doi: https://doi.org/10.1007/978-1-4020-8622-9_5.

[10] Z. Pawlak: Rough Sets: Theoretical Aspects of Reasoning about Data, Theory and Decision
Library D: Springer Netherlands, 1991, isbn: 9780792314721,
url: https://books.google.hu/books?id=MJPLCqIniGsC.

[11] Z. Pawlak: Rough sets, International Journal of Computer & Information Sciences 11.5
(1982), pp. 341–356, issn: 1573-7640,
doi: http://dx.doi.org/10.1007/BF01001956.

[12] Z. Pawlak, A. Skowron: Rough sets and Boolean reasoning, Information sciences 177.1
(2007), pp. 41–73.

[13] Z. Pawlak, A. Skowron: Rudiments of rough sets, Information sciences 177.1 (2007), pp. 3–
27.

[14] A. Skowron, J. Stepaniuk: Tolerance approximation spaces, Fundamenta Informaticae
27.2 (1996), pp. 245–253.

[15] Y. Yao, B. Yao: Covering based rough set approximations, Information Sciences 200 (2012),
pp. 91–107, issn: 0020-0255,
doi: http://dx.doi.org/10.1016/j.ins.2012.02.065,
url: http://www.sciencedirect.com/science/article/pii/S0020025512001934.

168 T. Kádek, T. Mihálydeák



Multi dimensional analysis of sensor
communication processes∗

Mohamed Amine Korteby, Zoltán Gál, Péter Polgár

University of Debrecen, Faculty of Informatics
korteby.amine@inf.unideb.hu
gal.zoltan@inf.unideb.hu
polgarp@mailbox.unideb.hu

Submitted: December 10, 2020
Accepted: March 8, 2021

Published online: May 18, 2021

Abstract

The Internet of Things requires communication mechanism to be optimal
not only from the data transfer but from the energy consumption point of
view, too. One of the most analyzed types of the sensor network is Low
Energy Adaptive Clustering Hierarchy (LEACH) system depending on the
population density, algorithm of cluster head election, heterogeneity of the
energy and physical position of the nodes, velocity of the sink node, data
aggregation rate and size of the data frame. Complexity of the system has
been analyzed based on status data series of 360 simulation cases. New family
of wireless sensor network (WSN) system is proposed with name CB-LEACH,
having better characteristics than the classical LEACH system. The service
ability of sensor network and dependency properties was done with analytic
technique based on Singular Value Decomposition (SVD). Using this method
there were identified most important modes serving as basis to regenerate
responses of the studied sensor systems. It was found that the number of
significant modes is just six. The novelty of the paper is a proof of concept
that SVD is a useful multidimensional tool which can be used for describing
the behavior of the newly proposed CB-LEACH family of sensor network
mechanisms.
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1. Introduction

Nodes in wireless sensor networks monitor an Area of Interest (AoI) and, depending
on their function, data is transmitted directly or indirectly to a Base Station (BS)
or Sink Node (SN) that is connected to a wired network for further processing.
This forwarding process is accomplished through various routing mechanisms that
are the focus of the related research. Because sensor devices have limited power
resources, the efficiency of their energy consumption is crucial. At the same time,
these sensors are heavily concentrated in physical areas that are difficult to access
physically by human, so their power supply is virtually non-replaceable. Thus, the
key to their operating time is the efficiency of their energy consumption.

Routing protocols play a key role in sending aggregated data, inducing careful
handling of such tasks. A successful model of a WSN system is one that can
strike a good compromise between the maximum amount of data collection and the
minimum amount of energy consumption. In WSN routing mechanisms, clustering
appears to be an important consideration as it provides efficient energy savings and
data delivery at the network level. Hierarchical routing which includes clustering
is proving to be a preferred method of arranging sensors [8, 16]. At the same time,
the method increases scalability, reduces the amount of energy loss, and delay time,
while providing good connectivity and load balancing with increased network life
[1, 7].

LEACH is a hierarchical, cluster-based, energy-efficient routing mechanism. It
extends the lifetime of the system with randomly selected Cluster Head (CH) ele-
ments that forward frames from cluster members to the SN after aggregation. This
intermediate transmission step significantly reduces the energy used by the nodes
that operate the radio channel, since the transmission consumption of the data
frame is based on the power function of the distance with exponent 2𝑏. Here 𝑏 is
the path loss exponent, its value depends on the path propagation properties and
most often 𝑏 ≥ 2.

The further structure of the paper is as follows: in the second chapter we discuss
the architecture and energy effects of the classical LEACH mechanism. In the third
chapter we introduce our newly developed system Cost Balanced LEACH (CB-
LEACH) and we present the methods used for the analysis of multidimensional
data sets. Chapter four examines the newly proposed WSN system based on a
synthetic state data series generated using 360 different simulations. In the last
chapter we summarize the results and formulate the directions for the possible
continuation of the research work.
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2. Architecture and functions of the LEACH mech-
anism

Routing protocols were divided into four schemes: Network Structure Scheme,
Topology Based Scheme, Communication System Scheme, and Reliable Routing
Schema. Besides, the network structure scheme can be broken down into two
classes: Flat routing and Hierarchical routing, depending on the role of the sensor
nodes. In Flat routing, the sensor nodes have similar roles and functionalities in the
network. Used in small area networks, the principal issue of this type of routing is
scalability. Flooding and Gossiping, Directed diffusion, Rumor, SPIN are the most
popular Flat routing protocols.

Hierarchical routing delivers greater energy efficiency and reliability within its
architecture, the entire network is partitioned into clusters and unique nodes called
cluster heads (CH) based on certain criteria. CH manages the gathering and ag-
gregation of data received from its neighborhood, then forwards the collected data
to the Base Station (BS) while providing other services to other nodes which con-
sumes more energy. Hence is required cluster rotation method, a common approach
often used to manage the energy harvesting inside the cluster.

LEACH is a Time Division Multiple Access (TDMA) based Media Access Con-
trol (MAC) routing protocol, self-adaptive and self-organized and most widely
known hierarchical routing protocol. Due to its capability to increase energy ef-
ficiency it improves the lifespan of sensor nodes by using randomized rotations of
local cluster head functions between the nodes [11, 12, 14, 18].

LEACH protocol consists of several rounds with two phases in each round:
Set-up Phase and Steady Phase (see Figure 1).

Figure 1. Mechanism for sending frames by epoch period.

In Set-up phase CH advertisement, cluster set-up, and TDMA scheduling are
performed. During the CH advertisement, each node participates in CH election
process based on the following equation:

𝑇 (𝑛) =

{︃
𝑝

1−𝑝·mod(𝑟,1/𝑝) , if 𝑛 ∈ 𝐺,
0, otherwise,

(2.1)

where 𝑇 (𝑛) is the threshold, 𝑛 is the node index taking values in continuous inter-
val [0, 1] and set {1, 2, . . . , 𝑁}, respectively. Parameter 𝑝 denotes the CH election
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probability or the percentage of a node to become CH and is constant for a given
simulation scenario. Function mod(𝑟, 1/𝑝) is the remainder after dividing the cur-
rent index 𝑟 by the number 1/𝑝 and 𝐺 is the set of sensor nodes that did not
become CH in previous 1/𝑝 rounds. 𝑁𝑜𝑑𝑒𝑛 acquires a cluster head function in the
𝑟𝑡ℎ epoch period if it drew 𝑞𝑛 < 𝑇 (𝑛). 𝑞𝑛 is a random number 𝑞𝑛 ∈ 0, 1 drawn by
𝑁𝑜𝑑𝑒𝑛 in the actual epoch. If 𝑁𝑜𝑑𝑒𝑛 was CH in any of the last 1/𝑝 epochs, then
𝑇 (𝑛) = 0, so any 𝑞𝑛 > 0 = 𝑇 (𝑛), which means that it cannot regain a cluster head
function in the actual epoch. With this rule and the random choice in the process,
each node in the WSN is equal likely to become CH while achieving a homogeneous
energy distribution among the CHs. The cluster head notifies all nodes in the sys-
tem of its state with a control-type frame sent in a broadcast manner. Each of
the nodes without CH function independently selects the most advantageous CH
based on the field signal strength from the cluster head sources.

We refer round 𝑟 to be an epoch. A node with index 𝑛 becomes CH for the
current round if the generated random value 𝑞𝑛 of a sensor node is strictly less
than the threshold 𝑇 (𝑛). For a given round we have a fixed threshold and it is
compared to the sensor node random values. If it is equal to 0, it means that 𝑛 does
not belong to 𝐺 but belongs to the complementary set of nodes that were already
elected as CH or died. Once a node is elected CH it cannot participate in the next
1/𝑝 round of CH election: i.e. if 𝑝 ∈ {0.05, 0.10} then the elected CH cannot be
reelected in the next 1/𝑝 ∈ {20, 10} rounds respectively. This criterion is useful for
the energy load balance inside the network since every node gets a better chance
to become CH.

Based on this rule any of the nodes can become CH with similar probability, pro-
viding uniformity on AoI space the extra energy consumption of the CH function.
The CHs announce the other nodes with radio channel broadcast about its new
CH function. The ordinary nodes receive these signals and based on the intensity
of the signal decide which cluster to become a member with. The signal intensity
in practice depends on different environmental parameters but for the classical ver-
sion of the LEACH, just the distance between the node and the CH is considered.
The ordinary nodes send their responses to the most advantageous CH, becoming
in this way members of that cluster. The CH schedules the communication inside
of the cluster for the members during the actual epoch time.

In the epoch time second phase is named Seady Phase. During this period
sensor end nodes send their data to the selected CH. The CH aggreagates own
frames with the transit traffic and send the aggregated data to the Sink Node.
Thus, in the case of a WSN consisting of N sensor nodes, these two phases occur
alternately in successive periods.

During the LEACH simulation, the strength of electromagnetic field is assumed
to be exclusively distance-dependent, so the radio energy attenuation 𝐴(𝑑) per bit
transmission is as follows:

𝐴(𝑑) = 𝐸𝑅𝑥(𝑑)/𝐸𝑇𝑥(𝑑),

172 M. A. Korteby, Z. Gál, P. Polgár



𝐴(𝑑) =

⎧
⎪⎨
⎪⎩

1, if 𝑑 ∈ [0, 𝛿),

(𝛿/𝑑)2, if 𝑑 ∈ [𝛿, 𝑑0),

(𝛿/𝑑0)2 · (𝑑0/𝑑)2𝑏, if 𝑑 ∈ [𝑑0,∞),

(2.2)

where 𝑑 is the distance between the sender and the receiver, 𝐸𝑅𝑥 and 𝐸𝑇𝑥 are the
received and transmitted power, 𝛿 is the geometric parameter of the radio antenna
(on the scale of centimeters), 𝑑0 is the propagation distance threshold, b is the path
loss exponent, where 𝑏 ≥ 2. The node with its data selects the most advantageous
CH, i.e. the nearest CH. In the absence of data, the node goes to sleep mode for
an epoch period to save energy [6, 10]. The CH provides a notification to the
members of the cluster with a TDMA or Code Division Multiple Access (CDMA)
control type frame, thus guaranteeing a collision-free frame transmission to the
cluster head during the current epoch.

LEACH is the archetype for distributed routing protocols and one of the most
efficient WSN mechanisms for power management. At the same time, we must not
ignore some of its shortcomings [8]. The entry of any node into the CH function
is independent of the residual energy of the given node, resulting in an uneven
distribution in the physical location of the clusters in the covered area [1, 2, 14,
17]. This is exacerbated by the fact that the CH node may be even further away
from the SN than members of its cluster, delivering data with poor efficiency [4,
5, 15]. Thus, some CH nodes drain their energy source sooner than other nodes,
forming energy-free holes in physical space [3, 13]. Furthermore, the robustness of
the network is reduced if the low-power node is given the CH function, because
the frames of the cluster members arriving at the CH may be cancelled during the
transmission to the SN due to the lack of power [9].

3. Cost Balanced LEACH mechanism: CB-LEACH

We propose a new family of LEACH mechanism named CB-LEACH having better
performance than classical LEACH. With the change we proposed, we endowed
the basic LEACH mechanism with additional skills and intelligence. This is a Cost
Balanced (CB) version of LEACH, which decides the route for transmitting frames
based on complex metric. In the case of CB-LEACH, we allow the SN to move
along a given path, as well as more efficient selection of the optimal CH for the end
nodes. Because nodes in the current epoch time may be closer to the moving SN
than the selected CH, they should send their frames directly to the SN instead of
indirectly through the selected CH. To this end, we also include the SN in the set
of selectable CH nodes. The energy of SN is considered not decreasing over time
and is the largest in the WSN system. We consider not only the distance of the
possible CHs from the end nodes but also their energy level, as well. To do this, a
given sensor node decides own CH to connect to, based on the following metric:

COST(𝑖, 𝑗, 𝛼) = 𝛼 · 𝐸0

𝐸𝐶𝐻𝑗

+ (1− 𝛼) ·
(︂
𝐷(𝑖, 𝑗)

𝑑0

)︂2𝑏

, (3.1)
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where COST(𝑖, 𝑗, 𝛼) is the metric of Node𝑖 and 𝐶𝐻𝑗 calculated with a balance factor
𝛼 ∈ [0, 1], 𝐷(𝑖, 𝑗) is the distance between Node𝑖 and 𝐶𝐻𝑗 , 𝑑0 is the propagation
distance threshold and 𝑏 is the path loss exponent, 𝐸0 is the initial energy for
any normal type node (NN) and 𝐸𝐶𝐻𝑗

is the actual energy level for a given 𝐶𝐻𝑗 .
Parameter 𝛼 named balance factor is our newly introduced element of the model
to connect energy and distance properties of the nodes. Since the denominator of
the first term of equation (3.1) can be zero after a long time, the properties of the
system are analysed up to the last operating node, so that each term of the formula
remains a positive and finite quantity.

In current epoch time Node𝑖 chooses the 𝐶𝐻𝑗 for which the value of the
COST(𝑖, 𝑗, 𝛼) metric is the smallest. It can be observed that if 𝛼 = 0, we get
back the mobility-enhanced CH version of the LEACH mechanism, which is fur-
ther identified as ENH-LEACH (Enhanced). If we do not change the position of the
SN in time, we get back the Basic LECH mechanism, which is hereinafter referred
to as BAS-LEACH.

However, if 𝛼 = 1, only the energy of the CH counts, which generates a com-
petitive situation between the potential CHs and each Node𝑖 will choose the same
single CH, i.e. the SN with the maximum energy. In this case, each node sends
its data directly to the SN, independent of the other potential CHs. This routing
mechanism will be referred to as DS (Direct Sequence) hereinafter.

Our simulation measurements demonstrated that ENH-LEACH and DS are
significantly different routing protocols. The two extreme values of the balancing
factor 𝛼 have advantages and disadvantages from different aspects. When 𝛼 is
in range (0, 1) it has harmonization effect on the decisions of LEACH routing
mechanism. Based on these, the proposed CB-LEACH is compatible with the
family of protocols as follows:

CB-LEACH ∼

⎧
⎪⎨
⎪⎩

ENH-LEACH, if 𝛼 = 0,

Modified LEACH Familly, if 𝛼 ∈ (0, 1),

DS, if 𝛼 = 1.

(3.2)

The DS sends the frame from each node directly to the SN. This means long
distances, which consumes a significant amount of energy. However, due to the
random transmission mechanism, the planar distribution of the residual energy of
the nodes is expected to be strongly dependent on the distance between end node
and SN. ENH-LEACH divides the physical field of the WSN into two parts, since
treating the SN as a cluster head provides the nodes in the vicinity of the SN
with a radius 𝑑0 a favorable power consumption for frame transmission time. The
obvious question is what properties the modified LEACH family inherits from the
two boundary cases as a function of the 𝛼 parameter. Further questions can put
about the dependence of the CB-LEACH system on other parameters.

The CB-LEACH mechanism depends on a significant number of parameters, in-
ducing execution of 360 simulation cases. In each case, the communication activity
of a given WSN was completed during epoch numbers in the scale of 5 · 105. Vec-
torisation of the analyzed system responses is based on normalization of elemental
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answer vectors and concatenation of them in common vector named probe. There
is a legitimate need to identify the parameters that most significantly influence the
behavior of the present network. For this, we applied Singular Value Decompo-
sition (SVD) analytic method [2], to efficiently evaluate behavior dependence on
the tuplet of independent parameters. Having relatively high number of simulation
probes, SVD gives possibility to determine the number of most significant modes
of the CB-LEACH system behavior.

4. CB-LEACH system analysis and characteristics

We analyzed and evaluated the synthetic state data obtained from 𝑛′ = 360 probes
of Direct Sequence (DS), Basic LEACH (BAS-LEACH), and Enhanced LEACH
(ENH-LEACH) simulations according to different parameters, using the methods
described in this chapter. These mechanisms can be considered as special cases of
CB-LEACH family proposed by us.

Figure 2 shows Area of Interest after ending the simulation of one probe exam-
ple. Area of Interest is the biggest doted black circle. Red doted arc represents 𝑑0
(see formula (2.2)), radio channel distance threshold. There are 𝑁 sensor nodes
represented by black circles. Normal nodes (NN) and Advanced nodes (AN) are
distinguished by the radius of black circles. Smallest circles belong to NNs and
ANs have greater radius. For each simulation probe a number of 𝑁 sensor nodes
are spread in uniformly distributed coordinates inside of AoI. Gray scale of the
node marker is proportional with the age of node. Darker nodes die first, brighter
nodes die later.

Figure 2. Example of one simulation probe after the execution of
simulation. Parameter names conform to Table 1.

Depending on the constant velocity value, the sink node may move on trajectory
in horizontal segment between filled red (left) and non filled (right) circles during
the actual simulation. Number of forward and backward courses depend on the
velocity and running time and are counted in variables Fw and Bw, respectively.
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Being the sensor nodes uniformly distributed in space, the weighted energy point
(WEP) in space of the WSN is situated in the center of the AoI. This WEP moves
during the simulation if the remaining energy of the nodes is not uniformly de-
creasing in space. In this example red segment in the center zone of AoI represent
movement of WEP during the simulation. FND, HND, TQD and LNA are epoch
identifiers for first node die, half node die, third quarter node die and last node
alive, respectively. Population density in the AoI is constant, 𝜌 = 0.2𝑚−2 during
all simulations, meaning one node per 5𝑚2.

The unchanged characteristics of the WSN system and the values of the six
parameters of the simulation environment are shown in Table 1. In the table
specific parameters have more than one value, others just one. Parameters with
variable values are marked with star (*) character at the beginning of the line.
Hereby we have 𝑛′ = 5 · 3 · 3 · 2 · 2 · 2 = 360 combinations of the orthogonal
parameters giving us 𝑛′ simulation probes.

Table 1. Parameters of the simulated system. Parameters having
variable values are marked with star (*) character at the beginning
of the row. Other parameters have fixed value during the simulation

probes.

Parameters Value(s)
Physical area size (𝑥𝑚× 𝑦𝑚) 100𝑚× 100𝑚
Radius of the field 𝑅 = 𝑥𝑚/2
Initial and farthest position of the Sink Node (−𝑥𝑚, 0)(𝑥𝑚, 0)
Number of nodes of the WSN 𝑁 = 157
* Balance Factor 𝛼 = 0, 0.25, 0.50, 0.75, 1.00
* Ratio AN node number / total nodes, N 𝑚 = 0.3, 0.5, 0.7
* Velocity of the Sink Node 𝑣 = 0, 5, 10 m/s
* Radio frames length 𝐹𝑠 = 1000, 4000 bits
* Aggregation level of the radio frames 𝑔 = 0.10, 0.89
* Ratio of the CH nodes 𝑝 = 5, 10 %
Energy factor of the AN 𝑎 = 1
Initial energy unit 𝐸0 = 2.5 J
Energy consumption of the electronics 𝐸𝑒𝑙𝑒𝑐 = 50 nJ/bit
Energy multipath factor vs. of antenna height 𝐸𝑚𝑝 = 1.3 pJ
Energy consumption of the antenna amplifier 𝐸𝑎𝑚𝑝 = 0.1 nJ/bit
Energy consumption of the frame aggregation 𝐸𝐷𝐴 = 5 nJ/bit
Radio antenna height ℎ = 1.5 m
Radio channel distance threshold 𝑑0 = 87.7 m
Energy Free Space Factor 𝐸𝑓𝑠 = 10 pJ/bit/𝑚2

Path loss exponent 𝑏 = 4

The CB-LEACH balancing factor 𝛼 influences the cluster head selection strat-
egy and the type of WSN routing based on equations (3.1) and (3.2). The cluster

176 M. A. Korteby, Z. Gál, P. Polgár



head average probability, 𝑝 plays a role in relation (2.1). Typically, the operation
of the system is usually tested with relatively small values. To show the effect of
heterogeneous initial energy levels, the set of 𝑁 sensor nodes are classified into two
energy groups: NN (Normal Node) and AN (Advanced Node). AN initially has
𝑎 + 1 > 1 times greater energy than NN. The Ratio of the AN nodes number to
the total nodes 𝑁 is 𝑚 ∈ (0, 1). The initial energies of these two groups, and the
entire WSN system, are as follows:

𝐸𝑁 = (1−𝑚) ·𝑁 · 𝐸0,

𝐸𝐴 = 𝑚 · (𝑎+ 1) ·𝑁 · 𝐸0,

𝐸𝑇 = 𝐸𝑁 + 𝐸𝐴 = (𝑎 ·𝑚+ 1) ·𝑁 · 𝐸0.

Examples of status responses time series of WSN system for Basic LEACH can
be seen on Figure 3. On the left hand side figure NN and AN node types have the
spatial average energy level versus time represented with blue and green curves,
respectively. Average energy curve for the whole WSN is shown by red curve. On
the right hand side figure same colors are used to represent alive nodes versus the
time.

Figure 3. Examples of two elemental time series responses of
Basic LEACH 𝑝𝑟𝑜𝑏𝑒𝑖: Remaining average energy level in space, 𝐸𝐵

𝑖

(left) and Relative number of operational nodes, 𝑁𝐵
𝑖 (right). Initial

parameters are: 𝛼 = 0; 𝑚 = 0.7; 𝑣 = 0m/s; 𝐹𝑠 = 4000bit; 𝑔 = 0.1;
𝑝 = 0.1.

The response data series provided by the WSN system per routing mechanism
are given by the following vector concatenations:

𝑦𝐷𝑖 = (𝐸𝐷𝑖 , 𝑆
𝐷
𝑖 , 𝐹

𝐷
𝑖 , 𝑁

𝐷
𝑖 ) ∈𝑀1,8𝑒0 , (4.1)

𝑦𝐵𝑖 = (𝐸𝐵𝑖 , 𝑆
𝐵
𝑖 , 𝐹

𝐵
𝑖 , 𝑁

𝐵
𝑖 , 𝑇

𝐵
𝑖 ,𝐾

𝐵
𝑖 , 𝐷

𝐵
𝑖 , 𝑅

𝐵
𝑖 ) ∈𝑀1,8𝑒0 , (4.2)

𝑦𝐸𝑖 = (𝐸𝐸𝑖 , 𝑆
𝐸
𝑖 , 𝐹

𝐸
𝑖 , 𝑁

𝐸
𝑖 , 𝑇

𝐸
𝑖 ,𝐾

𝐸
𝑖 , 𝐷

𝐸
𝑖 , 𝑅

𝐸
𝑖 ) ∈𝑀1,8𝑒0 , (4.3)
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where 𝑀1,8𝑒0 is the class of matrices with one row and 8𝑒0 columns. Upper indexes
D, B and E stands for Direct Sequence, Basic LEACH and Enhanced LEACH
mechanisms, respectively. Elemental responses of the WSN for simulation 𝑖 =
1, . . . ,𝑚′ are vectors with 𝑒0 elements each: spatial average remaining energy level
in % (𝐸𝑖), Shannon entropy in space of energy levels (𝑆𝑖), relative number of frames
sent to the sink node in % (𝐹𝑖), relative number of operational nodes in % (𝑁𝑖),
relative number of transactions/epoch in % (𝑇𝑖), relative number of clusters/epoch
in % (𝐾𝑖), average distance in space between CH and sink node in % of 𝑑0 (𝐷𝑖),
average cluster radius in % of 𝑑0 (𝑅𝑖).

Since we executed simulation for each combination of independent parameter
values, every probe gives us response as a set of data series of the WSN system for
DS, BAS-LEACH and ENH-LEACH (see Figure 4). Because number of elements
of the response time series belonging to different probe are not equal, it was used
dilatation and compression of the time. The common length 𝑒0 = 27,953 of one
elemental response vector is the average size of the elemental time series length of
the 𝑚′ probes, determined from Basic and Enhanced LEACH cases. In this way
response vectors in formulae (4.1), (4.2) and (4.3) are transformed and considered
as status vectors versus progress in the range [0%, 100%).

Figure 4. Structure of the WSN simulation system. For each
parameter tuple the WSN system generates sensors in random po-
sitions of the AoI and executes simulation for DS, BAS-LEACH and
ENH-LEACH routing mechanisms separately. Scaled and normal-
ized response status data series are concatenated in probe vectors.
Matrix 𝑌 is the response matrix of WSN system having 𝑛′ probes.

Each of the above three row-vectors 𝑦𝐷𝑖 , 𝑦𝐵𝑖 , 𝑦𝐷𝑖 contain 8𝑒0 elements. Because
in case of DS mechanism just 𝐸𝐷, 𝑆𝐷, 𝐹𝐷, 𝑁𝐷 response data series have meaning,
being half as many time series as BAS-LEACH or ENH-LEACH mechanisms have,
each DS vector mentioned was scaled to double length, 2𝑒0. Each elemental status
data series of probe 𝑦𝑖, 𝑖 = 1, 𝑛′ generated by simulation 𝑖 of the WSN system is
concatenated to create the probe vector identified by the following formula:

𝑦𝑖 = (𝑦𝐷𝑖 , 𝑦
𝐵
𝑖 , 𝑦

𝐸
𝑖 )𝑇 ∈𝑀𝑚′,1,
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where 𝑇 is the transpose operator. Collection of column vectors 𝑦𝑖, 𝑖 = 1, 𝑛′

represents status matrix of the WSN system given by the following formula:

𝑌 = (𝑦1, . . . , 𝑦𝑛′) ∈𝑀𝑚′,𝑛′ ,

where 𝑚′ = (2 · 4 + 8 + 8) · 𝑒0 = 24 · 𝑒0 = 670,872 and 𝑛′ = 360.
Should mention that since the structure of the 𝑦𝑖 column vector representing

the simulation probe 𝑖 is fixed, it can be considered as a vectorized image map.
Each of the 𝑛′ different probes is a composed object of twenty vectorized images.
Each object belonging to the corresponding probe has the same structure but
different content from the others. Hereby we have better representation of the
system responses and we search a smaller number of representative probes, 𝑘 that
are able to best characterize the WSN system.

We used Singular Value Decomposition to determine the number of most im-
portant modes able to form an orthogonal basis for all the 𝑛′ probes. According to
Figure 5 (left), the correlation coefficients between the responses 𝑦𝑖 and 𝑦𝑗 are in the
interval (0.5, 0.95), mostly closer to the larger values, where 𝑖 < 𝑗, 𝑖, 𝑗 ∈ {1, . . . , 𝑛′}.
It is numerically confirmed by Figure 5 (right), that the 𝑘 = 6 largest singular val-
ues represents 33.55% of the information given by 𝑛′ = 360 singular values. The
elbow part of the singular values scree plot proves that there are 𝑘 = 6 virtual
modes serving as synthesization basis for all 𝑛′ = 360 probes. It means that there
are 6 different virtual parameter tensor values (𝛼,𝑚, 𝑣, 𝐹𝑠, 𝑔, 𝑝), which represent 6
virtual probes that primarily characterize our CB-LEACH WSN system. This is
considered the main novelty of our findings about the proposed CB-LEACH family
of routing mechanisms.

Figure 5. Correlation matrix of Y responses of WSN system (left)
and singular values of the response matrix Y (right).

Decomposition of status matrix 𝑌 is given by the following formula:

𝑌 = 𝑈 * Σ * 𝑉 𝑇 ,
where matrixes 𝑈 ∈ 𝑀𝑚′,𝑚′ , Σ ∈ 𝑀𝑚′,𝑛′ and 𝑉 ∈ 𝑀𝑛′,𝑛′ are unitary basis in
progress, singular value matrix and unitary basis matrix in AoI space, respectively.
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The simplified response matrix 𝑌 is the approximation of the matrix 𝑌 and contains
in each column 20 elementary data series having the noise reduced significantly:

𝑌 = 𝑈𝑘 * Σ𝑘 * 𝑉 𝑇𝑘 ,

where matrixes 𝑈𝑘 ∈ 𝑀𝑚′,𝑘, Σ𝑘 ∈ 𝑀𝑘,𝑘 and 𝑉𝑘 ∈ 𝑀𝑛′,𝑘 are most significant 𝑘
columns of matrixes 𝑈 , Σ and 𝑉 , respectively.

Figure 6 demonstrates similarity between the original (𝑌 ) and filtered response
system (𝑌 ). Both parts of Figure 6 contain 7,200 data series versus progress. The
response data series belonging to a given probe contains the values going from
top to bottom along with the columns. The values of the normalized and scaled
response data series are represented by color codes having values conform to the
color bars. It can be observed that the two images are very similar in both aspect
of layout and sharpness. The root mean square error (RMSE) of the two matrices
is 𝑅𝑀𝑆𝐸 = 9.15%.

Figure 6. Data series responses of a WSN system, original Y
(left) and approximated 𝑌 (right). Progress direction is from top

to bottom, normalized values are represented by color codes.

The facts found so far prove the feedback neural networks to be useful in analysis
of complex systems as they reduce the learning process required for modelling.
This aspect is not discussed in this paper because it is subject of our next research
phase. Using the 𝑘-means clustering method, we classified the responses of the
𝑛′ simulations cases (probes) into 𝑘 classes, i.e. 𝑦𝑖, 𝑖 = (1, 𝑛) column vectors into
clusters. The result of this computation is illustrated in Figure 7. The number of
probes belonging to groups 1, . . . , 𝑘 are 96, 72, 96, 24, 38 and 34, respectively (see
Figure 7 left). Since the number of members is of the similar order of magnitude
per class, each class is important. Figure 7 (right) represents centroid vectors of
𝑘 = 6 clusters conform to probes classification provided by the 𝑘-Mean algorithm.
Centroid of a class is the mean vector in space for member vectors belonging to
the same class. We should mention that significant difference exists between these
centroid vectors.

180 M. A. Korteby, Z. Gál, P. Polgár



Figure 7. Classification of simulations by 𝑘-Mean algorithm into
𝑘 = 6 clusters (left) and centroids of the probe classes (right).

This aspect proves detectable diversion between the probe classes resulted for
simulations based on 𝑛′ tuple of independent parameters of the proposed CB-
LEACH family of WSN mechanisms.

5. Summary and conclusions

The method presented in the paper allows the behaviour analysis of the newly pro-
posed CB-LEACH wireless sensor routing mechanism. CB-LEACH is an energy-
efficient extension of the classic LEACH, the operation of which can be influenced
by six parameters. To determine the optimal parameter tensor, the analysis of the
synthetic state data set was generated by 360 different simulation cases which
required the use of dimension reduction analysis based on Singular Value De-
composition to determine the number of most significant modes. This number
is 𝑘 = 6, which is not a coincidence due to the number of independent parameters
(𝛼,𝑚, 𝑣, 𝐹𝑠, 𝑔 and 𝑝), but generic property due to the special behaviour of the CB-
LEACH family. To classify the 𝑛′ = 360 simulation cases into 𝑘 classes, we used
𝑘-Mean clusterization algorithm enrolling to the closest cluster with good accuracy
each simulation probe based on independent tuples of parameters.

As a continuation of the research work, further analyzes are considered im-
portant on the noise reduction of response probes of elementary data series as a
function of singular value number and reducing precessing capacity of the method.
Sensitivity analysis will be executed to find approximated closed-from expression
of the energy usage dependence on the multidimensional parameter set.
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1. Introduction

Deep learning is a very successful AI technology that makes impact in a variety
of practical applications ranging from vision to speech recognition and natural
language [17]. However, many concerns have been raised about the decision-making
process behind deep learning technology, in particular, deep neural networks. For
instance, can we trust decisions that neural networks make [14, 18, 32]? One
way to address this problem is to define properties that we expect the network to
satisfy. Verifying whether the network satisfies these properties sheds light on the
properties of the function that it represents [7, 23, 31, 34, 37].

One important family of deep neural networks is the class of Binarized Neural
Networks (BNNs) [20]. These networks have a number of useful features that
are useful in resource-constrained environments, like embedded devices or mobile
phones [25, 28]. Firstly, these networks are memory efficient, as their parameters
are primarily binary. Secondly, they are computationally efficient as all activations
are binary, which enables the use of specialized algorithms for fast binary matrix
multiplication. Moreover, BNNs allow a compact representation in Boolean logic [7,
31].

There exist approaches that formulate the verification of neural networks to
Satisfiability Modulo Theories (SMT) [13, 19, 23], while others do the same to
Mixed-Integer Programming (MIP) [11, 15, 36]. In some sense, this work can be
considered to be the continuation of that in [7, 31], which translate all the MIP
constraints to SAT.

The goal of this work to attack the problem of verifying important properties
of BNNs by applying several kinds of approaches and solvers, such as SAT, SMT
and MIP solvers. We introduce our solver that is able to encode BNN properties
for those solvers and run them in parallel, in a portfolio setting. We focus on
the important properties of neural networks adversarial robustness and network
equivalence.

In this paper we introduce how to use our solver and report on experiments
on verifying both robustness and equivalence. Experimental results show that our
solver is capable of verifying those properties of medium-sized BNNs in reasonable
runtime, especially when the solvers MiniCARD + Z3 are run in parallel.

2. Preliminaries

A literal is a Boolean variable 𝑥 or its negation ¬𝑥. A clause is a disjunction
of literals. A Boolean formula is in Conjunctive Normal Form (CNF), if it is
a conjunction of clauses. We say that a Boolean formula, typically in CNF, is
satisfiable, if there exists a truth assignment to the Boolean variables of the formula
such that the formula evaluates to 1 (true). Otherwise, it is said to be unsatisfiable
(UNSAT). The Boolean Satisfiability (SAT) problem is the problem of determining
if a Boolean formula is satisfiable.

Satisfiability Modulo Theories (SMT) is the decision problem of checking satis-
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fiability of a Boolean formula with respect to some background theory. Common
theories include the theory of integers, reals, fixed-size bit-vectors, etc. The logics
that one could use might differ from each other in the linearity or non-linearity
of arithmetic and the presence or absence of quantifiers. In this paper, we use
the theory of integers combined with linear arithmetic and without quantifiers –
denoted as QF_LIA in the SMT-LIB standard [5].

A Boolean cardinality constraint is defined as an expression
∑︀𝑛
𝑖=1 𝑙𝑖 ∘rel𝑐, where

𝑙1, . . . , 𝑙𝑛 are literals, ∘rel ∈ {≥,≤,=}, and 𝑐 ∈ N is a constant where 0 ≤ 𝑐 ≤ 𝑛.
A pseudo-Boolean constraint can be considered as a “weighted” Boolean car-

dinality constraint, and can be defined as an expression
∑︀𝑛
𝑖=1 𝑤𝑖𝑙𝑖 ∘rel 𝑐, where

𝑤𝑖 ∈ N, 𝑤𝑖 > 0.
We assume the reader is familiar with the notion and elementary properties of

feedforward neural networks. We consider a feedforward neural network to compute
a function 𝐹 where 𝐹 (𝑥) represents the output of 𝐹 on the input 𝑥. Let ℓ(𝑥) denote
the ground truth label of 𝑥. Our tool can analyze two properties of neural networks:
adversarial robustness and network equivalence. We call a neural network robust on
a given input if small perturbations to the input do not lead to misclassification, as
defined as follows, where 𝜏 represents the perturbation and 𝜖 ∈ N the upper bound
for the 𝑝-norm of 𝜏 .

Definition 2.1 (Adversarial robustness). A feedforward neural network 𝐹 is (𝜖, 𝑝)-
robust for an input 𝑥 if ¬∃𝜏 , ‖𝜏‖𝑝 ≤ 𝜖 such that 𝐹 (𝑥+ 𝜏 ) ̸= ℓ(𝑥).

The case of 𝑝 = ∞, which bounds the maximum perturbation applied to each
entry in 𝑥, is especially interesting and has been considered frequently in literature.

Similar to robustness, the equivalence of neural networks is also a property
that many would like to verify. We consider two neural networks equivalent if they
generate the same output on all inputs, as defined as follows, where 𝒳 denotes the
input domain.

Definition 2.2 (Network equivalence). Two feedforward neural networks 𝐹1 and
𝐹2 are equivalent if ∀𝑥 ∈ 𝒳 𝐹1(𝑥) = 𝐹2(𝑥).

3. Encoding of Binarized Neural Networks

A Binarized Neural Network (BNN) is a feedforward network where weights and
activations are predominantly binary [20]. It is convenient to describe the structure
of a BNN in terms of composition of blocks of layers rather than individual layers.
Each block consists of a collection of linear and non-linear transformations. Blocks
are assembled sequentially to form a BNN.

Internal block. Each internal block (denoted as Block) in a BNN performs a
collection of transformations over a binary input vector and outputs a binary vector.
While the input and output of a Block are binary vectors, the internal layers of
Block can produce real-valued intermediate outputs. A common construction
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of an internal Block (taken from [20]) is composed of three main operations:1
a linear transformation (Lin), batch normalization (Bn), and binarization (Bin).
Table 1 presents the formal definition of these transformations. Figure 1 shows two
Blocks connected sequentially.

LI
N

B
N

B
INx

Block 1
LI
N

B
N

B
IN

Block 2

LI
N

A
R
G
M
A
X

Output

o

Figure 1. A schematic view of a binarized neural network. The
internal blocks also have an additional HardTanh layer during the

training.

Table 1. Structure of internal and outputs blocks which stacked to-
gether form a binarized neural network. In the training phase, there
might be an additional HardTanh layer after batch normalization.
𝐴𝑘 and 𝑏𝑘 are parameters of the Lin layer, whereas 𝛼𝑘𝑖 , 𝛾𝑘𝑖 , 𝜇𝑘𝑖 , 𝜎𝑘𝑖

are parameters of the Bn layer. The 𝜇’s and 𝜎’s correspond to mean
and standard deviation computed in the training phase. The Bin

layer is parameter free.

Structure of 𝑘th internal block, Block𝑘 : {−1, 1}𝑛𝑘 → {−1, 1}𝑛𝑘+1 on 𝑥𝑘 ∈ {−1, 1}𝑛𝑘

Lin 𝑦 = 𝐴𝑘𝑥𝑘 + 𝑏𝑘 , where 𝐴𝑘 ∈ {−1, 1}𝑛𝑘+1×𝑛𝑘 and 𝑏𝑘,𝑦 ∈ R𝑛𝑘+1

Bn 𝑧𝑖 = 𝛼𝑘𝑖

(︁
𝑦𝑖−𝜇𝑘𝑖

𝜎𝑘𝑖

)︁
+ 𝛾𝑘𝑖 , where 𝛼𝑘,𝛾𝑘,𝜇𝑘,𝜎𝑘,𝑧 ∈ R𝑛𝑘+1 . Assume 𝜎𝑘𝑖 > 0.

Bin 𝑥𝑘+1 = sign(𝑧) where 𝑥𝑘+1 ∈ {−1, 1}𝑛𝑘+1

Structure of output block, O : {−1, 1}𝑛𝑚 → [1, 𝑠] on input 𝑥𝑚 ∈ {−1, 1}𝑛𝑚

Lin 𝑤 = 𝐴𝑚𝑥𝑚 + 𝑏𝑚, where 𝐴𝑚 ∈ {−1, 1}𝑠×𝑛𝑚 and 𝑏𝑚,𝑤 ∈ R𝑠

argmax 𝑜 = argmax(𝑤), where 𝑜 ∈ [1, 𝑠]

Output block. The output block (denoted as O) produces the classification
decision for a given binary input vector. It consists of two layers (see Table 1).
The first layer applies a linear (affine) transformation that maps its input to a
vector of integers, one for each output label class. This is followed by an argmax
layer, which outputs the index of the largest entry in this vector as the predicted
label.

1In the training phase, there is an additional HardTanh layer after batch normalization layer
that is omitted in the inference phase [20].
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Network of blocks. BNN is a deep feedforward network formed by assembling
a sequence of internal blocks and an output block. Suppose we have 𝑚−1 internal
blocks, Block𝑚, . . . ,Block𝑚−1 that are placed consecutively, so the output of
a block is the input to the next block in the list. Let 𝑛𝑘 denote the number
of input values to Block𝑘. Let 𝑥𝑘 ∈ {−1, 1}𝑛𝑘 be the input to Block𝑘 and
𝑥𝑘+1 ∈ {−1, 1}𝑛𝑘+1 be its output. The input of the first block is the input of the
network. We assume that the input of the network is a vector of integers, which
holds for the image classification task if images are in the standard RGB format.
Note that these integers can be encoded with binary values {−1, 1} using a standard
encoding. It is also an option to add an additional BnBin block before Block1 to
binarize the input images (see Sections 3.3 and 6.1). Therefore, we keep notations
uniform for all layers by assuming that inputs are all binary. The output of the
last layer, 𝑥𝑚 ∈ {−1, 1}𝑛𝑚 , is passed to the output block O to obtain one of the 𝑠
labels.

Definition 3.1 (Binarized Neural Network). A binarized neural network BNN :
{−1, 1}𝑛1 → [1, . . . , 𝑠] is a feedforward network that is composed of 𝑚 blocks,
Block1, . . . ,Block𝑚−1,O. Formally, given an input 𝑥,

BNN(𝑥) = O(Block𝑚−1(. . .Block1(𝑥) . . .)).

In the following sections, we show how to encode an entire BNN structure into
Boolean constraints, including cardinality constraints.

3.1. Encoding of internal blocks
Each internal block is encoded separately as proposed in [7, 31]. Here we follow
the encoding by Narodystka et al. Let 𝑥 ∈ {−1, 1}𝑛𝑘 denote the input to the kth

block, 𝑜 ∈ {−1, 1}𝑛𝑘+1 the output. Since the block consists of three layers, they
are encoded separately as follows:

Lin. The first layer applies a linear transformation to the input vector 𝑥. Let 𝑎𝑖
denote the 𝑖th row of the matrix 𝐴𝑘 and 𝑏𝑖 the 𝑖th element of the vector 𝑏𝑘.
We get the constraints

𝑦𝑖 = ⟨𝑎𝑖,𝑥⟩+ 𝑏𝑖, for all 𝑖 ∈ [1, 𝑛𝑘+1].

Bn. The second layer applies batch normalization to the output 𝑦 of the previous
layer. Let 𝛼𝑖, 𝛾𝑖, 𝜇𝑖, 𝜎𝑖 denote the 𝑖th element of the vectors 𝛼𝑘,𝛾𝑘,𝜇𝑘,𝜎𝑘,
respectively. Assume 𝛼𝑖 ̸= 0. We get the constraints

𝑧𝑖 = 𝛼𝑖
𝑦𝑖 − 𝜇𝑖
𝜎𝑖

+ 𝛾𝑖, for all 𝑖 ∈ [1, 𝑛𝑘+1].

Bin. The third layer applies binarization to the output 𝑧 of the previous layer, by
implementing the sign function as follows:

𝑜𝑖 =

⎧
⎨
⎩
1, if 𝑧𝑖 ≥ 0,

−1, if 𝑧𝑖 < 0,
for all 𝑖 ∈ [1, 𝑛𝑘+1].
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The entire block can then be expressed as the constraints

𝑜𝑖 =

⎧
⎨
⎩
1, if ⟨𝑎𝑖,𝑥⟩ ∘rel 𝐶𝑖,
−1, otherwise,

for all 𝑖 ∈ [1, 𝑛𝑘+1], (3.1)

where

𝐶𝑖 = −
𝜎𝑖
𝛼𝑖
𝛾𝑖 + 𝜇𝑖 − 𝑏𝑖

∘rel =

⎧
⎨
⎩
≥, if 𝛼𝑖 > 0,

≤, if 𝛼𝑖 < 0.

Let us recall that the input variables 𝑥𝑗 and the output variables 𝑜𝑖 take the
values −1 and 1. We need to replace them with the Boolean variables 𝑥(b)

𝑗 , 𝑜
(b)
𝑖 ∈

{0, 1} in order to further translate the constraints in (3.1) to the Boolean constraints

𝑛𝑘∑︁

𝑗=1

𝑙𝑖𝑗 ∘rel 𝐷𝑖 ⇔ 𝑜
(b)
𝑖 , for all 𝑖 ∈ [1, 𝑛𝑘+1],

where

𝑙𝑖𝑗 =

⎧
⎨
⎩
𝑥
(𝑏)
𝑗 , if 𝑗 ∈ 𝑎+

𝑖 ,

¬𝑥(𝑏)𝑗 , if 𝑗 ∈ 𝑎−
𝑖 ,

𝐷𝑖 =

⎧
⎨
⎩
⌈𝐶 ′

𝑖⌉+ |𝑎−
𝑖 |, if 𝛼𝑖 > 0,

⌊𝐶 ′
𝑖⌋+ |𝑎−

𝑖 |, if 𝛼𝑖 < 0,

𝐶 ′
𝑖 =

(︁
𝐶𝑖 +

∑︁

𝑗

𝑎𝑖𝑗

)︁
/2,

𝑎+
𝑖 = {𝑗 | 𝑎𝑖𝑗 > 0},

𝑎−
𝑖 = {𝑗 | 𝑎𝑖𝑗 < 0}.

For further details on the derivation, see [31].

3.2. Encoding of the output block

The output block consists of a Lin layer followed by an ArgMax layer. To encode
ArgMax, we need to encode an ordering relation over the outputs of the linear
layer, and therefore we introduce the Boolean variables 𝑑(b)

𝑖𝑖′ such that

⟨𝑎𝑖,𝑥⟩+ 𝑏𝑖 ≥ ⟨𝑎𝑖′ ,𝑥⟩+ 𝑏𝑖′ ⇔ 𝑑
(b)
𝑖𝑖′ , for all 𝑖, 𝑖′ ∈ [1, 𝑠].
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These constraints can be further translated into Boolean constraints, as proposed
by Narodystka et al. in [31] and supplemented by us as follows:

𝑛𝑚∑︁

𝑗=1

𝑙𝑖𝑖′𝑗 ≥ 𝐸𝑖𝑖′ ⇔ 𝑑
(b)
𝑖𝑖′ , for all 𝑖, 𝑖′ ∈ [1, 𝑠], 𝑖 ̸= 𝑖′,

where

𝑙𝑖𝑖′𝑗 =

⎧
⎪⎪⎨
⎪⎪⎩

𝑥
(b)
𝑗 , if 𝑗 ∈ 𝑎+

𝑖𝑖′ ,

¬𝑥(b)
𝑗 , if 𝑗 ∈ 𝑎−

𝑖𝑖′ ,

0, otherwise,

𝐸𝑖𝑖′ =
⌈︁(︁
𝑏𝑖′ − 𝑏𝑖 +

∑︁

𝑗

𝑎𝑖𝑗 −
∑︁

𝑗

𝑎𝑖′𝑗

)︁
/4
⌉︁
+ |𝑎−

𝑖𝑖′ |,

𝑎+
𝑖𝑖′ = {𝑗 | 𝑎𝑖𝑗 > 0 ∧ 𝑎𝑖′𝑗 < 0},

𝑎−
𝑖𝑖′ = {𝑗 | 𝑎𝑖𝑗 < 0 ∧ 𝑎𝑖′𝑗 > 0}.

In the case of 𝑖 = 𝑖′, 𝑑(b)
𝑖𝑖′ must obviously be assigned to 1.

Finally, to encode ArgMax, we have to pick the row in the matrix (𝑑𝑖𝑖′) which
contains only 1s, as it can be encoded by the Boolean constraint

∑︁

𝑖′

𝑑
(b)
𝑖𝑖′ = 𝑠 ⇔ 𝑜

(b)
𝑖 , for all 𝑖 ∈ [1, 𝑠].

3.3. Encoding of the input binarization block
In our paper, and also in [31], experiments on checking adversarial robustness
under the 𝐿∞ norm are run on grayscale input images that are binarized by an
additional BnBin block before Block1. We now propose how this BnBin block
can be encoded to Boolean constraints.

Let 𝛼0,𝛾0,𝜇0,𝜎0 denote the parameters of the Bn layer. Since adversarial
robustness is about to be checked, the input 𝑥 ∈ N𝑛1 consists of constants, while
the perturbation 𝜏 ∈ [−𝜖, 𝜖]𝑛1 consists of integer variables and the output 𝑜(b) ∈
{0, 1}𝑛1 consists of Boolean variables. The BnBin block can be encoded by the
constraints

𝛼𝑖
𝑥𝑖 + 𝜏𝑖 − 𝜇𝑖

𝜎𝑖
+ 𝛾𝑖 ≥ 0 ⇔ 𝑜

(b)
𝑖 , for all 𝑖 ∈ [1, 𝑛1], (3.2)

where 𝛼𝑖, 𝛾𝑖, 𝜇𝑖, 𝜎𝑖 denote the 𝑖th element of the vectors 𝛼0,𝛾0,𝜇0,𝜎0, respectively.
The constraints in (3.2) further translate to

𝑥𝑖 + 𝜏𝑖 − 𝜇𝑖 +
𝜎𝑖𝛾𝑖
𝛼𝑖

∘rel 0 ⇔ 𝑜
(b)
𝑖 , (3.3)

where

∘rel =

⎧
⎨
⎩
≥, if 𝛼𝑖 > 0,

≤, if 𝛼𝑖 < 0.
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Then (3.3) translates to
𝜏𝑖 ∘rel 𝐵𝑖 ⇔ 𝑜

(b)
𝑖 , (3.4)

where

𝐵𝑖 =

⎧
⎨
⎩
⌈𝐵′

𝑖⌉ , if 𝛼𝑖 > 0,

⌊𝐵′
𝑖⌋ , if 𝛼𝑖 < 0,

𝐵′
𝑖 = 𝜇𝑖 − 𝑥𝑖 −

𝜎𝑖𝛾𝑖
𝛼𝑖

.

Since 𝜏𝑖 is in the given range [−𝜖, 𝜖], we can represent it as a bit-vector of a given bit-
width. In order to apply unsigned bit-vector arithmetic, we translate the domain
of 𝜏𝑖 into [0, 2𝜖]. Thus, we can represent 𝜏𝑖 as a bit-vector variable of bit-width
𝑤 = ⌈log2(2𝜖+ 1)⌉ and apply unsigned bit-vector arithmetic to (3.4) as follows:

𝜏
[𝑤]
𝑖 ∘urel (𝐵𝑖 + 𝜖)[𝑤] ⇔ 𝑜

(b)
𝑖 , (3.5)

where ∘urel denotes the corresponding unsigned bit-vector relational operator bvuge
or bvule, respectively, and the bound 𝐵𝑖+ 𝜖 is represented as a bit-vector constant
of bit-width 𝑤. For the syntax and semantics of common bit-vector operators,
see [24].

The constraints in (3.5) are not even needed to add in certain cases:

• if 𝐵𝑖 ≤ −𝜖, then assign 𝑜(b)
𝑖 to 1 if 𝛼𝑖 > 0, and to 0 if 𝛼𝑖 < 0;

• if 𝐵𝑖 > 𝜖, then assign 𝑜(b)
𝑖 to 0 if 𝛼𝑖 > 0, and to 1 𝛼𝑖 < 0.

Some further constraints are worth to add to restrict the domain of 𝜏𝑖:

𝜏𝑖
[𝑤] ≥u 0[𝑤]

𝜏𝑖
[𝑤] ≤u (2𝜖)

[𝑤]

𝜏𝑖
[𝑤] ≥u (𝜖− 𝑥𝑖)[𝑤]

, if 𝑥𝑖 < 𝜖

𝜏𝑖
[𝑤] ≤u (𝜖+max𝑥−𝑥𝑖)[𝑤]

, if 𝑥𝑖 > max𝑥−𝜖

(3.6)

where max𝑥 is the highest possible value for the input values in 𝑥.2
In our tool, all the bit-vector constraints in (3.5) and (3.6) are bit-blasted into

CNF.

3.4. Encoding of BNN properties

In this paper, we focus on the properties defined in Section 2, namely adversarial
robustness and network equivalence.

2In our experiments, the input represents pixels of grayscale images, therefore max𝑥 = 255.
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3.4.1. Adversarial robustness

We assume that the BNN consists of an input binarization block, internal blocks
and an output block. Let BNN

(︀
𝑥+𝜏 ,𝑜(b)

)︀
denote the encoding of the whole BNN

over the perturbated input 𝑥 + 𝜏 and the output 𝑜(b). Note that 𝑥 ∈ N𝑛1 is an
input from the the training or test set, therefore its ground truth label ℓ(𝑥) is given.
On the other hand, the perturbation 𝜏 ∈ [−𝜖, 𝜖]𝑛1 consists of integer variables. The
output 𝑜(b) ∈ {0, 1}𝑠 consists of Boolean variables. Basically, we are looking for a
satisfying assignment for the perturbation variables 𝜏 such that the BNN outputs
a label different from ℓ(𝑥). Thus, checking adversarial robustness translates into
checking the satisfiability of the following constraint:

BNN
(︀
𝑥+ 𝜏 ,𝑜(b))︀ ∧ ¬𝑜(b)

ℓ(𝑥).

3.4.2. Network equivalence

We want to check if two BNNs classify binarized inputs completely the same. There-
fore we assume that those BNNs do not have BnBin blocks, or if they do, then they
apply the same BnBin block. Therefore, let BNN1

(︀
𝑥(b), 𝑜

(b)
1

)︀
and BNN2

(︀
𝑥(b), 𝑜

(b)
2

)︀

denote the encoding of the internal blocks and the output block of the two BNNs,
respectively, over the same binary input 𝑥(b). Checking the equivalence of those
BNNs translates into checking the satisfiability of the following constraint:

BNN1

(︀
𝑥,𝑜

(b)
1

)︀
∧ BNN2

(︀
𝑥,𝑜

(b)
2

)︀
∧ 𝑜

(b)
1 ̸= 𝑜

(b)
2 .

We translate the inequality 𝑜
(b)
1 ̸= 𝑜

(b)
2 over vectors of Boolean variables into

¬
(︀
𝑜
(b)
1,1 ⇔ 𝑜

(b)
2,1

)︀
∨ · · · ∨ ¬

(︀
𝑜
(b)
1,𝑠 ⇔ 𝑜

(b)
2,𝑠

)︀

which can then be further translated to a set of clauses by using Tseitin transfor-
mation.

4. Encoding of clauses and Boolean cardinality con-
straints

In Section 3, we proposed an encoding of BNNs into clauses 𝑙1 ∨ · · · ∨ 𝑙𝑛 as well as
equivalences over Boolean cardinality constraints in the form

𝑙 ⇔
𝑛∑︁

𝑖=1

𝑙𝑖 ≥ 𝑐, (4.1)

where 𝑙, 𝑙1, . . . , 𝑙𝑛 are literals and 𝑐 ∈ N is a constant where 0 ≤ 𝑐 ≤ 𝑛. Note
that our encoding applies “AtMost” Boolean cardinality constraints as well. Such
a constraint

∑︀𝑛
𝑖=1 𝑙𝑖 ≤ 𝑐 can always be translated to an “AtLeast” constraint∑︀𝑛

𝑖=1 ¬𝑙𝑖 ≥ 𝑛− 𝑐.
Depending on the approaches one wants to apply to the satisfiability checking

of those constraints, they have to be encoded in different ways.
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4.1. Encoding into SAT

There are various existing, well-known approaches expressing Boolean cardinal-
ity constraints into Boolean logic, for example by using sequential counters [35],
cardinality networks [1] or modulo totalizers [30, 33].

Sequential counters [35] encode an “AtLeast” Boolean cardinality constraint into
the following Boolean formula:

(𝑙1 ⇔ 𝑣1,1)

∧ ¬𝑣1,𝑗 for 𝑗 ∈ [2, 𝑐],

∧ (𝑣𝑖,1 ⇔ 𝑙𝑖 ∨ 𝑣𝑖−1,1) for 𝑖 ∈ [2, 𝑛],

∧
(︀
𝑣𝑖,𝑗 ⇔ (𝑙𝑖 ∧ 𝑣𝑖−1,𝑗−1) ∨ 𝑣𝑖−1,𝑗) for 𝑖 ∈ [2, 𝑛], 𝑗 ∈ [2, 𝑐].

All the Boolean variables 𝑣𝑖,𝑗 are introduced as fresh variables and the formula
above can be converted into its CNF [35]. On the top of that, to encode the
constraint (4.1), we only need to additionally encode the formula 𝑙⇔ 𝑣𝑛,𝑐.

Cardinality networks [1] yield another, refined approach for encoding Boolean
cardinality constraints. For improving reasoning about cardinality constraints en-
coded, for example, using sequential counters, a cardinality network encoding of a
cardinality constraint divides the cardinality constraint into multiple instances of
the base operations half sorting and simplified half merging, which basically work
as building blocks.

The modulo totalizer cardinality encoding [33] and its variant for 𝑘-cardinality
[30] improve the above described approach based on cardinality network, espe-
cially in connection with MaxSAT solving. The modulo totalizer approach of [33]
addresses limitations of the half sorting cardinality network approach from [1], by
using totalizer encodings from [3] in order to reduce the number of variables during
CNF encodings. The modulo totalizer cardinality encoding of [33] decreases the
number of clauses used in [3], and hence improves cardinality network encodings
during constraint propagation.

4.2. Encoding into SMT

It is straightforward to encode clauses and constraints (4.1) into SMT over the logic
QF_LIA. We would like to note that bit-vector constraints (3.5), (3.6) are bit-
blasted into CNF in our tool and then added as clauses, even when being encoded
into SMT. As future work, one could try to solve all the constraints over the logic
QF_BV.

4.3. Encoding into Boolean cardinality constraints

The encoding that we proposed for BNNs consists of clauses on the one hand, and
equivalences over Boolean cardinality constraints in the form (4.1) on the other
hand. We show how to encode both type of constraints into a set of Boolean
cardinality constraints.
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A clause 𝑙1 ∨ · · · ∨ 𝑙𝑛 can be encoded as the Boolean cardinality constraint∑︀
𝑖=1 𝑙𝑖 ≥ 1.
A constraint (4.1) can be unfolded into two implications (assume 𝑐 > 0):

𝑙 ⇒
∑︁

𝑖=1

𝑙𝑖 ≥ 𝑐, (4.2)

¬𝑙 ⇒
∑︁

𝑖=1

𝑙𝑖 ≤ 𝑐− 1.

By following the idea on the GitHub page3 of the SAT solver MiniCARD [27], an
implied Boolean cardinality constraints (4.2) can be translated to a (non-implied)
Boolean cardinality constraint

∑︁

𝑖=1

𝑙𝑖 + ¬𝑙 + · · ·+ ¬𝑙⏟  ⏞  
𝑐

≥ 𝑐, (4.3)

which can then be solved by cardinality solvers with duplicated-literal handling,
such as MiniCARD.

4.4. Encoding into pseudo-Boolean constraints
The Boolean cardinality encoding from Section 4.3 can be fed into pseudo-Boolean
solvers as well. The Boolean cardinality constraint (4.3) can naturally be translated
to a pseudo-Boolean constraint

∑︀
𝑖=1 𝑙𝑖 + ¬𝑙 · 𝑐 ≥ 𝑐.

5. Implementation

All the encodings described in the previous sections are implemented in Python,
as part of our solver. Since our solver is a portfolio solver, it executes different
kind of solvers (SAT, SMT, MIP) in parallel, by instantiating ProcessPool from
the Python module pathos.multiprocessing [29], which can run jobs with a non-
blocking and unordered map.

The Python package PySAT [21] provides a unified API to several SAT solvers
such as MiniSat [12], Glucose [2] and Lingeling [6]. PySAT also supports a lot
of encodings for Boolean cardinality constraints, including sequential counters [35],
cardinality networks [1] and modulo totalizer [30, 33]. Furthermore, PySAT offers
API to the SAT solver MiniCARD [27], which handles Boolean cardinality con-
straints natively on the level of watched literals and conflict analysis, instead of
translating them into CNF.

In a similar manner, the Python package PySMT [16] provides a unified API
to several SMT solvers, such as MathSAT [8], Z3 [9], CVC4 [4] and Yices [10].

The Python package MIP provides tools to solve mixed-integer linear program-
ming instances and provides a unified API to MIP solvers such as CLP, CBC and
Gurobi.

3https://github.com/liffiton/minicard
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When running our portfolio solver, one can easily choose the solvers to execute
in parallel, by using the following command-line arguments:

–sat-solver. Choose any SAT solver supported by the PySAT package such as
MiniSat, Glucose, etc., including MiniCARD, or disable this option by
using the value none.

–smt-solver. Choose any SMT solver supported by PySMT such as Z3, Math-
SAT, etc., or disable this option by using the value none. Note that you
might need to install the corresponding SMT solver for PySMT by using the
pysmt-install command.

–mip-solver. Choose any MIP solver supported by the MIP package, most im-
portantly Gurobi, or disable this option by using the value none. Note that
you might need to purchase a license for Gurobi.

–card-enc. Choose any cardinality encoding supported by the PySAT pack-
age such as sequential counters, cardinality networks, modulo totalizer, 𝑘-
cardinality modulo totalizer, etc., or disable this option by using the value
none.

–timeout. Set the timeout in seconds.

Our solver consists of two Python programs bnn_adv_robust_check.py and
bnn_eq_check.py to check adversarial robustness and network equivalence, respec-
tively. If bnn_adv_robust_check.py returns UNSAT, then the given input image
is considered to be robust under the given maximal perturbation value passed as a
command-line argument. In case of SAT answer, the tool displays the perturbated
input values and the label resulted by misclassification.

If bnn_eq_check.py returns UNSAT, then the two given BNNs are considered
to be equivalent. In case of SAT answer, the tool displays the common input values
for which the BNNs return different outputs, which are also displayed. Note that
an output is displayed as a list of Boolean literals among which the single positive
literal represents the output label.

6. Experiments and results

Our experiments were run on Intel i5-7200U 2.50 GHz CPU (2 cores, 4 threads)
with 8 GB memory. The time limit was set to 300 seconds.

In our experiments, the BNN architecture is the same as in the experiments
in [31]: it consists of 4 internal blocks and 1 output block. Each internal block
contains a Lin layer with 200, 100, 100 and 100 neurons, respectively. We use an
additional HardTanh layer only during the training of the network. We trained
the network on the MNIST dataset [26]. The accuracy of the resulting network is
93%.
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6.1. Verifying adversarial robustness

In the first set of experiments, we focused on the important problem of checking
adversarial robustness under the 𝐿∞ norm. From the MNIST dataset, we randomly
picked 20 images (from the test set) that were correctly classified by the network
for each of the 10 classes. This resulted in a set of 200 images that we consider in
our experiments on adversarial robustness. We experimented with three different
maximum perturbation values by varying 𝜖 ∈ {1, 3, 5}.

To process the inputs, we add a BnBin block to the BNN before Block1. The
BnBin block applies binarization to the grayscale MNIST images. We would like
emphasize that our experiments did not apply any additional preprocessing, as
opposed to the experiments in [31] that first try to perturb only the top 50% of
highly salient pixels in the input image. Furthermore, our solver does not apply
any additional search procedure on the top of the solvers being run in parallel,
as opposed to the experiments in [31] that apply a counterexample-guided (CEG)
search procedure based on Craig interpolation. In this sense, our solver explores
the search space without applying any additional procedures.

Figure 2 shows some of the results of our experiments. Each column shows
the number of solved instances out of the 200 selected instances and the average
runtime in seconds. The bar chart under certain cells shows the distribution of
different solvers providing the results. The bottom charts present the results in a
more detailed way, where the distribution of runtimes suggests that our solver can
solve ca. 85–95% of the instances in less than 30 seconds.

Solvers 𝜖 = 1 𝜖 = 3 𝜖 = 5

MiniCARD + Z3 195 (26.8) 198 (10.4) 200 (8.7)

MiniCARD + Z3 + Gurobi 192 (26.4) 197 (12.7) 198 (9.8)

(a) 𝜖 = 1 (b) 𝜖 = 3 (c) 𝜖 = 5

Figure 2. Results on checking adversarial robustness of 4-Block
BNN on MNIST dataset, for different maximum perturbation val-
ues 𝜖. Colors represent the ratio of solved instances by different

solvers: purple for MiniCARD, green for Z3, blue for Gurobi.

As the figure shows, our solver produced the best results when running
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MiniCARD as a SAT solver and Z3 as an SMT solver in parallel. Since, in
our preliminary experiments, Gurobi had showed promising performance, we also
ran experiments with Gurobi parallel to MiniCARD and Z3. Of course, we also
tried different combinations of solvers in our experiments, but we found the ones
in the table the most promising.

In order to investigate how our solver scales for larger BNNs, we constructed
another BNN with 5 internal blocks containing Lin layers of size 300, 200, 150,
100 and 100, respectively, and trained it on the MNIST dataset. The accuracy
of the resulting network is 94%. Figure 3 shows the results of our corresponding
experiments.

Solvers 𝜖 = 1 𝜖 = 3 𝜖 = 5

MiniCARD + Z3 191 (29.3) 197 (24.2) 198 (13.6)

MiniCARD + Z3 + Gurobi 192 (31.6) 192 (26.0) 199 (14.3)

(a) 𝜖 = 1 (b) 𝜖 = 3 (c) 𝜖 = 5

Figure 3. Results on checking adversarial robustness of 5-Block
BNN on MNIST dataset.

6.2. Verifying network equivalence
In the second set of experiments, we focused on the problem of checking network
equivalence. From our 4-Block BNN trained to classify MNIST images, we gen-
erated 20 slightly different variants by altering a few weights in the network. For
this sake, we randomly flip 𝛿 > 0 weights in 𝐴𝑚. Then, we run our solver to check
if the original BNN is equivalent with an altered variant. Since the aim was to
generate difficult benchmark instances, i.e., which are “almost UNSAT”, we chose
small values for 𝛿. Figure 4 shows the results of our corresponding experiments.

6.3. Side notes
In our solver’s source code, there exist implemented features that are not yet ac-
cessible due to the lack of API features of certain Python packages. Although
PySAT’s CNF encodings of Boolean cardinality constraints are accessible via our
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Solvers 𝛿 = 2 𝛿 = 5

MiniCARD + Z3 19 (92.3) 20 (64.5)
MiniCARD + Z3 + Gurobi 17 (124.5) 19 (77.1)

(a) 𝛿 = 2 (b) 𝛿 = 5

Figure 4. Results on checking network equivalence, for different 𝛿
values.

solver’s command-line argument --card-enc, equivalences (4.1) cannot directly
be dealt with PySAT since the output variable of a CNF encoding cannot be ac-
cessed through PySAT’s API. For instance, we would need to access the Boolean
variable 𝑣𝑛,𝑐 when using sequential counter encoding as described in Section 4.1.
Therefore, in our solver’s current version, each equivalence (4.1) is first encoded
into a pair of Boolean cardinality constraints as described in Section 4.3, and the
resulting cardinality constraints are then encoded into CNF. Note that encoding
equivalences (4.1) directly into Boolean logic would result in more easy-to-solve
instances, once PySAT allows. In the latter case, on the other hand, the encoding
into CNF might dominate the runtime, since millions of variables and millions of
clauses are generated even for our 4-Block BNN.

7. Conclusions

We introduced a new portfolio-style solver to verify important properties of bina-
rized neural networks such as adversarial robustness and network equivalence. Our
solver encodes those BNN properties, as we propose SAT, SMT, cardinality and
pseudo-Boolean encodings in the paper. Our experiments demonstrated that our
solver was capable of verifying adversarial robustness of medium-sized BNNs on
the MNIST dataset in reasonable time and seemed to scale for larger BNNs. We
also ran experiments on network equivalence with impressive results on the SAT
instances.

After we submitted this paper, K. Jia and M. Rinard have recently published
a paper about a framework for verifying robustness for BNNs [22]. They devel-
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oped a SAT solver with native support for reified cardinality constraints and, also,
proposed strategies to train BNNs such that weight matrices were sparse and car-
dinality bounds low. Based on their experimental results, their solver might out-
perform our solver on their benchmarks. As part of future work, we would like to
run experiments with both solvers on those benchmarks.

We will try to overcome the problems that originate in using the PySAT Python
packages, in order to make already implemented “hidden” features accessible for
users. Furthermore, we are planning to extend the palette of solvers with Google’s
OR-Tools, which look promising based on our preliminary experiments.
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Abstract

Data science and data processing are very popular topics nowadays. Un-
like a few years ago, everything is connected to data now and we have to
handle these kinds of large data well. Therefore the distributed heteroge-
neous resources of networks e.g. the computational grid, have attracted great
interest. It has become a challenge to schedule jobs in order to utilize the
available resources effectively. The allocation of arriving jobs has a great
impact on the efficiency and the energy consumption of the system.

A generalized finite source model is presented in this paper. Our main goal
is to build up models for the performance evaluation of scheduling compute-
intensive jobs with unknown service times in a computational cluster that
consists of servers of different types. For this purpose we determine various
performance measures for all combinations of three scheduling policies (two of
them are the novelty of this paper: the MRT and the MRTHP policies) which
can be used for assigning jobs to servers with three schemes for buffering
arriving jobs. Furthermore, we investigate the effect of switching off idle
servers on the energy consumption of the system under these combinations
of scheduling policies and buffering schemes.

Computational results obtained by simulation show that the choice of
the scheduling policy and the buffering scheme plays an important role in
ensuring the quality of service parameters such as the waiting time and the

∗The research work was supported by the construction EFOP - 3.6.3 - VEKOP - 16-2017-
00002. The project was supported by the European Union, co-financed by the European Social
Fund.
The research work was supported by the Austro-Hungarian Cooperation Grant No 106öu4, 2020.

Annales Mathematicae et Informaticae
53 (2021) pp. 201–218
doi: https://doi.org/10.33039/ami.2021.03.008
url: https://ami.uni-eszterhazy.hu

201



response time experienced in the case of arriving jobs. However, the energy
consumption is only affected by the scheduling policy and the energy saving
mode, while the buffering scheme does not have a significant impact.

Keywords: Computational cluster, performance evaluation, buffering scheme,
finite-source queueing systems

AMS Subject Classification: 68M10, 68M20

1. Introduction

This paper deals with scheduling jobs in heterogeneous resources of networks, e.g.
the computational clusters. In the literature various job allocation algorithms have
been proposed to schedule arriving jobs in computational clusters [1, 6, 7]. In
addition, some algorithms have been designed to consider knowledge about the
characteristics of jobs; these algorithms may be classified as either clairvoyant or
as non-clairvoyant [15–17].

Besides the effective scheduling, the energy consumption of such grid systems
turns into a crucial requirement due to the rapid increase of the size of the grid
and the goal of a green computational cluster. The most common techniques of
reducing energy consumption are related to the dynamic power management used
at runtime. It is therefore of interest to examine algorithms that offer the greatest
performance while using an amount of energy that is as low as possible.

Do introduced a generalized infinite model for the performance evaluation of
scheduling compute-intensive jobs with unknown service times in computational
clusters [2, 14]. In this paper we use a finite model instead of the infinite one [12]
to make the queueing model more realistic and we introduce two new scheduling
policies: in addition to the previously introduced High Performance priority policy,
we also consider a Mean Response Time priority and a Mean Response time with
High Performance priority policy. We investigate these policies with respect to
three schemes of buffering the arriving jobs: Separate Queue, Class Queue, and
Common Queue. The novelty of this paper is introducing these two new policies. To
our knowledge, this is the first time when such a detailed investigation of scheduling
policies of this kind has been performed. Among the three mentioned buffering
schemes the Common Queue proved to be the most efficient. The novelty of this
paper is to develop two new scheduling policies: the MRT and the MRTHP policies.
With these two new policies the performance measures reach and overcome the
characteristics of the Separate Queue.

The state space of the describing Markov chain is very large, thus it is rather
difficult to calculate the system measures in the traditional way of writing down
and solving the underlying steady-state equations. To obtain the performance mea-
sures we used SimPack, a collection of C/C++ libraries and executable programs
for computer simulation [3]. In this collection several simulation algorithms are
supported including discrete event simulation, continuous simulation, and com-
bined (multi-model) simulation. The purpose of the SimPack toolkit is to provide
the user a set of utilities that illustrate the basics of building a working simulation

202 A. Kuki, T. Bérczes, Á. Tóth, J. Sztrik



from a model description. Simulation results show that between the newly applied
algorithms the MRTHP is capable of lessening the difference of the performance
measures of the buffering schemes. In the case of the Separate Queue, MRTHP sig-
nificantly decreases important factors such as the mean waiting time and the mean
response time. Furthermore, we study the effect of scheduling policies and buffer-
ing policies on the energy consumption of a system that switches off idle servers
with and without an energy saving mode. According to the obtained results, the
energy consumption of the different scheduling algorithms is relatively identical.

Some related investigations are described in [13]. Using the techniques described
in this paper, it would be worth applying finite-source models for those problems,
as well.

The rest of the paper is organized as follows: Section 2 describes the correspond-
ing queueing model with components to study the behavior of the computational
clusters and the derivation of the main steady-state performance measures. In
Section 3 we show some numerical results that were derived by simulation with
SimPack and subsequently visualized as diagrams. Section 4 presents our conclu-
sions.

2. System model

A cluster is considered that serves compute-intensive jobs according to the following
characteristics:

• Every job can be executed on any server.

• Jobs are served according to FIFO (first in, first out) policy.

• The service times of jobs are unknown to the local scheduler.

• Jobs under service cannot be interrupted (non-preemption);

• Jobs are atomic, i.e., they can not be divided into smaller pieces;

We assume, furthermore, that jobs arrive to the system from a finite number
𝑁 of sources and that each source generates jobs according to an exponential
distribution with parameter 𝜆; thus the maximum rate of the incoming jobs is
𝑁 · 𝜆. Servers are organized in 𝐼 classes with 𝐽 servers per class. Service times,
which denote the times required for the servers to execute jobs, are exponentially
distributed with rate 𝜇𝑖 in class 𝑖. The exponentiality is not a strict constraint here.
In real-life applications the arrival and service behaviours are often very close to
the exponential behaviour. The service rate 𝜇system of the whole system can be
thus defined as

𝜇system =

𝐼∑︁

𝑖=1

𝐽 · 𝜇𝑖.
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The system load 𝜌system, the total amount of traffic carried by the system, can be
written as the ratio of between the arriving and the service rate:

𝜌system =
𝜆 ·𝑁
𝜇system

,

where 𝑁 is the average number of jobs in the system. Because the numbers of
sources of the considered model is finite, the stationary distributions always exist,
which implies the stability of the system.

2.1. Scheduling policies
Furthermore, we assume that every server is attached to a queue that buffers
arriving jobs and from which the server removes jobs for execution (multiple servers
may share a queue, see Section 2.2 for the various buffering schemes considered).
We investigate in our model the following policies for scheduling arriving jobs to
server queues:

• HP (High Performance priority): This policy chooses the shortest queue in
the system. If there is more than one queue with this property, a queue whose
server has the highest performance is chosen.

• MRT (Mean Response Time priority): This policy first calculates the ex-
pected mean response time for every queue and then selects a queue where
this value is minimal.

• MRTHP (Mean Response Time with High Performance priority): This policy
is a combination of MRT and HP. If there is an idle server, it behaves like
the HP policy; if all servers are busy, it behaves like MRT.

The comparison of these policies and the effect of MRT and MRTHP policies
to the performance measures and the energy efficiency are discussed in sections 3.1
and 3.2.

In order to obtain the performance, mean response times, and energy consump-
tion of a server, we consider every server of the cluster to be of a specific type
(class). Let 𝑆 denote the set of server classes and 𝐼 = |𝑆| the size of 𝑆. Let 𝑠 ∈ 𝑆
be a server class which can be characterized by the following parameters:

• 𝐶𝑠: This is the throughput of the server i.e., the number of completed opera-
tions per time; it is measured in ssj_ops according to the SPECpower_ssj2008
benchmark [11].

• 𝑃ac,𝑠: This is the average active power of the server under full load; it is
measured in Watt according to the SPECpower_ssj2008 benchmark.

• 𝑃id,𝑠: This is the power consumption of the server in the idle state; it is
measured in Watt according to the SPECpower_ssj2008 benchmark.
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It is presumed that when a server of class 𝑠 is busy, then it works with through-
put 𝐶𝑠 and power consumption 𝑃ac,𝑠. According to SPECpower_ssj2008, the ratio
𝐶𝑠/𝑃ac,𝑠 describes the energy efficiency of the server; higher ratio means higher
efficiency. When the server becomes idle, the internal clock of the CPU is stopped
via software such that the server consumes power 𝑃id,𝑠 < 𝑃ac,𝑠; alternatively, idle
servers may be completely switched off such that they do not consume power at
all.

To choose a server with the highest performance in the HP respectively MRTHP
policy, a server of class 𝑠 with the highest value of 𝐶𝑠 is selected; to choose a server
with the smallest mean response time in the MRT respectively MRTHP policy, a
server of class 𝑠 with the smallest ratio 𝑞/𝐶𝑠 of queue length 𝑞 and throughput 𝑠
is selected.

2.2. Buffering schemes

In the following subsections, we present the various schemes for buffering arriving
jobs and how they implement the previously introduced scheduling policies.

2.2.1. Separate Queue

In the Separate Queue scheme, every server has its own queue as depicted in Fig-
ure 1. Jobs are scheduled to the queue of a specific server according to the chosen
policy, and they remain in that queue as long as the server is busy. If the server
becomes idle, then it receives the first waiting job from its queue.

Henceforth let 𝑐𝑖𝑗 denote the status of server 𝑗 in class 𝑖 (0 denotes idle, 1
denotes busy or not in class 𝑖), and let 𝑞𝑖𝑗 denote the number of jobs in the queue
of that server (which can range from 0 to 𝑁−𝐼 ·𝐽). The state of the cluster at time
𝑡 can be considered as a Continuous Time Markov Chain with dimension I ·J+ I ·J:
𝑋(𝑡) = (𝑐11(𝑡); . . . ; 𝑐IJ(𝑡); 𝑞11(𝑡); . . . ; 𝑞IJ(𝑡)).

The system’s steady-state probabilities can be defined the following way:

𝑃 (𝑐11; . . . ; 𝑐IJ; 𝑞11; . . . ; 𝑞IJ) = lim
𝑡→∞

𝑃 ((𝑐11(𝑡) = 𝑐11; . . . ; 𝑐IJ(𝑡) = 𝑐IJ;

𝑞11(𝑡) = 𝑞11; . . . ; 𝑞IJ(𝑡) = 𝑞IJ)

Since the state space of the describing Markov chain is very large, it is rather
difficult to calculate the system measures in the traditional way of writing down
and solving the underlying steady-state equations.

To obtain the performance measures we therefore used SimPack, a collection of
C/C++ libraries and executable programs for computer simulation [3].

Using the simulation program the following important performance measures
of the system can be calculated:

• R𝑖𝑗 – The probability that the server 𝑗 in class 𝑖 is busy,

• L𝑖𝑗 – The probability that the server 𝑗 in class 𝑖 is idle,
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• 𝑄𝑖𝑗 – The mean length of queue 𝑖𝑗,

• 𝑄 – The mean number of jobs in the queues: 𝑄 =
∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1𝑄𝑖𝑗 .

Figure 1. The Separate Queue scheme.

2.2.2. Class Queue

In the Class Queue scheme a buffer is assigned to each class (see Figure 2). Jobs
are scheduled to the queue of a specific class according to the chosen policy, and
they remain in that queue as long as all servers of the class are busy. If a server
becomes idle, then it receives the first waiting job from the queue of its class.

Henceforth, let 𝑐𝑖𝑗 denote the status of server 𝑗 in class 𝑖 (0 means idle and
1 means busy) and let 𝑞𝑖 denote the number of jobs in its queue (which can
range from 0 to 𝑁 − 𝐼 · 𝐽). The state of the cluster at time 𝑡 can be con-
sidered as a Continuous Time Markov Chain with dimension I · J + I: 𝑋(𝑡) =
(𝑐11(𝑡); . . . ; 𝑐IJ(𝑡); 𝑞1(𝑡); . . . ; 𝑞I(𝑡)).

The system’s steady-state probabilities can be defined the following way:

𝑃 (𝑐11; . . . ; 𝑐IJ; 𝑞1; . . . ; 𝑞I) = lim
𝑡→∞

𝑃 ((𝑐11(𝑡) = 𝑐11; . . . ; 𝑐IJ(𝑡) = 𝑐IJ;

𝑞1(𝑡) = 𝑞1; . . . ; 𝑞I(𝑡)) = 𝑞I)
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Figure 2. The Class Queue scheme.

Using the simulation program the following important performance measures
of the system can be calculated:

• R𝑖𝑗 – The probability that server 𝑗 in class 𝑖 is busy,

• L𝑖𝑗 – The probability that server 𝑗 in class 𝑖 is idle,

• 𝑄𝑖 – The mean length of queue 𝑖,

• 𝑄 – The mean number of jobs in the queues: 𝑄 =
∑︀𝐼
𝑖=1𝑄𝑖.

2.2.3. Common Queue

In the Common Queue scheme, only a single common buffer is available for all
servers (see Figure 3). If a job arrives, then its service begins immediately if at
least one server is idle. If more than one server is idle, then the local scheduler
chooses the server with the highest performance. If all the servers are busy, then
the local scheduler places the job into the queue and the job remains there until
one of the servers become idle.

Henceforth, let 𝑐ij denote server 𝑗 in class 𝑖 (0 means idle and 1 means busy),
and let 𝑞1 denote the number of jobs in the queue (which can range from 0 to
𝑁 − 𝐼 · 𝐽).

The state of the cluster at time 𝑡 can be considered as a Continuous Time
Markov Chain with dimension I · J + 1: 𝑋(𝑡) = (𝑐11(𝑡); . . . ; 𝑐IJ (𝑡); 𝑞1(𝑡)).

The system’s steady-state probabilities can be defined the following way:

𝑃 (𝑐11; . . . ; 𝑐IJ ; 𝑞1) = lim
𝑡→∞

𝑃 (𝑐11(𝑡) = 𝑐11; . . . ; 𝑐IJ (𝑡) = 𝑐IJ ; 𝑞1(𝑡) = 𝑞1).
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Figure 3. The Common Queue scheme.

Using the simulation program the following important performance measures
of the system can be calculated:

• R𝑖𝑗 – The probability that server 𝑗 in class 𝑖 is busy,

• L𝑖𝑗 – The probability that server 𝑗 in class 𝑖 is idle,

• 𝑄 – The mean number of jobs in the queue:

𝑄 =
1∑︁

𝑐11=0

. . .
1∑︁

𝑐IJ=0

𝑁−𝐼·𝐽∑︁

𝑞1=0

𝑞1 · 𝑃 (𝑐11, . . . , 𝑐IJ; 𝑞1).

2.3. Generic performance measures

For all three buffer schemes, the following further performance measures can be
obtained by the help of the previously calculated measures:

• 𝑅 – The mean number of jobs at the servers: 𝑅 =
∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1𝑅𝑖𝑗

• 𝑂 – The mean number of jobs in the system: 𝑂 = 𝑄+𝑅

• 𝑁 – The mean number of jobs in the queue: 𝑁 = 𝑁 −𝑄−𝑅

• 𝜆 – The mean generating intensity: 𝜆 = 𝜆𝑁

• 𝜆 – The mean response time: 𝑇 = 𝑂
𝜆

• 𝑊 – The mean waiting time: 𝑊 = 𝑄

𝜆
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It is worth mentioning that practical implementation of the Separate queue
scheme is the easisest because waiting jobs can be placed inside each physical
server. For example jobs and parameters can be allocated in the local disk of each
physical server.

The common queue scheme can be used in MaaS (Message Queueing as a
Service) in the cloud computing paradigm. A possible example of the compute-
intensive services of unknown service times is AWS cloud lambda service [4, 5].

2.4. Energy metrics

Let 𝑃id,𝑖 and 𝑃ac,𝑖 denote the active power consumption of server 𝑖 when idle
respectively busy. Furthermore, 𝑅𝑖,𝑗 denotes the probability that server 𝑖 in class
𝑗 is busy and 𝐿𝑖,𝑗 denotes the probability that it is idle. Then the average energy
consumption of the whole system can be defined in the following way depending
on whether idle servers are switched off or not:

• AEno-switch – The mean energy consumption of the system when idle servers
are not switched off:

AEno-switch =

𝐼∑︁

𝑖=1

⎛
⎝𝑃ac,𝑖

𝐽∑︁

𝑗=1

𝑅𝑖,𝑗 + 𝑃id,𝑖

𝐽∑︁

𝑗=1

𝐿𝑖,𝑗

⎞
⎠ .

• AE switch-off – The mean energy consumption of the system when idle servers
are switched off:

AE switch-off =

𝐼∑︁

𝑖=1

⎛
⎝𝑃ac,𝑖

𝐽∑︁

𝑗=1

𝑅𝑖,𝑗

⎞
⎠ .

3. Numerical results

We have implemented the models introduced in Section 2 with the help of the
SimPack package and now we present results on the comparison of scheduling
algorithm. For this purpose, we have modeled three classes of Commercial Off-
The-Shelf (COTS) servers with different types of processors (Intel Xeon E5-2670,
Intel Xeon E5-2660, and Intel Xeon E5-4650L) whose characteristics are depicted
in Table 1.

The simulations were performed with the parameters depicted in Table 2. Jobs
are generated according to an exponential distribution with parameter 𝜆 from a
source of 𝑁 components and are routed to 𝐼 classes of servers with 𝐽 servers per
class; the servers in class 𝑠 process jobs according to an exponential distribution
with parameter 𝜇𝑠; for this purpose, the performance 𝐶𝑠 with maximum value
6419263 ssj_ops is adjusted to a service rate 𝜇𝑠 with maximum value 1 (i.e., every
job is assumed to require 1 second on an Intel Xeon E5-2670 processor).
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Table 1. Server classes.

Type of server 𝐶𝑠 (ssj_ops) 𝑃ac,𝑠 (W) 𝐶𝑠/𝑃ac,𝑠 𝑃id,𝑠 (W)
Acer AW2000h-Aw170h F2 6419263 1700 3776 364(Intel Xeon E5-2670)[9]
Acer AW2000h-Aw170h F2 5286503 1275 4146 331(Intel Xeon E5-2660)[8]

PowerEdge R820 2790966 457 6102 108(Intel Xeon E5-4650L)[10]

Table 2. Simulation parameters.

Notation Parameter Value

𝑁 Number of jobs in the source 150

𝐼 Number of server classes 3

𝐽 Number of servers per class 8

𝜆 Job generation rate 0.07–0.18

𝜇𝑠 Service rates of servers in class 𝑠 1; 0,82; 0,43

3.1. Performance measures
To evaluate the performance of the system, we analyze the mean service time,
the mean waiting time, and the mean response time. Several figures are devoted
to service, waiting, and response times. Though, response times can be more
important, than service times, figures with service times are are also presented.
At most of the investigated cases, the waiting times and response times provide
almost the same characteristics, thus due to the range constraint of the paper, only
one of them is presented here. The service times have different characteristics, so
beside the figures of response and/or waiting times, service times figures are also
included.

Figure 4 shows the mean service time as a function of the generation rate 𝜆
using the HP policy for all buffering schemes. We see that as the generation rate
increases, the mean service time also increases. This phenomenon can be explained
by that jobs are first scheduled to the servers with highest performance. It also
can be observed that for every buffering scheme the mean service times are almost
the same, independently of the loads of the servers.

Furthermore, we can observe that, as the arrival rate starts to increase, slower
servers start to play a more and more important role in the mean service time.
Hereby the execution of the jobs become slower, thus jobs spend more time at
the server. Of course, this is true only for a specific generation rate, because the
more jobs arrive in the system, the higher the system load is. As we can see,
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if the generation rate is greater then 0.16, we reach the maximum system load.
This means that eventually every server becomes busy and the mean service time
becomes constant.

Figure 4. The mean service time applying the HP policy.

Figure 5. The mean response time applying the HP policy.

Figure 5 shows the mean response time and as a function of the generation rate
using the HP policy (the same result can be obtained for the mean waiting time).
On close inspection, the Common Queue scheme performs best but the difference
to the Class Queue scheme is very small. As long as the generation rate does not
reach 0.1, we cannot observe major differences between both schemes. But in the
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range from 0.1 to 0.18 the difference appears vigorously, especially between the
Separate Queue scheme and the other ones. In case of the Separate Queue scheme,
the values of the mean waiting time and response time are the highest among the
schemes. The reason why the Common Queue scheme ensures the lowest values
for both the mean waiting and response times is that this model is able to utilize
the available resources in the most efficient way. However, it has to be considered
that the realization of Common Queue scheme is the most complicated one among
the applied buffering schemes.

Figure 6 demonstrates the effect of the new policies MRT and MRTHP on the
mean service time for the Separate Queue scheme. It is clearly visible that the
MRT policy gives much smaller values as well as a relatively smaller system load.
Comparing the HP and the MRTHP policy, we see that there is a slight difference
discernible between them which starts to manifest when the system load gets high.

Figure 6. The effect of HP, MRT and MRTHP on the mean service
time in case of Separate Queue.

Figure 7 shows the effect of the HP, MRT, and MRTHP policies on the mean
waiting time using the Separate Queue scheme. A similar figure can be generated
for mean response time. We can observe that the MRT policy is still the worst
among the three policies. But the significant difference is that the MRTHP policy
provides the most preferential values and not the HP policy. This is especially true
when the system load is in the medium range.

In Figure 8 we can see the effect of the scheduling policies on the mean service
time for the Class Queue scheme. It is clearly visible that the MRT policy gives
much smaller values than the HP and the MRTHP policies, but the difference is
here smaller than for the Separate Queue scheme (compare to Figure 6). We can
observe that there is no difference between the HP and the MRTHP policies.

Figure 9 shows that using a higher generation rate the mean waiting time (and
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similarly, the mean response time) become higher. We can see that the MRT policy
gives the highest values and that there is only a very small difference between the
HP and the MRTHP policies. It is worth noting that using MRT/MRTHP policy
for the Common Queue scheme we get back the results of the HP policy.

Figure 7. The effect of HP, MRT and MRTHP on the mean waiting
time in case of Separate Queue.

Figure 8. The effect of HP, MRT and MRTHP on the mean service
time in case of Class Queue.

So all in all, we can observe that the significance of MRTHP is higher for
the Separate Queue scheme than for the Class Queue scheme and is negligible
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for the Common Queue scheme. Furthermore, while the MRTHP policy brings
the Separate Queue scheme and the Class Queue scheme closer to the Common
Queue scheme, the Common Queue scheme still seems to be the best to choose.
However, the practical implementation of the Separate Queue scheme is the easiest
and cheapest among all schemes; since the application of the MRT policy also
makes the Separate Queue scheme competitive with the Common Queue Scheme,
the combination of MRT policy and Separate Queue scheme may be preferred.

Figure 9. The effect of HP, MRT and MRTHP on the mean waiting
time in case of Class Queue.

3.2. Energy consumption

Figures 10 and 11 demonstrate for the Separate Queue scheme the mean energy
consumption in cases when idle servers are not switched off (𝐴𝐸no-switch) respec-
tively are switched off (𝐴𝐸switch-off). As we can see, we get the highest energy
consumption with the MRT policy and the lowest one with the HP policy; be-
tween the HP policy and the MRT policy there is only a small difference in case
of 𝐴𝐸switch-off and higher generation rates. As it can be expected, the difference
between all policies disappears for high generation rates, because all servers be-
come permanently busy, such that the energy consumption converges to around
1520 W.s/job.

Figures 12 and 13 demonstrate the mean energy consumption for the Class
Queue scheme. In both cases we get the highest energy consumption using the
MRT policy, and there is not any noticeable difference between the HP policy
and the MRTHP policy. Again for high generation rates, the energy consumption
converges for all policies to around 1520 W.s/job.

Finally, Figure 14 demonstrates how much energy can be saved by switching
off the idle servers (for the Separate Queue scheme and the HP policy). Since
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the saving decreases for higher generation costs and switching servers off and on
involves extra costs, the choice to switch off servers must be clearly taken with
care.

Figure 10. 𝐴𝐸no-switch vs. generation rate using Separate Queue.

Figure 11. 𝐴𝐸switch-off vs. generation rate using Separate Queue.
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Figure 12. 𝐴𝐸no-switch vs. generation rate using Class Queue.

Figure 13. 𝐴𝐸switch-off vs. generation rate using Class Queue.

4. Conclusions

So far the High Performance priority policy was considered in similar investiga-
tions. In this paper we have introduced and considered two new scheduling policies,
namely the Mean Response Time priority and the Mean Response Time with High
Performance priority policies. We investigate these policies with respect to three
schemes of buffering the arriving jobs: Separate Queue, Class Queue, and Common

216 A. Kuki, T. Bérczes, Á. Tóth, J. Sztrik



Figure 14. Mean energy consumption in case of switch off and
switch on using HP policy.

Queue. Furthermore, we study the effect of scheduling policies and buffering poli-
cies on the energy consumption of a system that switches off idle servers with and
without an energy saving mode. Since the state space of the describing Markov
chain is very large, for that reason we used SimPack, a collection of C/C++ li-
braries and executable programs for computer simulation in order to obtain the
performance measures.

The results described in this paper show that in the case of Separate and Class
Queue the Mean Response time with High Performance priority policy improves
the performance measures preeminently, in particular the mean sojourn time and
the mean waiting time, compared to High Performance priority policy. As the
Common Queue scheme operates with only one queue, we gain the same results with
the application of the proposed new algorithms in the case of High Performance
priority policy. Utilizing the MRHP priority policy the difference between the
performance metrics of Separate and Common Queue decreases significantly; the
numerical results show that the buffering schemes do not affect significantly the
energy consumption of the investigated clusters. Accordingly selecting a good
scheduling policy can augment the overall cluster performance without increased
power consumption whenever the buffering scheme possesses more than one queue
altogether.
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Abstract

Convolutional Neural Network (CNN) for medical image classification has
produced satisfying work [11, 12, 15]. Several pretrained models such as
VGG19 [17], InceptionV3 [18], and MobileNet [8] are architectures that can be
relied on to design high accuracy classification models. This work investigates
the performance of three pretrained models with two methods of training.
The first method trains the model independently, meaning that each model
is given an input and trained separately, then the best results are determined
by majority voting. In the second method the three pretrained models are
trained simultaneously as interconnected models.

The interconnected model adopts an ensemble architecture as is shown in
[7]. By training multiple CNNs, this work gives optimum results compared
to a single CNN. The difference is that the three subnetworks are trained si-
multaneously in an interconnected network and showing one expected result.
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In the training process the interconnected model determines each subnet-
work’s weight by itself. Furthermore, this model will apply the most suitable
weight to the final decision. The interconnected model showed comparable
performance after training on several datasets. The measurement includes
comparing the Accuracy, Precision and Recall scores as is shown in confusion
matrix [3, 14].

Keywords: Convolutional Neural Network, medical image classification, in-
terconnected model

1. Introduction

For the last decade, the Convolutional Neural Network (CNN) has done an im-
pressive image classification task. Some of the successfully developed models, that
achieved good results in classification tasks, include VGG19 [17], InceptionV3 [18],
and MobileNet [8]. Referring to its architecture, CNN stacks several convolutions
down or sideways according to each architecture’s characteristics and then com-
bined with a multilayer perceptron at the end of the network.

Medical Imaging is a technique of visualizing body parts to conduct clinical
analysis or get a medical response. Furthermore, it also builds a database of body
anatomy and physiology, allowing experts to identify abnormalities [4, 6]. Briefly,
the medical imaging is started from the sensor’s stage which penetrates the hu-
man body, subsequently it is transformed into signals and read by the detector,
continuously mathematically manipulated and eventually visualized into an image
[9].

The medical image classification has been well implemented in the following
tasks. In [11] by adopting the VGG19 architecture, they developed four Convolu-
tion blocks. The first block consists of two convolutions with 64 channels using the
ReLU activation function followed by the Max pooling layer to reduce its dimen-
sions. Two convolutions fill the second block with 128 channels using the ReLU
activation function and the Max pooling layer. The third block is similar to the
previous one, but the convolutions’ channels are changed for 256 with the ReLU ac-
tivation function and Max pooling layer at the end of the block. The final block also
consists of two convolutions with 512 channels using the ReLU activation function
and a Max pooling layer to decrease its dimensions. The architecture is extended
to the Multilayer Perceptron (MLP), consisting of two fully connected layers with
a ReLU activation function and one final layer with a Sigmoid activation function
after passing through the Flatten layer. Architecture also uses Dropouts in order
to resist Overfitting. The model was then tested on the PatchCamelyon dataset,
which was published in the Kaggle competition. This work has successfully exhib-
ited good performance by achieving 0.92 and 0.98 for the validation accuracy score
and the Area Under Curve, respectively.

Similar results can be seen in [15]. This architecture utilizes 121 layers of CNN,
known as DenseNet to train the input images which are the frontal views of chest
X-ray photos. The result is the probability score for the presence of pneumonia
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on the input images. Further, the F1 score of the model was compared to four
pathologists’ F1 score. The results reported that the F1 score of the model was
better than the mean F1 score of the four pathologies. CheXNet’s F1 score was
0.435, while the mean score for the four pathologies was 0.387. All the F1 scores
were measured by 95% confidence interval. This study was also compared with
the results of previous studies in predicting 14 levels of pneumonia. These results
showed that CheXNet model exceeds previous studies’ results by dominating the
best accuracy scores of the fourteen levels of pneumonia. In [12] AlexNet was used
to demonstrate that CNN is capable of classifying Blood Smear Digital Images for
malaria detection. The architecture was composed of four blocks. The first block
was filled with two convolutions and it ended with the Max pooling layer. On the
other hand, the second convolution was supplied with two blocks and it ended with
the Average pooling layer. The third block was filled with two convolution layers
without having a pooling layer. The ReLU activation function was used for these
three blocks of convolution. The last block was the MLP with three fully connected
layers which had 256 neurons. This architecture ended with Soft-Max two classes
according to the given classification problem. The reported results were as follows:
97.37% Accuracy, 96.99% Sensitivity, 97.75% Specificity, 97.73% Precision, and
97.36% F1 Score.

The interconnected model was depicted in [7], which trained three CNNs to-
gether. The three CNNs used AlexNet, VGGNet, and GoogLenet. The three CNNs
were trained simultaneously on the skin cancer dataset, and then the best results
were determined by voting. At the end of the article, they compared the AUCs of
the three CNNs trained separately, in pairs, and simultaneously. The final results
showed that the three models’ best average AUC score was achieved when they
trained simultaneously.

2. Datasets, hardware and software

In this work, we trained the developed model on three datasets published by the
Kaggle dataset. The three datasets were the result of digitizing medical images
of the human body. The first dataset was the chest X-ray dataset1 representing
data on a small amount of 5216 photos. The second was the Malaria dataset2,
representing an intermediate amount of data, namely 27,560 pictures. The last
was the PatchCam dataset3, which was a large dataset with a total of 220,025
images. The chest X-ray dataset [10] was a radiological image of human lungs
categorized into two classes and not distributed proportionally, consisting of 3875
and 1341 for viral pneumonia/bacterial and normal ones. The entire picture had
run through doctors’ labeling process and followed by an expert’s level of accuracy
verification. Here are examples of a chest X-ray dataset in Figure 1.

1https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
2https://www.kaggle.com/miracle9to9/files1
3https://www.kaggle.com/c/histopathologic-cancer-detection
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The malaria dataset was owned by the Open Knowledge Foundation4 and pub-
lished by the Kaggle dataset. Data was the result of digitization from the Thin
Blood Smear process. The image was taken using an Android smartphone applica-
tion integrated with a microscope using standard lighting. The data was distributed
proportionally, with a total of 27,560 images. Experts carry out the labeling pro-
cess by producing two categories of images, namely parasitized and normal. Here
are examples image from the dataset in Figure 2.

Figure 1. X-ray dataset, (a) Normal and
(b) bacterial/viral pneumonia.

Figure 2. Malaria dataset, (a) Normal and (b) parasitized.

Figure 3. PatchCam Dataset, (a) Cancerous and (b) non-cancerous.

4https://opendatacommons.org/licenses/by/1-0/index.html

222 O. Lantang, Gy. Terdik, A. Hajdu, A. Tiba



The next dataset was the PatchCam Dataset [1, 19], published at the Kaggle
competition. The data were small pathology images converted into digital for-
mat, consisting of 220,025 images, and not evenly distributed in the two classes,
cancerous and non-cancerous. Here are examples from the PatchCam dataset in
Figure 3.

For the daily experiment, we used Google Collaboratory, and then the data
were trained on a Dell Desktop with GEFORCE GTX 1060 6GB. Each code in
this work was written in Python version 3.6 by exploiting jupyter notebook. Apart
from that, the Tensorflow and Keras frameworks were also used in this work.

3. Methodology

3.1. Network architecture

In this work, we proposed an interconnected CNN model. This model was a combi-
nation of three subnetworks consisted of three pretrained models. The purpose of
combining the three subnetworks is to let the three subnetworks work independently
in the training process to determine the influence of each subnetwork on decision
making. Thus, the interconnected model will get the proper weight, increasing its
ability in the classification task. The three subnetworks, namely, VGG19 consisted
of sixteen convolution layers, InceptionV3 consisted of forty-eight layers of convo-
lution, and MobileNet consisted of eighteen layers of convolution. The Multilayer
Perceptron (MLP) of each subnetwork was replaced with three Fully Connected
layers using the ReLU activation function to fit the interconnected models needed.
Before entering into MLP, the architectural design required a Flatten layer to con-
vert the features’ dimensions. The next layer was the Concatenation layer, where
the three output layers will be combined so that the interconnected model will
only have one output. Afterward, the three Fully Connected layers were installed,
consisting of two Fully Connected layers using the ReLU activation function and
one Fully Connected layer using Soft-Max two classes to represent our dataset’s
classification problem. Here it is shown the architectural design in Figure 4.

3.2. Training process

Due to variations between small and large datasets, the augmentation method
[13] was employed to provide sufficient data for the model. The augmentation
process that we have implemented includes rotation, shifting, shearing, zooming,
and flipping. For simplicity purposes, a few aspects were standardized. We took
10% of the images from each dataset, then used them as a test set. Afterward, 70%
of the remaining images were allocated as a training set and 30% as a validation
set. The input sizes of all datasets were set to 100 × 100 pixels. The batch sizes
were set to 16 and an epoch of 50 for each training process.

In our work, emphasis is put on having a training process which is carried
out simultaneously in a series of interconnections. Although each subnetwork has
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Figure 4. Architecture of the interconnected Model.

authority in the training process, the training process is an integral part that
cannot be separated from one and another. This process causes each subnetwork’s
weights to be determined by the training process itself and not by the user. When a
subnetwork has better performance than others, the subnetwork will automatically
have more significant impact on the overall interconnected model. Conversely, if a
subnetwork produces unsatisfactory performance, it will have less weight in the final
decision process. In [7], the initial weights was determined to be equivalent for the
three subnetworks. In our work, the interconnected model determined its weights
according to the training process that each model gone through. The weighting
process of each subnetwork was intervened neither at the initial nor during the final
decision stage.

Utilizing the transfer learning method in the training process caused many layers
that may not be necessary and will consume extra resources of the computational of
our work. The Freezing layers technique as explained in [2] was implemented to save
computation resources without destroying the model’s performance. The process
includes freezing several layers causing the input images to go through these layers
to avoid updating weights. This Freezing layers method aimed to diversify the
three subnetworks, allowing three different perspectives to more effectively notice
the image’s characteristics.

During the training process, the model tried to get the smallest possible Loss
score to get the best possible Accuracy score. Thus, we aimed to minimize the
Loss score of the model using the Soft-Max Loss function. The Soft-Max Loss
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function itself was the product of implementing the Soft-Max function into the
Loss function. To see the connection between these two functions more clearly,
let’s look at the formula (3.1). As explained in [5, 16], the formula Soft-Max
function 𝑓(𝑠) : R𝐾 → R𝐾 is a vector function in the range 0 to 1, where 𝐾 is
number of classes.

𝑓(𝑠)𝑖 =
𝑒𝑠𝑖

∑︀𝐾
𝑐=1 𝑒

𝑠𝑐
. (3.1)

This formula is obtained by calculating the 𝑒 number to the power of 𝑠𝑖, 𝑠𝑖 itself
refers to the score 𝑠 from class 𝑖. Hence, the numerator divided by the sum of the
constant 𝑒 to the power of all score in number of classes. So that when implemented
into the Soft-Max loss function [5, 16] it will become:

𝐶𝐸 = −
𝐾∑︁

𝑖

𝑡𝑖 log(𝑓(𝑠)𝑖). (3.2)

Equation (3.2) explains that cross-entropy 𝐶𝐸 is the sum of ground truth 𝑡𝑖 loga-
rithm the CNN score of each class that represents by 𝑓(𝑠)𝑖.

We were also optimizing our model by setting Adam optimizer at 1e-4 learning
rate and decay 1e-6 for each subsequent epoch. Furthermore, we calculated the
accuracy score based on the Confusion Matrix [3, 14], which results in True Positive
(TP), True Negative (TN), False Positive (FP) and False Negative (FN). TP is
representing ill patients as precisely predicted to be ill patients. Meanwhile, TN
is healthy patients correctly predicted as healthy patients. On the other hand, FP
is healthy patients incorrectly predicted as ill patients. and vice versa FN is ill
patients, mistakenly classified as healthy patients. We also measured the Precision
and Recall score to see the performance of the ill predicted label. For more details,
the Accuracy, Precision, and Recall score calculation are in the equations. (3.3),
(3.4), and (3.5).

Accuracy =
TP + TN

TP + TN + FP + FN
, (3.3)

Precision =
TP

TP + FP
, (3.4)

Recall =
TP

TP + FN
. (3.5)

4. Results

4.1. Training and validation accuracy
In the first experiment, the three subnetworks were trained separately. Thus each
subnetwork provided its prediction result. The results from each subnetwork were
then used in the voting process. Experiments using the chest X-ray dataset showed
that the three pretrained models can be appropriately implemented. It can be ob-
served from the ability of the three pretrained models to validate the training
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results. The two intersecting lines in Figure 5 indicated that the training accuracy
and the validation accuracy scores were comparable. It revealed that the three pre-
trained models were suitable and did not overfit. Each model achieved a validation
score of 0.91 for VGG19, 0.89 for InceptionV3, and 0.93 for MobileNet.

Figure 5. Training and validation accuracy for chest X-ray dataset:
a) VGG19, b) InceptionV3 and, c) MobileNet.

Likewise, the training process using the malaria dataset showed a good perfor-
mance of VGG19 by achieving a validation score of 0.90. InceptionV3 and Mo-
bileNet had satisfactory validation scores of 0.80 as shown in Figure 6.

For training the PatchCam dataset, VGG19 achieved optimum results in the
classification task reported a score of 0.86 for validation accuracy. InceptionV3
showed satisfactory performance with a validation score of 0.70. The MobileNet
pretrained model also achieved the same score with a small overfit condition. In
Figure 7, the training and validation processes on the PathCam dataset were de-
picted.

The training process for the interconnected model operated the same as the
separate training process. The only difference was the interconnected model trains
three submodels simultaneously. This model had trained all parameters owned by
the three pretrained models. These experiments reported that the interconnected
model showed comparable performance with any single model. The interconnected
model’s validation accuracy scores compared to all single models are presented in
Table 1.
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Figure 6. Training and validation accuracy for malaria dataset:
a) VGG19, b) InceptionV3 and, c) MobileNet.

Figure 7. Training and validation accuracy for PatchCam dataset:
a) VGG-19, b) InceptionV3 and, c) MobileNet.
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Figure 8. Training and validation accuracy of the interconnected
model on all datasets: a) chest X-ray, b) Malaria, c) PatchCam.

Table 1. Validation accuracy of all models for three datasets.

Dataset VGG19 InceptionV3 MobileNet Interconnected
chest X-ray 0.91 0.89 0.93 0.93

Malaria 0.90 0.80 0.80 0.90
PatchCam 0.86 0.70 0.70 0.86

4.2. Visualization of training process
Figure 9 explains the steps that occur during the training process by visualizing
[2] the images. Figure 𝑎 represents the image that was input to the model. The
original image size, as previously mentioned, was 100x100 pixels. Given that this
dataset’s training process studied the completeness of photographs of human lungs,
an example image from the normal category dataset is presented. Having the
extracted features as shown in parts, 𝑏 to 𝑑, then the part 𝑒 shows that the model
can detect lungs in a healthy condition with an image representation showing the
lungs appearing intact.

Figure 10 depicts the malaria dataset image from the input process, feature
extraction, and object detection in human blood. Part 𝑎 is the image input to the
model. Parts 𝑏 to 𝑑 are the extracted features by the models. Part 𝑒 is the model’s
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Figure 9. a) Input, b)-d) Extracted Features, e) Heatmap.

heatmap as the classification result for the image labeled as malaria.

Figure 10. a) Input, b)-d) Extracted features, e) Heatmap.

The training process on the PatchCam dataset aimed to detect the presence of
cancer cells in the image. Therefore, when the image in Figure 11 𝑎 was input to
the model, the model performed the feature extraction process shown in Figure 11
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𝑏 to 𝑑. After that, the model can detect the cancer cells’ presence in the image as
displayed in the heatmap in Figure 11 𝑒.

Figure 11. a) Input, b)-d) Extracted Features, e) Heatmap.

4.3. Predicted results
After training and validating all models on the dataset, The model was tested
using the test set. This was performed to observe the model’s ability to predict
new data. From the three pretrained models that we trained on the chest X-ray
dataset, it can be reported that all models can predict the data accurately. Table 2
shows that all pretrained models achieved good accuracy scores, which were 0.91,
0.84, and 0.91 for VGG19, InceptionV3, and MobileNet, respectively. However,
in this case, the interconnected model’s achievement has not exceeded majority
voting performance, which can be seen from the majority voting accuracy score of
0.91. Nevertheless, the interconnected model results were comparable with both
the single model and the majority voting. Table 2 also shows that the correctly
and incorrectly predicted images is well distributed. The precision and recall score
in Table 2 also indicates that the interconnected model’s ability was slightly better
than the majority voting model. In retrieving images containing pneumonia, the
interconnected model found 383 images with 7 images error or equivalent to a recall
score of 0.98, compared to majority voting, with 370 images containing pneumonia
and 20 images error or equivalent to 0.85 recall score. Even so, the two models’
precision score was comparable, namely, 0.91 for majority voting and 0.87 for the
interconnected model.

A similar approach was applied to the malaria dataset to see the three models’
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Table 2. Confusion matrix and classification report of chest X-ray
dataset.

Model TP FN TN FP Accuracy Precision Recall
VGG19 361 29 206 28 0.91 0.88 0.88

InceptionV3 345 45 179 55 0.84 0.80 0.76
MobileNet 370 20 195 39 0.91 0.90 0.95

Majority Voting 370 20 198 36 0.91 0.91 0.85
Interconnected 383 7 177 57 0.90 0.87 0.98

ability to predict new data. Different results were obtained from this experiment,
as shown in Table 3. This experiment gained an accuracy score for each pretrained
model, consisting of 0.87 for VGG19, 0.87 for InceptionV3, and 0.72 for MobileNet.
The abilities MobileNet was not optimum because there was a significant error
in predicting data in the positive class. In this experiment, the majority voting
method cannot provide maximum results, namely 0.86 accuracy. On the other
hand, the interconnected model can provide a proper weight, increasing the ac-
curacy score to 0.88. Furthermore, the interconnected model showed satisfying
performance on the positive class with a recall score of 0.82 compared to majority
voting with a recall score of 0.74. This value represented the number of images
identified with malaria that can be retrieved as many as 823 images with 177 errors
for the interconnected model. In comparison, majority voting found 737 images
with an error of 263 images. The Precision scores in Table 3 represent the level of
precision of each model. It is shown that all models have a good level of precision,
which is above 0.93.

Table 3. Confusion matrix and classification report of Malaria
dataset.

Model TP FN TN FP Accuracy Precision Recall
VGG19 798 202 938 62 0.87 0.93 0.80

InceptionV3 776 224 963 37 0.87 0.95 0.78
MobileNet 443 557 997 3 0.72 0.99 0.44

Majority Voting 737 263 988 12 0.86 0.98 0.74
Interconnected 823 177 942 58 0.88 0.93 0.82

The last experiment utilized the PatchCam dataset. Comparing the three sub-
network, the VGG19 model showed the best performance with an accuracy score
of 0.87, followed by the InceptionV3 model with an accuracy score of 0.70, and
the MobileNet with an accuracy score of 0.66. This experiment also produced one
dominant model. Thus, the majority voting method did not work optimally and
gained an accuracy score of 0.83. On the other hand, the interconnected model
can provide a suitable weight for each model to get an accuracy score of 0.87. As
seen in Table 4, the interconnected model has better Precision and Recall scores
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than the majority voting. Thus the interconnected model has better performance
in both classification classes, cancer and non-cancer images.

Table 4. Confusion matrix and classification report of PatchCam
dataset.

Model TP FN TN FP Accuracy Precision Recall
VGG19 6692 2199 12400 709 0.87 0.89 0.75

InceptionV3 6638 2253 8838 4271 0.70 0.61 0.75
MobileNet 2696 6195 11882 1227 0.66 0.69 0.30

Majority Voting 5902 2989 12342 767 0.83 0.88 0.66
Interconnected 6721 2170 12316 793 0.87 0.89 0.77

5. Conclusions

After training all pretrained models separately and simultaneously on the three
datasets, we concluded the interconnected model could be used when majority
voting did not work optimally. The results can be seen in the second and third ex-
periments using the Malaria and PatchCam dataset. Although the interconnected
model’s accuracy score slightly corrected the score of majority voting, in predicting
positive classes, the interconnected model worked better than other models on the
three datasets. The interconnected model worked by giving the submodels the best
weights without training them separately. This method was more efficient than first
training of the three submodels to determine their abilities and then consider their
appropriate weights.

Our work focused on the investigating of the interconnected model’s ability
versus majority voting, but not analyzing the individual optimization of each sub-
network’s architecture. It means that we used the transfer learning method without
adjustment. This can be confirmed by comparing our work’s accuracy with sev-
eral references which use the same dataset [11, 12, 15]. In this case, InceptionV3
and MobileNet’s pretrained models required adjustments in the depth and number
of layers. Therefore, in our future work we will examine each network’s further
optimization possibilities to help the developed system to be more accurate. In
addition, the usage of the imbalanced dataset also influences the model’s perfor-
mance. We consider using a method that can handle the imbalanced dataset’s
problem to increase the model’s accuracy.
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Abstract

Electroencephalography (EEG) is a complex voltage signal of the brain
and its correct interpretation requires years of training. Modern machine-
learning methods help us to extract information from EEG recordings and
therefore several brain-computer interface (BCI) systems use them in clinical
applications.

By processing the publicly available PhysioNet EEG dataset, we extracted
information that could be used for training feedforward neural network to
classify three types of activities performed by 109 volunteers. While volun-
teers were performing different activities, a BCI2000 system was recording
their EEG signals from 64 electrodes. We used motor imagery runs where
a target appeared on either the top or the bottom of a screen. The subject
was instructed to imagine opening and closing either both his/her fists (if the
target is on top) or both his/her feet (if the target is on the bottom) until
the target disappears from the screen.

We used the EEGLAB Matlab toolbox for EEG signal processing and
applied several feature extraction techniques. Then we evaluated the classi-
fication performance of feedforward, multilayer perceptron (MLP) networks
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with different structures (number of layers, number of neurons). Achieved
accuracy score for test data was 71.5%.

Keywords: Neural network, multilayer perceptron, classification, EEG, BCI

1. Introduction

During brain activity ionic current flow generates voltage fluctuations that can
be measured on the scalp with electrodes. Measured signals (electroencephalo-
gram, EEG) are quite complex and their correct interpretation demands expertise.
However, due to the great advances in machine learning science, machine learning
techniques are increasingly used for interpreting EEG signals [3, 10].

A brain–computer interface (BCI) is a communication pathway between a brain
and a computer. A possible application area is to perform certain physical effects
with just brain waves, not using muscles. This can be helpful for people who are
immobile, elderly or paralyzed, therefore these systems are widely used for clinical
applications in both rehabilitation [2] and communication [8].

Motor imagery is the imagination of the movement of various body parts. It
causes cortex activation and oscillations in the EEG, therefore it can be detected
by the BCI device to infer a user’s intent. Accurate and sufficiently fast recognition
of the activity to be performed is essential in developing such BCI applications.

Artificial neural networks (ANN) are integral parts of BCI systems in many
cases. The goal of our work is to create a neural network that can be applied in
BCI applications to recognize motor imagery activities. However, in order for these
networks to perform well, they need many training examples.

Creating a database which is suitable for training neural networks requires a
lot of volunteers, an advanced data collection system, and several months of work.
Fortunately, there are quite a few EEG databases that are publicly available. These
were made for different purposes, for example for recognition of motor imagery,
epileptic seizure, various brain lesions. To avoid the difficulties of creating our own
database, we used such a publicly available database.

In recent years, a number of consumer-grade BCI devices have been developed
that are allowed to use outside of clinical settings [9]. In the future we would like to
use a neural network trained on a large, public database to recognize EEG signals
recorded by our own BCI device.

2. PhysioNet EEG dataset

Researchers created numerous EEG datasets for various purposes and made them
publicly available. Some of them are made to evaluate and study various health-
related problems, such as epilepsy, autism or sleep disorders. Another common area
of use is related to motor and motor imagery activities. One such dataset is the
PhysioNet EEG dataset [4], which contains one- and two-minute EEG recordings
from 109 volunteers.
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Researchers used the BCI2000 software suite to record brain waves while sub-
jects performed various tasks. 14 measurements were performed on all 109 volun-
teers, resulting in 1526 one- and two-minute data files. Two of the 14 measurements
are baseline runs with eyes open and closed, these are one minute long. The re-
maining 12 are two-minute runs: two motor and two motor imagery measurements,
repeated three times. These activities are:

• A target appears on the left or right side of the screen. The volunteer closes
the fist on that side.

• A target appears on the left or right side of the screen. The volunteer imagines
closing the fist on that side.

• A target appears on the top or bottom side of the screen. The volunteer
closes both fists or feet, respectively.

• A target appears on the top or bottom side of the screen. The volunteer
imagines closing both fists or feet, respectively.

We used those motor imagery runs where a target appeared on the top or the
bottom of a screen. The subjects imagined opening and closing either both fists (if
the target is on top) or both feet (if the target is on the bottom). Subjects were
given new tasks every four seconds.

The data are available in EDF+, which is a standard EEG data recording format
[6]. It includes the use of standard electrode names and supports timestamped
annotations. EEG data were recorded from 64 electrodes with a sampling frequency
of 160 Hz. The 64 electrodes were placed on the scalp as per the international 10-10
system.

Figure 1. Placement of electrodes on the head.
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Since we want to use the neural network trained on this dataset to process our
own data in the future, it is important to use only those data that can be acquired
by our own device too. Our device is an OpenBCI Ultracortex Mark IV headset
with Cyton board. It has eight channels: C3, C4, Fp1, Fp2, P7, P8, O1 and O2, so
only these channels were taken into account. The available electrodes in PhysioNet
database are shown in Figure 1. The eight channels available on our device are
marked in red.

3. Method

3.1. Data preprocessing

Electrophysiological signals, including EEG can be effectively processed in Matlab
using the EEGLAB toolbox [1]. It provides a graphical user interface (GUI) allow-
ing users to interactively process data. It supports various file formats, including
EDF, and several data processing methods like independent component analysis
(ICA) and time/frequency analysis (TFA).

The original scalp data is a matrix. Time course of the measured voltages
on the channels are represented by the rows of the matrix. Since measurements
are approximately two minutes long with 160 Hz sampling frequency, and eight
channels are used, the size of the data matrix is 8×19920.

An additional three rows were added to the matrix to show which activity was
being performed by the volunteer at the time of sampling. In each column, one of
the three values is one and the other two are zeros according to the current activity
(fists, feet, relax). These additional three rows extend the size of the matrix to
11×19920.

A frequently used data preprocessing step is the feature extraction from the raw
data to make the applied machine learning model more effective. These features
can be extracted from the wavelet, frequency, or time domain.

In the case of EEG signals, neural oscillations can be observed in the frequency
domain. Time-series data can be transformed to the frequency domain using spec-
tral methods. Figure 2 shows the distribution of the signal power over frequency
for the first second of the first measurement of the first volunteer. To achieve this,
power spectrum density (PSD) function was used.

The frequency components are often grouped into bands, these are the alpha,
beta, gamma, delta and theta bands. The frequency limits of the bands are not
precisely defined, the limits used are slightly different for different articles [5, 7,
11]. Ranges used by us are summarized in Table 1. Absolute power of the signal
in the five frequency bands was also calculated. We used eight channels and five
frequency bands, therefore we got 40 extra values for each time of sampling. These
were also added to the data matrix to make them usable as inputs for the neural
network.
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Figure 2. Power spectral density of a one-second window.

Table 1. Bands and their frequency ranges.

Band Frequency range
Alpha 8-14 Hz
Beta 14-30 Hz

Gamma 30-80 Hz
Delta 1-4 Hz
Theta 4-8 Hz

To separate linearly mixed independent sources in EEG sensors, we performed
independent component analysis (ICA). The result of the analysis is an invert-
ible data decomposition. Several algorithms are provided by the EEGLAB. We
used the Infomax because of its efficiency. In EEGLAB the Infomax algorithm re-
turns two matrices, a data sphering matrix (icasphere) and the ICA weight matrix
(icaweights) [1]. Their product is the unmixing matrix:

𝑈 = 𝑖𝑐𝑎𝑤𝑒𝑖𝑔ℎ𝑡𝑠× 𝑖𝑐𝑎𝑠𝑝ℎ𝑒𝑟𝑒.
The product of the unmixing matrix and the raw data matrix is the activation

matrix. Each row of this represents the time course of the activity of one component
process spatially filtered from the raw data.

𝐴 = 𝑈 × 𝑟𝑎𝑤𝑑𝑎𝑡𝑎.
After the ICA decomposition, power values were calculated again and both

the activation matrix and the power matrix were added to the data matrix. Fig-
ure 3 shows the component map of the first measurement of the first subject. Eye
artifacts can be clearly seen in EEG data.
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Figure 3. Component map of the first measurement of the first
volunteer.

3.2. Machine learning chain

The machine learning process involves several steps and can therefore be considered
as a chain. In our case, these steps are the import of the raw data, preprocessing
(including normalization, segmentation and feature extraction), neural network
instantiation, training and test.

The data from the sensors form a continuous stream of discrete values. Training
the neural network with raw sensor data typically does not give adequate classi-
fication performance. As a result, some kind of data preprocessing is inevitable
to improve it. As a first step, we used segmentation, which is the division of the
available data into smaller units (windows).

Finding the appropriate window size is the main challenge in this task. If it
is too small, it may not provide enough information about the performed activity,
causing lower classification accuracy. Otherwise it may cover more than one activity
in one window and causes increased latency. We tried numerous FFT window sizes
for power spectral density calculation. Windows were overlapping, at each sample
the window consisted the current sample and the previous N-1 samples. Then the
order of the columns was shuffled randomly in the data matrix.

We used feedforward, multi-layer perceptron (MLP) networks and compared
different architectures to improve accuracy. In all cases, the Levenberg-Marquardt
backpropagation training method was used with the same training data: a two-
minute motor imagery measurement from the first subject. Initial weights came
from a normal Gaussian distribution, epoch limit was 1000 cycles. Number of
hidden layers was one or two with 20 or 60 neurons. Activation functions were log-
sigmoid and hyperbolic tangent sigmoid. Since there were three different classes,
the number of neurons in the output layer was also three and its activation function
was linear.

Best results were achieved with the two-layer network using log-sigmoid function
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in both hidden layers as shown in Figure 4, thus in further work this was the applied
architecture.

Figure 4. Structure of the applied neural network.

4. Results

Initially, we worked with a smaller amount of data (one two-minute measurement)
and the indicator used to evaluate the performance of the network was accuracy.
It gives the ratio of the correct predictions to total predictions:

Accuracy =
Number of correct predictions
Total number of predictions

.

Using only the raw data (8 inputs), without any features, the classification
accuracy on test data was 56.2%. By adding band powers too (calculated with
0.5 second window size), using 48 inputs, accuracy was significantly better, 91.5%.
Using only the 40 power values did not cause a change in the classification perfor-
mance, so in order to reduce training time, raw data were no longer used.

To find an appropriate FFT window size for band power calculation, neural
network was trained using various windows sizes. Training and test with the data
of a two-minute measurement from one subject were repeated five times to decrease
statistical uncertainty. Applied neural network was the 2-layer MLP with 20-20
neurons in the hidden layers. Accuracy and its standard deviation on training and
test data for different window sizes are summarized in Table 2.

Table 2. Accuracy for different window sizes.

Window size (sample) Accuracy on test data
40 78.64 ± 1.30%
60 86.90 ± 0.61%
80 91.52 ± 0.69%
100 93.76 ± 1.33%
120 95.89 ± 0.15%
140 97.57 ± 0.47%
160 98.62 ± 0.21%
180 98.34 ± 0.41%
200 97.99 ± 0.33%
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Based on the above results, a window size of 160 samples is a reasonable choice,
as it contains enough information about the activity performed, but does not yet
cause too much latency in the case of real-time data processing, since whenever the
target appears on the screen, in approximately one second we are able to determine
from the EEG signal what the subject sees.

The same 2-layer MLP with 20-20 neurons in the hidden layers was tested on
another same-type data file from the same volunteer. Classification accuracy was
only 42.1%. To improve accuracy, we merged the three same-type data matrix
from the same subject to one bigger matrix. 70% of this data was used for training
and the rest for testing. A mean squared error (MSE) of 0.076 was achieved for
the training and 0.081 for the test data.

As a new approach, we processed data from 50 subjects using the leave-one-out
method: data from 49 subjects were used for training, the last one for testing.
MSE was 0.195 for the training and 0.207 for the test data.

In order to improve the classification accuracy of the neural network, we nor-
malized the input data. Two different methods were used: in the first case, the
raw data of the given one-second window were normalized before the power cal-
culation, while in the second case, the data of the entire two-minute measurement
were. MSE values were 0.196 (training) and 0.207 (test) in the first case, 0.197
(training) and 0.216 (test) for the second case. Normalization did not affect neural
network performance in terms of MSE, so this was no longer used.

Table 3. Achieved MSE for the different experiments.

Neural network input MSE
training data

MSE
test data

All data files from 1 subject
70% training, 30% test 0.076 0.081

All data files from 50 subjects
training on 49, testing on 1 subject

without normalization
0.195 0.207

All data files from 50 subjects
training on 49, testing on 1 subject

1-second window is normalized
0.196 0.207

All data files from 50 subjects
training on 49, testing on 1 subject
2-minute measurement is normalized

0.197 0.216

All data files from 50 subjects
training on 49, testing on 1 subject

with ICA, input is the activation matrix
0.206 0.204

All data files from 50 subjects
training on 49, testing on 1 subject

with ICA, input is the activation matrix power
0.197 0.199

Furthermore in order to improve the performance, we applied independent com-
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ponent analysis (ICA) on raw data and the activation matrix served as input for
the neural network. We got 0.206 MSE value for training and 0.204 for test data.
Then we calculated the power values of the activation matrix and used the 40
power values as inputs. MSE values were 0.197 and 0.199 for training and test
data, respectively. Results are summarized in Table 3.

In terms of classification accuracy, we found that the network recognized relax-
ation task with much greater accuracy than motor imagery tasks. This is because
the data set was unbalanced, with much more data available for the relaxation
task. To avoid this, we performed a balancing of the data set so that the same
number of samples was available for all three activities. In addition, we increased
the number of neurons to 60-60 in the hidden layers. The data of 10 volunteers
were used, divided into two parts: 70% training, 30% test data. Training time
on our computer (CPU: Intel Core i7-4790, RAM: 8 GB) was around 100 hours,
accuracy for test data was 71.5%.

5. Conclusions

In this paper we proposed a multilayer perceptron (MLP) neural network approach
for motor imagery task recognition from EEG data. In the longer term, the aim of
our research is to use a neural network trained on a large dataset to analyze data
recorded by our own device. Accordingly we used a publicly available dataset and
tried to recognize the motor imagery activities of the subjects. We applied several
data preprocessing methods and examined their effects on the performance of the
neural network.

Our results demonstrated the importance of data preprocessing, and its effects
on the classification performance of a neural network. However, it also showed that
MLP might not be the best choice for EEG classification, as the classification accu-
racy score achieved is not high enough. J. Wang et al. [13] showed that compared
with MLP, SVM and linear discriminant analysis (LDA), convolutional neural net-
work (CNN) can provide better EEG signal classification performance. Tang at al.
[12] applied conventional classification methods, such as power + support vector
machine (SVM), CSP+ SVM, autoregression (AR) + SVM and compared them
with deep CNN in motor imagery EEG classification. The performance of CNN
was better than the other three methods. Our preliminary results using CNN also
show a much better accuracy score which is over 90%.
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Abstract
The Internet of Things (IoT) consists of billions of embedded devices

connected to the Internet. Secure remote management of many of these
devices requires them to store and use long-term cryptographic keys. In
this work we propose to protect cryptographic keys in embedded IoT devices
using a Trusted Execution Environment (TEE) which is supported on many
embedded platforms. Our approach provides similar protection as secure
co-processors, but does not actually require an additional secure hardware
element.

Keywords: Trusted Execution Environment, cryptographic keys, key manage-
ment

AMS Subject Classification: 68M25 (Computer Security)

1. Introduction

The Internet of Things (or IoT for short) consists of billions of embedded devices
connected to the Internet. This new phenomenon is the basis for today’s smart ap-
plications in the domains of manufacturing (Industry 4.0), transportation (Cooper-
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ative Intelligent Transportation Systems), and healthcare (personalized e-Health),
as well as in everyday life (smart cities, smart homes). However, in almost all ap-
plication areas of IoT, we face security and privacy issues which require solutions
developed for or adapted to the special characteristics of IoT systems. Security and
privacy mechanisms should take into account the resource limitations of embedded
devices and they should not rely on special hardware that would significantly in-
crease the development cost of IoT applications. This leads to interesting challenges
for managing cryptographic keys on IoT devices.

In many applications, IoT devices are managed remotely by system operators.
Such remote management requires secure remote access to the devices, which in
turn, requires the devices to store and use long-term cryptographic keys. For
instance, the operator usually needs to authenticate the device before uploading
configuration data or software updates on it, which may require the device to use
a long-term, device-specific private key. However, as IoT devices are connected
to the Internet, they may be compromised by malicious actors (aka attackers).
If an attacker can obtain the long-term key of a compromised device, (s)he can
impersonate and clone that device, which is undesirable. Hence, there is a need
to protect long-term cryptographic keys on IoT devices such that a key remains
inaccessible to the attacker even if the device itself is compromised.

A possible solution to the problem above would be to store cryptographic keys
on IoT devices in secure co-processors, such as a TPM chip1 that would never
output a key, but only use it internally in cryptographic operations. However,
requiring an additional co-processor on every IoT device would be too expensive in
most cases.

In this work we propose a more cost efficient approach: we ensure protection
of cryptographic keys by using a Trusted Execution Environment (TEE), which
is mostly based on software with some minimal hardware support, and it is sup-
ported on many embedded platforms used in IoT applications. For instance, many
embedded devices use ARM processors that feature the ARM TrustZone technol-
ogy2, which enables the establishment of a software-based TEE and provides some
hardware-based protection mechanisms to them. TEEs usually implement a per-
sistent secure storage service (see, e.g., the TEE specifications3 of GlobalPlatform,
a non-profit industry association aiming at enabling digital services and devices to
be trusted and securely managed throughout their lifecycle), which can be used to
store long-term cryptographic keys. Moreover, operations with those keys can be
performed by trusted applications running within the TEE, hence, the keys would
never leave the protected environment of the TEE.

1https://trustedcomputinggroup.org/resource/tpm-library-specification (last accessed:
Oct 3, 2020)

2https://developer.arm.com/ip-products/security-ip/trustzone (last accessed: Oct 3,
2020)

3https://globalplatform.org/specs-library/?filter-committee=tee (last accessed:Oct 3,
2020)
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2. Background

Long-term cryptographic keys have been traditionally protected using additional
hardware elements, such as Hardware Security Modules (HSMs) or Trusted Plat-
form Modules (TPMs) and secure co-processors. These hardware component pro-
vide cryptographic operations to implement secure boot, trustworthy reporting,
attestation, and other components of secure computing [2]. HSMs are external
hardware modules which can be attached to existing computer systems and used
via PCI, USB, or network connection. They provide cryptographic functional-
ity, as well as tamper-resistance, and are often used to securely generate, store
and use cryptographic keys. Typically, HSMs implement PKCS #114, a platform-
independent API to handle cryptographic tokens. The API itself is called Cryptoki
and has header files for C and C++ applications; vendors usually have their own
compliant implementations. There exists also software-based HSM implementa-
tions, for example, the SoftHSM5, which is a well maintained open source project.
It is part of the OpenDNSSEC project6 with goal of being a complete implemen-
tation of PKCS #11.

TPMs, on the other hand, are chips embedded on the computer’s motherboard
and offer several security-relevant features in a standardized manner: protected
memory and registers to securely execute commands, tamper-evident hardware
module to store keys, cryptographic processing capability and a true random num-
ber generator. They are usually used as hardware roots of trust for measurement,
storage and reporting, as well as to implement critical functionalities. TPM chips
are commercially available on the market [3] and there is research effort [1, 14] to
implement the same concepts in software.

The main disadvantage of the previously mentioned hardware-based solutions is
that they are additional and often costly components of the system. By comparison,
IoT devices are constrained not only in resources but in cost as well [3]. As a result,
hardware-based protection for cryptographic keys is not viable economically in the
IoT setting. There exists software-based implementations of the hardware concepts,
but those are typically implemented as kernel modules which could be compromised
by an attacker with elevated privileges.

However, there exists an emerging technology which can provide a secure and
integrity-protected processing environment: the TEE. TEE runs on the same hard-
ware as the device’s main operating system (OS) but it is also isolated at the
hardware-level. Many chips used in embedded devices offer the hardware support
necessary to realize Trusted Execution Environments [15]. Examples include the
ARM TrustZone7, the Intel Software Guard eXtension8 (SGX) [9], and the AMD

4http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
(last accessed: Nov 04, 2020)

5https://www.opendnssec.org/softhsm/ (last accessed: Nov 04, 2020)
6https://www.opendnssec.org/ (last accessed: Nov 04, 2020)
7https://developer.arm.com/ip-products/security-ip/trustzone (last accessed: Oct 12,

2020)
8https://software.intel.com/content/www/us/en/develop/documentation/

sgx-developer-guide/top.html (last accessed: Oct 12, 2020)
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Secure Encrypted Virtualization [5]. OP-TEE9 and Open-TEE [7] are two TEE
implementations which can be deployed on these chips.

Figure 1 shows the main components of a device with TEE capabilities. Logi-
cally, execution can be separated into the Rich Execution Environment (REE) and
the TEE. Code running in the REE has access only to unprotected resources (e.g.
memory). “Code” in the REE can be partitioned into the Rich operating system,
usually a traditional OS such as Linux, and one or more applications, which run on
top of the Rich OS. Such an application is called a Client Application (CA) in the
TEE architecture. CAs implement the basic features of the device, e.g. web servers
for configuration, applications for sensing physical parameters of the environment,
or the actuator controlling a physical process. When necessary, CAs can request
services from the TEE via the TEE Client API. This API forwards the request to a
special component in the Rich OS, the REE Communication Agent, which triggers
a context switch and gives control to the TEE.

Figure 1. Logical overview of a device with Trusted Execution
Environment capabilities.

Code in the TEE has access to protected resources, which are unavailable to
the REE. For example, certain memory locations are only available to code run-
ning in the TEE. This protection is provided by the hardware components of the
device. In the case of the ARM TrustZone, for example, the architecture includes
a special register storing the Non-secure (NS) bit to determine whether the exe-
cuted code belongs to the REE or the TEE. If the NS bit is set, signalling that the
executed code belongs to the REE, access to certain protected memory locations
is automatically denied. The TEE is similar to the REE in the sense that it has

9https://optee.readthedocs.io/en/latest/index.html (last accessed: Oct 12, 2020)
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an operating system (the trusted OS) and several applications, which are called
Trusted Applications (TAs). TAs provide those services for the REE whose com-
putation requires strong security guarantees, for example, remote attestation [12,
13], tamper-resistant logging and storage [10, 11], or secure real-time computation
for the Industrial IoT [8].

3. Architectural overview

The basic idea of our approach is to use the TEE to provide similar protection
to keys as a secure co-processor but without actually requiring another proces-
sor on the device: the same processor runs a normal execution environment (the
REE) and a TEE, and also implements the required hardware mechanisms that
isolate these two execution environments. This isolation ensures that even if the
REE is compromised, the attacker would not be able to obtain the keys stored
and used within the TEE. This protection mechanism prevents attackers to clone
compromised devices.

Figure 2. Architecture of our TEE based key management solution.
Grey boxes represent components that we developed or modified.

The architecture of our solution is illustrated in Figure 2. Private keys and
private-public keypairs are stored in the secure storage of the TEE. We also store
the intended use of keys, e.g. signing or decryption, in an additional attribute in
the TEE. The keys could be generated by the operator off-line and loaded in the
secure storage in a controlled way with the help of a key management client, or
the key can actually be generated and stored in secure storage by the trusted key
management service itself. In the latter case, the trusted key management service
would output the corresponding public key to the key management client such that
it can be made available to applications running outside of the TEE. In both cases,
handles to the private keys would be output from the trusted key management
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service that can be used by applications in the REE to refer to the private keys
when requesting operations with them.

Generating and loading keys into the TEE should only be performed by the
device’s operator, therefore, such requests must be authenticated. Request au-
thentication requires the operator to set up a master password before the device is
deployed. The trusted key management service allows the key management client
to install the master password only once, it cannot be changed later. Requests re-
lated to key management must provide not only the invocation parameters to the
underlying cryptographic library but also a salt and a message authentication code
(MAC). We refer to the combination of salt and MAC as the authentication token.
The master password is used together with the salt to derive a key. The derived key
and the invocation parameters are input to HMAC (RFC 210410) and its output is
compared with the MAC value supplied in the request. The request authentication
process is illustrated in Figure 3. Key management operations are only performed,
if the HMAC-based authentication scheme succeeds without errors. We also log
authentication tokens in the trusted key management service to prevent replay at-
tacks with previous key management requests. If a request contains a previously
used authentication token, the request is automatically denied.

Figure 3. Process overview of authenticating requests from the
key management client in the trusted key management service.

Any application (e.g., a web server that provides a remote configuration possi-
bility for the operator of the device) that runs in the REE can be compiled with a
cryptographic library that we modified such that private key cryptographic oper-
ations are delegated to the trusted key management service running in the TEE.
In TEE terminology, the modified cryptographic library acts as a CA and the
trusted key management service is a TA. From the application’s point of view, the
cryptographic library exposes functions to encrypt and decrypt data, which can
be invoked similarly to API functions, as shown in Figure 4. However, instead of
supplying the key itself, the application provides a handle to the private key with
which to perform the cryptographic operation. The modified cryptographic library
serialized the key handle and the provided parameters as a message and passes

10https://tools.ietf.org/html/rfc2104 (last accessed: Nov 12, 2020)
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Figure 4. Interactions involved in performing cryptographic oper-
ations with private keys stored and managed in the TEE.

that to the trusted key management service. The trusted key management service,
which is compiled with the original cryptographic library, processes the serialized
parameters, retrieves the key referred by the provided key handle, and calls the
original cryptographic library to execute the requested operation. The results are
passed back to the modified cryptographic library and the modified cryptographic
library provides the return value to the application.

The two components can pass parameters and values to each other via shared
memory: a block of memory which is shared between the CA and the TA. Both the
CA and the TA can read data from and write data to the shared memory, however,
only the CA can allocate it. Therefore, the modified cryptographic library must
allocate memory to hold the results of cryptographic operations. Knowing the
requested operation and information about the key, the modified cryptographic li-
brary can estimate the necessary amount of memory. If the modified cryptographic
library underestimated the amount of memory, the trusted key management service
returns a special message requesting more memory to return the result.

4. Prototype implementation

We implemented the proposed TEE-based architecture for protecting long-term
cryptographic keys using the Trusted Firmware11 projects OP-TEE and mbedtls.
Trusted Firmware provides a reference trusted code base for the ARM platform, a
widely used platform in embedded devices. OP-TEE is an open source implemen-
tation of GlobalPlatform’s TEE specification, primarily maintained by Linaro, and
it is usually used in conjunction with the Linux kernel in the REE. mbedtls is a

11https://www.trustedfirmware.org/ (last accessed: Nov 03, 2020)
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cryptographic library written in C with a small code footprint. It can be used in
both the REE and the TEE; OP-TEE can be complied to use mbedtls as the default
cryptographic library.

For our prototype implementation, we set mbedtls as OP-TEE’s default crypto-
graphic library. We implemented a Trusted Application which fulfills the role of
trusted key management service and handles incoming requests for cryptographic
and key management operations. The Trusted Application stores the key pair
object in the secure storage and passes it to mbedtls whenever cryptographic op-
erations are to be performed. We also compiled a modified version of mbedtls’s
source code in the REE such that it includes wrapper functions to direct requests
to our Trusted Application. Our prototype implementation consists of eight wrap-
per functions as follows:

• tee_set_master_password: Installs the specified master password into the
trusted key management service to authenticate key management requests.
This function can only be called once, we assume that it is done in a controlled
environment by the device’s operator.

• Key management functions: These functions perform privileged operations
allowed only for the operator. Therefore, the Trusted Application performs
the request authentication process described in Section 3 on their inputs.

– tee_generate_keypair: Generates a long-term private-public key pair
and stores it in the TEE. The function returns a handle to the key pair
which can be later used for other cryptographic operations.

– tee_load_keypair: Allows the operator to load an existing key pair
into the TEE. The key pair must be encrypted and in PEM format.
Similarly to tee_generate_keypair, this function also returns a handle
to the key pair.

– tee_remove_keypair: If a key pair becomes compromised or is consid-
ered weak, the operator can inactive it. We do not permanently delete
keys because the attacker might try to reinstall old and weak keys. In-
stead, inactivating keys allows us to maintain a list of all previously and
currently used keys. The list could be reviewed by the operator or used
for attestation purposes.

• Functions available for all applications: All of these functions reference a key
stored in the TEE with a key handle. In our prototype, handles are 32 bytes
long and calculated as the SHA256 hash value of the key pair.

– tee_pk_decrypt: Decrypts the supplied data with a given key.
– tee_pk_sign: Digitally signs the input data with a given key.
– tee_get_keyinfo: Returns the type, the size, and the intended usage

of a given key.
– tee_get_publickey: Returns the public key of a public-private key pair

in plaintext.
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For each function, we defined a custom message format which can hold the serialized
parameters to be passed to the trusted key management service prototype. In all
cases, messages start with an ID field identifying the operation requested, followed
by the key handle. Depending on the function, the key handle can be an input pa-
rameter and an output parameter. For example, the function tee_remove_keypair
expects a key handle as an input, while for the function tee_load_keypair, the
field for the key handle is empty and must be filled with the handle assigned by
the TA. The remainder of the message formats follow the length-value convention:
first comes the length of the data as an 8-byte-long unsigned integer, then the data
as a variable length field.

5. Evaluation

In order to measure the added overhead of TEE-based key protection, we conducted
the following experiment. We set up a QEMU-based12 environment for running our
prototype implementation and manually saved an RSA long-term key pair in the
TEE. We deployed two versions of mbedtls’s example web server with TLS capabil-
ities in REE: one without any modifications and another with the modification to
relay cryptographic operations to our trusted key management service prototype.
We used mbedtls’s example client to test the connection to the web server and
repeatedly send HTTP GET requests to both versions.

Our experiment was concerned with the amount of time required to perform
cryptographic operations using our trusted key management service prototype. We
sent 10 HTTP GET requests from the client to the webserver and measured the
amount of time it took for the sign operation to complete. Communicating parties
used the TLS-ECDHE-RSA-WITH-CHACHA20-POLY1305-SHA256 chiper suite during
the TLS Handshake. The communication between client and server succeeded in
all 10 exchanges. In case of the unmodified mbedtls operations, all operations take
place in REE memory. In case of our trusted key management service prototype,
the measured amount of time includes the context switch between REE and TEE,
as well as the time necessary to perform the requested operation and return the
result.

The results of the experiment are shown in Table 1. Our trusted key manage-
ment service prototype needed an average of 204 ms for the sign operation. This is
5x slower than mbedtls’s unmodified operations which take place in REE memory.
However, it is worth noting that after the first run, mbedtls’s unmodified operations
gain a performance boost: their required time to complete changes from 87 ms to
ca. 30 ms. This performance boost is the result of mbedtls’s implementation to
prevent timing attacks. The authors of [6] presented timing attacks in which they
measured the amount of time required to perform private key operations, conse-
quently finding fixed Diffie-Hellman exponents and factor RSA keys. The proposed
protection against such attacks involves the use of blinding values, a pair of ran-

12https://www.qemu.org/ (last accessed: Nov 10, 2020)
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dom numbers (𝑣𝑖, 𝑣𝑓 ) such that in the case of Diffie-Hellman, 𝑣𝑓 = (𝑣−1
𝑖 )𝑥 mod 𝑛,

and in the case of RSA, 𝑣𝑖 = (𝑣−1
𝑓 )𝑒 mod 𝑛. The chosen numbers are then used

similarly to blind signatures [4]: the input is multiplied by 𝑣𝑖 and the result is
corrected by multiplying it with 𝑣𝑓 mod 𝑛. However, computing the inverses is
slow, therefore, mbedtls’s implementation uses SSL session information to deter-
mine whether (𝑣𝑖, 𝑣𝑓 ) has been chosen before and if yes, it updates their values by
squaring. Unfortunately, our trusted key management service does not have access
to SSL session information and must select a new random (𝑣𝑖, 𝑣𝑓 ) pair for each
computation.

Table 1. Comparisons between the performance of the unmodified
mbedtls library and our trusted key management service prototype
in the TEE. The first two columns show the performance of the
operation on the server-side, while the last two columns show the
amount of time required to build a secure communication channel
and exchange an HTTP GET request and response between the

client and the server.

mbedtls’s
sign

operation

Our TEE-based
sign

operation

Communication
using mbedtls

Communication
using TEE

Run 1 87 ms 208 ms 410 ms 533 ms
Run 2 30 ms 204 ms 331 ms 505 ms
Run 3 30 ms 203 ms 341 ms 516 ms
Run 4 29 ms 206 ms 319 ms 501 ms
Run 5 29 ms 204 ms 305 ms 507 ms
Run 6 30 ms 203 ms 326 ms 522 ms
Run 7 29 ms 203 ms 312 ms 504 ms
Run 8 29 ms 206 ms 315 ms 511 ms
Run 9 38 ms 202 ms 388 ms 503 ms
Run 10 33 ms 204 ms 341 ms 500 ms
Mean 36 ms 204 ms 339 ms 508 ms

Std.dev 18 ms 2 ms 34.22 ms 10.59 ms

From the client’s perspective, completing a full TLS handshake and exchang-
ing an HTTP GET request and response over the secure channel is 1.49x slower, if
cryptographic operations with the long-term key are performed in the TEE. In case
of the unmodified mbedtls library, the exchange takes 339 ms on average, while in
case of our trusted key management service prototype, the same exchange is com-
pleted in 508 ms on average. The results in Table 1 suggest that network latency
and SSL session management in both cases accounts for ca. 300 ms. Thus, the
increased time necessary to complete the exchange using our trusted key manage-
ment service in the TEE is the result of the overhead caused by the TEE-based
sign operation.
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6. Conclusion and future work

Remote administration is one of the key enabling features of IoT devices. However,
remote administration requires secure communication channels, which in turn re-
quire the protection of long-term cryptographic keys. Traditionally, such keys are
protected using additional hardware components, however, the cost of including
such components in IoT devices is economically unviable.

In this paper we proposed Trusted Execution Environments as alternative.
Their main advantage is that they are mostly software components requiring min-
imal hardware support for isolation. Our basic idea is to use the TEE’s secure
storage to protect keys in rest and run cryptographic libraries in the TEE which
can protect the keys during execution thanks to access to protected resources. Our
architecture includes a trusted key management service in the TEE whose task is
to handle the TEE’s secure storage and invoke the cryptographic library inside the
TEE. Applications not running in the TEE can request operations from the trusted
key management service. We created a prototype implementation of the proposed
architecture using OP-TEE, an open-source TEE implementation, and mbedtls, a
cryptographic library designed to run on small devices. We measured the perfor-
mance overhead of performing cryptographic operations in the TEE. While there
certainly was an overhead due to context switches, the overhead we measured was
bearable and did not threaten the communication between client and server. Thus,
we can conclude that TEEs are indeed viable alternatives to HSMs and TPMs to
protect long-term cryptographic keys.

Other security-critical operations could be implemented in the TEE, as well.
Our current research ideas include integrity monitoring from the TEE and using
the results for remote attestation of IoT devices. One of the main challenges of
remote attestation is how to ensure the trustworthiness of attestation results in
the presence of an attacker. TEEs can solve this problem: even if the attacker
compromises the main operating system, the device’s hardware support for TEEs
isolates the attestation process and cryptographic keys from the attacker.
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Abstract
Trend filtering is known as the technique for detecting piecewise linear

trends in univariate time series. This technique is extended to the setting
of compositional data, which are multivariate data where only the relative
information is of importance. According to this, we formulate the problem
and present a procedure how to efficiently solve it. To show the usefulness
of this method, we consider the number of COVID-19 infections in several
European countries in a chosen time period.

Keywords: Trend filtering, compositional data, COVID-19

1. Introduction

Filtering linear trends of a univariate time series has been extensively investigated
in the literature, and many methods exist for this purpose, see [7] or [11]. In the
univariate context, estimating a piecewise linear trend and its change points can
deliver valuable insights and serve as an analytical tool. The standard 𝑙1 linear
trend filtering estimator for given measurements 𝑦𝑡 ∈ R with equidistant time
stamp 𝑡 = 1, . . . , 𝑇 is given as the solution of the following optimisation problem

min
𝑎𝑡

1

2

𝑇∑︁

𝑡=1

‖𝑦𝑡 − 𝑎𝑡‖2 +
𝜆

2

𝑇∑︁

𝑡=3

|𝑎𝑡 − 2𝑎𝑡−1 + 𝑎𝑡−2|,
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for a fixed positive tuning parameter 𝜆. The term on the left controls the goodness
of fit to the data, whereas the right penalty term enforces the parameters 𝑎𝑡 to be
close to a linear function in 𝑡. This follows from the fact that a lasso penalty [12] is
used on the second differences, i.e. 𝑎𝑡 − 2𝑎𝑡−1 + 𝑎𝑡−2, setting the latter for certain
𝑡 – depending on 𝜆 – to zero. It is easy to see that when 𝑎𝑡𝑗 − 2𝑎𝑡𝑗−1 + 𝑎𝑡𝑗−2 = 0
holds for consecutive 𝑡𝑗 , with 𝑗 = 1, . . . ,𝐾, we get 𝑎𝑡𝑗 = 𝑎+ 𝑏𝑡𝑗 , for fixed 𝑎, 𝑏 ∈ R.
Therefore, by using a lasso penalty on the second differences we get that 𝑎𝑡 is forced
to become piecewise linear with growing 𝜆. Recently, trend filtering has also been
extended to many other contexts keeping the property that for a growing penalty
parameter 𝜆 linear functions in the appropriate setting are selected; e.g. graphs
[15], vector-valued graphs [13] and additive models [10].

To the best of our knowledge, so far, trend filtering has not been extended to
compositional data. Compositional data are in its nature multivariate and strictly
positive, and for this type of data it is the relative rather than the absolute informa-
tion which is of interest. As an example we might consider chemical concentrations
for 𝐷 ≥ 2 different elements. An observation is written as a 𝐷 dimensional vector
𝑥 = (𝑥1, . . . , 𝑥𝐷)′ with positive entries 𝑥1 to 𝑥𝐷, where each entry is the concen-
tration of a certain element. In a chemical setting it is the relative information
between different elements which is of main interest. Relative meaning that the
important information is contained in the ratios for two different elements, i.e. 𝑥𝑖

𝑥𝑗
,

for 𝑖 ̸= 𝑗 ∈ {1, . . . , 𝐷}. In the ground breaking work [1], not only has it been made
clear how a compositional view can be advantageous, but also the mathematical
foundations of compositional data have been laid out.

In this work we consider fitting linear trends to a time series of compositional
data, i.e. we look at the multivariate linear trend of compositional data with an
equidistant time stamp 𝑡. As an example, consider the case where we compare
the number of healthy individuals to infected ones in the whole population of a
country. Denoting the number of infected individuals at each time 𝑡 as 𝜅𝑡 and
the total number of individuals in a country by 𝑃 , the infected vs. non-infected
individuals in a population over time can be described by the two dimensional time
series (𝜅𝑡, 𝑃 − 𝜅𝑡). If we are interested in analyzing how the number of healthy vs
unhealthy individuals behaves we can see this as a compositional time series.

This perspective is relevant in many other contexts, e.g. comparing the perfor-
mance of different stocks relative to each other. This explains the success compo-
sitional data analysis has had in past applications. The method we propose in this
work guarantees to find an estimator of piecewise compositional linear trends. The
trend estimates will be strictly positive and sum up to a given total.

This paper is organized as follows. In Section 2 we will review some important
compositional data analysis concepts. In Section 3 we introduce compositional
trend filtering, and in Section 4 we present a procedure for the computation. Sec-
tion 5 shows an application of the presented method to the number of COVID-19
infected individuals in various European countries, and the final Section 6 con-
cludes.
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2. Compositional data analysis concepts

In the following, consider a composition 𝑥 = (𝑥1, . . . , 𝑥𝐷)′ with 𝐷 strictly positive
entries, called compositional parts, which sum up to 1. This leads to the definition
of compositional data as observations from the 𝐷 part simplex 𝒮𝐷,

𝒮𝐷 :=

{︂
𝑥 = (𝑥1, . . . , 𝑥𝐷)′ ∈ R𝐷+ ,

𝐷∑︁

𝑖=1

𝑥𝑖 = 1

}︂
.

As established in [1], compositional data aims to capture the relative information
between the entries of 𝑥. This is done by identifying each point 𝑥 ∈ R𝐷+ with a
whole ray starting at zero and going through 𝑥, which means that we identify an
element 𝑥 ∈ 𝒮𝐷 with all elements 𝛾𝑥 for any 𝛾 > 0. In other words, the constraint
of sum equal to 1 can always be achieved by rescaling, see [5].

The simplex can be equipped with an addition, multiplication with a scalar, an
inner product and a norm, which leads to the so-called Aitchison geometry on the
simplex [1]. Consider the compositions 𝑥 = (𝑥1, . . . , 𝑥𝐷)′ and 𝑦 = (𝑦1, . . . , 𝑦𝐷)′:

• For 𝑥,𝑦 ∈ 𝒮𝐷, perturbation is defined by 𝑥⊕ 𝑦 := (𝑥1𝑦1, . . . , 𝑥𝐷𝑦𝐷)′

• For 𝑥 ∈ 𝒮𝐷 and 𝛼 ∈ R, powering is defined by 𝛼⊙ 𝑥 := (𝑥𝛼1 , . . . , 𝑥
𝛼
𝐷)′

• For 𝑥,𝑦 ∈ 𝒮𝐷, the inner product is defined as

⟨𝑥,𝑦⟩𝐴 :=
1

2𝐷

𝐷∑︁

𝑖=1

𝐷∑︁

𝑗=1

log

(︂
𝑥𝑖
𝑥𝑗

)︂
log

(︂
𝑦𝑖
𝑦𝑗

)︂
.

Remark 2.1. The difference of 𝑥 and 𝑦 denoted by 𝑥⊖𝑦 is therefore (𝑥1

𝑦1
, . . . , 𝑥𝐷

𝑦𝐷
)′.

The norm can be defined in the usual manner using the inner product defined
above, i.e ‖𝑥‖𝐴 =

√︀
⟨𝑥,𝑥⟩𝐴.

Interestingly, one can construct isometric mappings from 𝒮𝐷 into R𝐷−1, using
the so called (Centered Logratio Coefficients) clr-mapping, which is defined as

clr : 𝒮𝐷 → R𝐷, clr (𝑥) :=

(︃
log

(︃
𝑥1

𝐷

√︁∏︀𝐷
𝑖=1 𝑥𝑖

)︃
, . . . , log

(︃
𝑥𝐷

𝐷

√︁∏︀𝐷
𝑖=1 𝑥𝑖

)︃)︃′

.

This mapping fulfills important properties regarding addition, multiplication by a
scalar and the inner product, namely

clr(𝑥⊕ 𝑦) = clr(𝑥) + clr(𝑦) (2.1)
clr(𝛼⊙ 𝑥) = 𝛼 clr(𝑥) (2.2)
⟨𝑥,𝑦⟩𝐴 = ⟨clr(𝑥), clr(𝑦)⟩𝐸 (2.3)
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where ⟨·, ·⟩𝐸 denotes the standard inner product in R𝐷. However, clr is not a one-
to-one mapping onto R𝐷 as for each 𝑥 ∈ 𝒮𝐷 we have

∑︀𝐷
𝑖=1 clr (𝑥)𝑖 = 0; meaning

that the sum of the entries of clr (𝑥) is always zero and therefore the image of clr

lies in the subspace {𝑧 ∈ R𝐷|∑︀𝐷
𝑖=1 𝑧𝑖 = 0}.

Nevertheless, fixing 𝐷 − 1 orthonormal basis vectors 𝑣1, . . . ,𝑣𝐷−1 ∈ R𝐷, de-
noted in the following in matrix form V ∈ R𝐷×(𝐷−1), of the subspace {𝑧 ∈
R𝐷|∑︀𝐷

𝑖=1 𝑧𝑖 = 0} ⊂ R𝐷 one can define an isometry from 𝒮𝐷 to R𝐷 by

ilrV : 𝒮𝐷 → R𝐷−1, ilrV(𝑥) := V′ clr(𝑥),

where V′ denotes the transposed matrix, called Isometric Logratio. ilrV naturally
preserves the properties (2.1), (2.2) and (2.3) and is an isometry. This mapping
will be used in the following for trend filtering.

For a more thorough explanation of compositional data and different coordinate
representations we refer to [5].

In the following we will speak of a compositional time series when talking about
a time series 𝑠𝑡 ∈ 𝒮𝐷, with time index 𝑡 = 1, . . . , 𝑇 . It is interesting to note here
that due to the compositional nature of 𝑠𝑡 we can multiply the latter with any
univariate time series 𝑃𝑡 ∈ R+ such that 𝑃𝑡𝑠𝑡 still lies in 𝒮𝐷 for each 𝑡. In a
compositional setting, 𝑃𝑡𝑠𝑡 is therefore equivalent to 𝑠𝑡. This means that if we
would like to go back from a compositional view to absolute numbers one needs to
prespecify 𝑃𝑡. We will see how to do that in the next section. In the following, we
will write 𝑥𝑡 = 𝑃𝑡𝑠𝑡, where 𝑃𝑡 is given by the user.

3. Compositional trend filtering

We will now show how to extend the linear univariate trend filtering framework to
compositional time series 𝑥𝑡 ∈ 𝒮𝐷 and discuss why the basic property of fitting
piecewise linear trends is kept.

We define the trend filtering estimator of a compositional time series 𝑥𝑡 as:

(�̂�1, . . . , �̂�𝑇 )′ := arg min
𝑎𝑡∈𝒮𝐷

1

2

𝑇∑︁

𝑡=1

‖𝑥𝑡 ⊖ 𝑎𝑡‖2𝐴 +
𝜆

2

𝑇∑︁

𝑡=3

⃦⃦
∆2𝑎𝑡

⃦⃦
𝐴

(3.1)

where ∆2𝑎𝑡 denotes 𝑎𝑡 ⊖ 2𝑎𝑡−1 ⊕ 𝑎𝑡−2, for a fixed 𝜆 > 0. This means that we fit
𝑇 vectors �̂�1, . . . , �̂�𝑇 ∈ 𝒮𝐷 to the observed data 𝑥1, . . . ,𝑥𝑇 , taking into account a
given level of smoothness controlled by the penalty term. When 𝜆 goes to infinity
we get ∆2𝑎𝑡 = 0 which can be shown to be equal to 𝑎𝑡 = 𝑎 ⊕ (𝑡 ⊙ 𝑏), for all 𝑡,
for some 𝑎 and 𝑏 in 𝒮𝐷; i.e. 𝑎𝑡 is a linear function in the compositional sense. For
𝜆 <∞ we will see that we usually get piecewise linear trends in the compositional
sense.
Remark 3.1. Problem (3.1) can be extended to fit higher order polynomial trends
by defining for all 𝑡 firstly ∆1𝑥𝑡 := 𝑥𝑡⊖𝑥𝑡−1 resp. ∆2𝑥𝑡 := 𝑥𝑡⊖ 2𝑥𝑡−1⊕𝑥𝑡−2 and
then higher order 𝑘-th finite differences incrementally by ∆𝑘𝑥𝑡 := ∆(∆𝑘−1𝑥𝑡).
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To solve Problem (3.1) we will use isometric logratios. As mentioned in the last
section, the mapping ilrV is, for any fixed basis V, an isometry and therefore the
terms ‖𝑥𝑡 ⊖ 𝑎𝑡‖2𝐴 resp.

⃦⃦
∆2𝑎𝑡

⃦⃦
𝐴

translate for any 𝑡 into ‖ilr(𝑥𝑡)− ilr(𝑎𝑡)‖2𝐸 resp.⃦⃦
∆2 ilr(𝑎𝑡)

⃦⃦
𝐸

, where in the latter ∆2 is defined in the same way as before but for
the usual addition and multiplication in R𝐷−1.

Therefore we get that it suffices to solve the optimisation problem

(�̂�1, . . . , �̂�𝑇 )′ := arg min
𝑢𝑡∈R𝐷−1

1

2

𝑇∑︁

𝑡=1

‖ilr(𝑥𝑡)− 𝑢𝑡‖2𝐸 +
𝜆

2

𝑇∑︁

𝑡=3

⃦⃦
∆2𝑢𝑡

⃦⃦
𝐸
. (3.2)

It is easy to see that the latter is strictly convex and therefore has a unique solution
(�̂�1, . . . , �̂�𝑇 ). By using the inverse of ilrV, we can recover the solution to (3.1) by
defining �̂�𝑡 := ilr−1

V (�̂�𝑡) for every 𝑡. This also shows that the solution to (3.1) is
unique and not dependent on the choice of V as any solution to (3.1) transformed
by ilrV is necessarily the unique one to (3.2). Therefore, the fit in ilr coordinates
for any matrix V, as well as in any special coordinate system like balances or
symmetric pivot coordinates is immediately available [5].

Note that in problem (3.2) we use the 𝑙2 norm as a penalty on the second
differences. This corresponds to a group lasso penalty, see [16], on the latter. The
interpretation of this is that we look for times 𝑡 where the trends of 𝑥𝑡 change at
once for all components together as the penalty automatically sets ∆2𝑎𝑡 for certain
𝑡 to zero.

Remark 3.2. It is also possible to extend this approach to compositional data with
an index 𝑡𝑙, for 𝑙 = 1, . . . , 𝑇 , marking rather a position in space than time. In such
a case the spacing of 𝑡𝑙 is not equidistant. However, a generalisation is straight-
forward by taking the penalty terms

⃦⃦
⃦ Δ𝑎𝑡𝑙

𝑡𝑙−𝑡𝑙−1
⊖ Δ𝑎𝑡𝑙−1

𝑡𝑙−1−𝑡𝑙−2

⃦⃦
⃦
𝐴

instead; compare with
the univariate usual trend filtering extension to non-equidistant points discussed
in [9].

We also want to remark that the estimator defined in (3.1) changes accordingly
under rescaling of each coordinate. That is, assume that each coordinate of the
time series (𝑥𝑖)𝑡 is rescaled by 𝛼𝑖, meaning that we look at 𝛼𝑖(𝑥𝑖)𝑡. Then if �̂�𝑡 is
the solution to (3.1) for the data 𝑥𝑡, �̂�𝑡 ⊕ 𝛼 is the solution to (3.1) for the data
𝑥𝑡⊕𝛼. The proof is trivial, as ∆2𝛼 = 0 and because 𝑥𝑡⊖ �̂�𝑡 = (𝑥𝑡⊕𝛼)⊖ (�̂�𝑡⊕𝛼).
Therefore, rescaling the data rescales the estimator accordingly. This is interesting
when looking at log-ratios and other compositional tools. As, for example, when
analysing the trend in log-ratio coordinates we get that after rescaling, the latter
is only shifted by a positive constant.

Finally, when we want to go back to a non-compositional view, we simply mul-
tiply the estimator �̂�𝑡 with 𝑃𝑡. Choices of 𝑃𝑡 are case dependent. If a multivariate
smooth to the original data is also of interest then a smoothed version of

∑︀𝑝
𝑖=1(𝑥𝑡)𝑖

can make sense, see Section 5.
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4. Computational considerations

4.1. The ADMM approach
As problem (3.2) has a very special structure, we use an ADMM (Alternating
Direction Method of Multipliers) approach. The latter is very easy to implement
and has been, with a slight modification, used for the univariate case [9], as well as
for multivariate piecewise constant trend filtering before, see [14]. Naturally other,
approaches could be used here, such as the Primal-Dual Interior-Point Method,
as briefly mentioned in [7]. For a more thorough introduction to ADMM we refer
to [3].

For given functions 𝑓, 𝑔, matrices A,B and a vector 𝑐, the augmented Lagragian
of the optimisation problem

min
𝑥,𝑦

𝑓(𝑥) + 𝑔(𝑦) s.t A𝑥 + B𝑦 = 𝑐 (4.1)

is defined as:

ℒ(𝑥,𝑦,𝜃) := 𝑓(𝑥) + 𝑔(𝑦) + 𝜃′(A𝑥 + B𝑦 − 𝑐) +
𝜌

2
‖A𝑥 + B𝑦 − 𝑐‖2𝐸 ,

where 𝜃 denotes the dual variable, and 𝜌 > 0 is fixed. Solving (4.1) is then done
by the following iterative scheme,

𝑥← arg min
𝑥

ℒ(𝑥,𝑦,𝜃), 𝑦 ← arg min
𝑦

ℒ(𝑥,𝑦,𝜃), 𝜃 ← 𝜃 + 𝜌(A𝑥 + B𝑦 − 𝑐),

with given starting vectors for 𝑥,𝑦 and 𝜃.

To be able to use ADMM for (3.2) we firstly need to reformulate the problem.
For this, denote by ℐ𝐷 the unit matrix of size 𝐷 and by 𝒪 a matrix of only zeros.
We define the second difference matrix as

D2 :=

⎡
⎢⎢⎢⎢⎣

ℐ𝐷 −2ℐ𝐷 ℐ𝐷 𝒪 . . . 𝒪
𝒪 ℐ𝐷 −2ℐ𝐷 ℐ𝐷 𝒪

...
...

. . . . . . . . . . . . 𝒪
𝒪 𝒪 𝒪 ℐ𝐷 −2ℐ𝐷 ℐ𝐷

⎤
⎥⎥⎥⎥⎦
∈ R(𝐷−1)(𝑇−2)×(𝐷−1)𝑇 .

It is easy to see that for the stacked vector of all 𝑢𝑡, i.e. 𝑢 := (𝑢1, . . . ,𝑢𝑇 )′, we
have

D2𝑢 = (𝑢3 − 2𝑢2 + 𝑢2, . . . ,𝑢𝑇 − 2𝑢𝑇−1 + 𝑢𝑇−2)′

and therefore problem (3.2) can be written as

arg min
𝑢𝑡∈R𝐷−1

1

2

𝑇∑︁

𝑡=1

‖ilrV(𝑥𝑡)− 𝑢𝑡‖2𝐸 +
𝜆

2

𝑇∑︁

𝑡=3

⃦⃦
𝜂𝑡−2

⃦⃦
𝐸

s.t. D2𝑢 = 𝜂 ∈ R(𝐷−1)(𝑇−2),
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where 𝜂𝑙 denotes the subvector (𝜂(𝑙−1)(𝐷−1)+1, . . . , 𝜂𝑙(𝐷−1))
′ of 𝜂. In this form we

can use ADMM as explained before, where 𝑓 is simply the first sum and 𝑔 the
second one.

As outlined above, denote by 𝜃 ∈ R(𝑝−1)(𝑇−𝑘) the dual variable. The augmented
Lagrangian is then given by

ℒ(𝑢,𝜂,𝜃) :=
1

2

𝑇∑︁

𝑡=1

‖ilrV(𝑥𝑡)− 𝑢𝑡‖2𝐸 +
𝜆

2

𝑇∑︁

𝑡=3

⃦⃦
𝜂𝑡−2

⃦⃦
𝐸

+𝜃′(D2𝑢− 𝜂) +
𝜌

2

⃦⃦
D2𝑢− 𝜂

⃦⃦2
𝐸
.

From the latter we can easily deduct the ADMM updates by optimising in each
variable at once holding the others fixed. Optimizing in 𝑢 is simple and can be done
by setting the derivative to zero. Optimizing in 𝜂 alone is a group Lasso problem
with non-overlapping groups. Denoting the proximal operator of the group lasso
with non-overlapping groups as 𝒫𝜆

𝜌
, see [8], and writting from now on 𝜃 := 𝜃

𝜌 , we
get the following updates:

𝑢← (ℐ(𝐷−1)𝑇 + 𝜌D2′D2)−1(ilrV(𝑥𝑡)− 𝜌D2′(𝜃 − 𝜂)) (4.2)

𝜂 ← 𝒫𝜆
𝜌

(D2𝑢 + 𝜃) (4.3)

𝜃 ← 𝜃 + D2𝑢− 𝜂. (4.4)

As we usually like to solve problem (3.1) for a whole set of given 𝜆’s, e.g.
𝜆1, . . . , 𝜆𝐿, it seems sensible to use as starting vectors (𝑢,𝜂,𝜃) for the above itera-
tion a warm start scheme, meaning that when solving problem (3.1) for 𝜆𝑖 we use
the solutions obtained by (4.2)–(4.4) belonging to 𝜆𝑖−1 as a start for (4.2)–(4.4)
belonging to 𝜆𝑖.

4.2. Cross Validation (CV)

The optimal 𝜆 from a set of {𝜆1, . . . , 𝜆𝐿} can be chosen by K-fold CV. More pre-
cisely, denote with ℱ1, . . . ,ℱ𝐾 the folds, i.e. a non-overlapping partition of 1, . . . , 𝑇
into K sets. In the case of trend filtering these should be chosen in an interleaved
way, which means that for any time point 𝑡 belonging to a certain fold ℱ𝑘, the
elements of the neighbouring time points belong to other folds.

For each pair (𝜆𝑖,ℱ𝑘) we calculate 𝐶𝑉 (𝜆𝑖,ℱ𝑘) :=
∑︀
𝑡∈ℱ𝑘

⃦⃦
⃦ilrV(𝑥𝑡)− �̂�−ℱ𝑘

𝑡

⃦⃦
⃦
2

,

where �̂�−ℱ𝑘
𝑡 denotes the prediction, at 𝑡 ∈ ℱ𝑘, of the estimator calculated on the

subset of observations with indices {1, . . . , 𝑇} ∖ ℱ𝑘.
To chose 𝜆, one can take the argmin in {𝜆1, . . . , 𝜆𝐿} of

𝐶𝑉 (𝜆) :=
1

𝑇

𝐾∑︁

𝑘=1

𝐶𝑉 (𝜆,ℱ𝑘).
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Denoting with 𝜆⋆ the argmin of the latter, another popular choice is to use the
one standard error rule to choose the optimal 𝜆, as often done for usual univari-
ate trend filtering. Thus we choose the optimal 𝜆 as the maximal 𝜆 satisfying
𝐶𝑉 (𝜆) ≤ 𝐶𝑉 (𝜆⋆) +𝜎(𝜆⋆), where 𝜎(𝜆) is the standard deviation of the data points
𝐶𝑉 (𝜆,ℱ1), . . . , 𝐶𝑉 (𝜆,ℱ𝐾), see [4].

5. Coronavirus data

To illustrate the utility of the method presented above we will look at the number
of COVID-19 infections in 9 different countries in the time period from 2020-03-01
until 2020-07-31. This data set is publicly available at https://ourworldindata.
org/coronavirus-testing.

In Figure 1 we show the absolute number of reported infections per 100000
inhabitants. As for a very few days the reported number of positive cases are zero,
we used time series imputation from the R package forecast [6] to replace the zeros
by positive numbers. Most countries show a very similar pattern and reached their
maximum number of cases around April; except for Sweden which reached it in
June/July. We can see that some countries like Sweden, Spain and Belgium had
much higher peaks. However, we can also see that the periods of high values around
the peaks also differs a lot among the countries.

Figure 1. Number of reported COVID-19 infections per 100000
inhabitants from 2020-03-01 to 2020-07-31 for different countries.

To gain more insight into how one country performed in comparison to the
whole group of countries we use the method described above. We estimate the
multivariate trend filtering fits �̂�𝑡 for 𝑥𝑡, as described above, for 𝜆 chosen by𝐾 = 10
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fold cross validation and the one standard error rule, see Subsection 4.2, with
𝜆 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30}. In Figure 2, we plot the first pivot coordinate√︁

8
9 log

(︂
(𝑥𝑡)𝑖

8
√∏︀9

𝑗 ̸=𝑖(𝑥𝑡)𝑗

)︂
, where 𝑖 is the index corresponding to the 𝑖-th country in

𝑥𝑡, and the estimated trend. Pivot coordinates can be used to compare the fit (or
number of cases) of one country to the geometric mean of the fit (or number of
cases) of the rest of the group, containing all relative information of a specific part
to the remaining parts in the considered composition [5].

Figure 2. Positive COVID-19 cases in first pivot coordinate per
country. The black dots are the measured number of cases in the
first pivot coordinate for each country. Equally, the red lines are its

compositional trend filtering fits for 𝜆 = 10.

It can be seen in Figure 2 that, compared to the whole group, Germany and
Finland have had a comparatively low number of cases, as the values are mainly
negative. Finland experienced a trend change in the middle/end of March with
rising numbers compared to the geometric mean of the rest of the group, whereas
Germany experienced a downward one. It is interesting to see that many coun-
tries have had a change in trend since mid/end June - e.g. Belgium, Germany and
Sweden. For instance, since the absolute numbers in Spain and Belgium have been
rising quickly in July, more than in other countries, also a relative increase com-
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pared to the other countries is visible. The contrary behaviour can be seen for
Sweden, with a decay in relative number in the beginning of July. It is also sur-
prising to see that Italy, which had the highest infection numbers at the beginning
all over Europe, has constantly been improving compared to the other countries,
and is by the end of June doing better than average. The Netherlands have at the
end of July had average numbers however, its trend might have been alarming.

Furthermore, for a fixed country it might also be interesting to see how the
trend of positive cases behaves compared to one other country. For this we display
in Figure 3 the log-ratios of Austria and each country present in the composition.

Figure 3. Log-ratios of Austria and all other countries of the com-
position. The black points are the observations, in red we display
the compositional trends and in blue the regular univariate trend-
filtering estimates. 𝜆 was chosen in both cases by cross validation

with the one standard error rule.

We plot the compositional trend filtering fit described by the method above, which
was also used for Figure 2, in log-ratios in red. Additionally, we show the univariate
non-compositional trend filtering fits to each log-ratio pair in blue with 𝜆 obtained
by cross validation with the one standard error rule as implemented in the R
package [2]. We can see from the log-ratio between Austria and Germany that
since July Austria has increasingly more cases than Germany. This upward trend
has already started at the beginning of May when Austria still had less positive
cases. At the same time the trend for the log-ratio between Austria and Italy
started to change. This means that the positive cases per 100000 inhabitants in
Austria is growing at a faster rate compared to each, Germany and Italy, since the
beginning of July. Something similar holds for the pair Austria and Finland. At
the end of July we can see that the cases in Austria compared to Italy or Finland
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show a similar trend and numbers – around two. This is surprising as Italy notably
started off with the highest infection numbers. At last, since July, Belgium and
Spain seem do be doing worse and worse compared to Austria, indicated by a very
steep downward trend. The non-compostional univariate trend filtering estimates
(in blue) show a slightly different picture. The compositional approach differs
sometimes vastly, e.g. for the log-ratio Austria-France, and seems to follow the
data better where the non-compositional approach oversmooths, e.g. the log-ratio
Austria-Spain in March, end of April and end of June. We also note that the
compositional nature leads to trends which on the one hand are at times very
smooth, and on the other, also display rapid changes.

Figure 4. The black dots show for every country the recorded
number of positive cases per 100000 inhabitants. The red lines dis-
play the estimator 𝑃𝑡�̂�𝑡. The blue lines display the trends estimated

by non-compositional trend filtering.

The fit (�̂�1, . . . , �̂�𝑇 )′ can also be back-transformed to (�̂�1, . . . , �̂�𝑇 )′ into the
simplex, and the elements per time point sum up to 1. If we want to present those
back-transformed fits together with the absolute numbers of infections per 100000
inhabitants, we need to multiply with the total 𝑃𝑡 per time point. However, as we
want to keep the smoothness of the fits, we will multiply with a smoothed total, as
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described at the end of Section 3. To do this we sum up at each time point for all
countries the number of positive cases, log-transform the latter and divide it by the
absolute maximum, fit a smoother – in our case a univariate trend filter from the
R package genlasso [2] with 𝜆 = 1 – and transform it back by multiplying it first
with the absolute maximum of the log-transform and then taking its exponential.
In Figure 4 we display the fit 𝑃𝑡�̂�𝑡 to the original points in red. In blue we show
the univariate non-compositional trend filtering fits for 𝜆 = 1, where the data were
first divided by the maximum, then the trend filtering fit was obtained, and lastly,
the latter was again multiplied by the maximum. Dividing the data by the absolute
maximum before fitting puts the 𝜆 on a similar footing for comparison with 𝑃𝑡�̂�𝑡.
Note that the estimator 𝑃𝑡�̂�𝑡 always sums up to the total 𝑃𝑡, as we are taking a
compositional approach. It is interesting to see that for most countries the highest
number of cases had been reached around mid/end of March with a change in trend
since then. Also note that the fitted trend to Italy in the first half of April seems
to be larger than one would expect from the data in Euclidean space. Examining
the data at this time more closely we can see that the number of positive cases
actually is very high for two consecutive days, before suddenly dropping and so
the compostional fit reflects this better than the non-compositional one. Lastly,
the non-compositional approach gives a negative estimate at the beginning of the
measurements and shows a slightly different behaviour at the peaks.

6. Summary and conclusions

In this paper we presented a new method for fitting piecewise compositional linear
trends to compositional time series. The method we proposed is a direct extension
of univariate trend filtering to the compositional setting, which is multivariate
by definition. This was done by reformulating the optimization problem in the
appropriate Aitchison geometry on the simplex. We showed how to derive the
problem in the usual Euclidean geometry, expressed in ilr coordinates, and that the
solution does not depend on the specific choice of ilr coordinates. We proceeded
by describing how to efficiently solve the problem through an ADMM algorithm.

To show the usefulness of our method, we looked at the number of COVID-
19 cases in different European countries in the period from March to July 2020.
Namely, once the compositional trend was fitted, we explored the trends in Pivot
coordinates and log-ratio representations. This gave insights into how the COVID-
19 infections in some countries behaved compared to the compositional mean of
other countries, during the said time period.

The fitted trends have been back-transformed to the simplex. The results have
to sum up to 1 per time point, and the values cannot be negative – which is often a
desirable property. After multiplication by a smoothed total for every country, the
total infection numbers can be compared to the smooth line, which still represents
relative information to all other countries, and deviations might indicate interesting
phenomena (higher variability, etc.).

Additionally to the compositional time series case presented in this paper, one
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could look at various extensions. For example, instead of looking at compositional
data with a time stamp, one could also look at compositional data with a geographic
stamp. That means that we would look at a random variable 𝑥(𝑢,𝑠) ∈ 𝒮𝐷−1 with
(𝑢, 𝑠) being a geographic location. Such a case might be interesting for geochemical
exploration where at certain geographic points we measure the concentration of
elements. For the latter a shift in concentrations might correspond to interesting
areas, thus leading to piecewise constant trend filtering in the compositional sense.
Another extension might consider robustification of the proposed method. Outliers
are quite common in any statistical setting and compositional data are just as much
affected by such. Therefore, investigating a compositionally robust definition of
trend filtering might be interesting.
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Abstract

We propose a novel algorithm for minimizing communication costs of
multi-threaded and distributed actor systems, to gain performance advan-
tage by dynamically adapting to the structure of actor communication. We
provide an implementation in Circo, an open source actor system, and show
promising experimental results.

Keywords: Actor model, concurrent systems

1. Introduction and related work

Actor-based concurrency models [1] have been used for decades for scalable dis-
tributed applications [11]. Actors – the primitives of concurrency – encapsulate
their state, communicate through asynchronous messaging and form arbitrary topo-
logical relations.

Various frameworks and languages permit actor programming, including Akka
[15], CAF [7] and Pony [10]. Applications include banking and telecom transaction
processing, complex event stream processing and large-scale analytical pipelines.
The concurrency model of microservice architectures [8] corresponds with the ac-
tor model, and actor frameworks can be applied directly in cloud environments
(e.g. Orleans [4]). Driven by the popularity of cloud and Internet of Things (IoT)
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solutions and the stagnating performance of single CPU cores, the last few years
has seen an increased interest in actor systems. We believe that actor systems also
have a great potential for artificial intelligence, by providing an efficient tool to
incorporate sparsity into deep learning.

1.1. Why actors?

Programs built using other programming models – especially the synchronous ones
– may be easier to reason about, but the actor model allows unlimited scaling and
a variety of performance optimizations thanks to a few key properties:

1. No shared state: An actor can access only its own state directly, and every-
thing else must be done through messaging. Shared state is an abstraction
famous for introducing hard to find bugs called data races in concurrent pro-
grams. Actor programming does not expose the programmer to the risks of
shared memory, leaving shared memory to automatic performance optimiza-
tions.

2. No global synchronization mechanism included: Synchronization must be im-
plemented on the actor level, using the fact that message processing of a
single actor is serializable.

3. Location transparency: The act of sending a message does not depend on the
location of the target actor – sending messages within a machine is the same
as between machines.

Global synchronization performance degrades as the physical diameter of the
system grows, because information cannot travel faster than light. Similarly, pro-
viding the illusion of synchronous shared state – which does not exists in reality - is
only possible with introducing a latency proportional to the diameter of the subsys-
tem containing the state. Not having these features allows the actor model to scale
arbitrarily without performance loss. The third property, location transparency,
allows the execution environment to optimize actor placement and message passing
during run-time without actors noticing it.

1.2. Communication complexity

Communication is a common performance bottleneck of distributed systems, even
on single-node multi-core systems, where shared-memory communication between
cores works well, but brings in significant latency.

Communication is layered in modern hardware: network is slower than shared-
memory which is slower than in-thread (cached) data passing. This layeredness of
technology is a result of physical and technological constraints, namely the speed
of light, maximal density of hardware elements, and manufacturing costs. It is
reasonable to think that these constraints and the technology layers will not dis-
appear soon. Even if the layers merge, messaging latency remains dependent on
physical distance, because information cannot travel faster than light. Communi-
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cation therefore will remain a performance limiting factor of distributed systems
for long.

Large scale data processing systems apply data locality to minimize the cost
of communication – bringing computation to the data [6]. Disk-based data local-
ity was a key success factor of MapReduce, but as network technology outpaced
local storage speed, memory locality became the primary goal. Data processing
frameworks are now often aware of locality, with regard to NUMA (Non-Uniform
Memory Access) patterns [13]. Actor systems are also employing techniques to
deal with locality in non-uniform shared memory: a locality-guided scheduler for
CAF was published in [14], and locality-aware work stealing scheduler methods was
studied in [2].

The main goal of this paper is to provide a general method to reduce communi-
cation overhead in distributed systems. We formulate a solution in the context of
the actor model: the decentralized “infoton optimization” algorithm is presented,
which explores and exploits the structure of communication to minimize communi-
cation cost by co-locating actors during run-time. The computational cost of this
algorithm is proportional to the number of actor messages.

2. Infoton optimization

To reduce communication costs during execution of an actor system, frequently
communicating actors are to be moved to a common, or at least to nearby locations
– e.g. to the same NUMA location, computer or data center.

Infoton optimization is a physics-inspired model, essentially a decentralized,
scalable version of force-directed graph drawing [12] – a physical system of bodies
with cohesive forces, where the energy of the system is to be minimized. Infoton
optimization maps intensity of actor communication to forces of the physical sys-
tem and approximates the behavior of the system in a way that needs no central
coordination.

Actors and schedulers (threads executing actor code) are mapped to 3D Eu-
clidean space: The main idea is that distance approximates communication cost,
and actors move towards their communication partners to minimize communication
cost.

Euclidean space is chosen on purpose as the model of the physical universe,
where communication cost often depends on physical distance – even multicore
CPUs evolve to be 3D structures [3]. However, as network and other communication
costs don’t always match the strict Euclidean properties, other spaces might also
be investigated.

Schedulers are embedded in a way that their distance represents communication
overhead, either by static positioning, or by using network coordinates. Actors
move in the space during optimization and are continuously migrated to the nearest
scheduler.
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2.1. Assumptions
Infoton optimization assumes the following properties of the actor system:

1. Actors are significantly more numerous than threads.
2. Actor communication is structured: Only a small, slowly changing portion of

possible actor connections is used.
3. Actors can be migrated: Computational load with actors can be moved be-

tween schedulers, affecting future communication cost.

2.2. What is an infoton
The infoton is the quantum of actor forces, a force-carrying particle – like photons
in physics – that:

1. Is coming from a source location.
2. Carries a positive scalar value called energy.
3. Has a sign.

2.3. Infoton action
When the infoton acts on an actor, it either pulls or pushes the actor toward/away
from the source location of the infoton. The direction of the actor movement
depends on the sign (positive pulls), while the distance is proportional to the
energy of the infoton.

Actors have no inertia in this model, they only move when infotons act on
them. This way inactive actors introduce no computational overhead. The physical
analogy is that actors move in thick fluid.

2.4. The first force
We define two major forces of infoton optimization. The first force of infoton
optimization brings communicating actors toward one another.

1. An infoton is attached to every message passed between actors, holding the
position of the source actor and a unit of energy with positive sign.

2. When the message arrives at its destination actor, the infoton attached to it
acts on that actor, pulling it towards the source of the message.

2.5. The second force
Another force spreads actors in the segment of the space near schedulers, avoiding
all concentrating around a single point:

1. When a message arrives, the scheduler that executes the target actor creates
a new “scheduler infoton”, with itself as source.

2. Scheduler infotons either pull or push actors toward or away from the sched-
uler, depending on the load of the scheduler.
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3. Implementation details

We have added an experimental implementation to the Circo [9] actor system
(where the main author and maintainer is the main author of this paper). Circo
is written in Julia [5], a dynamically typed, garbage collected general-purpose lan-
guage designed for numerical computing.

Unlike most contemporary actor systems, Circo implements multi-threading
by running several single-threaded schedulers that communicate through shared
memory and form the “host cluster”. Similarly, distribution of work between hosts
is done in a separated cluster, which we call “the” Cluster, because we think that
the Actors stick to schedulers by default, but can migrate between them by using
the migration service.

For simplicity the current implementation of infoton optimization assumes that
communication overhead between any pair of schedulers is fixed, thus schedulers are
statically positioned. This, however, can be extended to be dynamically adjusted.

The algorithm can be customized with the following parameters:

1. I – A proportionality constant of actor forces, similar to the G gravitational
constant in physics. It connects the energy of the acting infoton to the length
of movement caused by the action. Higher values cause more intense actor
movement.

2. TARGET_DISTANCE – Force-directed graph drawing algorithms often use
repulsive forces between every pair of nodes to avoid the concentration of
nodes. The second force of infoton optimization has a similar goal, but we
have found that the algorithm is more stable with a quirk that approximates a
hidden repelling force acting only at low distances: When the source position
of a pulling infoton is closer to the target actor than TARGET_DISTANCE,
its effect is extinguished.

3. SCHEDULER_TARGET_LOAD – We define the load of a scheduler as the
total number of messages waiting to be processed. This parameter sets the
load that every scheduler tries to maintain independently. Scheduler infotons
emitted by a scheduler will pull actors when its load is lower and push when
higher.

4. SCHEDULER_LOAD_FORCE_STRENGTH – Proportionality constant of
scheduler infoton energy.

Following is the Julia code that calculates the movement of an actor caused by
an infoton acting on it (error handling is not shown):� �

function Circo.apply_infoton(targetactor, infoton)
diff = infoton.sourcepos - targetactor.core.pos
difflen = norm(diff)
energy = infoton.energy
if energy > 0 && difflen < conf[].TARGET_DISTANCE

return nothing
end
stepvect = diff / difflen * energy * conf[].I
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targetactor.core.pos += stepvect
return nothing

end� �
The code to generate the “scheduler infoton” when delivering a message:� �
function Circo.scheduler_infoton(scheduler, actor)

dist = norm(scheduler.pos - actor.core.pos)
loaddiff = Float64(conf[].SCHEDULER_TARGET_LOAD - length(scheduler.msgqueue))
if loaddiff == 0.0 # Nothing to do at target load

return Infoton(scheduler.pos, 0.0)
end
energy = sign(loaddiff) *

log(abs(loaddiff)) *
conf[].SCHEDULER_LOAD_FORCE_STRENGTH

return Infoton(scheduler.pos, energy)
end� �
Although Circo supports multi-threaded and distributed settings, for easier

experimentation we have created a simulation environment1 that starts several
schedulers on the same thread and allows changing of optimization parameters
during run-time.

4. Experiments

We have conducted experiments with two actor programs:

1. Linked List: Generates a linked list of actors, each storing a single scalar,
then runs reduce (sum) operations on the list concurrently. When an op-
eration finishes, immediately starts a new one, maintaining 100 concurrent
operations.

2. Search Tree: Generates a binary search tree of actors, leafs hold 1000 scalars,
inner nodes contain only a split value and addresses of two children. Fills the
tree with random data and runs search operations concurrently (during and
after filling, maintaining 500 concurrent searches).

In both cases a coordinator actor manages the creation of the data structure and
sends the reduce/search operations to it. Results are sent back to the coordinator,
so the computing graphs are cyclic: A single cycle containing every actor of the
linked list, and a unique cycle for every leaf of the search tree.

We have introduced “domain knowledge” to the search tree through two simple
actor behaviors, improving performance. We call these behaviors domain specific,
because they reflect information about the structure of the actor system (that it is
a tree). First, the coordinator actor goes back to the fixed position (−10, 0, 0) every
time it receives a search response. This helps stabilizing the tree layout. Second,
tree nodes periodically send a negatively signed infoton to their siblings in order to

1To reproduce the experiments, open https://github.com/Circo-dev/ExploreInfotonOpt.
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repel each other. This is intended to open up the tree, making easier for siblings
to separate.

Actors are continuously moving and occasionally changing schedulers when they
get closer to another one. Messages are considered local if source and destination
actors run on the same scheduler. As the direct indicator of optimization success
we have measured the ratio of the number of local messages to the total number
of messages.

To demonstrate that it is possible to find a single set of parameters for which
infoton optimization yields good results for a wide variety of actor programs, we
have run differently sized versions of the two programs with the same fixed infoton
optimization parameters, selected manually:

• I = 0.2,
• TARGET_DISTANCE = 200.0,
• SCHEDULER_TARGET_LOAD = 13,
• SCHEDULER_LOAD_FORCE_STRENGTH = 0.02

Six schedulers were used, positioned at face-centers of a cube: (−1000, 0, 0),
(1000, 0, 0), (0,−1000, 0), (0, 1000, 0), (0, 0,−1000), (0, 0, 1000).

Figures in this paper are screenshots of the Circo tool “Camera Diserta”, used to
monitor and validate actor layout. Grey lines are local, orange lines are non-local
connections between actors. Schedulers are drawn as blue cubes, test coordinator
as a red sphere.

Figure 1 illustrates the layout of the linked list program with 200 (71%), 500
(83%), 1000 (85%), 2000 (89%), 4000 (89%) and 8000 (89%) (row major order) list
item actors. Percents in parentheses are local message ratios of the last 10 seconds
before taking the screenshots. (When actors are distributed randomly between six
schedulers, local message ratio is 1/6 (17%).)

Figure 2 illustrates the layout of the search tree program with 62 (51%), 126
(57%), 254 (64%), 506 (66%), 1018 (70%), 2028 (73%), 4046 (74%) and 8080 (76%)
(row major order) tree node actors. Percents in parentheses are local message ratios
of the last 10 seconds before taking the screenshots. Connections from leafs to the
coordinator are not drawn.

Figure 3 illustrates the layout of the search tree without the domain-specific
behaviors, with 62 (45%), 96 (46%), 254 (51%), 510 (50%), 1017 (51%), 2004 (56%)
tree node actors. These layouts are not stable, they are slowly and continuously
restructuring while maintaining high local message rate. Note that connections
near the leafs have much less message traffic than near the root, so the optimization
is still successful despite the high amount of non-local connections.

Infoton optimization radically improved message locality in all three experi-
ments, reducing inter-scheduler communication by 43–87% compared to the ran-
dom placement baseline. Figure 4 illustrates this by showing local message ratios
achieved after optimization.
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Figure 1. Optimized layouts of a linked list of 200, 500, 1000,
2000, 4000 and 8000 actors on 6 schedulers.
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Figure 2. Optimized layouts of a binary tree built from 62, 126,
254, 506, 1018, 2028, 4046 and 8080 actors on 6 schedulers.
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Figure 3. Optimized layouts of a binary tree without the domain-
specific behaviors, built from 62, 96, 254, 510, 1017, 2004 actors on

6 schedulers.
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Figure 4. Local message ratios achieved at different program sizes
on 6 schedulers, and random actor placement as baseline.

5. Conclusions and future work

We have introduced infoton optimization, and demonstrated in a limited scenario
that it is capable of distributing computational load of actor systems while opti-
mizing message locality. The algorithm is decentralized and its cost is proportional
to the number of messages.

The algorithm has several parameters that need to be tuned manually. Manual
tuning of large decentralized systems may not always be feasible, so future work
should focus on meta-optimization or elimination of these parameters.

One of our examples introduces domain-specific constraints on how actors be-
have, which improves the efficiency of the optimization significantly. However, the
optimization works well without these domain-specific behaviours too. This shows
that the algorithm is easily customizable with (application-specific) domain knowl-
edge, and for some actor programs such customization may result in significant
performance gain.

In the simple version of the algorithm discussed in this paper, actors behave
uniformly when infotons act on them. Introducing “mass” or “size” properties of
actors to reflect the cost of migration is however a promising extension of the
algorithm.

Several further aspects of infoton optimization are to be clarified and detailed
as future work. For example, convergence criteria of infoton optimization and
optimality of the results are studied in the context of stochastic optimization.
Detailed benchmark experiments are also being performed, comparing common
actor systems with Circo.
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Abstract

Beta-Poisson (BP) models employ Poisson distributions, where the corre-
sponding rate parameter itself is a Beta-distributed random variable. They
have been shown to appropriately mimic gene expression distributions in
the context of single-cell ribonucleic acid sequencing (scRNA-seq), a break-
through technology allowing to sequence information from individual biologi-
cal cells and facilitating fundamental insights into numerous fields of biology.
A prominent scRNA-seq data analysis task is to identify differences in gene
expression distributions across two conditions. To validate new statistical ap-
proaches in this context, one typically has to rely on accurate simulations, as
usually no ground truth for an assessment is available. We introduce several
simulation procedures that allow to generate differential distributions (DDs)
based on BP models. In particular, we describe how to create different types
of DDs, mirroring various sources or origins of a difference, and different
degrees of DDs, from a weak to a strong difference. The soundness of the
simulation procedures is shown in a validation study in which theoretically
expected model properties of the DD simulations are confirmed. The findings
are in principle not restricted to the scRNA-seq context and may be gener-
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ally applicable also to other application areas. The simulation approaches
are implemented in the publicly available R package SimBPDD.

Keywords: Beta-Poisson model, differential distributions, single-cell RNA se-
quencing, Wasserstein distance

AMS Subject Classification: 62P10, 62-04, 62-08, 92-08

1. Introduction

Beta-Poisson (BP) models, sometimes also referred to as Poisson-Beta models,
employ Poisson distributions, where the corresponding rate parameter itself is a
Beta-distributed random variable [3, 4]. Thus, the BP distribution is an example of
a mixed Poisson distribution [6] and a discrete compound distribution, respectively.
It is used in various theoretical and practical applications [8, 13, 15, 17].

Specifically, the BP distribution has been recently used in the biological context
to model single-cell ribonucleic acid sequencing (scRNA-seq) data [15, 17]. Due
to major technological advances, it is nowadays possible to sequence information
from individual biological cells. Such single-cell sequencing, and in particular the
scRNA-seq, enables the quantification of cellular heterogeneity and provides new
fundamental insights into various biological fields [16], thus being highly relevant.
Along with the ever increasing amount of produced scRNA-seq data, there is a need
to develop statistical methods for the analysis of such data [1]. The most striking
difference compared to previous data obtained by bulk experiments is that gene
expression in scRNA-seq data is available over multiple cells and not only as an
average single point value. Consequently, models for scRNA-seq gene expression
should take the form of distributions. Moreover, they should take account of the
specific nature of scRNA-seq data (e.g. abundance of zero expression or increased
variability). Besides other approaches, the BP distribution considered in this paper
has been shown to model scRNA-seq data appropriately, where there are different
procedures for model fitting and estimation of model parameters [2, 15].

To evaluate novel statistical methods in scRNA-seq data analysis, simulations
play a very important role, as typically no ground truth is available for real data.
For instance, to adequately test and validate differential expression methods for
scRNA-seq data [2], it is important to simulate differential distributions (DDs) in
a reliable way. While there are already methods to do so [18], we here explicitly
focus on a specific procedure to generate DDs in the scRNA-seq context using BP
models. In particular, we describe how to create different types of DDs, mirroring
various sources or origins of a difference, and different degrees of DDs, from a weak
to a strong difference.

While the focus of this paper is on using BP models in the context of scRNA-seq
data, the generation of DDs for the BP models is generally applicable also to other
application areas, for both theoretical and practical considerations.
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2. Beta-Poisson models in scRNA-seq data

We here consider Beta-Poisson (BP) models as introduced in [15], which have been
found to appropriately mimic scRNA-seq data. Precisely, in [15], three different
BP models are considered: a three-parameter BP model (BP3), a four-parameter
BP model (BP4) and a five-parameter BP model (BP5).

The BP3 model is a mixture of Poisson distributions Poi(𝜆1𝑢) with mean 𝜆1𝑢,
where 𝜆1 ∈ (0,∞) denotes a scaling parameter and 𝑢 ∼ Beta(𝛼, 𝛽) has a Beta
distribution with parameters 𝛼 ∈ (0,∞) and 𝛽 ∈ (0,∞):

𝑋 ∼ BP3(𝑥|𝛼, 𝛽, 𝜆1) := Poi(𝑥|𝜆1 Beta(𝛼, 𝛽)).

Here, 𝛼 is a shape parameter, where a large 𝛼 indicates a high burst frequency
(i.e. transcription rate, where transcription bursts correspond to an “on” state),
and 𝛽 is a scale parameter, with a large 𝛽 indicating a high burst size [15, 17]. We
can interpret this in the way that 𝛼 may reflect among others the number of zero
expression values (i.e. the proportion of zero expression), while 𝛽 may mirror the
size or magnitude of the non-zero expression values.

According to [15], the mean and the variance of the BP3 model are given by

E(𝑋) = 𝜆1
𝛼

𝛼+ 𝛽

and
Var(𝑋) = 𝜆1

𝛼

𝛼+ 𝛽
+ 𝜆21

𝛼𝛽

(𝛼+ 𝛽)2(𝛼+ 𝛽 + 1)
,

respectively.
As the BP3 model can only account for count data (i.e. non-negative integers),

the BP4 model is proposed in [15], which employs an additional parameter 𝜆2 ∈
(0,∞) to allow for modeling non-negative real-valued data, i.e., the usual data
format we have to deal with after normalization of the raw scRNA-seq count data:

𝑌 ∼ BP4(𝑥|𝛼, 𝛽, 𝜆1, 𝜆2) := 𝜆2 BP3(𝑥|𝛼, 𝛽, 𝜆1).

In addition to what has been done in [15], straightforward calculations yield

E(𝑌 ) = 𝜆2𝜆1
𝛼

𝛼+ 𝛽

and
Var(𝑌 ) = 𝜆22

(︂
𝜆1

𝛼

𝛼+ 𝛽
+ 𝜆21

𝛼𝛽

(𝛼+ 𝛽)2(𝛼+ 𝛽 + 1)

)︂
.

Finally, the BP5 model has an additional parameter 𝑝0 ∈ [0, 1] explicitly capturing
the proportion of cells with zero expression (besides the parameter 𝛼 reflecting the
burst frequency, as discussed before):

𝑍 ∼ BP5(𝑥|𝛼, 𝛽, 𝜆1, 𝜆2, 𝑝0) := 𝑝01{𝑥=0} + (1− 𝑝0) BP4(𝑥|𝛼, 𝛽, 𝜆1, 𝜆2)1{𝑥>0},
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with 1 denoting the indicator function. In addition to what has been outlined
in [15], by applying corresponding formulas for mixture distributions, it can be
computed that

E(𝑍) = (1− 𝑝0)𝜆2𝜆1
𝛼

𝛼+ 𝛽

and
Var(𝑍) = (1− 𝑝0)(E(𝑌 )2 + Var(𝑌 ))− E(𝑍)2.

Note that for 𝜆2 := 1 and 𝑝0 := 0, the BP4 and the BP5 models actually reduce to
the BP3 model.

3. Simulating differential distributions for Beta-
Poisson models

The starting point of our procedure is a pre-processed (including quality control and
normalization) real-experiment scRNA-seq data set in form of a (𝐺×𝐶) expression
matrix, with 𝐺 denoting the number of genes and 𝐶 the number of cells. We first
fit a BP5 model to the expression data for each gene separately using the method
provided by [15] in the R [12] package BPSC and obtain corresponding parameter
estimates 𝛼, 𝛽, 𝜆1, 𝜆2 and 𝑝0. Further, we test for each gene whether its distribution
is indeed fitted well by the corresponding BP5 model, using the procedure proposed
in Section 3.2 in [15]. While filtering out low-quality fits, the cases (genes) that
show a good fit, together with their corresponding parameter estimates, are kept
in our pipeline and will be referred to as the controls in what follows.

We then simulate differential distributions (DDs) for each control 𝑍 separately
by manipulating the corresponding parameters 𝛼, 𝛽 and 𝜆1. We do not explicitly
consider a manipulation of the parameter 𝜆2 here, as 𝜆2 only controls the transfor-
mation from (a discrete spectrum of) non-negative integers (expression counts) to
(a discrete spectrum of) non-negative real values (expression after normalization).
Moreover, we do not consider a manipulation of the parameter 𝑝0 at this point;
however, this will be discussed at the end of the section, when we explicitly describe
how to construct differential proportions of zero expression (DPZ) in the context
of BP5 models.

Here, we consider multiplicative manipulations of the parameters 𝛼, 𝛽 and 𝜆1
as follows, where we set 𝜆 := 𝜆1 for simplicity (as 𝜆2 is anyway not explicitly
considered): 𝜆 ↦→ ∆𝜆𝜆, 𝛼 ↦→ ∆𝛼𝛼, 𝛽 ↦→ ∆𝛽𝛽. The parameters obtained by (one or
multiple of) these transformations are then the corresponding parameters in the
manipulated BP5 model 𝑍. As 𝜆 ∈ (0,∞), 𝛼 ∈ (0,∞) and 𝛽 ∈ (0,∞), it must hold
that ∆𝜆 ∈ (0,∞), ∆𝛼 ∈ (0,∞) and ∆𝛽 ∈ (0,∞), respectively, to get a reasonable
model.
We not only want to create DDs, but also to incorporate different degrees 𝜃 of
DD that range from weak to strong differences. Here, a degree 𝜃 of DD between a
control BP5 model 𝑍 and a manipulated BP5 model 𝑍 is first introduced using a
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multiplicative change (i.e., a fold change) with respect to the expected value:

E(𝑍) = 𝜃E(𝑍).

Inserting the corresponding expressions for the expected values and some algebra
yields

𝜃 = ∆𝜆 ·
∆𝛼𝛼+ ∆𝛼𝛽

∆𝛼𝛼+ ∆𝛽𝛽
. (3.1)

Hence, 𝜃 = 𝜃(∆𝜆,∆𝛼,∆𝛽) can be viewed as a function of ∆𝜆,∆𝛼 and ∆𝛽 , and the
degree of DD can be specified by varying ∆𝜆,∆𝛼 and ∆𝛽 , respectively. Vice versa,
we may consider ∆𝜆 as a function of 𝜃 in case ∆𝛼 and ∆𝛽 are fixed, i.e., ∆𝜆 = ∆𝜆(𝜃).
Analogously, ∆𝛼 = ∆𝛼(𝜃) in case ∆𝜆 and ∆𝛽 are fixed, and ∆𝛽 = ∆𝛽(𝜃) in case
∆𝜆 and ∆𝛼 are fixed. Note here again that 𝜃 generally refers to the degree of the
DD (weak to strong), while ∆𝜆,∆𝛼 or ∆𝛽 represents the model manipulation that
is necessary in order to achieve a DD of degree 𝜃.

To get an understanding of the influence of the single parameter manipulations
and to facilitate interpretability, we here first only consider those cases in which
only one of the three original BP5 model parameters is changed.

Case DLambda:

Here, the model is changed by manipulating the parameter 𝜆 only: 𝜆 ↦→ ∆𝜆𝜆, and
∆𝛼 = ∆𝛽 = 1.

By inserting the corresponding expressions in (3.1), we get

𝜃 = 𝜃(∆𝜆) = E(𝑍)/E(𝑍) = ∆𝜆,

i.e.,
∆𝜆 = ∆𝜆(𝜃) = 𝜃.

As 𝜃(0) = 0 and 𝜃(∆𝜆) → ∞ for ∆𝜆 → ∞, 𝜃 is bounded from below by zero, but
has no upper bound. Hence, the range for possible values of 𝜃 is 𝜃 ∈ (0,∞). DDs
of arbitrary degree can be created using either positively oriented or negatively
oriented fold changes. Here, a negatively oriented fold change means that E(𝑍) <
E(𝑍), hence, 𝜃 ∈ (0, 1). Conversely, a positively oriented fold change means that
E(𝑍) > E(𝑍), hence, 𝜃 ∈ (1,∞). For instance, a positively oriented fold change of
3 in our setting here practically has the same effect as a negatively oriented fold
change of 1/3, as we are only interested in the magnitude (i.e. the degree) of the
difference here, and not in the direction of the change.

A manipulation of the scaling parameter 𝜆 in the BP model, while keeping
Beta(𝛼, 𝛽) unmodified, changes location (mean) and size (variance). In contrast,
the shape should be affected only to a minor extent by a manipulation as here, if
at all [15, 17]. Moreover, a change of 𝜆 should not affect the proportion of zero
expression too much.
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Case DAlpha:

Here, the model is changed by manipulating the parameter 𝛼 only: 𝛼 ↦→ ∆𝛼𝛼, and
∆𝜆 = ∆𝛽 = 1.

By inserting the corresponding expressions in (3.1), we get

𝜃 = 𝜃(∆𝛼) = E(𝑍)/E(𝑍) =
∆𝛼(𝛼+ 𝛽)

∆𝛼𝛼+ 𝛽
,

i.e.,

∆𝛼 = ∆𝛼(𝜃) =
𝛽𝜃

(𝛼+ 𝛽)− 𝛼𝜃 .

As 𝜃(0) = 0 and limΔ𝛼→∞ 𝜃(∆𝛼) = 1+ 𝛽
𝛼 , 𝜃 is bounded from below by zero and has

an upper bound 1 + 𝛽
𝛼 . Hence, the range for possible values of 𝜃 is 𝜃 ∈ (0, 1 + 𝛽

𝛼 ).
DDs can be generated using positively oriented (i.e. 𝜃 ∈ (1, 1 + 𝛽

𝛼 )) or negatively
oriented (i.e. 𝜃 ∈ (0, 1)) fold changes. However, DDs of arbitrary degree can thus
be created using negatively oriented fold changes only.

Here, location, size and shape can change. Also, a manipulation of 𝛼 can affect
the proportion of zero expression.

Case DBeta:

Here, the model is changed by manipulating the parameter 𝛽 only: 𝛽 ↦→ ∆𝛽𝛽, and
∆𝜆 = ∆𝛼 = 1.

By inserting the corresponding expressions in (3.1), we get

𝜃 = 𝜃(∆𝛽) = E(𝑍)/E(𝑍) =
𝛼+ 𝛽

𝛼+ ∆𝛽𝛽
,

i.e.,

∆𝛽 = ∆𝛽(𝜃) =
(𝛼+ 𝛽)− 𝛼𝜃

𝛽𝜃
.

As 𝜃(0) = 1+ 𝛽
𝛼 and limΔ𝛽→∞ 𝜃(∆𝛽) = 0, 𝜃 is bounded from below by zero and has

an upper bound 1 + 𝛽
𝛼 . Hence, the range for possible values of 𝜃 is 𝜃 ∈ (0, 1 + 𝛽

𝛼 ).
DDs can be generated using positively oriented (i.e. 𝜃 ∈ (1, 1 + 𝛽

𝛼 )) or negatively
oriented (i.e. 𝜃 ∈ (0, 1)) fold changes. However, DDs of arbitrary degree can thus
be created using negatively oriented fold changes only.

Here, location, size and shape can change. However, a manipulation of 𝛽 should
in principle not affect the proportion of zero expression too much.

We now consider a specific scenario, in which the expected value of the control
BP5 model is the same as that of the manipulated BP5 model. The construction of
such a type of DD may be relevant in case one wants to check whether an scRNA-
seq differential expression analysis method is able to detect differences that are not
caused by differences with respect to means [7].
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Case DAlphaBeta:

Here, the model is changed by manipulating both the parameters 𝛼 and 𝛽 using a
common parameter ∆ := ∆𝛼 = ∆𝛽 : 𝛼 ↦→ ∆𝛼, 𝛽 ↦→ ∆𝛽, and ∆𝜆 = 1.

As 𝛼, 𝛽 ∈ (0,∞), it must hold that ∆ ∈ (0,∞) to get a reasonable model. As
discussed before, the expected value of the manipulated model 𝑍 in this setting is
the same as the expected value of the control model 𝑍: E(𝑍) = E(𝑍). We therefore
introduce DDs by considering a multiplicative manipulation (i.e., a fold change) 𝜃 of
the variance instead of the expected value, with somewhat more complex formulas
involved:

Var(𝑍) = 𝜃 Var(𝑍).

Thus,

𝜃 = 𝜃(Δ) = Var(𝑍)/Var(𝑍)

=
1

Var(𝑍)

[︃
(1− 𝑝0)

(︃(︂
𝜆1𝜆2

𝛼

𝛼+ 𝛽

)︂2

+ 𝜆2
2

(︂
𝜆1

𝛼

𝛼+ 𝛽
+ 𝜆2

1
𝛼𝛽

(𝛼+ 𝛽)2(Δ(𝛼+ 𝛽) + 1)

)︂)︃

−(1− 𝑝0)
2

(︂
𝜆1𝜆2

𝛼

𝛼+ 𝛽

)︂2
]︃

=
1

Var(𝑍)

[︂
(1− 𝑝0)

(︂
E(𝑌 )2 + 𝜆2E(𝑌 ) +

𝜆1𝜆2𝛽E(𝑌 )

(𝛼+ 𝛽)(Δ(𝛼+ 𝛽) + 1)

)︂
− E(𝑍)2

]︂
,

i.e., after some tedious calculations,

∆ = ∆(𝜃) =
1

𝛼+ 𝛽

⎛
⎝ 𝜆21𝜆

2
2𝛼𝛽

(𝛼+ 𝛽)2
(︁

Var(𝑍)𝜃+E(𝑍)2

1−𝑝0 − E(𝑌 )2 − 𝜆22𝜆1 𝛼
𝛼+𝛽

)︁ − 1

⎞
⎠

=
1

𝛼+ 𝛽

⎛
⎝ 𝜆1𝜆2𝛽E(𝑌 )

(𝛼+ 𝛽)
(︁

Var(𝑍)𝜃+E(𝑍)2

1−𝑝0 − E(𝑌 )2 − 𝜆2E(𝑌 )
)︁ − 1

⎞
⎠ .

For the degree of DD 𝜃, we have the upper bound

𝐿up := 𝜃(0)

=
1

Var(𝑍)

[︃
(1− 𝑝0)

(︃(︂
𝜆1𝜆2

𝛼

𝛼+ 𝛽

)︂2

+ 𝜆22

(︂
𝜆1

𝛼

𝛼+ 𝛽
+ 𝜆21

𝛼𝛽

(𝛼+ 𝛽)2

)︂)︃

− (1− 𝑝0)2
(︂
𝜆1𝜆2

𝛼

𝛼+ 𝛽

)︂2
]︃

=
1

Var(𝑍)

[︂
E(𝑍)

(︂
E(𝑌 ) + 𝜆2

(︂
1 +

𝜆1𝛽

𝛼+ 𝛽

)︂
− E(𝑍)

)︂]︂

and the lower bound

𝐿low := lim
Δ→∞

𝜃(∆)
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=
1

Var(𝑍)

[︃
(1− 𝑝0)

(︃(︂
𝜆1𝜆2

𝛼

𝛼+ 𝛽

)︂2

+ 𝜆22𝜆1
𝛼

𝛼+ 𝛽

)︃
− (1− 𝑝0)2

(︂
𝜆1𝜆2

𝛼

𝛼+ 𝛽

)︂2
]︃

=
1

Var(𝑍)
[E(𝑍)(E(𝑌 ) + 𝜆2 − E(𝑍))] .

Hence, the range for possible values of 𝜃 is 𝜃 ∈ (𝐿low, 𝐿up), where 0 < 𝐿low < 1 <
𝐿up. It is therefore not possible to create arbitrary degrees of DD in each case, be
it for positively or negatively oriented fold changes with respect to the variance.

Note again that here, only size and shape change, but not the location. However,
also the proportion of zero expression can change, as 𝛼 varies, even though a
variation of 𝛽 should have no effect on this.

Finally, we consider the construction of manipulated BP5 models with an ex-
plicit difference with respect to the proportion of zero expression, compared to the
control model.

Table 1. Settings for the DD simulations based on BP models,
where 5 corresponds to “no” and Xto “yes”.
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sa
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e
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DLambda 𝑍 ∼ BP5(𝑥|𝛼, 𝛽, 𝜆1, 𝜆2, 𝑝0) vs. 𝑍 ∼ BP5(𝑥|𝛼, 𝛽,∆𝜆𝜆1, 𝜆2, 𝑝0) 𝜆1 5 5 X
DAlpha 𝑍 ∼ BP5(𝑥|𝛼, 𝛽, 𝜆1, 𝜆2, 𝑝0) vs. 𝑍 ∼ BP5(𝑥|∆𝛼𝛼, 𝛽, 𝜆1, 𝜆2, 𝑝0) 𝛼 5 5 5

DBeta 𝑍 ∼ BP5(𝑥|𝛼, 𝛽, 𝜆1, 𝜆2, 𝑝0) vs. 𝑍 ∼ BP5(𝑥|𝛼,∆𝛽𝛽, 𝜆1, 𝜆2, 𝑝0) 𝛽 5 5 5

DAlphaBeta 𝑍 ∼ BP5(𝑥|𝛼, 𝛽, 𝜆1, 𝜆2, 𝑝0) vs. 𝑍 ∼ BP5(𝑥|∆𝛼,∆𝛽, 𝜆1, 𝜆2, 𝑝0) 𝛼, 𝛽 X 5 5

DPZ 𝑍 ∼ BP5(𝑥|𝛼, 𝛽, 𝜆1, 𝜆2, 𝑝0) vs. 𝑍 ∼ BP5(𝑥|𝛼, 𝛽, 𝜆1, 𝜆2, 𝑝0 + ∆𝑝0) 𝑝0 5 5 5

Case DPZ:

Here, the model is changed by manipulating the parameter 𝑝0 of the control BP5

model only: 𝑝0 ↦→ 𝑝0 := 𝑝0 + ∆𝑝0 , leading to differential proportions of zero
expression (DPZ). While there is no intuitive feeling for the parameter ranges of the
parameters 𝜆, 𝛼 and 𝛽, which is the reason why we used the models described above
to construct different degrees of DDs for the other cases, we have an immediate
and clear interpretability of the parameter 𝑝0.
As it has to hold that 𝑝0 + ∆𝑝0 ∈ [0, 1] (since 𝑝0 ∈ [0, 1]), we choose ∆𝑝0 as follows:

∆𝑝0 =

{︃
𝜃, 𝜃 ≤ 1− 𝑝0,
−𝜃, 𝜃 < 𝑝0,
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where 𝜃 ∈ (0, 0.5]. A change of 𝑝0 should obviously affect the proportion of zero
expression.

For an overview of all the considered settings described before, which are partly
similar to those in [14], see the summaries in Tables 1 and 2. For the cases
DLambda, DAlpha and DBeta, it is recommended to only consider negatively ori-
ented fold changes 𝜃 (i.e. 𝜃 ∈ (0, 1)), as all possible degrees of DDs can be achieved
only using them. For the case DAlphaBeta, all possible degrees of DDs indeed can-
not be achieved with negatively oriented fold changes, but neither this works for
positively oriented fold changes. Hence, for reasons of consistency, we by default
also focus on negatively oriented fold changes then.

Table 2. General overview of the different manipulated models
𝑍 of the control BP5 models 𝑍. Note that for the case DAl-
phaBeta, 𝐿low := 1

Var(𝑍)
[E(𝑍)(E(𝑌 ) + 𝜆2 − E(𝑍))] and 𝐿up :=

1
Var(𝑍)

[︁
E(𝑍)

(︁
E(𝑌 ) + 𝜆2

(︁
1 + 𝜆1𝛽

𝛼+𝛽

)︁
− E(𝑍)

)︁]︁
. Here, Δ may refer

to Δ𝜆,Δ𝛼,Δ𝛽 or Δ𝑝0 , according to the descriptions of the corre-
sponding cases in the main text.

case manipulation choice of ∆ possible values for 𝜃

DLambda E(𝑍) = 𝜃E(𝑍) ∆ = 𝜃 𝜃 ∈ (0,∞)

DAlpha E(𝑍) = 𝜃E(𝑍) ∆ = 𝛽𝜃
(𝛼+𝛽)−𝛼𝜃 𝜃 ∈ (0, 1 + 𝛽

𝛼 )

DBeta E(𝑍) = 𝜃E(𝑍) ∆ = (𝛼+𝛽)−𝛼𝜃
𝛽𝜃 𝜃 ∈ (0, 1 + 𝛽

𝛼 )

DAlphaBeta Var(𝑍) = 𝜃 Var(𝑍) ∆ = 1
𝛼+𝛽 × 𝜃 ∈ (𝐿low, 𝐿up)(︃

𝜆1𝜆2𝛽E(𝑌 )

(𝛼+𝛽)
(︁

Var(𝑍)𝜃+E(𝑍)2

1−𝑝0
−E(𝑌 )2−𝜆2E(𝑌 )

)︁ − 1

)︃

DPZ 𝑝0 = 𝑝0 + ∆ ∆ =

{︂
𝜃, 𝜃 ≤ 1− 𝑝0
−𝜃, 𝜃 < 𝑝0

𝜃 ∈ (0, 0.5]

4. Validation study

4.1. Evaluation tools

To validate the soundness of our simulation procedures, we employ the waddR tool
available at https://github.com/goncalves-lab/waddR. Specifically, a semi-
parametric, permutation-based test using the 2-Wasserstein distance is applied to
compare two distributions 𝐹𝐴 and 𝐹𝐵 [10].

In our validation study, for each instance (here, each gene), information about
𝐹𝐴 (the control model) and 𝐹𝐵 (the manipulated model) is available in the form
of a sample 𝑥𝐴,1, . . . , 𝑥𝐴,𝐶𝐴

from 𝐹𝐴, and 𝑥𝐵,1, . . . , 𝑥𝐵,𝐶𝐵
from 𝐹𝐵 , respectively,

where in general, 𝐶𝐴 does not need to equal 𝐶𝐵 . In the context of scRNA-seq
data, the sample sizes 𝐶𝐴 and 𝐶𝐵 correspond to the respective numbers of cells.
Using the corresponding empirical cumulative distribution functions 𝐹𝐴 and 𝐹𝐵 as
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approximations, the (squared) 2-Wasserstein distance 𝑑 is then computed by

𝑑(𝐹𝐴, 𝐹𝐵) ≈ 1

𝐾

𝐾∑︁

𝑘=1

(𝑄𝛼𝑘

𝐴 −𝑄𝛼𝑘

𝐵 )2

≈ (�̂�𝐴 − �̂�𝐵)2⏟  ⏞  
location

+ (�̂�𝐴 − �̂�𝐵)2⏟  ⏞  
size

+ 2�̂�𝐴�̂�𝐵(1− 𝜌𝐴,𝐵)⏟  ⏞  
shape⏟  ⏞  

variability

, (4.1)

with (𝑄𝛼𝑘

𝐴 )𝑘=1,...,𝐾 and (𝑄𝛼𝑘

𝐵 )𝑘=1,...,𝐾 denoting the 𝛼𝑘-quantiles of 𝐹𝐴 and 𝐹𝐵 ,
respectively, where we use equidistant levels 𝛼𝑘 = 𝑘−0.5

𝐾 , 𝑘 = 1, . . . ,𝐾. Here,
�̂�𝐴, �̂�𝐵 denote the corresponding empirical means, �̂�𝐴, �̂�𝐵 the corresponding em-
pirical standard deviations, and

𝜌𝐴,𝐵 := Cor((𝑄𝛼1

𝐴 , . . . , 𝑄𝛼𝐾

𝐴 ), (𝑄𝛼1

𝐵 , . . . , 𝑄𝛼𝐾

𝐵 ))

the sample Pearson correlation coefficient between (𝑄𝛼𝑘

𝐴 )𝑘=1,...,𝐾 and (𝑄𝛼𝑘

𝐵 )𝑘=1,...,𝐾 .
For the calculations, we use 𝐾 := 1000 here.

For each instance separately, we calculate the corresponding 2-Wasserstein dis-
tance as a test statistic and obtain a p-value using a semi-parametric, permutation-
based testing procedure involving a generalized Pareto distribution approximation
to estimate very small p-values accurately. Along with the p-value, the decom-
position of the 2-Wasserstein distance in (4.1) may help to judge whether overall
differences between two distributions (i.e. BP models) are mainly due to differences
with respect to location (referring to differences with respect to the expected val-
ues), size (referring to differences with respect to the standard deviations) and/or
shape (referring to differences not mainly caused by differences with respect to
expected values and/or standard deviations) [5, 9].

To explicitly test for DPZ, we use Fisher’s exact test, applied to each instance
separately.

4.2. Setting
In the following validation study, we start with the real-experiment scRNA-seq
data set in [11], downloaded from https://hemberg-lab.github.io/scRNA.seq.
datasets/human/tissues. The data set consists of log2-transformed TPM (tran-
scripts per million) expression values, normalized for both gene length and sequenc-
ing depth, for 301 cells, where we only keep those genes from the original data set
that are expressed in at least three cells. A BP5 model is fitted to each gene in the
data set using the R package BPSC [15]. Specifically, maximum likelihood estima-
tion combined with a binning approach to reduce computation time is employed to
estimate the model parameters, using the standard R function optim for optimiza-
tion. For more details, in particular the choice of initial values for the BP model
optimization, see Section 3 in [15]. To assess the quality of the BP5 model fits,
a goodness-of-fit test statistic comparing the observed and expected frequencies
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from the model is considered, where a Monte-Carlo method is used to generate a
suitable null distribution that is employed to derive a corresponding p-value 𝑃 . A
gene is then declared to be fitted well by the BP model if 𝑃 ≥ 0.05. For details,
see Section 3.2 in [15]. In our study, 8773 genes are declared to be fitted well by
the corresponding BP5 model. For the further analyses, we keep only these well-
fitted genes as controls, from which manipulated BP5 models are then constructed
according to the procedures discussed before. At this point, we emphasize that for
our purposes here, the real data set in [11] is only used for obtaining reasonable BP
model parameters in the scRNA-seq context, from which the control and manipu-
lated BP models in our purely numerical experiments are constructed. However, no
specific biological investigations or aspects are considered in our validation study.

For each case (see Tables 1 and 2), we here consider five different degrees 𝜃
of DD, ranging from weak to strong, where the explicit choices for 𝜃 are shown
in Table 3. Note that for the cases DLambda, DAlpha, DBeta and DPZ, these
degrees of DD can be achieved for all 8773 genes in the simulation study, and all
these genes are used in the studies. In contrast, for the case DAlphaBeta, due to
the existence of the lower bound 𝐿low, we only keep those genes for the study for
which the corresponding degree of DD can be achieved.

As representatives of the corresponding control and manipulated BP5 models,
for each gene, we draw a sample from each model. In this context, the samples from
a BP distribution are independent random draws. Specifically, the function rBP
from the BPSC package is used for drawing the samples from the BP distributions,
which combines the classical rpois and rbeta functions for randomly drawing from
Poisson and Beta distributions, respectively, in R. In our study, we for convenience
consider situations in which the sample size (i.e. the number of cells) 𝐶 := 𝐶𝐴 = 𝐶𝐵
in both conditions (control and manipulated) is equal and cover a range 𝐶 ∈
{25, 50, 75, 100, 500} of examples for small to large sample sizes.

Table 3. Different degrees of DDs specifically chosen in the
simulation study.

case
degree D1 D2 D3 D4 D5

DLambda, DAlpha, DBeta, DAlphaBeta 𝜃 = 10/11 𝜃 = 2/3 𝜃 = 1/2 𝜃 = 2/5 𝜃 = 1/3
DPZ 𝜃 = 0.05 𝜃 = 0.1 𝜃 = 0.25 𝜃 = 0.4 𝜃 = 0.5

weak strong

4.3. Results

We now discuss the results for the validation study in terms of detection power and
the decomposition of the 2-Wasserstein distance in the waddR test. In this context,
for each fixed case, degree of DD and number of cells, detection power is defined
as

detection power =
# p-values ≤ 𝛼
# tests (genes)

,
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Table 4. Detection powers (in %), based on p-values at a 5%
significance level, with varying degrees of DD (D1: weak to D5:
strong), numbers of cells 𝐶 ∈ {25, 50, 75, 100, 500} and cases from

Table 1.

case
degree D1 D2 D3 D4 D5

DLambda waddR DD 1.39 8.48 21.86 32.06 38.31
Fisher DPZ 0.25 0.40 0.48 1.03 1.87

DAlpha waddR DD 1.57 7.67 18.03 26.73 32.73
Fisher DPZ 0.30 1.45 5.11 10.48 16.95

DBeta waddR DD 1.61 8.36 20.43 30.42 36.24
Fisher DPZ 0.25 0.42 0.96 1.74 2.74

𝐶
=

2
5

DAlphaBeta waddR DD 1.35 2.50 5.50 0.87 12.66
Fisher DPZ 0.20 1.64 7.55 16.53 25.67

DPZ waddR DD 1.37 2.09 23.50 54.21 65.61
Fisher DPZ 0.26 0.39 12.71 68.97 77.03

DLambda waddR DD 2.17 17.91 40.61 51.61 58.00
Fisher DPZ 0.40 0.52 1.58 3.21 5.49

DAlpha waddR DD 2.14 14.89 34.22 44.88 50.95
Fisher DPZ 0.59 3.65 14.97 29.02 38.32

DBeta waddR DD 2.47 16.77 37.25 48.93 55.08
Fisher DPZ 0.34 0.80 2.43 5.32 8.96

𝐶
=

5
0

DAlphaBeta waddR DD 1.62 4.09 10.92 19.49 23.96
Fisher DPZ 0.51 4.29 19.48 37.09 53.11

DPZ waddR DD 1.99 6.62 50.83 75.56 81.33
Fisher DPZ 0.57 1.30 67.11 82.75 86.11

DLambda waddR DD 2.83 27.62 53.06 63.75 69.63
Fisher DPZ 0.54 0.97 2.58 5.04 8.36

DAlpha waddR DD 2.72 22.61 44.74 56.35 62.93
Fisher DPZ 0.68 6.38 26.38 42.00 51.76

DBeta waddR DD 2.36 25.35 49.29 60.31 67.05
Fisher DPZ 0.51 1.42 4.34 9.18 15.22

𝐶
=

7
5

DAlphaBeta waddR DD 1.83 6.01 18.10 26.30 32.86
Fisher DPZ 0.83 7.54 33.13 56.49 70.34

DPZ waddR DD 2.62 12.19 66.05 81.98 84.94
Fisher DPZ 0.81 7.61 79.41 86.78 88.93

DLambda waddR DD 3.00 34.41 60.21 71.21 76.56
Fisher DPZ 0.51 0.95 3.08 6.84 11.23

DAlpha waddR DD 2.90 28.78 52.10 63.48 69.96
Fisher DPZ 0.88 9.80 34.42 50.88 60.58

DBeta waddR DD 3.05 31.63 56.41 67.54 74.75
Fisher DPZ 0.59 1.89 6.19 12.90 20.81

𝐶
=

1
0
0

DAlphaBeta waddR DD 1.62 9.05 26.51 35.93 40.39
Fisher DPZ 0.98 11.42 45.10 69.32 81.52

DPZ waddR DD 3.64 17.85 74.09 83.98 86.91
Fisher DPZ 1.09 15.76 83.11 88.62 90.74

DLambda waddR DD 11.67 76.78 93.35 96.82 97.61
Fisher DPZ 0.81 5.30 15.05 30.35 46.37

DAlpha waddR DD 9.86 68.94 87.43 92.57 94.85
Fisher DPZ 2.68 53.03 78.10 88.13 92.83

DBeta waddR DD 10.40 72.12 90.07 94.94 96.90
Fisher DPZ 0.93 11.66 38.47 58.55 68.68

𝐶
=

5
0
0

DAlphaBeta waddR DD 3.04 62.78 78.12 85.17 89.33
Fisher DPZ 2.87 59.94 92.03 96.65 98.57

DPZ waddR DD 23.74 70.61 87.99 91.51 93.25
Fisher DPZ 27.50 82.00 92.10 96.57 98.34
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Figure 1: Decomposition results for the waddR test for the �xed number of cells C = 25, based on averages
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Figure 1. Decomposition results for the waddR test for varying
degrees of DD (D1: weak to D5: strong) and numbers of cells 𝐶 ∈
{25, 50, 75, 100, 500}, based on averages over those of the runs that
are considered to show significant DDs in that the corresponding

p-value is ≤ 0.05, with cases according to Table 1.

with 𝛼 ∈ (0, 1). Detection powers for the different numbers of cells for the stan-
dard level of 𝛼 = 5% are listed in Table 4. In general, for all cases, detection
powers meaningfully increase with increasing numbers of cells. Moreover, they in-
crease with increasing strength of the difference between the distributions (weak
to strong degree of DD; D1 to D5). While only very little detection power can be
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observed for the very weak degree of DD D1, the detection powers get bigger for the
stronger degrees of DD, for which the differences become more and more obvious.
This intuitively makes sense and confirms in particular that the implementation
of the varying degrees of DD from weak to strong in our simulation procedure
is valid. When comparing the p-values of the waddR test and the separate DPZ
test, we observe that DPZ can mainly be detected when the parameters 𝛼 or 𝑝0
are changed (i.e. in the cases DAlpha, DAlphaBeta and DPZ). In contrast, DPZ
typically plays only a minor role when the parameters 𝜆 or 𝛽 are changed (i.e. in
the cases DLambda and DBeta). This is in line with the theoretical properties and
the interpretation of the parameters of the BP model.

A further confirmation that the simulation procedures are able to reflect what
is to be expected from the underlying theory (Table 1) of the BP model is given
by the decomposition of the 2-Wasserstein distance into location, size and shape
parts within the waddR test. For the different degrees of DDs and numbers of
cells, Figure 1 shows for all cases the average fractions of the location, size and
shape parts with respect to the overall 2-Wasserstein distance for the waddR test
based on those runs with a p-value less than or equal to 5%. Again, the respective
decomposition patterns meaningfully become more and more obvious the larger the
number of cells is and the stronger the degree of DD is. In particular, the shape
and location component in the cases DLambda and DAlphaBeta, respectively, are
minor to negligible compared to the corresponding other components, in line with
the theoretical models according to Table 1. Moreover, for instance, the shape
component is more pronounced in cases in which the shape parameter 𝛼 is changed
(i.e. in the cases DAlpha and DAlphaBeta) than in those where 𝛼 is not changed
(i.e. in the cases DLambda and DBeta). An explicit change of the proportion of
zero expression by manipulating the parameter 𝑝0 (case DPZ) can obviously also
affect the shape.

5. Discussion

We have discussed how to create DDs of varying degrees, ranging from weak to
strong differences, for BP models, using various manipulations of the BP model
parameters. The soundness of our approaches has been shown in a validation study,
in which theoretically expected properties of our procedures have been confirmed.

In particular, based on the construction of our simulations and their validation
in the study, we can provide some guidance on how to generate DDs between two
BP models when the difference shall be of a specific type. For instance, when no
difference with respect to shape is desired, the DLambda simulation, in which only
the BP model parameter 𝜆 is changed, can be used. Similarly, in case no difference
with respect to location is desired, one can employ the DAlphaBeta simulation, in
which the BP model parameters 𝛼 and 𝛽 are changed using a common manipulation
parameter. In case there shall be no DPZ, one may rely on the DLambda or DBeta
simulations, in which only the BP model parameters 𝜆 and 𝛽, respectively, are
changed.
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Despite the focus of this paper is on the application field of scRNA-seq data, the
introduced procedures can in principle be applied also to settings in other research
areas.

While we have presented first attempts to simulate DDs for BP models here, we
by far did not consider all possible combinations of BP parameter manipulations.
This provides opportunities for future work, in which in particular interactions
of changes when multiple BP parameters are manipulated simultaneously could be
investigated in more detail. Moreover, up to now, only univariate BP distributions,
that allow for individual (gene-wise) modeling, have been considered in the models
here. However, certain variables may be correlated (such as genes in the scRNA-
seq context), and taking account of specific correlation structures is an important
issue that could be addressed in future extensions of the models.

Software availability. The simulations of DDs based on BP models presented in
this paper are implemented in the R package SimBPDD, which is publicly available
at https://github.com/RomanSchefzik/SimBPDD, along with documentation of
the functions.
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Abstract
In our research we have created a text summarization software tool for

Hungarian using multilingual and Hungarian BERT-based models. Two types
of text summarization method exist: abstractive and extractive. The ab-
stractive summarization is more similar to human generated summarization.
Target summaries may include phrases that the original text does not nec-
essarily contain. This method generates the summarized text by applying
keywords that were extracted from the original text. The extractive method
summarizes the text by using the most important extracted phrases or sen-
tences from the original text. In our research we have built both abstractive
and extractive models for Hungarian. For abstractive models, we have used
a multilingual BERT model and Hungarian monolingual BERT models. For
extractive summarization, in addition to the BERT models, we have also
made experiments with ELECTRA models. We find that the Hungarian
monolingual models outperformed the multilingual BERT model in all cases.
Furthermore, the ELECTRA small models achieved higher results than some
of the BERT models. This result is important because the ELECTRA small
models have much fewer parameters and were trained on only 1 GPU within
a couple of days. Another important consideration is that the ELECTRA
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models are much smaller than the BERT models, which is important for the
end users. To our best knowledge the first extractive and abstractive sum-
marization systems reported in the present paper are the first such systems
for Hungarian.

Keywords: BERT, huBERT, ELECTRA, HILBERT, abstractive summariza-
tion, extractive summarization

AMS Subject Classification: 68T07, 68T50, 68T09

1. Introduction

Processing large amounts of textual data in our everyday life with manual tools is
proving increasingly difficult because of the scale of the data. For instance, any
company or public institution typically has an enormous amount of text data. It
may be especially important for them to extract the essence of data from the huge
body of texts. Using automatic methods for extracting or summarizing can lead
to significant saving of time and costs. Therefore, there is an increasing demand
for automatic information extraction applications. Automatic text summarization
is a particularly pressing, unsolved challenge for the Hungarian language.

Automatic text summarization is the process of shortening a text document
using a system for prioritizing information. Technologies that generate summaries
take into account variables such as length, style, or syntax. Text summarization
from the perspective of humans is taking a chunk of information and extracting
the most important parts from it. Automatic text summarization methods typi-
cally rely on the logical quantification of features of the text including weighting
keywords, and sentence ranking.

There are two different machine summarization methods: extractive and ab-
stractive summarization.

Abstractive text summarization can generate completely new pieces of texts
while capturing the meaning of the original article. Abstractive methods are usu-
ally more complex because the machine has to analyze the text and the most
important information from it, then learn the relevant concepts and construct co-
hesive summaries.

Extractive text summarization does not generate any new text, it only uses
words already in the original article and combines the existing words, phrases or
sentences that are the most relevant to the article. Extractive summarization tech-
niques include ranking sentences and phrases in order of importance, and selecting
the most important components of a document to create a summary.

In our research we have carried out both extractive and abstractive experiments
for Hungarian.

2. Related work

The extractive method creates summarization by selecting the most important
phrases or sentences from the original text. It involves a classification problem:
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the task is to find which sentences should be selected for inclusion in the summary.
One of the first neural network-based extractive summarization tool is SummaRuN-
Ner [13], which uses an RNN encoder to solve the problem. Another method called
Refresh [14] is based on the Rouge metric, which is used to rank sentences in
the text using the reinforcement learning method. The goal of Latent [25] was to
propose a latent variable extractive model where sentences are viewed as latent
variables and sentences with activated variables are used to infer gold summaries.
Sumo [9] uses a method that builds on multi-root dependency tree structures that
can be extracted from a document and predicts the possible form of the summary.
NeuSum [26] approaches the problem by scoring and selecting sentences from the
original text.

The abstractive summarization with neural network approaches the problem
as a transformation from a sequence into another sequence. The encoder iden-
tifies tokens from the source document, then maps them onto target tokens, and
finally generates new text from the decoder. The PTgen [19] tool generates pointers
to identify words in the source text, then using a coverage mechanism keeps the
words to generate the summary. Deep Communicating Agent [1] is an agent-based
approach where the task of encoding a long text is shared among multiple collabo-
rating agents, each in charge of a subsection of the input text. These encoders are
connected to a single decoder, trained end-to-end using reinforcement learning to
generate a focused and coherent summary. The Deep Reinforced Model [17] uses
an intra-attention that attends to the input and the continuously generated output
separately, as well as a new training method that combines standard supervised
word prediction and reinforcement learning. The Bottom-Up [4] approach uses a
data-efficient content selector to “over-determine” phrases in a source document
that should be part of the summary. The method uses this selector as a bottom-up
attention step to constrain the model to likely phrases.

The PreSumm [8] model was the state-of-the-art tool in 2019. It requires a
pretrained BERT model to train extractive and abstractive summarization models.
Pre-training a BERT model requires huge data and compute capacity. Fortunately,
we can choose the PreSumm model because recently a number of BERT models
have been created for Hungarian. We can use the multilingual BERT1, which, of
course, covers Hungarian. There are also two Hungarian monolingual BERT base
models built by Nemeskey [16] that we could use for our research.

In the recent months, further models for Hungarian were successfully trained2:
HIL-ELECTRA, HIL-RoBERTa, HIL-ALBERT and HILBERT [3]. For the pur-
poses of the present research we experimented with the HIL-ELECTRA and the
HILBERT models.

In recent months, autoregressive methods achieved the best results in the field
of summarization. Autoregressive models rely on the decoder of the transformer
model and use an attention mask on the top of the full sentence so the model can
only look at the tokens before the current text. This method achieved higher results

1https://github.com/google-research/bert/blob/master/multilingual.md
2https://hilanco.github.io/
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on many text generation tasks [22]. The BART model[6] is a denoising autoencoder
for pretraining sequence-to-sequence models, which is trained to corrupt text with
arbitrary noising function and then to learn to reconstruct the original text. This
model is effective for fine-tuning summarization tasks.

Currently, the state-of-the-art tool for summarization is the PEGASUS [24]
system. In PEGASUS, important sentences are removed/masked from an input
document and are generated together as one output sequence from the remaining
sentences, similar to an extractive summary. For Hungarian, the OpinHu system
has a summary function [10]. The system uses keywords and text context to extract
information. Lengyelné Molnár Tünde [12] examined the possibilities and limita-
tions of the automatic generation of research abstracts. Using the PreSumm [8]
tool, Yang et al. built the first extractive summarization tool [23] for Hungarian.
In this paper we present the first Hungarian abstractive summarization tool. It
was built using the PreSumm system.

3. BERT and ELECTRA models

In our experiments, different kinds of BERT models were used for our summariza-
tion tasks, ELECTRA model was tested in addition to the BERT model for the
extractive summarization.

Figure 1. BERT model.

BERT (Bidirectional Encoder Representations from Transformer) is a multi-
layer, bidirectional Transformer encoder [21]. The BERT model was trained on
two language modeling tasks (see Figure 1): masking and next sentence prediction.
During masking, 15% of the words in the corpus are randomly masked, then the
system had to learn the correct word. During the next sentence prediction task, the
model receives two sentences, the task is to guess whether the two received sentences
are next to each other in the original text or two randomly selected sentences. To
limit the size of the dictionary and to solve the out-of-vocabulary words problem,
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WordPiece tokenizer [18] was used. After training BERT, the pretrained model
is used to fine-tune to the target task. The BERT model is further trained on a
specific downstream task with a feed-forward network in the fine-tuning process.

One of the advantages of BERT is that models have not only been trained
on English. Google has trained two multilingual models3: lowercase and non-
lowercase. The first 104 languages with the largest Wikipedia were selected to train
the models. The size of Wikipedia varies greatly between the languages, the English
Wikipedia accounting for nearly 20% of the data, so sampling was controlled by
normalization to solve this problem. Then, all languages, same like English, were
tokenized, which had four steps: lowercasing, accent removal, punctuation and
whitespace handling. Training the non-lowercase model also followed these steps
except lowercasing. WordPiece tokenization and dictionary can handle cased and
unknown words. The Hungarian language is also part of this model.

The first Hungarian BERT model was published by Dávid Márk Nemeskey [16],
which is called huBERT4. Three huBERT models were trained:

• huBERT: BERT base model trained on Hungarian Webcorpus 2.05

• huBERT Wikipedia cased: cased BERT base model trained on Hungarian
Wikipedia

• huBERT Wikipedia lowercased: lowercased BERT base model trained on
Hungarian Wikipedia

Currently the huBERT models achieve state-of-the-art results in name entity
recognition and noun phrase chunking tasks [15].

ELECTRA [2] is based on the GAN (Generative adversarial network) [5] method.
The basis of the method (see Figure 2) is that there are two networks are trained, a
generator and a discriminator. During training, the generator randomly generates
vector representations from which it generates output. Then, real output data is
shown, which can improve the performance of random vector generation. In this
way, by the end of the training, the generator will become “smarter” and will be
able to generate an output that closely matches the real output. The discriminator
is trained to predict whether a particular word is the original word or a replace-
ment. During training, the discriminator gets data from the real corpus, and also
gets data that generated by the generator. By the end, the generator can generate
content that similar to a real content, the discriminator can distinguish between a
fake/erroneous content and a real/correct content.

ELECTRA is a modified GAN method for training language model (see Fig-
ure 2). The difference compared to the BERT model (and the original GAN) is that
ELECTRA does not try to predict the original word behind the masked word but
instead the generator randomly generates words for the masked words and then the
discriminator has to guess if the words given by the generator are the original words

3https://github.com/google-research/bert/blob/master/multilingual.md
4https://hlt.bme.hu/en/resources/hubert
5https://hlt.bme.hu/en/resources/webcorpus2
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or randomly generated words. Thus, the generator slowly learns what actual words
match to the place of the masked words, while the discriminator learns whether
the given input text are built with real words or fake words. After training, the
generator is discarded and only the discriminator is retained for fine-tuning.

Figure 2. ELECTRA model.

4. Corpora

For building the summarization corpora for fine-tuning, we used 3 different kinds
of resource: HVG, index.hu and the Hungarian MARCELL corpus [20]. Table 1
displays the main characteristics of the corpora.

Table 1. Main characteristics of the corpora.

HVG index.hu H+I MARCELL
year 2012 - 2020 1999 - 2020 - 1991 - 2019
documents 480,660 183,942 559,162 24,747
token 129,833,741 104,640,902 159,131,373 28,112,090
type 5,133,030 3,921,893 3,053,703 450,115
avg tokens in src 246,27 496,27 265,17 1124,82
avg tokens in tgt 12,43 22,33 29,97 11,22
avg sents in src 23,74 35,76 11,40 49,26
avg sents in tgt 1,46 2,23 1,57 1,00

In the case of HVG6 and index.hu7, the body of the articles taken from the daily
online newspaper, as well as the corresponding leads, representing the summaries.
We have built two corpora from them. In the first version, we used only the HVG
documents. In the second version (H+I corpus) we merged the HVG and the
index.hu articles. In the case of MARCELL, we used the legal documents as source
and each of these have one short sentence topic description that we used for target
summary.

A BERT model has a maximum 512 sequence length (after BERT subword
tokenization). Therefore in our research we used only the online daily articles and

6https://www.hvg.hu
7https://www.index.hu
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its leads, because the articles of the weekly newspaper (HVG) are much longer.
In the case of MARCELL, the average sentence length is 1124,82, which is much
longer than 512, but the median is: 340, which is short enough for this task.

We did three different tasks. In the first two task, we used the HVG and
MARCELL corpora on their own, without any cleaning and normalizing processes.
In the third task, we merged the HVG and the index.hu corpora, and we also made
cleaning processes on it. The cleaning and normalizing aspects are as followed:

• removed the long (500< token) documents from the corpora

• removed the short (5> token) documents from the corpora

• removed documents, that articles were shorter than its’ lead (e.g., See Table 7)

• removed irrelevant articles or text parts: e.g. “Follow us on facebook”, “Edited:
[NAME]”, “Click for more details”, “Start a Quiz”, etc.

5. Pretrained language models

In our abstractive summarization experiments we used 4 different kinds of pre-
trained BERT models: huBERT, huBERT Wikipedia cased, HILBERT, BERT-
Base-Multilingual-Cased.

huBERT [15] is the state-of-the-art Hungarian cased (not lowercased) BERT-
base model that trained on Webcorpus 2.08 (9 billion token) with 110 million
parameters, 12-layer, 768-hidden, 12-heads.

huBERT Wikipedia cased [15] is a Hungarian cased BERT-base model that
trained on Hungarian Wikipedia (170 million token) with 110 million param-
eters, 12-layer, 768-hidden, 12-heads.

HILBERT [3] is a Hungarian cased BERT-large model that trained on NYTK v1
corpus (3.7 billion token) with 340 million parameters, 24-layer, 1024-hidden,
16-heads.

BERT-Base-Multilingual-Cased9 is a cased BERT-base model that trained
on 104 languages of Wikipedia, with 110 million parameters, 12-layer, 768-
hidden, 12-heads.

In the extractive summarization experiments, we used the 2 kinds of huBERT,
the multilingual and 4 kinds of ELECTRA models. In the case of ELECTRA,
there were no pretrained models for Hungarian, thus we did experiments to create
them.

For training ELECTRA models, we have used three different corpora:
8https://hlt.bme.hu/en/resources/webcorpus2
9https://github.com/google-research/bert/blob/master/multilingual.md
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• Hungarian Wikipedia (wiki): 13,098,808 segments; 163,772,783 tokens;

• NYTK corpus (NYTK): 283,099,534 segments; 3,993,873,992 tokens; (con-
tains Hungarian Wikipedia)

The vocabulary size was 64,000. This relatively large size was deemed justified
in view of the agglutinative nature of the rich morphological system of Hungarian
resulting in an almost open-ended stock of wordforms. The ratio of number of
subword tokens per surface words was 1.15707, which can be considered good.

To train ELECTRA models, we used the code10 published by Google. We
trained six different ELECTRA models for Hungarian, which we named as HIL-
ELECTRA (HILANCO11 ELECTRA):

• HIL-ELECTRA small wiki: trained on Hungarian Wikipedia. Training time:
∼5 days

• HIL-ELECTRA small NYTK: trained on Hungarian Research Centre for Lin-
guistics corpus v1. Training time: ∼7 days

• HIL-ELECTRA base wiki: trained on Hungarian Wikipedia. Training time:
∼5 days

• HIL-ELECTRA base NYTK: trained on Hungarian Research Centre for Lin-
guistics corpus v1 corpus. Training time: ∼7 days

In Table 2, we can see the training hyper-parameters of the ELECTRA small
and base models.

Table 2. The hyper-parameters of the training of the ELECTRA
models.

Learning
rate

Weight
decay Layers Embedding

size
Batch
size

Training
step

small 5e-4 0.01 12 128 80 1 million
base 5e-4 0.01 12 768 2 1 million

Each model was trained on 1 single GeForce RTX 2080 Ti type video card. The
training took about 5-7 days. The run time is also affected by dictionary size, it
can be accelerated with a smaller dictionary.

6. Experiments

Using the pretrained language models, we fine-tuned summarization models for
Hungarian. The first step of our research was to pre-process the original text.

10https://github.com/google-research/electra
11https://hilanco.github.io
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The articles and their leads were tokenized with the e-magyar12 tokenizer module,
the quntoken [11] tool. Then, we converted the tokenized text to JSON format
for the summarization system. The system then inserts two special elements, the
first one indicating the beginning of the text and the other one marks the sentence
boundaries. After pre-processing, we trained different summarization models.

We trained and compared the following models in the different tasks:

• Abstractive summarization:

– BERT Base Multilingual Cased (multi-BERT)

– huBERT Wikipedia cased (huBERT wiki)

– huBERT (huBERT web)

– HILBERT

• Extractive summarization:

– BERT Base Multilingual Cased

– huBERT Wikipedia cased

– huBERT

– HIL-ELECTRA base Hungarian Wikipedia (HIL-ELECTRA base wiki)

– HIL-ELECTRA base NYTK (HIL-ELECTRA base NYTK)

– HIL-ELECTRA small Hungarian Wikipedia (HIL-ELECTRA small wiki)

– HIL-ELECTRA small NYTK (HIL-ELECTRA small NYTK)

To train abstractive and extractive models, we used the PreSumm [8] tool13. In
the Table 3 you can see the differences of BERT-base and BERT-large training (fine-
tuning) hyper-parameters and characteristics. All other hyperparameters were set
to default of experiments of Yang et al. [8].

Table 3. Differences of BERT-base and BERT-large training
hyper-parameters.

learning rate lr decrease batch size hardware
BERT-base 1e-03 0.1 20 4x GeForce RTX 2080
BERT-large 5e-05 0.02 10 4x Tesla V100

In our experiments, the larger the corpus the more training steps are required.
Accordingly, the following training steps were used:

• Abstractive summarization

– MARCELL: 50,000
12https://e-magyar.hu
13https://github.com/nlpyang/PreSumm
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– HVG: 200,000
– H+I: multi and huBERT: 600,000; HILBERT: 800,000

• Extractive summarization: 50,000

7. Results and Evaluation

The ROUGE [7] method was used for evaluation. ROUGE (Recall-Oriented Under-
study for Gisting Evaluation) is a coverage-based method based on BLEU metrics
used in machine translation. ROUGE itself contains several methods, of which
ROUGE-1, ROUGE-2 and ROUGE-L methods were used for our measurements.
ROUGE-1 is a unigram, while ROUGE-2 is a bigram coverage calculation algo-
rithm. ROUGE-L examines the longest common word sequence at the paragraph
and sentence level.

In Table 4, 5 and 6, we can see the ROUGErecall results of our abstractive
and extractive experiments. Since the HILBERT model needs huge amount of
resources, we used it only in the experiment of H+I and in this task we did not use
the huBERT wiki, because the huBERT web contains the wiki.

Table 4. ROUGE recall results of abstractive summarization of
MARCELL, HVG and H+I tasks.

ROUGE-1 ROUGE-2 ROUGE-L

MARCELL
multi 87.37 77.38 84.97
huBERT wiki 89.37 79.91 86.14
huBERT web 89.64 80.29 86.46

HVG
multi 47.02 19.72 39.29
huBERT wiki 49.49 21.62 41.46
huBERT web 51.47 23.27 43.82

H+I
multi (550k) 51.85 23.22 43.45
huBERT web (450k) 57.07 26.97 48.28
HILBERT (800k) 44.98 14.22 37.06

Table 5. ROUGE F1 results of the first generated sentence of
MARCELL tasks.

ROUGE-1 ROUGE-2 ROUGE-L
multi 72.99 65.38 71.53
huBERT wiki 74.23 66.56 72.90
huBERT web 75.85 68.35 74.61

In Table 4, you can see only the recall results, because of the number of gen-
erated sentences are more than the reference sentences, the precision of ROUGE
cannot show evaluable performance. In the case of MARCELL task, the result
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Table 6. ROUGE recall results of extractive summarization.

ROUGE-1 ROUGE-2 ROUGE-L
multi-BERT 48.58 20.12 39.42
huBERT wiki 48.86 20.45 39.60
huBERT web 49.45 21.07 40.14
ELECTRA base wiki 48.83 20.37 39.53
ELECTRA base NYTK 49.04 20.53 39.76
ELECTRA small wiki 49.02 20.52 39.74
ELECTRA small NYTK 49.04 20.53 39.76

should be exactly one sentence, thus, in Table 5, you can see the F1 scores of the
original (orig) and the first generated sentence of the models.

In the case of abstract summarization (see Table 4), the integration of Hun-
garian models achieved higher performance than the multilingual model. In all
cases, the huBERT web gained the best results. As you can see in Table 4, adding
index.hu data and applying cleaning methods leads to a performance increase of
about 6%.

In the case of H+I, we can see the steps numbers in parentheses that achieved
the best results. According to the steps, the huBERT at 450,000 step achieved
the best results, much earlier than the other models. In the case of HILBERT, we
did not achieve the theoretical optimum, because the rouge values are increasing
continuously. As we can see in Table 4, the performance of HILBERT is much
lower than the other models. Since the HILBERT is BERT-large, with twice as
many parameters as a BERT-base, the model is more robust and the fine-tuning is
more difficult. After 47 failed experiments, we could find a set of hyperparameters
(see Table 3) that the model could converge with. We believe, that the HILBERT
could gain higher results, but we need more experiments to find the best set of
hyperparameters to achieve the highest result.

In the case of extractive summarization (see Table 6), all Hungarian models have
scored higher than the multi-BERT. As was expected, the Hungarian huBERT web
scored the best results. The interesting fact in the results is that our ELECTRA
models, which were trained with modest compute, could achieve higher results than
huBERT wiki. The ELECTRA models could not outperform huBERT web, just as
we expected it would not, after all the huBERT web model was trained on over 9
billion tokens. The result that our ELECTRA models outperformed the huBERT
wiki model is significant as the ELECTRA models have much fewer parameters
than the BERT base models and can be trained on a single GPU, ideally, within
as little as 5 days. It should be noted that training time can be even shorter if the
dictionary size is reduced.

We can see some samples in Table 7–10 (see Appendix) which were generated by
our abstractive summarization models. Analyzing the samples, we can notice some
common features of our models. When the article is long (see Table 8 and Table 9),
all of our models extract phrases from the original article, then combine them to
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generate new sentences. It is similar to extractive models, the difference is that our
extractive models choose full sentences from the article and after ranking, give them
as results to the user. Generally, the sentences produced by the abstractive models
are mostly grammatically correct. All the models generate several sentences, but
by the end they “run out” and may leave sentence fragments (see Table 8).

When the article is short (see Table 7 and Table 10), the models show their real
abstractive feature, which is to generate passages that the original article did not
contain. But in this case, there is too little information in the original article, thus
the performance of the output is lower.

Following the samples, we can see the disadvantages of the automatic evaluation
metric, such as ROUGE, as well as the problem of using lead as summarization.
The ROUGE metric shows only how the generated output is similar to the lead.
However, often the function of the lead is to attract attention and not to summarize.
In Sample 1. (see Table 7), the article is about damages caused by storms and the
payments by the insurers. The lead was only about the insurers it did not even
mention the storm and the damages, whereas our models described both topics.
This is one of the reasons that in the results (see Table 4) we can see only about
50% recall results.

For more examples visit our demo site14.

8. Summary

It is concluded that we have created various text summarization tools for the Hun-
garian language. For building the summarization models, we used different kinds of
BERT-based models. For abstractive models, we used the pretrained multilingual
cased BERT model as well as the Hungarian monolingual huBERT base and the
HILBERT large models.

For extractive summarization, besides the BERT models, we trained our own
ELECTRA models. To fine-tune the BERT-based models for summarization tasks,
we used the PreSumm tool. The results show that the monolingual Hungarian
models outperformed the multilingual model in all cases. The huBERT web model
that was trained on 9 billion words could gain the best results both in abstractive
and in extractive tasks. Another important result is that our ELECTRA models
were trained with less computational demand and they have much less parameters,
could gain better results than the huBERT wiki. Another important point of view
is that the ELECTRA models are much smaller than the BERT models, which is
important for the end users.

This is the first automatic abstractive and extractive text summarization tool
for Hungarian that is based on BERT-based neural network technology.

In the future, we would like to experiment with autoregressive methods, such
as BART or PEGASUS.

14http://nlpg.itk.ppke.hu/projects/summarize
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Appendices
Examples of abstractive models

Table 7. 1. example of abstractive models (HVG experiment).

Article
Ha a legjobb képes mémek is érdeklik , ide kattintson . Az internetadóról ebben
a cikkünkben olvashat bővebben . Ha arra kíváncsi , mit gondol róla a világ , itt
megtalálja .
Lead
Az internetadóról szóló híreket olvassa el a hvg.hu-n . A magyar internetadóról szóló
cikkünkre kattintva olvashatjátok a legfrissebb mémeket , amelyekről itt találjátok a
választ . Íme , a legjobb mémek , a mémek és a mémek is . Ha nem akarunk lemaradni
a neten , itt találjátok meg a legjobb mémeket . A Az internetadóról szóló mémek
mellett az internetadóról is megemlékezett az internetadóról a mémgyár . A mémek
mellett a mémek is felkerültek a netadóra . Íme , a legjobbak . Videó az internetadóról
. A legjobbak között van az internetadó , a legjobb képes mémek is . a legjobbak
között . Videós összefoglaló . hu
huBERT web
Az internetadóról szóló mémek mellett az internetadóról is megemlékezett az inter-
netadóról a mémgyár . A mémek mellett a mémek is felkerültek a netadóra . Íme
, a legjobbak . Videó az internetadóról . A legjobbak között van az internetadó , a
legjobb képes mémek is . a legjobbak között . Videós összefoglaló . hu
huBERT wiki
Az internetadóról szóló híreket olvassa el a hvg.hu-n . A magyar internetadóról szóló
cikkünkre kattintva olvashatjátok a legfrissebb mémeket , amelyekről itt találjátok a
választ . Íme , a legjobb mémek , a mémek és a mémek is . Ha nem akarunk lemaradni
a neten , itt találjátok meg a legjobb mémeket . A
multi-BERT
Az internetadóról szóló cikkünkben olvashat bővebben az internetadóról . Mutatjuk
, mire érdemes figyelni az internetadót . Íme a legújabb adatok . Az internetadóról
ebben a cikkben olvashat bővebben . A legjobb képes mémek is érdekesek . És persze
nem is gondolnánk , hogy mit gondolnak róla . Írásunkban megmutatjuk , mit gondol
a világról . Írja a cikkünket . Teszteljétek magatokat ezzel a kví .
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Table 8. 2. example of abstractive models (HVG experiment).

Article
Az idei júliusi viharokat követően csaknem hétezer esetet regisztráltak a biztosítók .
A két héttel ezelőtti viharokban sok ingatlan sérült meg a fővárosban , Pest megyében
, illetve Somogy megyében . Különösen a Balaton déli partja volt érintett , s sokan
csak napokkal később fedezték fel , hogy nyaralójuk károsodott . Több társaságnál
is arról számoltak be , hogy átcsoportosították kárfelmérőiket a különösen érintett
területekre , a szakemberek a kárszemléket elvégezték , s már a vihar másnapján
megkezdődtek a kárkifizetések- írja a portfolio.hu . Magyarországon a legtöbb , ingat-
lanokkal kapcsolatos káresemény a nyári , május- augusztusi hónapokban történik . A
biztosítókhoz 2010-2016 között az évnek ebben a periódusában összesen 988 599 kár-
bejelentés érkezett , amelyekre több mint 73 milliárd forintot fizettek ki a társaságok
. A nyári viharok átlagosan mintegy 115 ezer forint összegű kárt tesznek a biztosított
ingatlanokban és egyéb javakban , de e téren igen nagy a szórás : sok a kis összegű ,
úgynevezett „ bagatell-kár ” , de előfordulnak 10 milliós nagyságrendű káresetek is .
Lead
2010 és 2017 között , a május-augusztusi időszakokban csaknem egymillió kárt térítet-
tek a biztosító társaságok . A kifizetett kárösszeg meghaladja a 73 milliárd forintot -
tette közzé a Magyar Biztosítók Szövetsége ( MABISZ ) .
huBERT web
Az idei júliusi viharokat követően csaknem hétezer esetet regisztráltak a biztosítók .
A viharokban sok ingatlan sérült meg , s sokan csak napokkal később fedezték fel ,
hogy nyaralójuk károsodott . Több biztosítónál is arról számoltak be , hogy átcsopor-
tosították kárfelmérőiket a különösen érintett területekre , s már a vihar másnapján
megkezdődtek a kárkifizetések - írja a portfolio.hu . A viharok átlagosan mintegy
115 ezer forint összegű kárt tesznek a biztosított ingatlanokban és egyéb javakban ,
de előfordulnak 10 milliós nagyságrendű káresetek is . Magyarországon a legtöbb ,
ingatlanokkal kapcsolatos káresemény a nyári , május- augusztusi időszakban .
huBERT wiki
Az idei júliusi viharokat követően csaknem hétezer esetet regisztráltak a biztosítók
. A Balaton déli partjának volt érintett , s sokan csak napokkal később fedezték
fel , hogy nyaralójuk károsodott . Több társaságnál is arról számoltak be , hogy
átcsoportosították kárfelmérőiket a különösen érintett területekre , a szakemberek a
kárszemléket elvégezték , s már a vihar másnapján megkezdődtek a kárkifizetések .
Magyarországon a legtöbb , ingatlanokkal kapcsolatos káresemény a nyári , május-
augusztusi hónapokban történik .
multi-BERT
Az idei júliusi viharokban sok ingatlan sérült meg a fővárosban , Pest megyében ,
illetve Somogy megyében . Különösen a Balaton déli partja volt érintett , s sokan
csak napokkal később fedezték fel , hogy nyaralójuk károsodott . Több társaságnál
is arról számoltak be , hogy átcsoportosították kárfelmérőiket a különösen érintett
területekre , a szakemberek pedig a kárszemléket elvégezték , s már a vihar másnapján
megkezdődtek a kárkifizetések .
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Table 9. 3. example of abstractive models (H+I experiment).

Article
Kedd délután a rendőrség megerősítette az Index nek , hogy reggel elfogtak a rendőrök
egy férfit Budapesten , aki lőfegyverrel a kezében álldogált a Nagyvárad téren a 24-es
villamos megállójában . A lapnak több szemtanú is beszámolt az esetről , a rendőrség
pedig azt közölte , hogy kedd reggel 7 óra 12 perckor bejelentést kaptak arról , hogy a
Nagyvárad tér 1. szám alatti villamosmegállóban egy fegyver van egy ember kezében
. Lövés nem dördült , és senki nem sérült meg , a járőrök perceken belül a helyszínre
érkeztek , és intézkedés alá is vontak egy 49 éves budapesti férfit . P. Lászlónál egy
gáz-riasztó fegyvert találtak , ezért garázdaság és lőfegyverrel kapcsolatos szabálysértés
miatt előállították , és eljárást kezdeményeztek vele szemben .
Lead
Lövés nem dördült , a férfit elfogták .
huBERT web
Garázdaság és lőfegyverrel kapcsolatos szabálysértés miatt előállították P. Lászlót ,
akinél gáz-riasztó fegyvert találtak , ezért garázdaság és lőfegyverrel kapcsolatban
szabálysértés miatt eljárást kezdeményeztek vele szemben . Lövés nem dördült ,
senki nem sérült meg , de a rendőrök perceken belül elfogták a férfit . P. Lás-
zlónál egy gáz-riasztó fegyvert is találtak . Garázdaság miatt előállították , és eljárást
kezdeményeztek ellene . Garázdaság és lő fegyverrel kapcsolatos szabálysértése miatt
előállították . A férfi ellen eljárást kezdeményeztek , és eljárás indult ellene . Videó
HILBERT
A férfi fegyverrel a kezében sétált a 24-es villamosmegállóban , a rendőrök perceken
belül elfogták , és kezdeményezik előzetes letartóztatásukat . A rendőrség eljárást
indított vele szemben , és eljárást indítottak vele szemben . A férfi ellen eljárás indult
. A rendőrség szerint egy gáz-riasztó fegyvert is találtak a rendőrök , és elrendelték az
előzetes letartóztatását . Az MTI úgy tudja , hogy a férfi egy gáz-riasztó fegyverrel is
felszerelkezett a 24-es villamos megállójában . Videó is van a helyszínről , a rendőrség
a hvg.hu-nak arról számolt be , hogy kedd reggel fogtak el egy férfit , aki lőszerrel a
rendőrök elől menekülve próbált meg egy embert a 24-es villamoson . hu hu
multi-BERT
Kedd reggel elfogták a rendőrök azt a férfit , aki lőfegyverrel a kezében álldogált a
Nagyvárad téren a 24-es villamos megállójában . Lövés nem dördült , és senki nem
sérült meg , a járőrök perceken belül a helyszínre érkeztek , és intézkedés alá is vontak
egy 49 éves budapesti férfit . P. Lászlónál egy gáz-riasztó fegyvert találtak , ezért
garázdaság és lőfegyverrel kapcsolatos szabálysértés
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Table 10. 4. example of abstractive models (H+I experiment).

Article
A Daily Mail Twitter-oldalán közzétett videó szerint most épp nem történt nagy baj
, de ez könnyen történhetett volna másképp is .
Lead
Valószínűleg nem gondolták át igazán ezek a fiatalok mit tesznek .
huBERT web
A Daily Mail Twitter-oldalára került fel egy videó arról , ahogy az egyik brit autópá-
lyán egy motorcsónaknaknak csapódott . A videón jól látható , hogy a sofőrnek nem
sok esélye van a balesetre , de a videón jól látszik , hogy nem is kell aggódnia . És nem
is ez volt az első ilyen eset . A videóban rögzítették , ahogy a britek egy hatalmasat
ugranak a fejük előtt . Az alábbi videón látható , hogyan történt a dolog , és hogyan
lett volna ez a videóból . A videón látható .
HILBERT
A Magyar Kétfarkú Kutya Párt szerint most már nem is történt nagy baj , de ez így
is elég lett volna . nem ez volt az első eset , hogy nem lett komoly baj . „ Ez történt
volna ” - reagált a párt . Videón az is látszik , hogy a párt szerint nem történt baj .
Igaz , ez még így is így lett volna , ha nem is lett volna baj , az eredmény nem lett
volna ennyire egyszerű .
multi-BERT
A Daily Mail videója szerint nem történt nagy baj . A videó könnyen előfordulhatott
volna , hogy egy hatalmas bajba került . Nem kellett volna . Videó . Szerencsére
nem történt baj , de ez könnyen történhetett volna másképp is . De nem . Videón .
Mutatjuk . Szerencsésen volt . Videót . És . Munkatársunk . Sőt . Mutatja !Videó
!Szavazzon !! A hvg.hu hu . A
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