Annales Mathematicae et Informaticae

54 (2021) pp. 3343

DOIL: https://doi.org/10.33039/ami.2021.03.009
URL: https://ami.uni-eszterhazy.hu

Introducing w-Horn and z-Horn:
A generalization of Horn and
g-Horn formulae

Gabor Kusper?, Csaba Biré®, Attila Adamké6®, Imre Bajak®?

“Eszterhazy Karoly University
kusper.gabor@uni-eszterhazy.hu

YEszterhazy Karoly University and E6tvés Lorand University
biro.csaba@uni-eszterhazy.hu

“University of Debrecen
adamkoa@inf.unideb.hu

?Budapest Business School
bajak.imre@uni-bge.hu

Submitted: February 2, 2021
Accepted: March 17, 2021
Published online: March 19, 2021

Abstract

In this paper we generalize the well-known notions of Horn and ¢-Horn
formulae. A Horn clause, by definition, contains at most one positive literal.
A Horn formula contains only Horn clauses. We generalize these notions as
follows. A clause is a w-Horn clause if and only if it contains at least one
negative literal or it is a unit or it is the empty clause. A formula is a w-Horn
formula if it contains only w-Horn clauses after exhaustive unit propagation,
i.e., after a Boolean Constraint Propagation (BCP) step. We show that the
set of w-Horn formulae properly includes the set of Horn formulae. A function
B(x) is a valuation function if B(z) + B(—-z) = 1 and B(z) € {0,0.5,1},
where z is a Boolean variable. A formula F is a ¢-Horn formula if and only
if there is a valuation function S(z) such that for each clause C in F we
have that 7 .. B(z) < 1. In this case we call 8(z) a g-feasible valuation
for 7. In other words, a formula is ¢g-Horn if and only if each clause in
it contains at most one “positive” literal (where B(z) = 1) or at most two
half ones (where S(z) = 0.5). We generalize these notions as follows. A

33

34 G. Kusper, Cs. Biré, A. Adamkd, I. Bajdk

formula F is a z-Horn formula if and only if 7'= BCP(F) and either F is
trivially satisfiable or trivially unsatisfiable or there is a valuation function
~(z) such that for each clause C in F’ we have that Y wecay(z)05 Y (0T) > 1
O > conq(a)=0.5 (@) = 1. In this case we call y(z) to be a z-feasible
valuation for F’. In other words, a formula is z-Horn if and only if each
clause in it after a BCP step contains at least one “negative” literal (where
~v(x) = 0) or exactly two half ones (where v(z) = 0.5). We show that the
set of z-Horn formulae properly includes the set of g-Horn formulae. We also
show that the w-Horn SAT problem can be decided in polynomial time. We
also show that each satisfiable formula is z-Horn.

Keywords: SAT, Horn, ¢g-Horn, z-Horn, w-Horn.
AMS Subject Classification: 03B05, 03B20, 03B70

1. Introduction

Propositional satisfiability is the problem of determining, for a formula of the propo-
sitional calculus, if there is an assignment of truth values to its variables for which
that formula evaluates to true. By SAT we mean the problem of propositional
satisfiability for formulae in conjunctive normal form (CNF).

SAT is the first, and one of the simplest, of the many problems which have been
shown to be N'P-complete [8]. It is the dual of propositional theorem proving, and
many practical A'P-hard problems may be transformed efficiently to SAT. Thus,
a good SAT algorithm would likely have considerable utility. It seems improbable
that a polynomial time algorithm can be found for the general SAT problem unless
N = NP, but we know that there are restricted SAT problems that are solvable in
polynomial time. So a “good” SAT algorithm should first check whether the input
SAT instance is an instance of such a restricted SAT problem. In this paper we
introduce the w-Horn SAT problem, which is solvable in polynomial time. We also
introduce the z-Horn SAT problem, but we do not know yet whether it is solvable
in polynomial time or not.

We list some polynomial time solvable restricted SAT problems:

1. The restriction of SAT to instances where all clauses have length & is denoted
by k-SAT. 2-SAT and 3-SAT are of special interest, because 3 is the smallest
value of k for which k-SAT is N'P-complete, while 2-SAT is solvable in linear
time [2, 11].

2. Horn SAT is the restriction to instances where each clause contains at most
one positive literal. Horn SAT is solvable in linear time [10, 28], as are a
number of generalizations such as renamable Horn SAT [1, 23], extended
Horn SAT [7] and ¢-Horn SAT [5, 6]. An interesting variant for us is dual-
Horn, or anti-Horn SAT, where in each clause there are at most one negative
literal. The dual-Horn SAT is solvable in polynomial time.

3. The hierarchy of tractable satisfiability problems [9], which is based on Horn

Introducing w-Horn and z-Horn: A generalization of Horn and g-Horn formulae 35

10.

11.

SAT and 2-SAT, is solvable in polynomial time. An instance on the k level
of the hierarchy is solvable in O(nk + 1) time.

Nested SAT, in which there is a linear ordering on the variables and no two
clauses overlap with respect to the interval defined by the variables they
contain, is solvable in linear time. [16].

SAT in which no variable appears more than twice. All such problems are
satisfiable in linear time if they contain no unit clauses [32].

r,r-SAT, where r,s-SAT is the class of problems in which every clause has
exactly r literals and every variable has at most s occurrences. All r,r-SAT
problems are satisfiable in polynomial time [32].

A formula is SLUR (Single Lookahead Unit Resolution) solvable if, for all
possible sequences of selected variables, algorithm SLUR does not give up.
Algorithm SLUR is a nondeterministic algorithm based on unit propagation.
It eventually gives up the search if it starts with, or creates, an unsatisfiable
formula with no unit clauses. The class of SLUR solvable formulae was devel-
oped as a generalization including Horn SAT, renamable Horn SAT, extended
Horn SAT, and the class of CC-balanced formulae [27].

Resolution-Free SAT Problem, where every resolution results in a tautologous
clause, is solvable in linear time [21]. And a generalization of it, the Blocked
SAT Problem, where in each clause there is a blocked literal (resolution on
that literal results in a tautologous clause, or the resolvent together with the
blocked literal is subsumed) [19].

Linear autarkies can be found in polynomial time [17]. A partial assignment
is an autarky if it satisfies all clauses such that they have a common variable.
For example, a pure literal is an autarky. Linear autarkies include ¢g-Horn
formulae, and incomparable with the SLUR [33].

Matched expressions are recognized by creating a bipartite graph (V1, Va, E),
such that vertices of V] represent clauses, vertices of V5 represent variables,
and there is an edge from clause C' to variable v if and only if C' contains v or
—w. If there is a total matching in this graph, i.e., there is a subset of edges,
such that each clause and each variable are present but only once, then we
say that the formula is matched. Matched formulae are satisfiable [13]. Total
matching can be constructed, if it exists, in polynomial time. The class of
matched formulae is incomparable with the g-Horn and SLUR classes.

SAT problems generated from directed graphs are always satisfiable. Two
assignments, the one where all variables are true, the so called white assign-
ment, and the one where all variables are false, the so called black assignment,
always satisfy them, so such problems are called Black-and-White SAT prob-
lems [3, 4, 22].

36 G. Kusper, Cs. Biré, A. Adamkd, I. Bajdk

12. SAT can be solved efficiently by biology inspired methods. For example, P
systems with active membranes can solve it in linear time [14]. This article
presents two solutions. The first solution is a uniform one, but it is not
polynomially uniform. The second solution, which is based on the first one,
is a polynomially semi-uniform solution. Other membrane based solutions
can be found in [25].

13. When a finite fixed set of Boolean variables is used, then n-SAT can be solved
by a specific deterministic finite automaton. So n-SAT is polynomial, but the

specific deterministic finite automaton uses double exponential memory space
[26].

In this paper we generalize the well-known notions of Horn and ¢g-Horn formulae.
A Horn clause, by definition, contains at most one positive literal. A Horn formula
contains only Horn clauses.

We generalize these notions as follows. A clause is a w-Horn clause if and only
if it contains at least one negative literal or it is a unit or it is the empty clause. A
formula is a w-Horn formula if it contains only w-Horn clauses after propagating
all units in it, i.e., after a BCP step. We show that the set of w-Horn formulae
properly includes the set of Horn formulae.

A function B(z) is a valuation function if (x)+8(—-x) = 1 and S(z) € {0,0.5,1},
where x is a Boolean variable.

A formula is ¢-Horn if and only if each clause in it contains at most one “positive”
literal (where 8(z) = 1) or at most two half ones (where f(x) = 0.5).

We generalize these notions as follows. A formula is z-Horn if and only if each
clause in it after a BCP step contains at least one “negative” literal or exactly two
half ones.

We show that the set of z-Horn formulae properly includes the set of g-Horn
formulae. We also show that the w-Horn SAT problem can be decided in polynomial
time. We also show that each satisfiable formula is z-Horn.

2. Definitions

A literal is a Boolean variable or the negation of a Boolean variable. A clause is
a set of literals. A clause set is a set of clauses. An assignment is a set of literals.
Clauses are interpreted as disjunction of their literals. Assignments are interpreted
as conjunction of their literals.

The negation of a variable v is denoted by ©. Given a set U of literals, we
denote U := {u | u € U} and call it the negation of the set U. If w denotes a
negative literal 7, then W denotes the positive literal v. If C is a clause, then C is
an assignment. If A is an assignment, then A is a clause.

If C is a clause and its cardinality is k, denoted by |C| = k, then we say that C
is a k-clause. Special cases are unit clauses or units which are 1-clauses, and clear
or total clauses which are n-clauses. Note that any unit clause is at the same time
a clause and an assignment.

Introducing w-Horn and z-Horn: A generalization of Horn and g-Horn formulae 37

If S is a clause set and {u} is a unit, then we can do unit propagation, for short
UP, by {u} on S, denoted by UP(S,{u}), as follows: UP(S,{u}) :={C\{u} |C €
SAué¢cCh.

By BCP we mean exhaustive unit propagation. To be more formal:

BCP(UP(C,{u})), where {u} €C,
C, if there are no more units in C.

BCOP(S) = {

We say that assignment M is a model for clause set S iff for all C € S we have
MNC #0.

We say that a clause set is trivially unsatisfiable iff it contains the empty clause.
We say that a clause set is trivially satisfiable iff it is the empty set.

We introduce two functions P(C), the number of positive literals in clause C,
and N (C), the number of negative literals in clause C. Note, that P(C)+N(C) = [C|.

The clause C is a Horn clause iff P(C) < 1. Note that the empty clause is a
Horn clause. The clause set F is a Horn formula iff for each clause C in F we have
that C is a Horn clause.

We generalize these notions as follows. The clause C is a w-Horn clause iff
N(C) > 1 or C is a unit or C is the empty clause. The clause set F is a w-Horn
formula iff 7/ = BCP(F) and for each clause C in F’ we have that C is a w-Horn
clause.

Examples for w-Horn formulae:

1. (maVbVe).
2. (maV =b) A (—aVb)A (aV —b).

3. (maV-bV-e)A(maV-bVe)A(—aVbV—e)A(—aVbVe)AlaV—-bV-e)A(aV
—bVe)A(aVbV —e), this example shows the great expressiveness of w-Horn.

4. (a) A (ma V b), because after BCP we obtain the empty clause set.

5. (maV=b) A(—a—b) A(aV=b)A(aVbVe)A(—c), because after BCP we obtain
(ma VvV =b) A (ma Vv b) A (aV —b).

6. (a)A(—a) is w-Horn, because after BCP we obtain a clause set which contains

the empty clause, and the empty clause is w-Horn.
7. (ma VbV c)is w-Horn, because N(C) = 1, but not Horn, because P(C) = 2.

By w-Horn SAT problem we mean the problem of deciding whether a given
w-Horn formula is satisfiable or not.

A function S(z) is a valuation function if 5(z)+5(—z) = 1 and S(x) € {0,0.5,1},
where z is a Boolean variable. Note that if C is a clause, then) . (B(x)+8(—-x)) =
IC|.

A formula F is a g-Horn formula iff there is a valuation function §(z) such that
for each clause C in F we have that) . f(z) < 1. In this case we call 3(z) a
g-feasible valuation for F.

38 G. Kusper, Cs. Biré, A. Adamkd, I. Bajdk

In other words, a formula is ¢-Horn if and only if each clause in it contains
at most one “positive” literal (where S(x) = 1) or at most two half ones (where
B(x) = 0.5). We generalize these notions as follows.

A formula F is a z-Horn formula iff 7/ = BCP(F) and either F' is trivially
satisfiable or trivially unsatisfiable or there is a valuation function +y(z) such that
Dozecry(m)£0.5Y(0T) = Lor 3o o) —o57(@) = 1. In this case we call y(z) to
be a z-feasible valuation for F.

In other words, a formula is z-Horn if and only if each clause in it after a BCP
step contains at least one “negative” literal (where vy(z) = 0) or exactly two half
ones (where y(z) = 0.5).

Examples for z-Horn formulae:

1. (a) A (—a), because after BCP we obtain a trivially unsatisfiable clause set;
this example is also ¢-Horn, because 5(a) = 0.5 is a g-feasible valuation for
it.

2. (a) A (ma V b), because after BCP we obtain the empty clause set, which is
trivially satisfiable.

3. (aVb)A(—aVec), because every 2-SAT problem is a z-Horn formula.

4. (maVbVe)A(maV bV —e) is z-Horn, because y(a) = y(b) = v(¢) =0 is a
z-feasible valuation, but it is enough to say that v(—a) = 1. Note that this
formula is said not to be g-Horn, see examples 2.9. and 2.10. in [12], but it
is actually ¢-Horn, because 8(—a) = 0, and 8(b) = B(c) = 0.5 is a g-feasible
valuation for it.

5. (maVbVe)A(—aV -bVe)A(aV bV —c) is z-Horn, because y(—a) =
v(=b) = v(—¢) = 1 is a z-feasible valuation, but not ¢-Horn. This has also
been checked by our ¢-Horn / z-Horn checker written in Java. This checker
can be found on our webpage: http://fmv.ektf.hu/tools.html [20].

3. Properties of w-Horn formulae

Lemma 3.1. The set of w-Horn formulae properly includes the set of Horn for-
mulae.

Proof. First we show inclusion. Let F be an arbitrary but fixed Horn formula. Let
F' = BCP(F). Note that 7' does not contain any unit clauses. Note furthermore
that F’ is still a Horn formula, because the set of Horn formulae is closed under
unit propagation. We show that F’ is a w-Horn formula. There are two cases:
F' is either the empty set or not. In the first case, by definition, F is w-Horn.
In the second case let C be an arbitrary but fixed clause from F’. There are two
cases, either C is the empty clause or not. In the first case C is also a w-Horn
clause. In the second case we do the following steps. We know that C is a Horn
clause, so P(C) < 1. From this, by multiplying both sides by —1, we obtain that

Introducing w-Horn and z-Horn: A generalization of Horn and g-Horn formulae 39

—P(C) > —1, and by adding |C| to both sides, we obtain |C| — P(C) > |C| — 1. From
this, by P(C) + N(C) = |C|, we know that N(C) > |C| — 1. We know that C € F,
so C is not a unit, we also know that it is not empty clause, so |C| — 1 > 1. From
these we obtain that N(C) > 1. So, by definition, C is a w-Horn clause. Hence, F
is a w-Horn formula.

As a second step we show that there is a formula which is w-Horn, but not
Horn. The formula C = (-a V bV ¢) is w-Horn, because N(C) = 1, but not Horn,
because P(C) = 2. Hence, the set of w-Horn formulae properly includes the set of
Horn formulae. O

Theorem 3.2. The w-Horn SAT problem is solvable in polynomial time.

Proof. Let F be an arbitrary but fixed w-Horn formula. We show that it is solvable
in polynomial time. Let 7' = BC'P(S). This step is polynomial since unit propa-
gation is polynomial [34]. If 7’ contains the empty clause, then F is unsatisfiable.
Otherwise F is satisfiable and its model consists of the units propagated in the
BCP step, the rest of the variables are negative. O

4. Properties of z-Horn formulae

Lemma 4.1. The set of z-Horn formulae properly includes the set of g-Horn for-
mulae.

Proof. First we show inclusion. Let F be an arbitrary but fixed ¢-Horn formula.
We show that F is a z-Horn formula. Let 7' = BCP(F). Note that F” is still a ¢-
Horn formula, because the set of g-Horn formulae is closed under unit propagation.
There are two cases: F' is either the empty set or not. In the first case, by definition,
F is z-Horn. In the second case let C be an arbitrary but fixed clause from F.
Note that C is not a unit. Since F’ is a ¢-Horn formula, we know that there exists
a g-feasible valuation for F’, let us call it §(x), such that >° . f(z) < 1.

There are 4 cases: Either (1) > _.f(z) = 0, or (2) > ..B(x) = 0.5, or
(3) XspecB@) = 1 and 3, cenpayzosB@) = 1, or (4) 3 ccB(x) = 1 and
> zecnp(z)=o.sBx) =1.

In case (1) either F’ contains the empty clause or not. In the first case, by
definition, F is z-Horn. In the second case we have that 3, ccp(r)20.5 8(02) = |C].
Since C' is not the empty clause, we have that }° ccgez053(72) = 1. This
means that §(x) is a g-feasible valuation for F'. Therefore, F is, by definition, a
z-Horn formula.

In case (2) we have that }_, cc.g(2)20.5 B(72) = [C[| — 0.5. Since C is not the
empty clause and neither a unit, we have that ZIGC/\ﬂ(a:);éO.E) B(—z) > 1. This
means that §(x) is a g-feasible valuation for F'. Therefore, F is, by definition, a
z-Horn formula.

In case (3) we have that 3 cc,5()2058(72) = |C| — 1. Since C is not the
empty clause and neither a unit, we have that ZzeCAﬂ(a:);éo.E) B(—z) > 1. This

40 G. Kusper, Cs. Biré, A. Adamkd, I. Bajdk

means that 8(x) is a g-feasible valuation for F’. Therefore, F is, by definition, a
z-Horn formula.

In case (4) we have that 3>, ¢, 5(,—0.58(2) = 1. So B(z) is a g-feasible valua-
tion for F’. Therefore, F is, by definition, a 2-Horn formula.

So in all cases we have that F is a z-Horn formula. Hence, the set of z-Horn
formulae includes the set of ¢g-Horn formulae.

As a second step we show that there is a formula which is z-Horn, but not
g-Horn. For example the formula (—ma VbV e)A(maV =bVe)A(aV bV -e)is
z-Horn but not ¢g-Horn, see the z-Horn examples in section 2. Hence, the set of
z-Horn formulae properly includes the set of g-Horn formulae. O

Theorem 4.2. Any satisfiable F formula is z-Horn.

Proof. Let F be an arbitrary but fixed satisfiable formula. Let M be a model for
F, i.e., for each clause C in F we have that C intersection M is not empty. Let
~v(x) be a valuation function constructed in the following way: For all m in M let
~v(m) = 0. It is easy to see that y(x) is a z-feasible valuation for F. Hence, any
satisfiable F formula is z-Horn. O

5. Future work

We do not consider in this paper the question of what the relation is between w-
Horn and z-Horn and other generalizations of Horn formulae, linear autarky [18,
24], and other polynomial time SAT problems.

Since we allow more than two “half” literals in a z-Horn clause if there is at
least one “negative” literal, we can use the so called simulated annealing based
methods [15, 29] to find a z-feasible valuation of the input clause set.

According to our current ideas the cooling process work as follows. At the
beginning, each literal is a “half” one. Then we cool the system and some literals
become “negative”, we repeat this until we obtain the 2-SAT core of the problem,
which means that in each clause there is at least one “negative” literal or exactly
two “half” ones.

The other way to attack this problem is to use neural networks. The expressive
power of z-Horn is great, i.e., almost all SAT problems are z-Horn, but in the
worst case, to find the corresponding z-feasible function, we have to solve the input
SAT problem. Instead of this expensive method we can use votes like units have
“negative” value, any other variables are “half” ones. We can use more elaborated
neural networks, which predict which variables are “negative”, “positive”, and “half”
one. Then we can combine them to find the z-feasible function by a voting system,
like in [30, 31].

Acknowledgment. G. Kusper would like to thank the support of the Complex
improvement of research capacities and services at Eszterhazy Kéroly University,
project ID: EFOP-3.6.1-16-2016-00001, and also the support of the Implementation

Introducing w-Horn and z-Horn: A generalization of Horn and q-Horn formulae 41

of services that implement and provide secure personal data management and value-
based information trade services in healthcare management, project ID: GINOP-
2.1.2-8-1-4-16-2017-00176.

Cs. Bir6 would like to thank the support of the Ministry of Innovation and

Technology and the National Research, Development and Innovation Office within
the Quantum Information National Laboratory of Hungary.

References

(1

2]

(3]

[4]

(5]

[6]

7]

(8]

[

[10]

[11]

(12]

B. AspvaLL: Recognizing disguised NR (1) instances of the satisfiability problem, Journal of
Algorithms 1.1 (1980), pp. 97-103,
DoI: https://doi.org/10.1016/0196-6774(80)90007-3.

B. AspvaLL, M. F. Prass, R. E. TArRJAN: A linear-time algorithm for testing the truth of
certain quantified boolean formulas, Information Processing Letters 8.3 (1979), pp. 121-123,
poI: https://doi.org/10.1016/0020-0190(79)90002-4.

C. BIr6, G. Kusper: BaW 1.0-A Problem Specific SAT Solver for Effective Strong Con-
nectivity Testing in Sparse Directed Graphs, in: 2018 IEEE 18th International Symposium
on Computational Intelligence and Informatics (CINTI), IEEE, 2018, pp. 000137-000142,
DoI: https://doi.org/10.1109/CINTI.2018.8928191.

C. BIr6, G. Kusper: Equivalence of strongly connected graphs and black-and-white 2-SAT
problems, Miskolc Mathematical Notes 19.2 (2018), pp. 755-768,
Dol: https://doi.org/10.18514/mmn.2018.2140.

E. Boros, Y. Crama, P. L. HAMMER, M. Saks: A complexity index for satisfiability
problems, SIAM Journal on Computing 23.1 (1994), pp. 4549,
DOI: https://doi.org/10.1137/S0097539792228629.

E. Boros, P. L. HAMMER, X. SuN: Recognition of q-Horn formulae in linear time, Discrete
Applied Mathematics 55.1 (1994), pp. 1-13,
DOI: https://doi.org/10.1016/0166-218X(94)90033-7.

V. CHaNDRU, J. N. HOOKER: Ezxtended Horn sets in propositional logic, Journal of the
ACM (JACM) 38.1 (1991), pp. 205221,
por: https://doi.org/10.1145/102782.102789.

S. A. Cook: The complexity of theorem-proving procedures, in: Proceedings of the third
annual ACM symposium on Theory of computing, 1971, pp. 151-158,
DOI: https://doi.org/10.1145/800157.805047.

M. Davar, D. W. ETHERINGTON: A hierarchy of tractable satisfiability problems, Informa-
tion Processing Letters 44.4 (1992), pp. 173-180,
poI: https://doi.org/10.1016/0020-0190(92)90081-6.

W. F. DowriNG, J. H. GALLIER: Linear-time algorithms for testing the satisfiability of
propositional Horn formulae, The Journal of Logic Programming 1.3 (1984), pp. 267-284,
DoI: https://doi.org/10.1016/0743-1066(84)90014-1.

S. EVEN, A. Ital, A. SHAMIR: On the complexity of time table and multi-commodity flow
problems, in: 16th Annual Symposium on Foundations of Computer Science (sfcs 1975),
IEEE, 1975, pp. 184-193,

por: https://doi.org/10.1109/SFCS.1975.21.

J. FrANcO: Relative size of certain polynomial time solvable subclasses of satisfiability, in:
Satisfiability Problem: Theory and Applications (DIMACS Workshop March 11-13, 1996),
vol. 35, 1997, pp. 211-223,

URL: https://apps.dtic.mil/sti/pdfs/ADA326040.pdf.

42

G. Kusper, Cs. Biré, A. Adamko, I. Bajik

[13]

(14]

[15]

[16]

(17]

18]

(19]

(20]

[21]

[22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

J. Franco, A. VAN GELDER: A perspective on certain polynomial-time solvable classes of
satisfiability, Discrete Applied Mathematics 125.2 (2003), pp. 177-214, 1ssn: 0166-218X,
DoI: https://doi.org/10.1016/50166-218X(01)00358-4.

Z. Gazpac, G. Kovronits: A New Approach for Solving SAT by P Systems with Active
Membranes, Membrane Computing. CMC 2012. Lecture Notes in Computer Science 7762
(2012), pp. 195-207,

DoI: https://doi.org/10.1007/978-3-642-36751-9_14.

S. KirkpaTrICK, C. D. GeLAaTT, M. P. VECCHI: Optimization by simulated annealing,
science 220.4598 (1983), pp. 671-680.

D. E. KnuTH: Nested satisfiability, Acta Informatica 28.1 (1990), pp. 1-6,
DOI: https://doi.org/10.1007/BF02983372.

O. KuLLMANN: Investigations on autark assignments, Discrete Applied Mathematics 107.1
(2000), SI Boolean Functions, pp. 99-137, 1ssn: 0166-218X,
pol: https://doi.org/10.1016/50166-218X(00)00262-6.

O. KuLLMANN: Investigations on autark assignments, Discrete Applied Mathematics 107.1-3
(2000), pp. 99-137,
DOI: https://doi.org/10.1016/50166-218X(00)00262-6.

G. Kusper: Finding models for blocked 3-SAT problems in linear time by systematical
refinement of a sub-model, in: Annual Conference on Artificial Intelligence, Springer, 2006,
pp. 128-142,

poI: https://doi.org/10.1007/978-3-540-69912-5_11.

G. KuspeRr: ¢-Horn and z-Horn Checker, 2021,
pol: https://doi.org/10.13140/RG.2.2.27575.24482,
URL: http://fmv.ektf.hu/files/q-Horn_and_z-Horn_Checker.zip.

G. KuspPER: Solving the resolution-free SAT problem by submodel propagation in linear time,
Annals of Mathematics and Artificial Intelligence 43.1-4 (2005), pp. 129-136,
DoI: https://doi.org/10.1007/s10472-005-0423-7.

G. Kusper, C. BirO: Convert a Strongly Connected Directed Graph to a Black-and- White
3-SAT Problem by the Balatonbogldr Model, Algorithms 13.12 (2020), p. 321,
pol: https://doi.org/10.3390/a13120321.

H. R. Lewis: Renaming a set of clauses as a Horn set, Journal of the ACM (JACM) 25.1
(1978), pp. 134-135,
Dol: https://doi.org/10.1145/322047.322059.

H. vAN MAAREN: A short note on linear autarkies, q-Horn formulas and the complexity
index, tech. rep., Citeseer, 1999,
DoI: https://doi.org/10.1006/inco.2000.2867.

B. Nacy: On Efficient Algorithms for SAT, in: Membrane Computing, ed. by E. CsuHAJ-
VARJU, M. GHEORGHE, G. ROZENBERG, A. SAaLoMAA, G. VasziL, Berlin, Heidelberg: Sprin-
ger Berlin Heidelberg, 2013, pp. 295-310,

pol: https://doi.org/10.1007/978-3-642-36751-9_20.

B. Nacy: The languages of SAT and n-SAT over finitely many variables are regular,
Bulletin-European Association for Theoretical Computer Science 82 (2004), pp. 286-297.

J. S. ScuuPF, F. S. ANNEXSTEIN, J. V. FrRanco, R. P. SwAMINATHAN: On finding solu-
tions for extended Horn formulas, Information Processing Letters 54.3 (1995), pp. 133-137,
por: https://doi.org/10.1016/0020-0190(95)00019-9.

M. G. ScutELLA: A note on Dowling and Gallier’s top-down algorithm for propositional
Horn satisfiability, The Journal of Logic Programming 8.3 (1990), pp. 265-273,
DoOI: https://doi.org/10.1016/0743-1066(90)90026-2.

W. M. SpeaRrs: Simulated annealing for hard satisfiability problems. Cliques, Coloring, and
Satisfiability 26 (1993), pp. 533-558.

Introducing w-Horn and z-Horn: A generalization of Horn and g-Horn formulae 43

[30]
(31]

[32]

33]

(34]

T. TaJsti: Fuzzification of training data class membership binary values for neural network
algorithms, Annales Mathematicae et Informaticae 52 (2020), pp. 217-228.

T. Tajti: New voting functions for neural network algorithms, Annales Mathematicae et
Informaticae 52 (2020), pp. 229-242.

C. A. Tovey: A simplified NP-complete satisfiability problem. Discret. Appl. Math. 8.1
(1984), pp. 85-89,
Dol: https://doi.org/10.1016/0166-218X(84)90081-7.

H. vaNn MAaAREN: A Short Note on Some Tractable Cases of the Satisfiability Problem,
Information and Computation 158.2 (2000), pp. 125-130, 1ssN: 0890-5401,
DoI: https://doi.org/10.1006/inco.2000.2867.

H. Zuang, M. E. STickELY: An E cient Algorithm for Unit Propagation, Proc. of AI-MATH
96 (1996),
URL: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.5500&rep=repl&
type=pdf.

