Annales Mathematicae et Informaticae

52 (2020) pp. 217-228

DOI: https://doi.org/10.33039/ami.2020.10.001
URL: https://ami.uni-eszterhazy.hu

Fuzzification of training data class
membership binary values for neural
network algorithms

Tibor Tajti

Eszterhazy Karoly University
tajti.tibor@Quni-eszterhazy.hu

Submitted: August 16, 2020
Accepted: October 21, 2020
Published online: October 21, 2020

Abstract

We propose an algorithm improvement for classifying machine learning
algorithms with the fuzzification of training data binary class membership
values. This method can possibly be used to correct the training data out-
put values during the training. The proposed modification can be used for
algorithms running individual learners and also as an ensemble method for
multiple learners for better performance. For this purpose, we define the
single and the ensemble variants of the algorithm. Our experiment was done
using convolutional neural network (CNN) classifiers for the base of our pro-
posed method, however, these techniques might be used for other machine
learning classifiers as well, which produce fuzzy output values. This fuzzi-
fication starts with using the original binary class membership values given
in the dataset. During training these values are modified with the current
knowledge of the machine learning algorithm.

Keywords: Machine learning, neural networks, fuzzification
MSC: 92B20, 03B70, 03B52

1. Introduction

The increasing performance of computers enables the wide use of artificial intelli-
gence and machine learning technologies. These technologies come into our daily

217

218 T. Tajti

lives, with image recognition, automatic translation, Al assistants, chatbots, au-
tonomous cars, etc. One of the most widely used machine learning algorithms
is the Artificial Neural Network and its Deep and Convolutional variants [8, 17].
Neural network algorithms are supervised machine learning algorithms, their major
applications include classification, regression, pattern recognition, function approx-
imation, intelligent control, learning from data. The neural network is basically a
set of interconnected artificial neurons and the appropriate algorithms working on
them [8].

A variation of the multi-layer perceptron model is the convolutional neural
network. LeNet was one of the very first convolutional neural networks creating
an area of deep learning. Yann LeCun’s pioneering work has been named LeNet-5,
after many successful iterations [11]. Convolutional networks have shown to be
very effective e.g. in image classification [4, 5], natural language processing [6] and
time series forecasting [3]. CNNs have a convolution operator, hence the name
convolutional network. This convolution operator does feature extraction, e.g.
when learning to classify a 2D image, smaller (e.g. 3 x 3 or 5 x 5 pixels) parts
of the image will be processed as a sliding window over the whole image, so the
network learns such smaller-scale features of the images. Committee machines and
ensemble methods have been shown to improve the accuracy of neural networks
and other machine learning algorithms.

One of the most widely used public datasets is the Modified National Institute
of Standards and Technology database (MNIST) [12], which contains 60,000 hand-
written numbers in the training set and 10,000 handwritten numbers in the test set.
Different classifiers, like K-Nearest Neighbors, SVMs, Neural Nets, Convolutional
Neural Nets, proved on this database had shown fail rate down to about 0.2% (20
failures from 10000 test samples) [12]. We have used this dataset for our research.

State-of-the-art architecture as of the time writing this paper is the squeeze-
and-excitation network! [9].

Modification of training data is often useful for regularization. This can be
done by e.g. making distortion, adding noise, using data augmentation [21] or
adversarial training [19]. Changing the class membership values of the training
data can be considered as one such method.

Usual classification is done providing binary class membership values in the
training data, although even for the input patterns for which the classification
could be considered uncertain. Fuzzy logic has advantages compared to binary
logic having values between false and true as well [1, 2, 10, 15, 22]. Fuzzy logic
can be used in machine learning as well, e.g. combining with neural network [7],
even with ensemble methods [17]. Using fuzzy class membership values can have
performance improvement and this method can also be considered to provide a kind
of confidence, which can be an additional advantage in cases where the confidence
of the outputs is also required [13].

IMNIST classifier with average 0.17% error, 25 February 2020, https://github.com/
Matuzas77/MNIST-0.17/blob/master/MNIST_final_solution.ipynb

Fuzzification of training data class membership binary values . .. 219

2. Improvements for neural network classifiers

We propose the fuzzification of training data output class membership values. This
can be used with standalone learners and with multiple (ensemble) learners as well
for better result.

One common problem is that training data usually has binary output values,
even when the train samples may belong to more than one class at a certain fuzzy
level. [7, 23] These data come usually labeled so that each sample has one or more
labels, each of which means the crisp True membership in the class behind that
label, and crisp False membership value for the other classes in the same category.
There can be cases where these crisp class membership values can be considered
misleading, so the correction of these values can lead to reducing the confounding
effect of them.

The proposed fuzzification technique might be applied to other classifying algo-
rithms as well, in case they are able to give fuzzy membership values in their output.
Research on other algorithms in order to apply the fuzzification technique on them
can be a future research, in the current research we conducted our measurements
with convolutional neural network algorithms.

We define simple methods which can be used to modify the target output values
given for train patterns during the training process to get fuzzy output values
from the crisp (binary) values of the training data set. This class membership
fuzzification is done so that the knowledge gained during the learning process will
be used to correct the inaccurate or incorrect output class membership values of the
train patterns. In the following, we will show and describe the proposed algorithm
variants. The performance of these algorithm variations will be analysed and shown
in Section 3.2.

Three versions of the algorithm will be presented below. The first of them
(Algorithm1) is for single learners, the second version (Algorithm?2) is for multiple
learners the result of which can be used with committee machine voting functions,
the third variant (Algorithm3) is a simple modification to handle the parameters
of the fuzzification for multiple learners.
function FuzzyTraining(model, train_X, train .Y, a, b, c):

epoch = 0
fuzzy_ Y = train_Y
while epoch < MAX_EPOCHS and CheckEarlyStopCondition() == False:
model.fit (train_X, fuzzy_Y, epochs=1)
out = model.predict(train_X)
if epoch > START_FUZZY:
fuzzy_ Y = axfuzzy_ Y + b*out + c*train_Y
epoch = epoch + 1

Algorithm 1: Fuzzy Training

Algorithm1 must be called with the training data inputs and outputs, and the
parameters for the fuzzification for the training of a learning model. The parameter
a is the coefficient for the momentum which means the importance of the actual
(current) class membership values, which are in the fuzzy Y vector. This affects

[

N

220 T. Tajti

the change from original values towards the desired values. The parameter b is the
coefficient for the current knowledge (the out vector), that means the courage to
change. The parameter c is the coefficient used for the train Y vector, which means
the importance of the original target output data. The sum of the parameters a, b
and ¢ must be 1.0 . Of course the condition when to start the correction must be
also considered. In the algorithm presented above, it is a simple condition to have
a number of epochs before the first correction. This of course can be changed to an
adaptive condition to achieve better performance, however, for our measurement it
is more important to know the number of correction operations. When the learning
starts, the initial values in the fuzzy Y vector are the same as given in the train Y
vector.

As it can be seen in Algorithm1, the defined algorithm can work with individual
learner algorithm.

We give an extended variant of the algorithm as well to enable to use the
combined knowledge of multiple (ensemble) learners. The usage of multiple learners
of similar level usually gives better result compared to the individual learners,
well-known methods are the committee machines and the ensemble methods [14,
16, 20]. In this version of the algorithm, all the learners will modify the same
fuzzy Y corrected output values, so their combined opinion will have an effect on
the subsequent training epochs.
function FuzzyTrainingEnsemble (models, train_X, train_Y, a, b, c):

epoch = 0
fuzzy_ Y = train_Y
while epoch < MAX_EPOCHS and CheckEarlyStopCondition() == False:
for model in models:
model.fit (train_X, fuzzy_Y, epochs=1)
out = model.predict(train_X)
if epoch > START_FUZZY:
fuzzy_ Y = axfuzzy_Y + b*out + c*train_Y
epoch = epoch + 1

Algorithm 2: Fuzzy Training Ensemble

In the case of this new variant of the proposed algorithm (Algorithm?2) the cor-
rection of the training data outputs will be better, because the combined knowledge
of the learners has a better performance compared to the individual results. The
correction will also be faster, because after every learning epoch of each individual
learner a correction of the training data outputs will be done. In case of multiple
learners, parameter a affects the change from original values towards the desired
values and it affects the averaging effect on the outputs of multiple learners too. In
a future development, it might be useful to change the algorithm with an additional
parameter to separately control these two effects.

In this case, the number of times the correction statement will be run is the
number of (epochs - START FUZZY) multiplied by the number of the learners.
This can be taken into account when setting the parameters for the training data
output value fuzzification. We provide a modification to Algorithm2 with a simple
normalization with respect to the number of learners.

Fuzzification of training data class membership binary values . .. 221

Let M be the number of learners, a, b and ¢ the weights for the train output class
membership value fuzzification as described for the algorithm. We can calculate
the normalized a’, b’ and ¢’ weights as follows:

o d = YNa

_ (-a)p
i H'_ b+c

ed=1—(d-V)

The parameters a’, ¥, ¢ now correspond to the parameters a, b, ¢ so that the
speed of convergence with M learners giving the same output will be the same as
the speed of convergence would be using the parameters a, b and ¢ with one learner.
Now we apply the above formulae to get the new version of this algorithm.
function FuzzyTrainingEnsemble2(models, train_X, train_Y, a, b, c):

epoch = 0
fuzzy_ Y = train_Y
a = power(a, 1/len(models))

b = (1-a)*b/(b+c)
c = 1-(a+b)
while epoch < MAX_EPOCHS and CheckEarlyStopCondition() == False:

for model in models:
model.fit (train_X, fuzzy_Y, epochs=1)

out = model.predict(train_X)
if epoch > START_FUZZY:
fuzzy_ Y = axfuzzy_Y + b*out + c*train_Y

epoch = epoch + 1
Algorithm 3: Fuzzy Training Ensemble 2

In Algorithm3 the normalization of the parameters has to be done only once,
before the training loop. Certainly it might be possible to adaptively change the
parameters during the training process, the research of this can be conducted in
the future. Note that we have overwritten the original values of the parameters a, b
and c. If this is not the desired behavior then these values can be preserved. Since
with given number of learners and given (not changing) a, b and ¢ parameters the
difference between the Algorithm?2 and Algorithm3 variants lies only on changing
the parameters, we have not conducted any separate measurements on Algorithm3.

3. Performance evaluation of fuzzification of train-
ing data binary class membership values

3.1. Performance evaluation framework

The experiments ran on personal computers equipped with NVIDIA and AMD
GPUs using Tensorflow from Python programs. Our simple framework was based
on file interface which enables to run the machine learning on multiple machines,
and then later collected and processed the output files generated by the learners.

222 T. Tajti

For the research, two convolutional neural network learning algorithms with
different strength have been chosen as the basis of the modifications.

The problem set given to the learning algorithms was the well known MNIST
database of handwritten digits [12].

The results may vary given the stochastic nature of the algorithms, so thou-
sands of experiments with different parameters were performed, and average results
were analysed. For the analyses we first measured the performance of the individ-
ual learners on the test dataset with different parameters for fuzzification. Since
multiple learners have proven to be more successful when we combine their results
through voting, we might expect better results by setting the fuzzified class mem-
bership together as well. We will show the results of this research in Section 3.2. In
these experiments we have measured the standalone test results of the learners, as
well as the results of the fuzzy average voting of multiple learners, as a committee
machine. When we talk about committee machine voting we can choose from many
voting functions, e.g. fuzzy averaging, plurality (or majority) voting, etc. In our
research we have used the well-known fuzzy voting [18].

For the analyses we used the Python Numpy and Pandas frameworks. The
algorithms run with different epoch counts to see the behavior of our proposed
algorithm variations not only with the statistically best settings. In the following
sub-section we will show the performance of the proposed fuzzification of training
data binary class membership values. For the evaluation we run about one million
learning sessions with convolutional neural network algorithms modified according
to our proposed methods. The first algorithm variant was built from the algo-
rithm introduced in?. The second algorithm variant was based on the algorithm
which uses the Squeeze-and-Excitation Network method. We have added to both
algorithms the proposed fuzzification of binary class membership values of training
data.

3.2. Performance evaluation of training data class member-
ship value fuzzification

We have executed several experiments with two algorithms of different strengths.
The algorithm variations were executed with different parameters, e.g. the number
of epochs to run, the number of instances in the ensembles and the parameters
for the fuzzification of binary class membership values of training data, including
parameters which keep the original class membership values. We note that we have
executed many learning sessions without fuzzification as well in order to have more
reliable results for comparison.

3.2.1. Fuzzification experiment 1

The first experiment ran using the modified variant of. Thousands of learners
learned with different epoch counts and different parameters for fuzzification, in-

?https://www.kaggle.com/cdeotte/25-million- images-0-99757-mnist

Fuzzification of training data class membership binary values . .. 223

cluding parameters which keep the original class membership values(a = 0, b = 0,
¢ =1). We will first show the average results in function of the ¢/(b + ¢) ratio.

) @ TSTAVG
[]
0.99640
o °
0996351 @
> [J
°
5
3 0.99630 °
< ° ® 0 ®
) L4 o
0.99625
[J

0.99620 Y

03 04 05 056 07 038 09 10

Ratio of weight for training class membership (c/(b+c))

Figure 1: The average accuracy results of our algorithm on test
data using different parameters for the fuzzification of the training
data class membership values.

Figure 1 shows the average accuracy of the individual learners with different
parameters used for the fuzzification. The ratio ¢/(b 4 ¢) of the parameters of
Algorithm1 has the meaning of how important the original binary class membership
values provided in the training data are. If the ratio is 1.0 , then no fuzzification will
happen. As it can be seen, the accuracy achieved was better when the algorithm
was used with fuzzification. We note that when the ratio goes below 50% then the
performance gets again lower. In that case the fuzzification can change the class
membership values to have a big difference from the original values. We will also
show the performance using the fuzzy average voting function when using multiple
learners.

Figure 2 shows the accuracy of the V1 fuzzy average voting on the same ex-
periment. As we can see, the results using the fuzzy average voting are similar,
the fuzzification helps to achieve better performance, i.e. higher accuracy on the
training dataset. As the ratio of ¢/(b + ¢) increases, i.e., the possibility of fuzzifi-
cation decreases, so the accuracy achieved tends to decrease as well. We note, that
although the shown results are mean values of several measurements, the random
behavior of the algorithms can result in fluctuation in performance, some values
can be the effect of that. We also show a 3D diagram to better understand the
results for different parameters. Since the sum of the parameters a, b and ¢ must
be 1.0 we can choose two of these parameters for the X and Y axes of the diagram,
and the Z axis can show the average accuracy values. We have chosen the a and b
parameters for that, the ¢ parameter for every measurement is 1 — (a +b) .

Figure 3 shows the average individual accuracy on test data for the a and b
parameters. The value with a = 0, b = 0 coordinates shows the average result
without fuzzification. We can see that with values of parameter b around 0.4

224

T. Tajti

099760 @ o
0.99755 PY L4
0.99750 []
[J
ao.99745 ° PY
8
g 0.99740 ® PY
g o []
0.99735 ® °
[J
0.99730 ® [}
[J
0.99725
[J
0.99720
03 04 05 06 07 08 019 10

Ratio of weight for training class membership (c/(b+c))

Figure 2: The performance results of our algorithms V1 fuzzy av-

erage voting function by 6-20 voters on test data using different

parameters for the fuzzification of the training data class member-
ship values.

20
30

Par,
ameter a(g) 50 0

Figure 3: The average performance results of our algorithms on test
data using different parameters for the fuzzification of the training
data class membership values.

(40%) we had better accuracy, especially when the value of parameter a was close
to 0.3 (30%).

3.2.2. Fuzzification experiment 2

The next experiment ran using a modified algorithm of , using the parameters for
the fuzzification. The number of epochs we had run the algorithm was from 15 to

20.
Figure 4 shows the average accuracy of the individual learners with different

Fuzzification of training data class membership binary values . .. 225

0.997625 L ° @ TSTAVG
0997600 @
[]
0.997575 -
: °
E 0.997550 1 []
2 []
' 0997525
s
3 o ® o Y
2 0.997500
<
0.997475 -
[]
0.997450 -
[]
0.5 0.6 07 0.8 0.9 10

Ratio of weight for training class membership (¢/(b+c))

Figure 4: The individual accuracy results of the algorithm on test
data using different parameters for the fuzzification of the training
data class membership values.

parameters used for the fuzzification. As described for Figure 1 the ratio ¢/(b+ ¢)
tells the importance of the original class membership values of the training data,
fuzzification can be done only if the ratio is below 1.0 . As we can see, the accuracy
can be better with modest fuzzification. We also note that if the ratio of ¢/(b+ ¢)
decreases to below 0.5 then the accuracy seems to decrease as well. This can be the
effect of too much freedom of the algorithm to change the class membership values.
For this experiment, too, we have measured the performance using the well-known
fuzzy average voting function (V1) when using multiple (6-20) learners.

0.99815

[o v
0.99810 4
o ©
0.99805 - ®
P []

o P ®
= 0.99800 4 o
oy L ®
£ °
3 0.99795 4
g
<

0.99790 4

0.99785 4

0.99780 1 hd ; ; . ; ; .
0.5 0.6 0.7 0.8 0.9 10
Ratio of weight for training class membership (¢/(b+c))

Figure 5: The individual accuracy results of algorithm on test data
using different parameters for the fuzzification of the training data
class membership values.

Figure 5 shows the results of the V1 fuzzy mean vote in this experiment. The
results are different in this case. The accuracy averages using fuzzified training

226 T. Tajti

data class membership values were lower for most parameters than the accuracy
using only the original training data. However, there is a promising range what we
can look from another perspective as well. Below we show the average accuracy
of the learners for different a, b and ¢ parameters on a 3D figure using the fuzzy
average (V1) voting function with 6-20 voters. We show the results in function of
a and b parameters, while parameter ¢ is dependent on them.

.99813
.99810
.99808
.99805

.99803

AVG accuracy

.99800
.99798
.99795

Figure 6: The results of our algorithms’ average accuracy on test
data using different parameters for the fuzzification of the training
data class membership values.

Figure 6 shows the results of thousands of learning sessions which were executed
with different a, b and ¢ parameters. The point with a = 0, b = 0 coordinates
shows the average result when class membership values of training data were not
corrected. We can see that the results were higher with lower a and b parameter
values. For such parameters the ¢ parameter is higher, so only minor corrections
on the training data class membership values can be made.

We note that this is a strongly different behavior compared to the performance
of fuzzification with the first (weaker) algorithm variant. This is probably because
the Squeeze-and-Excitation Network has much higher accuracy on this dataset, and
this might mean that it can handle misclassified train samples better, so fuzzifica-
tion may result only in minor improvement.

For a range of parameter values where parameter a and b are not zero but both
have low values the accuracy was better using the proposed fuzzification. That
means that fuzzification in a lower rate had an improvement even for this strong

algorithm.

4. Conclusion

From the results of our fuzzification experiments we can conclude that the fuzzifica-
tion of the training data binary class membership values can improve the accuracy
of the prediction of class membership values.

Fuzzification of training data class membership binary values . .. 227

The results show that the parameters of our proposed fuzzification algorithm
highly affect the accuracy of the predictions of the learners. Their effect was dif-
ferent depending on the basic algorithm to which we added it. The performance
improvement of individual test accuracy was significant for both algorithms we used
for the evaluation. When we compared the accuracy of the fuzzy average voting
function for different parameters of the fuzzifying algorithm we had also significant
improvement for the weaker algorithm with wider range of the parameters of the
fuzzification algorithm, but in case of the stronger algorithm only a minor improve-
ment was observed for a narrow range of these parameters. Further measurements
will be performed to analyze this behavior with the same dataset and with other
datasets as well.

References

[1] R. BasBous, B. Nacy, T. Tastr: Short Circuit Evaluations in Godel Type Logic, Proc. of
FANCCO 2015: 5th International Conference on Fuzzy and Neuro Computing, Advances in
Intelligent Systems and Computing 415 (2015), pp. 119-138,

DoOI: https://doi.org/10.1007/978-3-319-27212-2_10.

[2] R. BasBous, T. Taysti, B. Nacy: Fast Evaluations in Product Logic: Various Pruning
Techniques, in: FUZZ-IEEE 2016 - the 2016 IEEE International Conference on Fuzzy Sys-
tems, Vancouver, Canada: IEEE, 2016, pp. 140-147,
pol: 10.1109/FUZZ-IEEE.2016.7737680.

[3] A. BorovykH, S. Boute, C. W. OosTeRLEE: Conditional time series forecasting with
convolutional neural networks, arXiv preprint arXiv:1703.04691 (2017).

[4] D. Ciresan, U. MEIER, J. SCHMIDHUBER: Multi-column deep neural networks for image
classification, in: 2012 IEEE conference on computer vision and pattern recognition, IEEE,
2012, pp. 3642-3649.

[5] D. C. CiresaN, U. MEIER, J. Masci, L. M. GAMBARDELLA, J. SCHMIDHUBER: Flexible,
high performance convolutional neural networks for image classification, in: Twenty-second
international joint conference on artificial intelligence, 2011.

[6] A. ConnEAaU, H. ScHWENK, L. BARRAULT, Y. LECUN: Very deep convolutional networks
for text classification, arXiv preprint arXiv:1606.01781 (2016).

[7] R. FULLER: Fuzzy systems, in: Introduction to Neuro-Fuzzy Systems, Springer, 2000, pp. 1—
131.

[8] S. HavkiN: Neural Networks: A Comprehensive Foundation, 2nd, USA: Prentice Hall PTR,
1998, 1sBN: 0132733501.

[9] J. Hu, L. SueN, G. Sun: Squeeze-and-excitation networks, in: Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 7132-7141.

[10] G. KovAsznal, C. BirG, B. ErRDELYI: Puli-A Problem-Specific OMT solver, in: Proc. 16th
International Workshop on Satisfiability Modulo Theories (SMT 2018), 371, 2018.

[11] Y. LeCuN, L. Borrou, Y. BENcIO, P. HAFFNER: Gradient-based learning applied to doc-
ument recognition, Proceedings of the IEEE 86.11 (1998), pp. 2278-2324.

[12] Y. LeCun, C. CortEs, C. J. Burces: The MNIST database of handwritten digits, 1998,
URL http://yann. lecun. com/exdb/mnist 10.34 (1998), p. 14.

[13] L. L1, Q. Hu, X. Wu, D. Yu: Ezploration of classification confidence in ensemble learning,
Pattern recognition 47.9 (2014), pp. 3120-3131.

228 T. Tajti

[14] U. NartaLy, N. INTRATOR, D. HORN: Optimal ensemble averaging of neural networks,
Network: Computation in Neural Systems 8.3 (1997), pp. 283-296,
poI: 10.1088/0954-898X_8_3_004, eprint: https://doi.org/10.1088/0954-898X_8_3_
004,
URL: https://doi.org/10.1088/0954-898X_8_3_004.

[15] B. Nacy, R. BasBous, T. TaJsti: Lazy evaluations in Lukasiewicz type fuzzy logic, Fuzzy
Sets and Systems 376 (2019), Theme: Computer Science, pp. 127-151, 1ssn: 0165-0114,
pol: https://doi.org/10.1016/j.£fss.2018.11.014,

URL: http://www.sciencedirect.com/science/article/pii/S0165011418309357.

[16] D. Oprrz, R. MacLIN: Popular ensemble methods: An empirical study, Journal of artificial
intelligence research 11 (1999), pp. 169-198.

[17] S. RusseLL, P. Norvia: Artificial intelligence: a modern approach (2002).

[18] C. Sammur, G. I. WEBB: Encyclopedia of machine learning, Springer Science & Business
Media, 2011.

[19] F. TramiR, A. KURAKIN, N. PAPERNOT, ET AL.: Ensemble adversarial training: Attacks
and defenses, arXiv preprint arXiv:1705.07204 (2017).

[20] S. WaN, H. Yana: Comparison among Methods of Ensemble Learning, 2013 International
Symposium on Biometrics and Security Technologies (2013), pp. 286—290.

[21] S. C. Wong, A. GarT, V. StamaTEscU, M. D. McDonNNELL: Understanding data augmen-
tation for classification: when to warp?, in: 2016 international conference on digital image
computing: techniques and applications (DICTA), IEEE, 2016, pp. 1-6.

[22] L. A. Zaben, G. J. KLIR, B. Yuan: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems, WORLD
SCIENTIFIC, 1996,
poI: 10.1142/2895, eprint: https://www.worldscientific.com/doi/pdf/10.1142/2895,
URL: https://www.worldscientific.com/doi/abs/10.1142/2895.

[23] L. A. Zabpen: Fuzzy logic—a personal perspective, Fuzzy Sets and Systems 281 (2015),
Special Issue Celebrating the 50th Anniversary of Fuzzy Sets, pp. 420, 1ssN: 0165-0114,
DOI: https://doi.org/10.1016/j.fss.2015.05.009,
URL: http://wuw.sciencedirect.com/science/article/pii/S0165011415002377.

