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Abstract

In this paper, we prove a finiteness theorem concerning repdigits repre-
sented by a fixed quadratic polynomial. We also show that the only pentag-
onal numbers which are also repdigits are 1, 5 and 22. Similarly, the only
heptagonal numbers which are repdigits are 1, 7 and 55.
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1. Introduction

It is well known that the polygonal numbers of the forms 𝑛(3𝑛−1)/2 and 𝑛(5𝑛−3)/2
are called pentagonal number (OEIS [14] A000326) and heptagonal numbers (OEIS
[14] A000566), respectively, where 𝑛 is any positive integer. Many authors have
studied the problems of searching for these numbers in some interesting sequence
of positive integers.

In 1996, M. Luo [6] has proved that 1 and 5 are the only pentagonal numbers
in the Fibonacci sequence and later identified in [7] that 1 is the only pentagonal
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number in the Lucas sequence. The so-called generalized pentagonal numbers are
given by 𝑛(3𝑛 − 1)/2 with 𝑛 integral, not necessarily positive. In [7], again M.
Luo showed that 2, 1 and 7 are the only generalized pentagonal numbers which
are also Lucas numbers. In [10], V. S. Rama Prasad and B. Rao proved that 1
and 7 are the only generalized pentagonal numbers in the associated Pell sequence
and subsequently in [11], they identified that the only Pell numbers which are also
pentagonal are 1, 5, 12 and 70.

In 2002, B. Rao [13] proved that 1, 4, 7 and 18 are the only generalized hep-
tagonal numbers (where 𝑛 is any integer) in the Lucas sequence. Furthermore in
[12], B. Rao identified that 0, 1, 13, 34 and 55 are the only generalized heptagonal
numbers in the sequence of Fibonacci numbers.

A positive integer is called a repdigit (OEIS [14] A010785), if it has only one
distinct digit in its decimal expansion. Repdigits have the form

ℓ

(︂
10𝑚 − 1

9

)︂
, for some 𝑚 ≥ 1 and ℓ ∈ {1, 2, . . . , 9}.

The first few repdigits are

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, . . . , 111, . . .

In addition, repunits are particular instances of repdigits, obtained when the re-
peating digit has the value 1. Earlier in 2000, F. Luca [5] proved that 55 is the
largest repdigit in the Fibonacci sequence, and 11 is the largest member of the
Lucas sequence which is also the repdigit. In 2012, Marques and Togbé [8] studied
the repdigits that are products of consecutive Fibonacci numbers.

According to Ballew and Weger [1], E. B. Escott in 1905 proved that 1, 3, 6, 55, 66
and 666 are the only triangular numbers of less than 30 digits that consist of a
single repeated digit. And in 1975, they [1] proved that, in fact these are the only
triangular repdigits. Recently, J. H. Jaroma [3], proved that 1 is the only integer
that is both triangular and repunit.

In this paper, we first establish the finiteness of the solutions of some of the
equations that involve repdigits, and consequently, we identify the petangonal and
heptagonal numbers that are also repdigits.

2. Main results

The following result is a restatement of Theorem 1 in [4].

Theorem 2.1. Let 𝐴, 𝐵, 𝐶 be fixed rational numbers with 𝐴 ̸= 0. Then the
Diophantine equation

ℓ

(︂
10𝑚 − 1

9

)︂
= 𝐴𝑛2 +𝐵𝑛+ 𝐶, (2.1)

has only finite number of solutions, in integers 𝑚,𝑛 ≥ 1 and ℓ ∈ {1, 2, . . . , 9}
provided 9𝐵2 − 36𝐴𝐶 − 4𝐴ℓ ̸= 0.
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Proof. We multiply both sides of equation (2.1) by 4𝐴, and rearrange some terms,
which gives us

4𝐴ℓ

(︂
10𝑚 − 1

9

)︂
+𝐵2 − 4𝐴𝐶 = (2𝐴𝑛+𝐵)2.

Further, we can rewrite the last equation as

4𝐴ℓ103𝑚1+𝑟 +
(︀
9
(︀
𝐵2 − 4𝐴𝐶

)︀
− 4𝐴ℓ

)︀
= 9(2𝐴𝑛+𝐵)2, (2.2)

where we let 𝑚 = 3𝑚1 + 𝑟 with 𝑟 ∈ {0, 1, 2}. We again multiply both sides of
equation (2.2) by 16ℓ2102𝑟, thus we get

𝑌 2 = 𝑋3 +𝐴, (2.3)

where
𝑋 := 4ℓ10𝑚1+𝑟, 𝑌 := 12ℓ10𝑟(2𝐴𝑛+𝐵),

and
𝐴 := 16ℓ2102𝑟

(︀
9(𝐵2 − 4𝐴𝐶)− 4𝐴ℓ

)︀
.

By the hypothesis, we have 𝐴 ̸= 0. Thus, we obtain an elliptic curve over Q given
by (2.3). By a theorem of Siegel (see [9], p. 313), this curve has a finite number
of integer points. As a consequence, equation (2.1) has only a finite number of
positive integer solutions.

The result of Ballew and Weger [1] is the case when 𝐴 = 𝐵 = 1
2 and 𝐶 = 0 in

equation (2.1), though their method of proof is different. Now, we establish some
further applications of Theorem 2.1. First, we identify all the pentagonal repdigits.
Our result is the following, which comes as a corollary of Theorem 2.1.

Corollary 2.2. The complete list of pentagonal repdigits is 1, 5 and 22.

Proof. In order to prove our result, we study the equation

ℓ

(︂
10𝑚 − 1

9

)︂
=

𝑛(3𝑛− 1)

2
, (2.4)

in integers 𝑚,𝑛 ≥ 1 and ℓ ∈ {1, 2, . . . , 9}, which is the case when 𝐴 = 3
2 , 𝐵 = − 1

2
and 𝐶 = 0 in equation (2.1). Further, working as in the proof of Theorem 2.1,
equation (2.4) can be written as

𝑦21 = 𝑥3
1 + 𝑎1, (2.5)

where 𝑥1 := 6ℓ10𝑚1+𝑟, 𝑦1 := 9ℓ10𝑟(6𝑛 − 1), and 𝑎1 := 27(3 − 8ℓ)ℓ2102𝑟. We note
that 𝑎1 is nonzero, otherwise this would lead to ℓ = 3/8, which is not true. By
Theorem 1, the equation (2.4) has only a finite number of solutions in 𝑚,𝑛 ≥ 1 and
1 ≤ ℓ ≤ 9. Since ℓ ∈ {1, . . . , 9} and 𝑟 ∈ {0, 1, 2}, we obtain twenty-seven elliptic
curves given by (2.5). Now, we determine the integer points (𝑥1, 𝑦1) on each these
elliptic curves. For this, we used MAGMA [2].

The following table displays all1 the integer points (𝑥1, 𝑦1)
2, described above

1Equation (2.5) has no integer points for (ℓ, 𝑟) = (1, 2), (3, 1), (4, 1), (4, 2), (5, 2), (6, 1), (8, 1),
(8, 2), (9, 2).

2(𝑥1, 𝑦1)’s in bold correspond to the integer solutions of the equation (2.4) in the third column.

Pentagonal and heptagonal repdigits 139



and corresponding integer solutions (𝑚,𝑛) of the equation (2.4), whenever they
exist.

ℓ, 𝑟 (𝑥1, 𝑦1) (𝑚,𝑛)
ℓ = 1,
𝑟 = 0

(6,±9), (19,±82), (24,±117)

ℓ = 1,
𝑟 = 1

(24,±18), (60,±450), (85,±775), (2256,±107154) (1, 1)

ℓ = 2,
𝑟 = 0

(12,±18), (120,±1314)

ℓ = 2,
𝑟 = 1

(120,±1260)

ℓ = 2,
𝑟 = 2

(264,±2088), (300,±3600), (1000,±31400),
(1200,±41400), (24400,±3811400),
(130296,±47032344)

(2, 4)

ℓ = 3,
𝑟 = 0

(18,±27), (288,±4887)

ℓ = 3,
𝑟 = 2

(856,±24004)

ℓ = 4,
𝑟 = 0

(24,±36), (33,±153), (112,±1180), (384,±7524),
(528,±12132)

ℓ = 5,
𝑟 = 0

(30,±45), (46,±269), (64,±487), (75,±630),
(120,±1305), (480,±24345), (1654,±67267)

ℓ = 5,
𝑟 = 1

(136,±134), (300,±4950), (525,±11925),
(4800,±332550)

(1, 2)

ℓ = 6,
𝑟 = 0

(36,±54), (1224,±42822)

ℓ = 6,
𝑟 = 2

(1224,±37368)

ℓ = 7,
𝑟 = 0

(42,±63), (1680,±68859)

ℓ = 7,
𝑟 = 1

(240,±2610), (301,±4501), (420,±8190),
(2940,±159390)

ℓ = 7,
𝑟 = 2

(4200,±270900)

ℓ = 8,
𝑟 = 0

(48,±72), (2208,±103752)

ℓ = 9,
𝑟 = 0

(54,±81), (108,±1053), (162,±2025), (279,±4644),
(2808,±148797), (2979,±162594),
(3310254,±6022710369)

ℓ = 9,
𝑟 = 1

(1296,±46494)

Table 1: Integer solutions (𝑥1, 𝑦1)
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The list of ordered pair (𝑚,𝑛) in third column of Table 1 above, together with
the corresponding values of ℓ in the first column give us the complete list of the
solutions (𝑚,𝑛, ℓ) in positive integers for equation (2.4). From this, we can deduce
that the only pentagonal numbers in the sequence of repdigits are given by the
statement of Corollary 2.2. This completes the proof of Corollary 2.2.

Next, we identify all the heptagonal numbers in the sequence of the repdigits.
Our result is the following.

Corollary 2.3. The complete list of heptagonal repdigits is 1, 7 and 55.

Proof. We let 𝐴 = 5
2 , 𝐵 = − 3

2 and 𝐶 = 0 in equation (2.1), which allows us to
study the following equation (finite number of solutions, by Theorem 2.1),

ℓ

(︂
10𝑚 − 3

9

)︂
=

𝑛(5𝑛− 1)

2
, (2.6)

in integers 𝑚,𝑛 ≥ 1 and ℓ ∈ {1, 2, . . . , 9}. As before, last equation can be reduced
to

𝑦22 = 𝑥3
2 + 𝑎2, (2.7)

where 𝑥2 := 10ℓ10𝑚1+𝑟, 𝑦2 := 15ℓ10𝑟(10𝑛− 3), and 𝑎2 := 25ℓ2102𝑟(81− 40ℓ). We
note that 𝑎2 is nonzero, otherwise we get ℓ = 81/40, which is not true. Now, we use
MAGMA [2], to determine the integer points (𝑥2, 𝑦2) on the elliptic curves given
by (2.7).

The following table shows all3 the integer points (𝑥2, 𝑦2)
4, described above and

corresponding integer solutions (𝑚,𝑛) of the equation (2.6), whenever they exist.

ℓ, 𝑟 (𝑥2, 𝑦2) (𝑚,𝑛)

ℓ = 1,
𝑟 = 0

(10,±5), (5,±30), (4,±31), (1,±32), (4,±33),
(10,±45), (20,±95), (40,±225), (50,±355), (64,±513),
(155,±1930), (166,±2139), (446,±9419), (920,±27905),
(3631,±218796), (3730,±227805)

ℓ = 1,
𝑟 = 1

(100,±1050) (1, 1)

ℓ = 1,
𝑟 = 2

(200,±1500), (2000,±89500)

ℓ = 2,
𝑟 = 0

(4,±6), (0,±10), (5,±15), (20,±90), (24,±118),
(2660,±137190)

ℓ = 2,
𝑟 = 1

(0,±100)

ℓ = 2,
𝑟 = 2

(100,±0), (0,±1000), (200,±3000)

3Equation (2.7) has no integer points for (ℓ, 𝑟) = (6, 1), (6, 2), (8, 1), (9, 1).
4(𝑥2, 𝑦2)’s in bold correspond to the integer solutions of the equation (2.6) in the third column.
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ℓ = 3,
𝑟 = 0

(30,±135), (40,±235), (1299,±46818)

ℓ = 3,
𝑟 = 1

(100,±350)

ℓ = 3,
𝑟 = 2

(1200,±40500)

ℓ = 4,
𝑟 = 0

(40,±180)

ℓ = 4,
𝑟 = 1

(184,±1752), (200,±2200), (400,±7800), (1900,±82800),
(60625,±14927175)

ℓ = 4,
𝑟 = 2

(800,±14000)

ℓ = 5,
𝑟 = 0

(50,±225), (134,±1527), (7550,±656025)

ℓ = 5,
𝑟 = 1

(200,±750), (6000,±464750)

ℓ = 5,
𝑟 = 2

(5000,±352500) (2, 5)

ℓ = 6,
𝑟 = 0

(60,±270), (280,±4670)

ℓ = 7,
𝑟 = 0

(70,±315), (91,±714), (200,±2785), (2240,±106015)

ℓ = 7,
𝑟 = 1

(301,±1701), (700,±17850), (1400,±52150),
(7900,±702150)

(1, 2)

ℓ = 7,
𝑟 = 2

(1400,±17500), (25424,±4053532), (49000,±10846500),
(325000,±185278500)

ℓ = 8,
𝑟 = 0

(80,±360), (120,±1160), (200,±2760), (396,±7856),
(1244,±43872), (2081,±94929)

𝑐 = 8,
𝑟 = 2

(1700,±33000), (2400,±100000), (32000, 5724000)

ℓ = 9,
𝑟 = 0

(90,±405), (171,±2106), (180,±2295), (630,±15795),
(700,±18505), (720,±19305),
(150750,±58531005), (238770,±116672805)

ℓ = 9,
𝑟 = 2

(1800,±13500), (2016,±50436), (3600,±202500),
(5625,±415125), (9000,±850500), (25425,±4053375),
(83800,±24258500), (126000,±44725500)

Table 2: Integer solutions (𝑥2, 𝑦2)

In Table 2, as in the proof of Corollary 2.2, the list of ordered pair (𝑚,𝑛) in
third column together with the corresponding values of ℓ in the first column give
us the complete list of the solutions (𝑚,𝑛, ℓ) in positive integers with 1 ≤ ℓ ≤ 9
for the equation (2.4), which are the only pentagonal numbers in the sequence of
repdigits. This completes the proof of Corollary 2.3.
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Recently in [4], authors of this paper studied the triangular numbers that are
also repeated blocks of two digits, which we call the repblocks of two digits. Such
numbers have the form

ℓ

(︂
102𝑚 − 1

99

)︂
, for some 𝑚 ≥ 1 and ℓ ∈ {10, 11, . . . , 99}.

Additionally in this paper, we extend and complement the results obtained in [4]
by finding all the pentagonal repblocks of two digits. Our results are the following.

Corollary 2.4. The complete list of pentagonal numbers which are also repblocks
of two digits is

12, 22, 35, 51, 70, 92, 1717.

Proof. To prove our result, in equation (2.1), we replace the left hand side by
ℓ
(︁

102𝑚−1
99

)︁
, with ℓ ∈ {10, 11, . . . , 99} and the right hand side of it by 𝐴 = 3

2 , 𝐵 =

− 1
2 and 𝐶 = 0. As before, the resulting equation can be written as

𝑦23 = 𝑥3
3 + 𝑎3, (2.8)

where 𝑥3 := 66ℓ102𝑚1+2𝑟, 𝑦3 := 1089ℓ102𝑟(6𝑛− 1) and 𝑎3 := 11979ℓ2104𝑟(3− 8ℓ).
We note that 𝑎3 is nonzero. Now, we use MAGMA [2], to determine the integer
points (𝑥3, 𝑦3) on the two hundred forty-three elliptic curves given by (2.8).

The following table displays all the integer points (𝑥3, 𝑦3)
5 of (2.8), which pro-

duce the corresponding integer solutions (𝑚,𝑛) of equation (2.4). There are only
seven such elliptic curves. The other two hundred thirty-six equations either do
not have any integer points (𝑥3, 𝑦3), or do not produce relevant solutions (𝑚,𝑛)
and thus, we omit those equations.

ℓ, 𝑟 (𝑥3, 𝑦3) (𝑚,𝑛)
ℓ = 12,
𝑟 = 1

(25524,±3656232), (79200,±22215600),
(127600,±45544400), (1753200,±2321384400)

(1, 3)

ℓ = 17,
𝑟 = 2

(1734000,±2259810000), (3706000,±7126910000),
(4686000,±10138590000), (11220000,±37581390000),
(17217600,±71442126000), (20476500,±92657565000),
(166268400,±2143949598000)

(2, 34)

ℓ = 22,
𝑟 = 1

(31944,±2779128), (36300,±4791600),
(121000,±41793400), (145200,±55103400),
(2952400,±5072973400), (15765816,±62600049864)

(2, 4)

ℓ = 35,
𝑟 = 1

(67200,±13954500), (231000,±110533500),
(279400,±147317500)

(2, 5)

ℓ = 51,
𝑟 = 1

(336600,±194386500) (1, 6)

5(𝑥3, 𝑦3)’s in bold correspond to the integer solutions in the third column.
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ℓ = 70,
𝑟 = 1

(462000,±312543000) (1, 7)

ℓ = 92,
𝑟 = 1

(607200,±470883600) (1, 8)

Table 3: Integer solutions (𝑥3, 𝑦3)

The ordered pairs (𝑚,𝑛) in the third column of Table 3, together with the
corresponding values of ℓ in the first column give us the complete list of pentagonal
numbers which are also the repblock of two digits. This completes the proof of
Corollary 2.4.

In the same fashion, one can show that 18, 34, 55, 81 and 4141 are the only
heptagonal numbers which are also repblocks of two digits.
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