
Ellipse chains inscribed inside a parabola
and integer sequences

Giovanni Lucca

Piacenza, Italy
vanni_lucca@inwind.it

Submitted: July 11, 2020
Accepted: September 25, 2020

Published online: September 26, 2020

Abstract
The paper presents formulas and conditions relevant to the construction

of chains of mutually tangent ellipses inscribed inside a parabola. Moreover,
some connections with certain integer sequences and Pythagorean triplets are
shown.
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1. Introduction

In the previous paper [2], we studied the problem of inscribing a chain of mutually
tangent circles inside a parabola; here we want to generalise it by considering the
case of ellipses instead of circles.

We also mention that a cognate problem has been presented in [1] by considering
a hyperbola instead of a parabola.

Let us consider a parabola in its simplest form that is:

𝑦 = 𝑎𝑥2, 𝑎 > 0.

This is not a limitation because, as known, the shape of the parabola depends only
on the coefficient of the second order term; moreover, the main results presented
in this paper do not change in the case when 𝑎 < 0. The advantage in considering
only the case 𝑎 > 0 consists in obtaining simpler formulas.
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Inside this parabola, we want to inscribe an infinite chain of ellipses where the
generic 𝑖-th ellipse is tangent to the preceding and succeeding ones; see an example
in Figure 1.

Figure 1: Example of ellipse chain inscribed inside a parabola

2. Construction of the ellipse chain

For symmetry reasons, the centre of each ellipse must be placed on the ordinate
axis; thus, the centre of the generic 𝑖-th ellipse of the chain has coordinates (0, 𝑌𝑖).

Moreover, we define respectively by 𝛼𝑖 and 𝛽𝑖 the horizontal and vertical semi-
axes of the generic 𝑖-th ellipse.

In the next subsections, we introduce the hypotheses adopted and the basic
conditions needed to build up the ellipse chain.

2.1. Similarity of the ellipses
The first basic assumption we make is that all the ellipses forming the chain are
similar that is

𝜆 =
𝛼𝑖

𝛽𝑖
, 𝜆 ∈ R+, 𝑖 = 0, 1, . . . (2.1)

Note that it could be 𝜆 < 1; in that case, the major axis of the ellipses of the chain
is the vertical one.

2.2. Tangency condition between to consecutive ellipses
By considering two consecutive ellipses of the chain, we have that the difference
between the ordinate centres is equal to the sum of the vertical semi-axis that is

𝑌𝑖 − 𝑌𝑖−1 = 𝛽𝑖 + 𝛽𝑖−1, 𝑖 = 1, 2, . . . (2.2)

160 G. Lucca



2.3. Tangency condition between parabola and ellipses
In order to find the intersections between the parabola and the generic 𝑖-th ellipse,
we have to consider the following equation system

⎧
⎪⎨
⎪⎩

𝑦 = 𝑎𝑥2,

𝑥2

𝛼2
𝑖

+
(𝑦 − 𝑌𝑖)

2

𝛽2
𝑖

= 1.

By solving with respect to 𝑦, one obtains

𝑦 =
−𝛽2

𝑖 + 2𝑎𝛼2
𝑖𝑌𝑖 ± 𝛽𝑖

√︀
𝛽2
𝑖 − 4𝑎𝛼2

𝑖𝑌𝑖 + 4𝑎2𝛼4
𝑖

2𝑎𝛼2
𝑖

. (2.3)

In order that the ellipses of the chain are tangent to the parabola, we have, from
equation (2.3), that the discriminant ∆ = 𝛽2

𝑖 − 4𝑎𝛼2
𝑖𝑌𝑖 + 4𝑎2𝛼4

𝑖 must be zero;
therefore the tangency condition is

𝛽2
𝑖 − 4𝑎𝛼2

𝑖𝑌𝑖 + 4𝑎2𝛼4
𝑖 = 0. (2.4)

2.4. Condition relating 𝜆, 𝑎 and 𝛽0

Even if we are considering only the case with 𝑎 > 0, it is necessary to remark
that by looking at equation (2.3), one has that the sign of the ordinates 𝑦𝑇𝑖 of the
tangency points (just given by equation (2.3) when equation (2.4) holds) between
ellipses and parabola must be consistent with the sign of 𝑎; i.e., they must be
positive when 𝑎 is positive and vice-versa. Therefore, we must have

⎧
⎪⎪⎨
⎪⎪⎩

𝑦𝑇𝑖 =
−𝛽2

𝑖 + 2𝑎𝛼2
𝑖𝑌𝑖

2𝑎𝛼2
𝑖

≥ 0 if 𝑎 > 0,

𝑦𝑇𝑖 =
−𝛽2

𝑖 + 2𝑎𝛼2
𝑖𝑌𝑖

2𝑎𝛼2
𝑖

≤ 0 if 𝑎 < 0.
(2.5)

In the case when 𝑎 > 0, equation (2.5) is verified if

𝑌𝑖 ≥
1

2𝑎𝜆2
, 𝑖 = 0, 1, . . . (2.6)

Clearly, if the following relationship holds

𝑌0 ≥ 1

2𝑎𝜆2
. (2.7)

then also (2.6) is verified because the relation 𝑌𝑖 ≥ 𝑌0 is always fullfilled. Neverth-
less, it must also be 𝑌0 ≥ 𝛽0 because, in order to have no intersections between the
first ellipse and the parabola, the ordinate of the centre of the first ellipse cannot
be smaller than its vertical semi-axis length; so, we can write the following relation

min (𝑌0) = 𝛽0.
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Thus, by considering the case 𝑌0 = 𝛽0, from relation (2.7) we finally obtain

1

𝛽0𝑎𝜆2
≤ 2. (2.8)

Condition (2.8) or equivalently
1

𝛼0𝑎𝜆
≤ 2

are the basic relationships, relating the parameters of the parabola and of the ellipse
chain, that must be fulfilled in order to be able to construct the ellipse chain itself.

2.5. Recursive formulas
Let us consider equation (2.4); by means of (2.1) it can be written as

𝛽2
𝑖 − 4𝑎𝜆2𝛽2

𝑖 𝑌𝑖 + 4𝑎2𝜆4𝛽4
𝑖 = 0.

Being 𝛽𝑖 ̸= 0, it can be simplified into

1 − 4𝑎𝜆2𝑌𝑖 + 4𝑎2𝜆4𝛽2
𝑖 = 0.

We also have
1 − 4𝑎𝜆2𝑌𝑖−1 + 4𝑎2𝜆4𝛽2

𝑖−1 = 0.

By subtracting the corresponding members of the two above equations, by means
of equation (2.2) one gets

𝛽𝑖 = 𝛽𝑖−1 +
1

𝑎𝜆2
, 𝑖 = 1, 2, . . . (2.9)

By substituting (2.9) into (2.2) one finally has

𝑌𝑖 = 𝑌𝑖−1 + 2𝛽𝑖−1 +
1

𝑎𝜆2
, 𝑖 = 1, 2, . . . (2.10)

Equation (2.9) together equation (2.10) form a system of non homogeneous linear
recursive relations that allow us to built the ellipse chain starting from the pair of
initial values (𝛽0, 𝑌0) where 𝛽0 must full-fill relation (2.8) and 𝑌0 is given by

𝑌0 = 𝑎𝜆2𝛽2
0 +

1

4𝑎𝜆2

as one can deduce from (2.4) when 𝑖 = 0.
Clearly, the values of 𝛼𝑖 can be determined by remembering (2.1).
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3. Some integer sequences associated to the ellipse
chains

In this paragraph, we focus our attention on the particular chains characterised by
the following relationship

𝑌0 = 𝛽0. (3.1)

All these chains have in common the characteristic that the first ellipse is tangent
to the parabola at its vertex (see Figure 2).

Figure 2: Example of ellipse chain with tangency point at the
parabola vertex

Remark 3.1. In this case we have that
1

𝛽0𝑎𝜆2
= 2. (3.2)

This kind of ellipse chains, as we shall see in the following, are in relation with
certain integer sequences that do not depend neither on 𝑎, that is the shape of
the parabola, nor on 𝜆, that is the ratio between the ellipse semi-axes, but, on the
contrary, they can be considered as common and invariant sequences to be related
to the set of all parabolas with inscribed ellipse chains disposed as in Figure 2.

Let us introduce the following sequences
{︀
𝑌 𝑖

}︀
, {𝛼𝑖},

{︀
𝛽𝑖

}︀
respectively defined

as
𝑌 𝑖 =

𝑌𝑖

𝑌0
, 𝛼𝑖 =

𝛼𝑖

𝛼0
, 𝛽𝑖 =

𝛽𝑖

𝛽0
.

Remark 3.2. By remembering equation (2.1) and from the definitions of {𝛼𝑖} and{︀
𝛽𝑖

}︀
, one has:

{𝛼𝑖} =
{︀
𝛽𝑖

}︀
. (3.3)

Thus, in the following, we focus only on sequence
{︀
𝛽𝑖

}︀
.
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We now derive some theorems related to the above introduced sequences.

Theorem 3.3. Sequence
{︀
𝛽𝑖

}︀
is the sequence of the odd numbers.

Proof. By dividing both the members of equation (2.12) by 𝛽0 and by taking into
account equation (3.2) one gets

𝛽𝑖 = 𝛽𝑖−1 + 2, 𝑖 = 1, 2, . . . (3.4)

By remembering that 𝛽0 = 1, from equation (3.4), it follows, by induction, that{︀
𝛽𝑖

}︀
is the sequence of the odd numbers.

Sequence
{︀
𝛽𝑖

}︀
is classified in the On-Line Encyclopedia of Integer Sequences

OEIS [3] as A005408.
As far as sequence

{︀
𝑌 𝑖

}︀
is concerned, the following theorem holds:

Theorem 3.4. Sequence
{︀
𝑌 𝑖

}︀
is the integer sequence

{︀
2𝑖2 + 2𝑖 + 1

}︀
.

Proof. From equations (2.4) and (2.1) one obtains

𝑌𝑖 = 𝑎𝜆2𝛽2
𝑖 +

1

4𝑎𝜆2
. (3.5)

By dividing both the members of equation (3.5) by 𝛽0 and by taking into account
of equations (3.1) and (3.2) and of Theorem 3.3 one has

𝑌 𝑖 =
1

2
(2𝑖 + 1)

2
+

1

2
= 2𝑖2 + 2𝑖 + 1, 𝑖 = 0, 1, . . . (3.6)

which was to be proved.

This sequence is classified in OEIS as A046092.
Let us consider now, the ordinates of the tangency points 𝑦𝑇𝑖 of the ellipses to

the parabola given by equation (2.5). From this equation, we have that 𝑦𝑇𝑖 is given
by

𝑦𝑇𝑖 = 𝑌𝑖 −
1

2𝑎𝜆2
, 𝑖 = 1, 2, . . . (3.7)

Then, we can define a further sequence {𝑦𝑇𝑖} as follows

𝑦𝑇𝑖 =
𝑦𝑇𝑖

𝛽0
, 𝑖 = 1, 2, . . . (3.8)

and the following theorem holds:

Theorem 3.5. Sequence {𝑦𝑇𝑖} is the integer sequence
{︀

2𝑖2 + 2𝑖
}︀
.

Proof. From equations (3.7) and (3.8) we have

𝑦𝑇𝑖 =
𝑌𝑖

𝛽0
− 1

2𝛽0𝑎𝜆2
, 𝑖 = 1, 2, . . . (3.9)

By remembering equations (3.6) and (3.2), one finally has:

𝑦𝑇𝑖 = 2𝑖2 + 2𝑖, 𝑖 = 1, 2, . . . (3.10)

which was to be proved.
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The sequence {𝑦𝑇𝑖} can be found in OEIS as well. It is classified as: A001844.
If we consider the area 𝐴𝑖 of the 𝑖-th ellipse, it is given by

𝐴𝑖 = 𝜋𝛼𝑖𝛽𝑖.

Thus, we can introduce another sequence
{︀
𝐴𝑖

}︀
defined as

𝐴𝑖 =
𝐴𝑖

𝐴0
, 𝑖 = 0, 1, . . .

By considering this sequence, we have the following theorem:

Theorem 3.6. The sequence
{︀
𝐴𝑖

}︀
is the integer sequence given by the square of

the odd numbers.

Proof. We have that 𝐴𝑖 is given by

𝐴𝑖 =
𝛼𝑖

𝛼0

𝛽𝑖

𝛽0
, 𝑖 = 0, 1, . . .

and from Theorem 3.3 and equation (3.3) it follows that

𝐴𝑖 = (2𝑖 + 1)
2
, 𝑖 = 0, 1, . . . (3.11)

which was to be proved.

This sequence is classified in OEIS as A016754.
The results here found, relevant to the integer sequences, are consistent with

the ones appearing in [2] which are a particular case of the work here presented
when 𝛼𝑖 = 𝛽𝑖, i.e., the ellipses degenerate into circles.

4. Relation with Pythagorean triplets

By looking at the sequences
{︀
𝛽𝑖

}︀
, {𝑦𝑇𝑖} and

{︀
𝑌 𝑖

}︀
for 𝑖 = 1, 2, . . ., they have a

particular characteristic that puts them in relation with the primitive Pythagorean
triplets.

In fact, the following theorem holds:

Theorem 4.1. The sequences
{︀
𝛽𝑖

}︀
, {𝑦𝑇𝑖} and

{︀
𝑌 𝑖

}︀
for 𝑖 = 1, 2, . . . form an

infinite set of primitive Pythagorean triplets.

Proof. By remembering that 𝛽𝑖 = 2𝑖 + 1 and by using equations (3.6) and (3.10),
one can immediately verify that:

𝛽
2

𝑖 + 𝑦2𝑇𝑖 = 𝑌
2

𝑖 , 𝑖 = 1, 2, . . .

so meaning that the corresponding terms of these sequences form a Pythagorean
triplet; in particular, these Pythagorean triplets are also primitive.
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In fact, we have that, for each 𝑖 with (𝑖 = 1, 2, . . .), 𝑦𝑇𝑖 =
𝛽
2
𝑖−1
2 and 𝑌 𝑖 =

𝛽
2
𝑖+1
2 .

On the other hand, a well known algorithm, attributed to Pythagoras himself,
allows to generate a primitive Pythagorean triplet starting from any odd integer
number 2𝑖 + 1; according to it, the primitive triplet is given by

(︃
2𝑖 + 1,

(2𝑖 + 1)
2 − 1

2
,

(2𝑖 + 1)
2

+ 1

2

)︃
.

Being 𝛽𝑖 an odd integer, we have that the triplet
(︃

2𝑖 + 1,
(2𝑖 + 1)

2 − 1

2
,

(2𝑖 + 1)
2

+ 1

2

)︃

is identical to the triplet
(︀
𝛽𝑖, 𝑦𝑇𝑖, 𝑌 𝑖

)︀
so deducing that it is primitive.

Remark 4.2. Notice that for 𝑖 = 1, the corresponding first three terms of the three
above sequences form the basic primitive Pythagorean triplet (3, 4, 5).
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