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1. Introduction

A sum of integer powers of gaps values in numerical semigroups 𝑆𝑚 = ⟨𝑑1, . . . , 𝑑𝑚⟩
with gcd(𝑑1, . . . , 𝑑𝑚) = 1, is referred often as the semigroup series

𝑔𝑛(𝑆𝑚) =
∑︁

𝑠∈N∖𝑆𝑚

𝑠𝑛, 𝑛 ∈ Z,

where N∖𝑆𝑚 is known as the set of gaps of 𝑆𝑚 and 𝑔0(𝑆𝑚) is called the genus of 𝑆𝑚.
The semigroup series 𝑔𝑛(𝑆𝑚) has been attractive by many researchers for 𝑛 ≥ 0. In
particular, an explicit expression of 𝑔𝑛(𝑆2) and implicit expression of 𝑔𝑛(𝑆3) were
given in [6] and [4], respectively. However, the series 𝑔𝑛(𝑆𝑚) for negative integers 𝑛
has not seemingly treated so often. In this paper we derive a formula for semigroup
series 𝑔−𝑛(𝑆2) =

∑︀
𝑠∈N∖𝑆2

𝑠−𝑛 and 𝑔−𝑛(𝑆3) =
∑︀

𝑠∈N∖𝑆3
𝑠−𝑛 (𝑛 ≥ 1). In fact, it will

be known that such series are related with zeta functions in Number theory.
Consider a numerical semigroup 𝑆2 = ⟨𝑑1, 𝑑2⟩, generated by two integers 𝑑1, 𝑑2 ≥

2 with gcd(𝑑1, 𝑑2) = 1. Here, the Hilbert series 𝐻(𝑧;𝑆2) and the gaps generating
function Φ(𝑧;𝑆2) are given as

𝐻(𝑧;𝑆2) =
∑︁

𝑠∈𝑆2

𝑧𝑠 and Φ(𝑧;𝑆2) =
∑︁

𝑠∈N∖𝑆2

𝑧𝑠,

respectively, satisfying

𝐻(𝑧;𝑆2) + Φ(𝑧;𝑆2) =
1

1 − 𝑧
(𝑧 < 1), (1.1)

where min{N ∖ 𝑆2} = 1, and max{N ∖ 𝑆2} = 𝑑1𝑑2 − 𝑑1 − 𝑑2 is called the Frobenius
number and is denoted by 𝐹2. A rational representation (Rep) of 𝐻(𝑧;𝑆2) is given
by

𝐻(𝑧;𝑆2) =
1 − 𝑧𝑑1𝑑2

(1 − 𝑧𝑑1)(1 − 𝑧𝑑2)
. (1.2)

We introduce a new generating function Ψ1(𝑧;𝑆2), defined by

Ψ1(𝑧;𝑆2) =

𝑧∫︁

0

Φ(𝑡;𝑆2)

𝑡
d𝑡 =

∑︁

𝑠∈N∖𝑆2

𝑧𝑠

𝑠
with Ψ1(1;𝑆2) = 𝑔−1(𝑆2). (1.3)

Substituting (1.1) into (1.3), we obtain

Ψ1(𝑧;𝑆2) =

𝑧∫︁

0

(︂
1

1 − 𝑡
−𝐻(𝑡;𝑆2)

)︂
d𝑡

𝑡
. (1.4)

Since (1 − 𝑡𝑑𝑖)−1 =
∑︀∞

𝑘𝑖=0 𝑡
𝑘𝑖𝑑𝑖 , by substituting (1.4) into (1.2), we obtain

𝐻(𝑡;𝑆2) =
∞∑︁

𝑘1,𝑘2=0

𝑡𝑘1𝑑1+𝑘2𝑑2 −
∞∑︁

𝑘1,𝑘2=0

𝑡𝑘1𝑑1+𝑘2𝑑2+𝑑1𝑑2 . (1.5)
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Indeed, an expression (1.5) is an infinite series with degrees 𝑠 = 𝑘1𝑑1+𝑘2𝑑2 running
over all nodes in the following sublattice K of the integer lattice Z2.

K = {0, 0} ∪K1 ∪K2,

{︂
K1 = {1 ≤ 𝑘1 ≤ 𝑑2 − 1, 𝑘2 = 0},
K2 = {0 ≤ 𝑘1 ≤ 𝑑2 − 1, 1 ≤ 𝑘2 ≤ ∞}. (1.6)

In Figure 1, as an example, we present a part of the integer lattice K for the
numerical semigroup

⟨5, 8⟩ = {0, 5, 8, 10, 13, 15, 16, 18, 20, 21, 23, 24, 25, 26, 28, ↦−→},

where the symbol ↦−→ denotes an infinite set of positive integers exceeding 28.

13 18 23 28 33 38 43

21 26 31 36 41 46 51

29 34 39 44 49 54 59

37 42 47 52 57 62 67

8

16

24

32

45 50 55 60 70 7565

0 5 10 15 20 25 30 35

53 58 63 68 73 78 83

40

48

8k2

5k1

Figure 1: A part of the integer lattice K ⊂ Z2 for the numerical
semigroup ⟨5, 8⟩. The nodes mark the non-gaps of semigroup: the
values, assigned to the black and white nodes, exceed and precede

𝐹2 = 27, respectively.

Proposition 1.1. There exists a bijection between the infinite set of nodes in the
integer lattice K and an infinite set of non-gaps of the semigroup ⟨𝑑1, 𝑑2⟩.

Proof. We have to prove two statements of existence and uniqueness:

1) Every 𝑠 ∈ ⟨𝑑1, 𝑑2⟩ has its Rep node in K,

2) All 𝑠 ∈ ⟨𝑑1, 𝑑2⟩ have their Rep nodes in K only once.

1) Let 𝑠 ∈ ⟨𝑑1, 𝑑2⟩ be given. Then by definition of ⟨𝑑1, 𝑑2⟩ an integer 𝑠 has Rep,

𝑠 = 𝑘1𝑑1 + 𝑘2𝑑2, 𝑘1, 𝑘2 ∈ Z, 𝑘1, 𝑘2 ≥ 0. (1.7)

Choose 𝑠 such that 𝑘1 = 𝑝𝑑2 + 𝑞, where 𝑝 = ⌊𝑘1/𝑑2⌋, namely, 0 ≤ 𝑞 ≤ 𝑑2 − 1, and
⌊𝑥⌋ denotes the integer part of a real number 𝑥. Then Rep (1.7) is expressed as

𝑠 = 𝑞𝑑1 + (𝑘2 + 𝑝𝑑1)𝑑2,
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and 𝑠 has its Rep node in K.

2) By way of contradiction, assume that there exist two nodes {𝑘1, 𝑘2} ∈ K and
{𝑙1, 𝑙2} ∈ K such that

𝑘1𝑑1 + 𝑘2𝑑2 = 𝑙1𝑑1 + 𝑙2𝑑2, (1.8)
0 ≤ 𝑘1, 𝑙1 ≤ 𝑑2 − 1, 0 ≤ 𝑘2, 𝑙2 ≤ ∞, 𝑘1 > 𝑙1, 𝑘2 < 𝑙2,

namely, that there exists such 𝑠 ∈ ⟨𝑑1, 𝑑2⟩ which has two different Rep nodes in K.
Rewrite equality (1.8) as follows.

(𝑘1 − 𝑙1)𝑑1 = (𝑙2 − 𝑘2)𝑑2. (1.9)

Since gcd(𝑑1, 𝑑2) = 1, the equality (1.9) implies that

𝑘1 − 𝑙1 = 𝑏𝑑2 (𝑏 ≥ 1) =⇒ 𝑘1 = 𝑙1 + 𝑏𝑑2 =⇒ 𝑘1 ≥ 𝑑2,

contradicting the assumption {𝑘1, 𝑘2} ∈ K.

2. A sum of the inverse gaps values 𝑔−1(𝑆2)

Rewrite the integral in (1.4) as follows.

Ψ1(𝑧;𝑆2) =

𝑧∫︁

0

(︃ ∞∑︁

𝑘=0

𝑡𝑘−1 − 𝐻(𝑡;𝑆2)

𝑡

)︃
d𝑡, (2.1)

where

𝐻(𝑡;𝑆2)

𝑡
=

2∑︁

𝑗=0

ℎ𝑗(𝑡;𝑆2), ℎ0(𝑡;𝑆2) =
1

𝑡
,

ℎ1(𝑡;𝑆2) =

𝑑2−1∑︁

𝑘1=1

𝑡𝑘1𝑑1−1, ℎ2(𝑡;𝑆2) =
∑︁

𝑘1,𝑘2∈K2

𝑡𝑘1𝑑1+𝑘2𝑑2−1.

By integration we obtain from (2.1),

Ψ1(𝑧;𝑆2) =
∞∑︁

𝑘=1

𝑧𝑘

𝑘
− 1

𝑑1

𝑑2−1∑︁

𝑘1=1

𝑧𝑘1𝑑1

𝑘1
−

∑︁

𝑘1,𝑘2∈K2

𝑧𝑘1𝑑1+𝑘2𝑑2

𝑘1𝑑1 + 𝑘2𝑑2
, (2.2)

and deduce by (1.3) and (1.6),

𝑔−1(𝑆2) =
∞∑︁

𝑘=1

1

𝑘
−

∑︁

𝑘1,𝑘2∈K2

1

𝑘1𝑑1 + 𝑘2𝑑2
− 1

𝑑1

𝑑2−1∑︁

𝑘1=1

1

𝑘1
. (2.3)
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By Proposition 1.1, after subtraction in (2.3) there is a finite number of terms left,
since all terms, which exceed 𝐹2 in the two first infinite series in (2.3), are cancelled.
To emphasize that fact, we represent formula (2.3) as follows.

𝑔−1(𝑆2) =

𝑐2∑︁

𝑘=1

1

𝑘
−

𝑘1𝑑1+𝑘2𝑑2≤𝑐2∑︁

𝑘1,𝑘2∈K2

1

𝑘1𝑑1 + 𝑘2𝑑2
− 1

𝑑1

𝑑2−1∑︁

𝑘1=1

1

𝑘1
,

where 𝑐2 = 𝐹2 + 1 is called the conductor of semigroup 𝑆2.

3. A sum of the negative degrees of gaps
values 𝑔−𝑛(𝑆2)

We generalize formula (2.2) and introduce a new generating function Ψ𝑛(𝑧;𝑆2)
(𝑛 ≥ 2)

Ψ𝑛(𝑧;𝑆2) =

𝑧∫︁

0

d𝑡1
𝑡1

𝑡1∫︁

0

d𝑡2
𝑡2

. . .

𝑡𝑛−1∫︁

0

Φ(𝑡𝑛;𝑆2)
d𝑡𝑛
𝑡𝑛

=
∑︁

𝑠∈N∖𝑆2

𝑧𝑠

𝑠𝑛
, (3.1)

where Ψ𝑛(1;𝑆2) = 𝑔−𝑛(𝑆2) and satisfies the following recursive relation.

Ψ𝑘+1(𝑡𝑛−𝑘−1;𝑆2) =

𝑡𝑛−𝑘−1∫︁

0

d𝑡𝑛−𝑘

𝑡𝑛−𝑘
Ψ𝑘(𝑡𝑛−𝑘;𝑆2), 𝑘 ≥ 0,

Ψ0(𝑡𝑛;𝑆2) = Φ(𝑡𝑛−1;𝑆2), 𝑡0 = 𝑧.

Namely,

Ψ1(𝑡𝑛−1;𝑆2) =

𝑡𝑛−1∫︁

0

d𝑡𝑛
𝑡𝑛

Ψ0(𝑡𝑛;𝑆2),

Ψ2(𝑡𝑛−2;𝑆2) =

𝑡𝑛−2∫︁

0

d𝑡𝑛−1

𝑡𝑛−1
Ψ1(𝑡𝑛−1;𝑆2), . . . .

By integration in (3.1), we obtain

Ψ𝑛(𝑧;𝑆2) =
∞∑︁

𝑘=1

𝑧𝑘

𝑘𝑛
− 1

𝑑𝑛1

𝑑2−1∑︁

𝑘1=1

𝑧𝑘1𝑑1

𝑘𝑛1
−

∑︁

𝑘1,𝑘2∈K2

𝑧𝑘1𝑑1+𝑘2𝑑2

(𝑘1𝑑1 + 𝑘2𝑑2)𝑛
.

Thus, for 𝑧 = 1 we have

𝑔−𝑛(𝑆2) =
∞∑︁

𝑘=1

1

𝑘𝑛
−

𝑑2−1∑︁

𝑘1=0

∞∑︁

𝑘2=1

1

(𝑘1𝑑1 + 𝑘2𝑑2)𝑛
− 1

𝑑𝑛1

𝑑2−1∑︁

𝑘1=1

1

𝑘𝑛1
, 𝑛 ≥ 2. (3.2)
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Denoting the ratio 𝑑1/𝑑2 by 𝛿, we can rewrite (3.2) as

𝑔−𝑛(𝑆2) =
∞∑︁

𝑘=1

1

𝑘𝑛
− 1

𝑑𝑛2

∞∑︁

𝑘2=1

1

𝑘𝑛2
− 1

𝑑𝑛2

𝑑2−1∑︁

𝑘1=1

∞∑︁

𝑘2=1

1

(𝑘1𝛿 + 𝑘2)𝑛
− 1

𝑑𝑛1

𝑑2−1∑︁

𝑘1=1

1

𝑘𝑛1
.

Making use of the Hurwitz 𝜁(𝑛, 𝑞) =
∑︀∞

𝑘=0(𝑘 + 𝑞)−𝑛 and Riemann zeta functions
𝜁(𝑛) = 𝜁(𝑛, 1), we represent the last formula as follows.

𝑔−𝑛(𝑆2) =

(︂
1 − 1

𝑑𝑛2

)︂
𝜁(𝑛) − 1

𝑑𝑛2

𝑑2−1∑︁

𝑘1=1

𝜁(𝑛, 𝑘1𝛿), 𝑛 ≥ 2. (3.3)

On interchanging the generators 𝑑1 and 𝑑2 in (3.3), we obtain an alternative ex-
pression for 𝑔−𝑛(𝑆2):

𝑔−𝑛(𝑆2) =

(︂
1 − 1

𝑑𝑛1

)︂
𝜁(𝑛) − 1

𝑑𝑛1

𝑑1−1∑︁

𝑘2=1

𝜁

(︂
𝑛,

𝑘2
𝛿

)︂
. (3.4)

4. Symmetric 3-generated numerical semigroup

We deal with symmetric numerical semigroup 𝑆3 = ⟨𝑑1, 𝑑2, 𝑑3⟩ generated by three
integers with the Hilbert series 𝐻(𝑧;𝑆3), satisfying minimal relations,

𝐻(𝑧;𝑆3) =

(︀
1 − 𝑧𝑎22𝑑2

)︀ (︀
1 − 𝑧𝑎33𝑑3

)︀

(1 − 𝑧𝑑1)(1 − 𝑧𝑑2)(1 − 𝑧𝑑3)
(𝑎22, 𝑎33 ≥ 2), (4.1)

with 𝑎11𝑑1 = 𝑎22𝑑2, 𝑎33𝑑3 = 𝑎31𝑑1 + 𝑎32𝑑2 (see [3]). In this section, we prove a
statement which is necessary to establish the convergence for 𝑔1(𝑧, 𝑆3), namely, the
difference between two divergent infinite series is convergent

𝑔1(𝑧, 𝑆3) =

∞∑︁

𝑘=1

1

𝑘
−

𝑎22−1∑︁

𝑘2=0

𝑎33−1∑︁

𝑘3=0

∞∑︁

𝑘1=0

1

𝑘1𝑑1 + 𝑘2𝑑2 + 𝑘3𝑑3
,

3∑︁

𝑗=1

𝑘𝑗 ≥ 1. (4.2)

The idea is to prove that after cancellation of identical terms, a finite number of
terms is left in (4.2).

We consider the sublattice ̃︀L = L ∪ {0, 0, 0} of the integer lattice Z3, where

L =

∞⋃︁

𝑘1=0
𝑘1+𝑘2+𝑘3≥1

L𝑘1 , L𝑘1 =

∞⋃︁

𝑘2,𝑘3

{𝑘1, 𝑘2, 𝑘3},

with 0 ≤ 𝑘2 < 𝑎22 and 0 ≤ 𝑘3 < 𝑎33. In Figure 2, we present a part of the integer
lattice ̃︀L for the numerical semigroup ⟨4, 7, 10⟩.
Proposition 4.1. There exists a bijection between the infinite set of nodes in the
integer lattice ̃︀L and an infinite set of non-gaps of the semigroup ⟨𝑑1, 𝑑2, 𝑑3⟩.
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0

7 k

117

4 k

10

15 19 23

14

161284

18 22 26

17 21 25 29 33

2

3

1

10 k

Figure 2: A part of the integer lattice ̃︀L ⊂ Z3 for ⟨4, 7, 10⟩. The
nodes mark the non-gaps of semigroup: the values, assigned to the
black and white nodes, exceed and precede the Frobenius number

𝐹3 = 13.

Proof. We have to prove both existence and uniqueness.

1) Every 𝑠 ∈ ⟨𝑑1, 𝑑2, 𝑑3⟩ has its representative node in ̃︀L.

2) All 𝑠 ∈ ⟨𝑑1, 𝑑2, 𝑑3⟩ have their representative nodes in ̃︀L only once.

1) Let 𝑠 ∈ ⟨𝑑1, 𝑑2, 𝑑3⟩ be given. Then by definition of ⟨𝑑1, 𝑑2, 𝑑3⟩ an integer 𝑠 has
a representation,

𝑠 = 𝑘1𝑑1 + 𝑘2𝑑2 + 𝑘3𝑑3, 0 ≤ 𝑘1, 𝑘2, 𝑘3 < ∞. (4.3)

Choose 𝑠 such that

𝑘2 = 𝑝2𝑎22 + 𝑞2, 𝑘3 = 𝑝3𝑎33 + 𝑞3, namely, 𝑝2 =

⌊︂
𝑘2
𝑎22

⌋︂
, 𝑝3 =

⌊︂
𝑘3
𝑎33

⌋︂
, (4.4)

𝑝2, 𝑝3, 𝑞2, 𝑞3 ∈ Z, 𝑝2, 𝑝3 ≥ 0, 0 ≤ 𝑞2 < 𝑎22, 0 ≤ 𝑞3 < 𝑎33.

By substituting (4.4) into (4.3), we get

𝑠 = 𝑘1𝑑1 + (𝑝2𝑎22 + 𝑞2)𝑑2 + (𝑝3𝑎33 + 𝑞3)𝑑3. (4.5)

Combining (4.5) with minimal relations (4.1), we obtain

𝑠 = (𝑘1 + 𝑝2𝑎11)𝑑1 + 𝑝3(𝑎31𝑑1 + 𝑎32𝑑2) + 𝑞2𝑑2 + 𝑞3𝑑3 (4.6)
= (𝑘1 + 𝑝2𝑎11 + 𝑝3𝑎31)𝑑1 + (𝑝3𝑎32 + 𝑞2)𝑑2 + 𝑞3𝑑3.

If 𝑝3𝑎32+𝑞2 < 𝑎22, then 𝑠 has its representative node in ̃︀L. But, if 𝑝3𝑎32+𝑞2 ≥ 𝑎22,
let us write

𝑝3𝑎32 + 𝑞2 = 𝑝4𝑎22 + 𝑞4, 𝑝4 ≥ 0, 0 ≤ 𝑞4 < 𝑎22, 𝑝4 =

⌊︂
𝑝3𝑎32 + 𝑞2

𝑎22

⌋︂
. (4.7)
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Substitute (4.7) into (4.6) and get

𝑠 = (𝑘1 + 𝑝2𝑎11 + 𝑝3𝑎31 + 𝑝4𝑎11)𝑑1 + 𝑞4𝑑2 + 𝑞3𝑑3,

and 𝑠 still has its representative node in ̃︀L.
2) By way of contradiction, assume that there exist two nodes {𝑘1, 𝑘2, 𝑘3} ∈ ̃︀L and
{𝑙1, 𝑙2, 𝑙3} ∈ ̃︀L such that

𝑘1𝑑1 + 𝑘2𝑑2 + 𝑘3𝑑3 = 𝑙1𝑑1 + 𝑙2𝑑2 + 𝑙3𝑑3, (4.8)
0 ≤ 𝑘1 ̸= 𝑙1 < ∞, 0 ≤ 𝑘2 ̸= 𝑙2 < 𝑎22, 0 ≤ 𝑘3 ̸= 𝑙3 < 𝑎33. (4.9)

The case, when one of the differences 𝑘𝑗 − 𝑙𝑗 vanishes, will be considered later.
Suppose that 𝑘1 − 𝑙1 > 0, and 𝑘2 − 𝑙2 < 0, 𝑘3 − 𝑙3 < 0. In fact, due to (4.9) we also
have to include the upper bound

0 < 𝑙2 − 𝑘2 < 𝑎22, 0 < 𝑙3 − 𝑘3 < 𝑎33. (4.10)

Rewrite (4.8) as
(𝑘1 − 𝑙1)𝑑1 = (𝑙2 − 𝑘2)𝑑2 + (𝑙3 − 𝑘3)𝑑3,

where 𝑘1 − 𝑙1 ≥ 𝑎11, otherwise (due to minimal relations) equation (4.8) would
have trivial solution 𝑘𝑗 = 𝑙𝑗 (𝑗 = 1, 2, 3). But the last contradicts (4.9), namely,
𝑘1 ̸= 𝑙1, 𝑘2 ̸= 𝑙2, 𝑘3 ̸= 𝑙3.

If so, represent 𝑘1 − 𝑙1 = 𝑢1𝑎11 + 𝑣1 with 𝑢1 ≥ 1, 0 ≤ 𝑣1 < 𝑎11, then

(𝑢1𝑎11 + 𝑣1)𝑑1 = 𝑢1𝑎22𝑑2 + 𝑣1𝑑1 = (𝑙2 − 𝑘2)𝑑2 + (𝑙3 − 𝑘3)𝑑3. (4.11)

Rewrite (4.11) as

(𝑙3 − 𝑘3)𝑑3 = 𝑣1𝑑1 + (𝑢1𝑎22 − (𝑙2 − 𝑘2))𝑑2, (4.12)

and note that the both terms on the right-hand side in (4.12) are positive by (4.10),

0 < 𝑙2 − 𝑘2 < 𝑎22 < 𝑢1𝑎22. (4.13)

However, 0 < 𝑙3 − 𝑘3 < 𝑎33 by (4.10), and (due to minimal relations) equation
(4.12) has only a trivial solution, 𝑙3 = 𝑘3, 𝑣1 = 0, 𝑙2 = 𝑘2 + 𝑢1𝑎22. But the last
contradicts an inequality (4.13).

Now, consider the case when

𝑎33 > 𝑘3 − 𝑙3 > 0, 0 < 𝑙1 − 𝑘1, 0 < 𝑙2 − 𝑘2 < 𝑎22,

and write
(𝑘3 − 𝑙3)𝑑3 = (𝑙1 − 𝑘1)𝑑1 + (𝑙2 − 𝑘2)𝑑2. (4.14)

But (due to minimal relations) equation (4.14) has only trivial solution 𝑘𝑗 = 𝑙𝑗
(𝑗 = 1, 2, 3), that contradicts (4.9), namely, 𝑘1 ̸= 𝑙1, 𝑘2 ̸= 𝑙2, 𝑘3 ̸= 𝑙3.
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Next, consider the case when

𝑙1 − 𝑘1 = 0, 0 < 𝑙2 − 𝑘2 < 𝑎22, 𝑎33 > 𝑘3 − 𝑙3 > 0, (4.15)

and write
(𝑘3 − 𝑙3)𝑑3 = (𝑙2 − 𝑘2)𝑑2. (4.16)

But (due to minimal relations) equation (4.16) has only a trivial solution, 𝑙3 = 𝑘3,
𝑙2 = 𝑘2, that contradicts (4.15). For similar reasons the case

𝑘3 − 𝑙3 = 0, 0 < 𝑘1 − 𝑙1 < 𝑎11, 0 < 𝑙2 − 𝑘2 < 𝑎22, (4.17)

leads to an equality
(𝑘1 − 𝑙1)𝑑1 = (𝑙2 − 𝑘2)𝑑2,

which also has only a trivial solution, 𝑙1 = 𝑘1, 𝑙2 = 𝑘2, that contradicts (4.17).
Thus, what is left

𝑙1 = 𝑘1, 𝑙2 = 𝑘2, 𝑙3 = 𝑘3,

and the result is proven.

5. Identities for the Hurwitz zeta function

As an application, our argument can be deduced to the multiplication theorem
in Hurwitz zeta functions. Indeed, combining formulas (3.3) and (3.4), we get an
identity

𝛿𝑛
𝑑2−1∑︁

𝑘=1

𝜁(𝑛, 𝑘𝛿) = (1 − 𝛿𝑛) 𝜁(𝑛) +

𝑑1−1∑︁

𝑘=1

𝜁

(︂
𝑛,

𝑘

𝛿

)︂
.

Another spinoff of formulas (3.3) and (3.4) is a set of identities for Hurwitz zeta
functions. For example, consider the numerical semigroup ⟨3, 4⟩ with three gaps
N ∖ ⟨3, 4⟩ = {1, 2, 5}. Substituting it into (3.3) and (3.4), we have

𝜁

(︂
𝑛,

3

4

)︂
+ 𝜁

(︂
𝑛,

6

4

)︂
+ 𝜁

(︂
𝑛,

9

4

)︂
= (4𝑛 − 1)𝜁(𝑛) −

(︂
4𝑛 + 2𝑛 +

(︂
4

5

)︂𝑛)︂

and

𝜁

(︂
𝑛,

4

3

)︂
+ 𝜁

(︂
𝑛,

8

3

)︂
= (3𝑛 − 1)𝜁(𝑛) −

(︂
3𝑛 +

(︂
3

2

)︂𝑛

+

(︂
3

5

)︂𝑛)︂
,

respectively.
We shall show that the identity (3.3) can be deduced to the multiplication

theorem in Hurwitz zeta functions (see, e.g., [1, p.249], [2, (16), p.71]). It is similar
for (3.4).

Since gcd(𝑑1, 𝑑2) = 1, if 𝑘1𝑑1 ≡ 𝑘2𝑑1 (mod 𝑑2) then 𝑘1 ≡ 𝑘2 (mod 𝑑2). There-
fore,

𝜁

(︂
𝑛,

{︂
𝑑1
𝑑2

}︂)︂
+ 𝜁

(︂
𝑛,

{︂
2𝑑1
𝑑2

}︂)︂
+ · · · + 𝜁

(︂
𝑛,

{︂
(𝑑2 − 1)𝑑1

𝑑2

}︂)︂
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= 𝜁

(︂
𝑛,

1

𝑑2

)︂
+ 𝜁

(︂
𝑛,

2

𝑑2

)︂
+ · · · + 𝜁

(︂
𝑛,

𝑑2 − 1

𝑑2

)︂
,

where {𝑥} denotes the fractional part of a real number 𝑥. There exists a nonnega-
tive integer 𝑎 such that

𝑎𝑑1
𝑑2

< 1 <
(𝑎 + 1)𝑑1

𝑑2
.

Then for any integer 𝑘′ with 𝑎 < 𝑘′ ≤ 𝑑2 − 1 there exists a positive integer 𝑙′ such
that 1 ≤ 𝑘′𝑑1 − 𝑙′𝑑2 < 𝑑2, and

𝜁

(︂
𝑛,

𝑘′𝑑1
𝑑2

)︂
= 𝜁

(︂
𝑛,

𝑘′𝑑1 − 𝑙′𝑑2
𝑑2

)︂
−
(︂

𝑑2
𝑘′𝑑1 − 𝑙′𝑑2

)︂𝑛

−
(︂

𝑑2
𝑘′𝑑1 − (𝑙′ − 1)𝑑2

)︂𝑛

− · · · −
(︂

𝑑2
𝑘′𝑑1 − 𝑑2

)︂𝑛

, (5.1)

where
𝑘′𝑑1 − 𝑙′𝑑2

𝑑2
=

{︂
𝑘′𝑑1
𝑑2

}︂
.

For any positive integer 𝑟, there exist integers 𝑥 and 𝑦 such that 𝑟 = 𝑥𝑑1 + 𝑦𝑑2.
If 0 ≤ 𝑥 < 𝑑2, then 𝑟 can be expressed uniquely. Thus, if 𝑦 ≥ 0, then 𝑟 ∈ 𝑆2.
If 𝑦 < 0, then 𝑟 ̸∈ 𝑆2. The largest integer is given by (𝑑2 − 1)𝑑1 − 𝑑2, that is
exactly the same as the Frobenius number 𝐹 (𝑑1, 𝑑2). Thus, 𝑘′𝑑1 − 𝑙′′𝑑2 ̸∈ 𝑆2 for
all 𝑙′′ with 1 ≤ 𝑙′′ ≤ 𝑙′ in (5.1). In addition, if 𝑘1𝑑1 − 𝑙1𝑑2 = 𝑘2𝑑1 − 𝑙2𝑑2, then
by gcd(𝑑1, 𝑑2) = 1 we have 𝑑1|(𝑘1 − 𝑘2) and 𝑑2|(𝑙1 − 𝑙2). As 0 < 𝑘1, 𝑘2 < 𝑑2 and
0 < 𝑙1, 𝑙2 < 𝑑1, we get 𝑘1 = 𝑘2 and 𝑙1 = 𝑙2. Thus, all such numbers of the form
𝑘𝑑1 − 𝑙𝑑2 ̸∈ 𝑆2 are different.

In [5, (3.32)] for a real 𝜉 and 𝑑 = gcd(𝑑1, 𝑑2)

𝑑2−1∑︁

𝑘=0

⌊︂
𝑘𝑑1 + 𝜉

𝑑2

⌋︂
= 𝑑

⌊︂
𝜉

𝑑

⌋︂
+

(𝑑1 − 1)(𝑑2 − 1)

2
+

𝑑− 1

2
. (5.2)

Hence, by (5.2) with 𝑑 = 1 and 𝜉 = 0, the total number of non-representable
positive integers of the form 𝑘𝑑1 − 𝑙𝑑2 (𝑎 < 𝑘 < 𝑑2, 𝑙 = 1, 2, . . . , ⌊𝑘𝑑1/𝑑2⌋ − 1) is

𝑑2−1∑︁

𝑘=1

⌊︂
𝑘𝑑1
𝑑2

⌋︂
=

(𝑑1 − 1)(𝑑2 − 1)

2
,

which is exactly the same as the number of integers without non-negative integer
representations by 𝑑1 and 𝑑2, that was given by Sylvester in 1882. Therefore, the
right-hand side of (3.3) is

(︂
1 − 1

𝑑𝑛2

)︂
𝜁(𝑛) − 1

𝑑𝑛2

𝑑2−1∑︁

𝑘1=1

𝜁

(︂
𝑛,

𝑘1𝑑1
𝑑2

)︂
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=

(︂
1 − 1

𝑑𝑛2

)︂
𝜁(𝑛) − 1

𝑑𝑛2

⎛
⎝

𝑑2−1∑︁

𝑘1=1

𝜁

(︂
𝑛,

{︂
𝑘1𝑑1
𝑑2

}︂)︂
− 𝑑𝑛2

∑︁

𝑠∈N∖𝑆2

𝑠−𝑛

⎞
⎠

=

(︂
1 − 1

𝑑𝑛2

)︂
𝜁(𝑛) − 1

𝑑𝑛2

𝑑2−1∑︁

𝑘1=1

𝜁

(︂
𝑛,

𝑘

𝑑2

)︂
+

∑︁

𝑠∈N∖𝑆2

𝑠−𝑛.

On the other hand, the left-hand side of (3.3) is

𝑔−𝑛(𝑆2) =
∑︁

𝑠∈N∖𝑆2

𝑠−𝑛.

Therefore, we obtain that

𝑑2∑︁

𝑘=1

𝜁

(︂
𝑛,

𝑘

𝑑2

)︂
= 𝑑𝑛2 𝜁(𝑛),

which is the multiplication theorem in Hurwitz zeta functions.
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