
Improving the simultaneous application of
the DSN-PC and NOAA GFS datasets∗

Ádám Vasa, Oluoch Josphat Owinoa, László Tóthab

aFaculty of Informatics, University of Debrecen
vas.adam@inf.unideb.hu
josphatowino@gmail.com

bSciTech Műszer Kft, Debrecen, Hungary
laszlo.toth@scitechmuszer.com

Submitted: February 4, 2020
Accepted: July 1, 2020

Published online: July 23, 2020

Abstract

Our surface-based sensor network, called Distributed Sensor Network for
Prediction Calculations (DSN-PC) obviously has limitations in terms of ver-
tical atmospheric data. While efforts are being made to approximate these
upper-air parameters from surface-level, as a first step it was necessary to
test the network’s capability of making distributed computations by apply-
ing a hybrid approach. We accessed public databases like NOAA Global
Forecast System (GFS) and the initial values for the 2-dimensional computa-
tional grid were produced by using both DSN-PC measurements and NOAA
GFS data for each grid point. However, though the latter consists of assim-
ilated and initialized (smoothed) data the stations of the DSN-PC network
provide raw measurements which can cause numerical instability due to mea-
surement errors or local weather phenomena. Previously we simultaneously
interpolated both DSN-PC and GFS data. As a step forward, we wanted for
our network to have a more significant role in the production of the initial
values. Therefore it was necessary to apply 2D smoothing algorithms on the
initial conditions. We found significant difference regarding numerical stabil-
ity between calculating with raw and smoothed initial data. Applying the
smoothing algorithms greatly improved the prediction reliability compared
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to the cases when raw data were used. The size of the grid portion used for
smoothing has a significant impact on the goodness of the forecasts and it’s
worth further investigation. We could verify the viability of direct integra-
tion of DSN-PC data since it provided forecast errors similar to the previous
approach. In this paper we present one simple method for smoothing our
initial data and the results of the weather prediction calculations.
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assimilation, data smoothing
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1. Introduction

Sensor networks have generated a great interest in scientific areas and becoming
more popular as the devices used for building such a network are available at a
low price while their reliability and capabilities are higher than ever before. In the
early days sensor networks consisted of simple data logger devices equipped with
sensors. Their only role was to collect and store the measured data. However,
recent sensor networks usually make real-time data available through the Internet,
and they can be used for purposes other than data logging.

Such sensor networks are already widely used by meteorological agencies, al-
though their network nodes (sensor stations) are of a much developed and industrial
category. However, a lot of other competitors entered the business worldwide, and
it looks like they can produce significant results, too. One reason for that is the
higher spatial resolution in terms of surface-level measurements. With the evolu-
tion of wireless technologies and IoT, their role is expected to grow even further.

It’s worth mentioning that the computing potential that’s available at large
meteorological agencies is unquestionably a great advantage. Still, there is po-
tential in sensor networks in this matter, because the network nodes can also be
used for computational tasks [25, 27]. This way a central supercomputer can be
eliminated because the calculations can be performed in a fully distributed way.
Previously we followed a mixed approach by integrating our own Distributed Sen-
sor Network for Prediction Calculations (DSN-PC) nodes and NOAA GFS data
into a hybrid sensor- and computational network [28]. Following that, we wanted
to step further by increasing the involvement of our own measurements in the final
hybrid network’s initial data. This approach arose some problems that we tried
to mitigate, such as big differences (spikes) between two geographically adjacent
measurements. Due to the simplicity of our currently used numerical model these
caused numerical instability and incorrect results in the forecast calculations. This
is a widely researched area in meteorology and several data assimilation [1, 16, 17]
and data smoothing [14, 21, 31] techniques exist to address that problem. Among
them, the spline methods have been the most widely used which have been dis-
cussed in several articles [2, 4–7, 20, 24, 29] and algorithms are already available to
implement them in a distributed form [22]. Applications in atmospheric and geo-
sciences also show the viability of these smoothing methods [11, 12, 15]. A subtype
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called thin-plate smoothing spline procedure described by Hutchinson [10] has been
widely used in geosciences and performed well in global studies [18, 19] as well as
in comparative tests of multiple interpolation techniques [9, 13]. Our final goal is
to implement it on our system in a distributed form – however, before moving to
these advanced techniques we aimed for a much simpler distributed algorithm to
check if smoothing alone is enough to achieve numerical stability and satisfactory
prediction results.

In this paper we introduce a minor improvement over our previous approach by
directly injecting our measurements into the computational grid’s initial data. A
simple smoothing algorithm was applied to the initial data which can be performed
distributedly by the nodes communicating with each other. Below the results of
these numerical weather prediction calculations are shown.

2. System and model description

2.1. The geographical area and data sources
We implemented a virtual sensor network which covers a European area and con-
sists of 20 × 20 nodes forming a regular grid on a map using polar stereographic
projection. In order to produce the results in this paper the network nodes were
simulated as Java threads. Figure 1 shows the locations of the grid points. The
detailed properties of the grid are described in our previous paper [28].

The initial values for the computations are from 2 data sources: our 5 DSN-
PC weather stations installed in Hungary and data from the publicly available
GFS-ANL database [8]. DSN-PC weather stations are equipped with temperature,
pressure and relative humidity sensors [26]. For our currently used model they
calculate the 500 hPa geopotential height from the hypsometric equation [28, 30].
Regarding GFS sources, in the current calculations the 0.5∘ resolution dataset was
used.

2.2. Integrating DSN-PC and GFS data
As a first step we performed natural neighbor interpolation [23, 28] on the 𝑧500
values of the GFS grid points to calculate the 𝑧500 values for the 20 × 20 compu-
tational grid. For the interpolation the latitude(∘) and longitude(∘) coordinates of
the grid points were converted to (x,y) coordinates based on polar stereographic
map projection [3]:

𝑟 =
cos(latitude)

1 + sin(latitude)
· 2𝑎,

where 𝑎 = 4 · 107/2𝜋 is the radius of the Earth (m). Then

𝑥 = 𝑟 · sin(longitude),
𝑦 = −𝑟 · cos(longitude).
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After the interpolation 5 grid points’ initial values were replaced by DSN-PC mea-
surements. For that purpose we installed our weather stations to geographical
locations near those 5 grid points. Table 1 shows the latitude(∘) and longitude(∘)
coordinates of the grid points and their respective DSN-PC stations.

Figure 1: The regular grid of the 20 × 20 computational network
(marked with +), the grid points of the NOAA GFS dataset (marked
with ·), the geographical locations of our DSN-PC weather stations
in Hungary (marked with o) and the 5 grid points whose data were
replaced by the nearest DSN-PC stations’ data (marked with *)

ID lat (∘N) lon (∘E) grid point lat (∘N) grid point lon (∘E)
1 48.17 20.42 48.18 20.14
2 46.92 19.67 47.08 19.55
3 46.65 21.29 46.67 21.15
4 47.31 18.01 47.46 17.91
5 46 18.68 45.98 18.99

Table 1: The geographic locations of our currently operational
DSN-PC weather stations and their respective grid points
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2.3. The distributed smoothing algorithm
Sometimes the DSN-PC measurements contain outlier values. The reason for these
can be measurement errors or local weather phenomena. If we do not handle these
errors, our simple model cannot handle the big differences between adjacent grid
points and will produce incorrect results. To smooth out those spikes we applied
a simple averaging algorithm which is executed by each node before starting the
forecast algorithm. The nodes get the initial values from their adjacent nodes and
calculate the average of those and their own values. The adjacency distance can
vary between 1–3 hops, thence near neighbours are always queried and distant
neighbors may be queried as well. On Figure 2 the algorithm’s operation is visu-
alized on a 20 × 20 grid. On Figure 3 the flowchart diagram of the algorithm is
shown.

Figure 2: Examples of smoothing areas for different nodes with
Np = 1 (red) and Np = 2 (blue)

2.4. The forecast algorithm
The applied distributed algorithm is based on the barotropic vorticity equation and
was developed by Charney, Fjørtoft, and von Neumann (CFvN) [3]. Later, during
our previous work we altered it so that it operates on a distributed sensor network.
The details of how the algorithm operates on the network nodes were covered
previously [25]. Like in the previous case [28] we ran calculations on data from the
period between 2019.03.21. and 2019.03.27. For each day the measurements taken
at 00:00 UTC were chosen as initial values. The Mean Absolute Error (MAE) was
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calculated for each forecast by

MAE =
1

18 · 18
18∑︁

𝑖=1

18∑︁

𝑗=1

⃒⃒
𝑧500,𝑖,𝑗 − 𝑧′500,𝑖,𝑗

⃒⃒
,

where 𝑧′500,𝑖,𝑗 is the predicted and 𝑧500,𝑖,𝑗 is the measured 500 hPa geopotential 24
hours later. Due to the special way of handling the boundary grid points [3] we
did not include them in the calculation of MAE.

Np = max_neighbor_distance

sum = initial_value

count = 1

i = max(0 , node_x-Np)

 

i < min(node_x+Np , number_of_rows-1)

j = max(0 , node_y-Np)

 true 

smoothed_value = sum / count

 false 

 

j < min(node_y+Np , number_of_cols-1)

i!=node_row && j!=node_col

 true 

i++

 false 

nv = tcpGetNeighborValue(neighbor_row , neighbor_col)

 true 

j++

 false  sum = sum + nv

count++

Figure 3: The smoothing algorithm as executed on one node
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3. Results

The MAE values of the forecast calculations are summarized in Table 2 where the
previous (simultaneous interpolation) results [28] are also included for comparison.
The CFvN algorithm remained numerically unstable in cases where the initial data
were unsmoothed and stable when smoothing was applied. The adjacency distance
(Np = 1, 2, 3) value used during the smoothing phase had a significant impact on
the goodness of the forecast. As a general rule, a minimum of Np = 2 seems to be
necessary to achieve satisfactory results. On Figure 4 the initial, the analysis and
the forecast height fields are shown for 2019.03.21. 00:00 UTC.
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(c) Forecast height field
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(d) Height field measured 24 hours later

Figure 4: Initial height fields and the result of the CFvN forecast
performed on 2019.03.21. 00:00 UTC data
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date previous method
current method

no smoothing smoothing
Np = 1 Np = 2 Np = 3

CFvN pers CFvN pers CFvN CFvN CFvN
2019.03.21. 59.52 31.29 NaN 31.14 206.06 22.82 34.91
2019.03.22. 50.63 44.33 NaN 45.26 182.30 45.52 38.89
2019.03.23. 73.76 49.23 81.19 50.00 202.92 87.90 61.31
2019.03.24. 37.88 94.54 NaN 93.87 41.81 96.91 79.26
2019.03.25. 85.71 101.07 89.95 100.12 206.17 134.39 77.60
2019.03.26. 46.33 60.31 NaN 59.79 253.58 57.04 65.44
2019.03.27. 35.87 61.54 NaN 61.10 207.80 40.87 76.99

Table 2: Mean Absolute Error (m) values of the forecast calcula-
tions performed by the CFvN algorithm and the persistence method

Regarding performance, the smoothing algorithm’s execution time strongly de-
pends on the network conditions, but shouldn’t take more than a few seconds.
This, in our current hardware environment, is negligible compared to the forecast
algorithm’s typical execution time which is a few minutes.

4. Conclusion

We succeeded in integrating DSN-PC measurements and GFS datasets into a com-
mon dataset used as initial conditions for the CFvN weather forecast algorithm.
It is a step forward from the simultaneous interpolation because of the direct in-
tegration of our data. As can be seen from the results, handling the outliers in
the 2D grid is necessary while we use the CFvN algorithm. For that purpose, we
successfully implemented a simple data smoothing algorithm on the virtual net-
work nodes that can compute it by communicating with each other. This way we
could achieve numerical stability in every investigated case. As a next step this
smoothing method can be refined, especially on the boundaries. More complex
smoothing methods can also be tested on the input data, although their conversion
into distributed form can be challenging. However, the best way to improve our
system would be the application of more advanced forecast models that can handle
small-scale phenomena. Currently our system is not eligible to compete with more
advanced and complex weather prediction models. Instead, our long-term goal is
to make highly distributed weather prediction calculations possible.
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