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Abstract

A retrial queuing system with a single server is investigated in this pa-
per. The server is subject to random breakdowns. The number of customers
is finite and collision may take place. A collision occurs when a customer
arrives to the busy server. In case of a collision both customers involved in
the collision are sent back to the orbit. From the orbit the customers retry
their requests after a random waiting time. The server can be down due to a
failure. During the failed period the arriving customers are sent to the orbit,
as well. The novelty of this analysis is the impatient behaviour of the cus-
tomers. A customer waiting in the orbit may leave it after a random waiting
time. The requests of these customers will not be served. All the random
variables included in the model construction are assumed to be exponentially
distributed and independent from each other.

The impatient property makes the model more complex, so the derivation
of a direct algorithmic solution (which was provided for the non-impatient
case) is difficult. For numerical calculations the MOSEL-2 tool can be used.
This tool solves the Kolmogorov system equations, and from the result-
ing steady-state probabilities various system characteristics and performance
measures can be calculated, i.e. mean response time, mean waiting time in
the orbit, utilization of the server, probability of the unserved impatient re-
quests. Principally the effect of the impatient property is investigated in
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these results, which are presented graphically, as well.
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1. Introduction

Retrial queueing systems (RQ-systems) are very useful tools for modeling a large
variety of problems of real life situations. An RQ-system can be described by the
following characteristics: when an arriving job from the outside world (from the
sources) or from the queue of the system finds the server busy, joins the orbit and
after a random, usually exponentially distributed time retries to reach the server
again. In case of an infinite source, the orbit is assumed to be infinitely large
and jobs keep retrying until they are served. The call centers, telecommunication
systems, computer networks, telephone switching systems and recently smart city
networks etc. can effectively be modeled by RQ-systems. Instead of the infinite
source models which have been investigated by many authors, the models with
finite number of sources are more appropriate to describe the behaviour of the
systems under consideration. The mobile networks, sensor networks, and cognitive
radio systems can be mentioned as common example of these finite source systems.
The random and multiple access protocols for these types of systems have been
investigated, for example in [3, 12].

In real life situations, unfortunately, the reliability of the systems cannot be
assumed and assured. The elements of the systems are subject to random break-
downs. These situations also have to be investigated, so the models contain random
server breakdowns and repairs. The system characteristics and performance mea-
sures are very sensitive to the non-reliable operation of the systems. Finite-source
RQ-systems with server breakdowns and repairs have been investigated in several
recent papers, for example in [2, 8–10, 20, 22].

The goal of this paper is to give a stochastic model for describing the phe-
nomenon of the impatient waiting customers. The customers may retry their re-
quests, the environment is non-reliable, and during the service process collisions
might occur. A single server 𝑀/𝑀/1//𝑁 retrial queueing system is useful and
efficient for this task. The server is subject to random breakdowns, and the cus-
tomers are subject to collisions at the service unit. This type of collisions are
essential part of various implementations of telecommunication systems, computer
networks. In case of busy communication channels there is large probability of
conflict of signals. In these cases the signals involved into collision are lost, and re-
transmission is needed. The performance measures of these systems are under an
optimal level. Consequently, the investigation of the systems subject to collisions
has great interest nowadays. The best solution, namely building systems without
collision is difficult to reach. The main effort of the investigations is to maximize
the performance of the systems with collision. Previous years many authors have
investigated queueing systems with conflict of customers, e.g. [1, 4, 11, 13–16, 18].
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The novelty of this paper is the impatient behaviour of the waiting customers in
the described environment, namely a single server unreliable system with a virtual
waiting facility (orbit) and with possibility of collision of customers. This type of
behaviour was also investigated by some authors, e.g. [5, 21]. A customer trans-
ferred to the orbit may retry its request several times. In case of unsuccessful retries
after a random, exponentially distributed time the customer leaves the system (the
orbit), and goes back to the source. This customer remains unserved. Our goal is
to calculate the steady-state probabilities and the performance measures of these
type of systems. The empirical distribution of the system probabilities and the
effect of the impatient parameter are also investigated.

2. System model

The system under consideration is modeled by a finite source closed retrial queuing
system of type 𝑀/𝑀/1//𝑁 . The system has one server and the number of sources
is 𝑁 . In this paper two working characteristics of the server are distinguished:

• Non-reliable server and patient customers. The server is subject to ran-
dom breakdowns. The breakdown times are exponentially distributed. The
breakdown parameters for busy and idle server are 𝛾0 and 𝛾1, respectively.
In case of breakdown the request under service is sent to the orbit. After the
breakdown the repair starts immediately. The repair time is exponentially
distributed with parameter 𝛾2. While the server is under repair, the sources
are able to generate requests. These customers are transferred to the orbit,
because the server is not available. The requests in the orbit may retry reach-
ing the server again after an exponentially distributed time with parameter
𝜎/𝑁 . The customers are patient, that is they keep retrying from the orbit
until they are served.

• Non-reliable server and impatient customers. The breakdown behaviour of
the server is the same, as in the previous point. The customers are impatient,
that is a customer keeps retrying until it is served, or the customer leaves the
orbit and goes back to the source after an exponentially distributed waiting
time with parameter 𝜏 .

A job (customer) is generated in the source towards the server. The distribution of
the inter-request times are exponential with parameter 𝜆/𝑁 . The customer enters
the system, and the source waits for a successful service. Until the end of service of
the job the source cannot generate a new request. The new customer tries reaching
the server. The state of the server can be busy or idle. When the server is idle,
the service of the customer starts immediately. The distribution of service times is
exponential with parameter 𝜇. In case of a busy server state a conflict of customers
can be occur: when an arriving job finds the server busy it involves into collision
with customer under service and both customers are moved into the orbit. See the
model on Figure 1.
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Figure 1: System model

Let 𝑖(𝑡) be the number of customers in the system. The customer can be either
in the orbit or under service. Let 𝑘(𝑡) denote the status of the server:

𝑘(𝑡) =

⎧
⎪⎨
⎪⎩

0, if the server is idle,
1, if the server is busy,
2, if the server is under repair.

Let us denote the probability that at the time t there are 𝑖 customers in “waiting”
state and the server is in the state 𝑘 by 𝑃 (𝑘(𝑡) = 𝑘, 𝑖(𝑡) = 𝑖) = 𝑃𝑘(𝑖, 𝑡). Under the
above assumption the process 𝑋(𝑡) = {𝑘(𝑡), 𝑖(𝑡)} is a 2-dimensional Markov-chain
with a state space of {0, 1, 2} × {0, 1, . . . , 𝑁}.

The successfully served customer goes back to the source. All the random
variables involved in the model construction are assumed to be totally independent
from each other.

For the non-impatient case the, the Kolmogorov differential-equations for prob-
abilities 𝑃𝑘(𝑖, 𝑡) are the following (see in [14, 16]):

𝜕𝑃0(0, 𝑡)

𝜕𝑡
= −(𝜆 + 𝛾0)𝑃0(0, 𝑡) + 𝜇𝑃1(1, 𝑡) + 𝛾2𝑃2(0, 𝑡),

𝜕𝑃1(1, 𝑡)

𝜕𝑡
= −

(︂
𝜆
𝑁 − 1

𝑁
+ 𝜇 + 𝛾1

)︂
𝑃1(1, 𝑡) + 𝜆𝑃0(0, 𝑡) +

𝜎

𝑁
𝑃0(1, 𝑡),

𝜕𝑃2(0, 𝑡)

𝜕𝑡
= −(𝜆 + 𝛾2)𝑃2(0, 𝑡) + 𝛾0𝑃0(0, 𝑡),

𝜕𝑃0(𝑖, 𝑡)

𝜕𝑡
= −

(︂
𝜆
𝑁 − 1

𝑁
+ 𝜎

𝑖

𝑁
+ 𝛾0

)︂
𝑃0(𝑖, 𝑡) + 𝜇𝑃1(𝑖 + 1, 𝑡)

+ 𝜆
𝑁 − 𝑖 + 1

𝑁
𝑃1(𝑖− 1, 𝑡) + 𝜎

𝑖− 1

𝑁
𝑃1(𝑖, 𝑡) + 𝛾2𝑃2(𝑖, 𝑡),
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𝜕𝑃1(𝑖, 𝑡)

𝜕𝑡
= −

(︂
𝜆
𝑁 − 1

𝑁
+ 𝜎

𝑖− 1

𝑁
+ 𝛾1 + 𝜇

)︂
𝑃1(𝑖, 𝑡)

+ 𝜆
𝑁 − 𝑖 + 1

𝑁
𝑃0(𝑖− 1, 𝑡) + 𝜎

𝑖

𝑁
𝑃0(𝑖, 𝑡),

𝜕𝑃2(𝑖, 𝑡)

𝜕𝑡
= −

(︂
𝜆
𝑁 − 1

𝑁
+ 𝛾2

)︂
𝑃2(𝑖, 𝑡) + 𝛾0𝑃0(𝑖, 𝑡) + 𝛾1𝑃1(𝑖, 𝑡)

+ 𝜆
𝑁 − 𝑖 + 1

𝑁
𝑃2(𝑖− 1, 𝑡).

Since 𝑋(𝑡) = {𝑘(𝑡), 𝑖(𝑡)} is a finite state Markov-chain it can be assumed that it
operates in steady-state that is: 𝑃𝑘(𝑖, 𝑡) = 𝑃𝑘(𝑖).

Hence the steady-state Kolmogorov-equations can be written as

−(𝜆 + 𝛾0)𝑃0(0) + 𝜇𝑃1(1) + 𝛾2𝑃2(0) = 0,

−
(︂
𝜆
𝑁 − 1

𝑁
+ 𝜇 + 𝛾1

)︂
𝑃1(1) + 𝜆𝑃0(0) +

𝜎

𝑁
𝑃0(1) = 0,

−(𝜆 + 𝛾2)𝑃2(0) + 𝛾0𝑃0(0) = 0,

−
(︂
𝜆
𝑁 − 1

𝑁
+ 𝜎

𝑖

𝑁
+ 𝛾0

)︂
𝑃0(𝑖) + 𝜇𝑃1(𝑖 + 1) + 𝜆

𝑁 − 𝑖 + 1

𝑁
𝑃1(𝑖− 1)

+ 𝜎
𝑖− 1

𝑁
𝑃1(𝑖) + 𝛾2𝑃2(𝑖) = 0,

−
(︂
𝜆
𝑁 − 1

𝑁
+ 𝜎

𝑖− 1

𝑁
+ 𝛾1 + 𝜇

)︂
𝑃1(𝑖) + 𝜆

𝑁 − 𝑖 + 1

𝑁
𝑃0(𝑖− 1) + 𝜎

𝑖

𝑁
𝑃0(𝑖) = 0,

−
(︂
𝜆
𝑁 − 1

𝑁
+ 𝛾2

)︂
𝑃2(𝑖) + 𝛾0𝑃0(𝑖) + 𝛾1𝑃1(𝑖) + 𝜆

𝑁 − 𝑖 + 1

𝑁
𝑃2(𝑖− 1) = 0.

Note, if all of the 𝛾2 parameters and 𝑃2 probabilities are set to zero, we get the
formulas for the system with conflict and reliable server.

By the help of the same method described above, the steady-state Kolmogorov-
equations can be obtained for the system with conflict, non-reliable server and
impatient customers:

−(𝜆 + 𝛾0)𝑃0(0) + 𝜇𝑃1(1) + 𝛾2𝑃2(0) +
𝜏

𝑛
𝑃0(1) = 0,

−
(︂
𝜆
𝑁 − 1

𝑁
+ 𝜇 + 𝛾1

)︂
𝑃1(1) + 𝜆𝑃0(0) +

𝜎

𝑁
𝑃0(1) +

𝜏

𝑛
𝑃1(2) = 0,

−(𝜆 + 𝛾2)𝑃2(0) + 𝛾0𝑃0(0) = 0,

−
(︂
𝜆
𝑁 − 𝑖

𝑁
+ 𝜎

𝑖

𝑁
+ 𝜏

𝑖

𝑁
+ 𝛾0

)︂
𝑃0(𝑖) + 𝜇𝑃1(𝑖 + 1) + 𝜆

𝑁 − 𝑖 + 1

𝑁
𝑃1(𝑖− 1)

+ 𝜎
𝑖− 1

𝑁
𝑃1(𝑖) + 𝜏

𝑖 + 1

𝑁
𝑃0(𝑖 + 1) + 𝛾2𝑃2(𝑖) = 0,

−
(︂
𝜆
𝑁 − 𝑖

𝑁
+ 𝜎

𝑖− 1

𝑁
+ 𝜏

𝑖− 1

𝑁
+ 𝛾1 + 𝜇

)︂
𝑃1(𝑖) + 𝜆

𝑁 − 𝑖 + 1

𝑁
𝑃0(𝑖− 1)
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+ 𝜎
𝑖

𝑁
𝑃0(𝑖) + 𝜏

𝑖

𝑁
𝑃1(𝑖 + 1) = 0,

−
(︂
𝜆
𝑁 − 𝑖

𝑁
+ 𝛾2

)︂
𝑃2(𝑖) + 𝛾0𝑃0(𝑖) + 𝛾1𝑃1 + 𝜆

𝑁 − 𝑖 + 1

𝑁
𝑃2(𝑖− 1)

+ 𝜏
𝑖 + 1

𝑁
𝑃2(𝑖 + 1) = 0.

3. Performance Measures

The performance measures express the effect of the input parameters of the system.
Let us define the most important characteristics which can be determined directly
from the steady state probabilities.

• Mean number of customers in the system 𝑄 and in the orbit 𝑂

𝑄 =

𝑁∑︁

𝑖=0

𝑖𝑃 (𝑖), 𝑂 = 𝑄− 𝑃1,

• Mean arrival rate 𝜆

𝜆 =

1∑︁

𝑘=0

𝑁∑︁

𝑖=0

(𝑁 − 𝑖)
𝜆

𝑁
𝑃𝑘(𝑖),

• Mean response time 𝑇 and mean waiting time 𝑊 in the orbit can be obtained
by the Little-formula

𝑇 =
𝑄

𝜆
, 𝑊 =

𝑂

𝜆
, 𝑂 = 𝑄− 𝑃1,

• Mean total service time 𝐸(𝑇𝑆) and mean total sojourn time in the source
𝐸(𝜅)

𝐸(𝑇𝑆) = 𝑇 −𝑊, 𝐸(𝜅) =
(𝑁 −𝑄)𝑇

𝑄
,

• Mean number of trials from the source 𝐸(𝑁𝑇𝑆) and from the orbit 𝐸(𝑁𝑇𝑂)

𝐸(𝑁𝑇𝑆) =
𝜆

𝑁
𝐸(𝜏), 𝐸(𝑁𝑇𝑂) =

𝜎

𝑁
𝑊.

4. Numerical solution

Before this model several other systems were investigated. Simple retrial queueing
models, retrial models with conflict of customers, non-reliable retrial models with
conflict of customers, retrial models with two-way communications. Obtaining the
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system characteristics three different solutions were performed: recursive numer-
ical calculations, solving the system equations (e.g. by MOSEL-2 tool), and run
simulations. The results of the three different approaches were identical. Using
these results, we were able to investigate models, where all of the mentioned solu-
tions were not applicable. For example, systems with non-exponentially distributed
service times can not be solved by MOSEL-2, but simulation and, in some cases,
numerical solution proved useful.

The situation for this model is very similar. For the non-impatient case the
equations can be solved recursively (described in [14, 16, 19]). The resulting steady-
state probabilities 𝑃𝑘(𝑖) can be used for calculating the system performance mea-
sures. For double-checking the result, MOSEL-2 tool can also be applied here. For
the impatient case we did our best, but such recursive solution cannot be obtained,
because new variables enter into equations due to the impatient property. For this
impatient case a software tool, MOSEL-2 is used to solve the system equations.
The correctness of MOSEL-calculations was empirically proved in cases, when this
tool and the numerical calculations were used simultaneously.

On Figure 2 the steady-state probabilities are displayed for the different models
(non-conflict, conflict, unreliable, unreliable block, unreliable impatient). When the
calculations are performed by MOSEL-2 tool (MOdeling Specification and Eval-
uation Language), see in [6], we run into a strict limitations, namely the state
space grows extremely fast, consequently the number of sources cannot exceed 200.
In Excel we can go far more above 200 (when the recursive calculations can be
performed.

Figure 2: Different models

The first important question was the distribution of the system probabilities
𝑃𝑘(𝑖). Previous investigations the distribution was found very close to normal dis-
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tribution. The normality is important, because in general only the average number
of customers in the orbit or average waiting time of customers in the orbit can be
calculated by the methods mentioned in this paper. But, if the normality of steady
state probabilities can be assumed, the limiting probability distribution of the so-
journ time/waiting time of the customer in the orbit can be obtained by asymptotic
methods. See in [7, 17]. That’s why is it important to find domains of parameters,
where the steady-state system (or orbit) probabilities have normal or asymptotic
normal distribution. Here the normality of the distribution was checked for dif-
ferent numbers of sources: 𝑁 = 50, 100 and 200. Then the Kolmogorov-distance
was computed. For the Kolmogorov-distance the theoretical normal distribution is
calculated by using Excel built-in function. The parameters of the distribution is
calculated from the steady-state probabilities. For example, in case of 𝑁 = 100, a
normal distribution is generated with mean of 52.9 and standard deviation of 6.37.
The Kolmogorov-distance is defined as:

∆𝑁 = max
0≤𝑘≤𝑁

⃒⃒
⃒⃒
⃒

𝑘∑︁

𝑖=0

𝑃Theoretical(𝑖)−
𝑘∑︁

𝑖=0

𝑃Mosel(𝑖)

⃒⃒
⃒⃒
⃒ .

The following result were found: ∆50 = 0.03,∆100 = 0.02,∆200 = 0.003. Thus
the normality of the system probabilities can be accepted.

On Figure 3 the cumulative distribution function (CDF) of the normal (Gaus-
sian) distribution and the empirical CDF are compared. As from the Kolmogorov-
distance can be expected, the two distributions are almost identical.

Figure 3: Normal CDF vs. empirical CDF

As described above, from the steady-state probabilities the performance mea-
sures (system characteristics) can be calculated.

On Figure 4 the mean response time, calculated by the help of formulas pre-
sented in Chapter 3 is displayed as a function of the overall generation rate. The
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Figure 4: Mean response time vs. 𝜆

expected maximum characteristic can be observed on this figure, as well. Under
some parameter settings the finite-source retrial queueing systems have this max-
imum feature for several performance measures, e.g. response time. The reason
is the special coincidence of the high generation rate and the low number of ac-
tive tokens in the source (the number of jobs in the system is usually high at this
situation).

5. Conclusion

The goal of this paper was to handle the impatient behaviour of customers in
the environment of unreliable systems with collision. For non-impatient systems
computing the steady-state system characteristics a recursive solution can be given.
The impatient property makes the system equations more complex. New variables
appear in the equations, so the recursive numeric solution cannot be performed.
Because of this reason a software tool was used to solve the system equations. For
this complex case there is no limit distribution of sojourn and waiting times of
customers in the orbit. So, it is important to find domains of parameter, where
the distribution of steady-state probabilities can be accepted as normal, to give the
possibility of further theoretical investigations towards the limit distributions.
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