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Abstract

We study a continuous time network evolution model. We consider the
collaboration of three individuals. In our model, it is described by three
connected vertices, that is by a triangle. During the evolution new collabora-
tions, that is new triangles are created. The reproduction of the triangles is
governed by a continuous time branching process. The long time behaviour
of the number of triangles, edges and vertices is described. In this paper, we
highlight the asymptotic behaviour of the network by simulation results.

Keywords: random graph, network, branching process, Malthusian parameter

MSC: 05C80, 90B15, 60J85

1. Introduction

In the past two decades network science became a popular and important topic,
see [2]. It describes large real-life networks as the Internet, the WWW, social,
biological and energy networks. Large networks have several common properties,
therefore it is worth to study theoretical models of networks. Usually, networks
are described by graphs. The nodes of the network are the vertices of the graph
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project was supported by the European Union, co-financed by the European Social Fund.
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and the connections are the edges. The meaning of connection can be cooperation
or any interaction. A most cited paper in network science is [3]. It studies the
famous preferential attachment model which leads to scale free networks. A deep
mathematical study of discrete time network evolution models can be found in [6].

However, in our paper, we turn to a continuous time network evolution model.
An interesting continuous time model is presented in [7]. In that paper the theory
of general branching processes, so called Crump-Mode-Jagers processes (see [8])
is applied to obtain asymptotic theorems. In paper [9], the idea of preferential
attachment is combined with the evolution mechanism of a multi-type continuous
time branching process.

In this paper we apply certain ideas of papers [1] and [7]. Paper [1] describes
the interaction (or co-operation) of three persons. It creates a discrete time net-
work evolution model which relies on the preferential attachment rule and three-
interactions. In [7], however, a continuous time network evolution model based
on a branching process evolution rule is presented. In that model only the usual
interaction of two vertices is included and triangles have no role in the evolution
rule. Neither [1] nor [7] offer numerical results. In our paper we combine the above
ideas of three interactions with the continuous time branching process evolution
mechanism. We focus on numerical studies of our model.

In this paper, in Section 2, we offer a detailed description of the evolution rules
of our network. Then, in Section 3, we give a brief summary of our theoretical
results. Their detailed mathematical proofs are given in a separate paper (see [5]).
Here, in Section 4, we present our numerical results. We show that our formulae are
numerically tractable, so we can calculate the values of the important parameters
and other features of our process. Then we show our simulation program and a
certain part of our simulation results. These results support our mathematical
theorems.

2. The network evolution model

We shall study the following evolving random graph model. At the initial time
𝑡 = 0 we start with a single triangle. During the evolution new triangles are born.
Every triangle has its own evolution process. We assume that during the evolution
of the network the life processes of the triangles are identically distributed and
independent of each other.

We denote the reproduction process of the generic triangle by 𝜉(𝑡) and its birth
times by 𝜏1, 𝜏2, . . . . We assume that 𝜏1, 𝜏2, . . . are the jumping time points of a
Poisson process Π(𝑡), 𝑡 ≥ 0, where the rate of Π is equal to 1. Then the point process
𝜉(𝑡) gives the total number of offspring up to time 𝑡. However, at a birth time not
only triangles can be created but new edges and vertices can be added to the graph.
Here we describe the details of an evolution step. At every birth time 𝜏𝑖 a new
vertex is added to the graph which can be connected to its ancestor triangle with 𝑗
edges, where 𝑗 = 0, 1, 2, 3. The vertices of the ancestor triangle to be connected to
the new vertex are chosen uniformly at random. Let 𝑝𝑗 denote the probability that
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the new vertex will be connected to 𝑗 vertices of the ancestor triangle. It follows
from the definition of the evolution process that at each birth step the possible
number of the new triangles can be 0, 1 or 3. On Figure 1 we represent these
possibilities. The initial triangle is drawn by solid lines while the new ingredients
by dashed lines. Denote the litter sizes belonging to the birth times 𝜏1, 𝜏2, . . . by

Figure 1: Possible birth events (0, 1, 2 or 3 new edges)

𝜀1, 𝜀2, . . . . Then 𝜀1, 𝜀2, . . . are independent identically distributed discrete random
variables with distribution P(𝜀𝑖 = 𝑗) = 𝑞𝑗 , 𝑗 ≥ 0. In our model the distribution of
the litter size 𝜀𝑖 is given by

P(𝜀𝑖 = 0) = 𝑞0 = 𝑝0 + 𝑝1, P(𝜀𝑖 = 1) = 𝑞1 = 𝑝2, P(𝜀𝑖 = 3) = 𝑞3 = 𝑝3,

P(𝜀𝑖 = 𝑗) = 𝑞𝑗 = 0, if 𝑗 /∈ {0, 1, 3}.
We assume that the litter sizes are independent of the birth times 𝜏1, 𝜏2, . . . , too.
Denote by 𝜆 the life length of the generic triangle. 𝜆 is a finite nonnegative random
variable. After its death the triangle does not produce offspring, therefore 𝜉(𝑡) =
𝜉(𝜆) when 𝑡 > 𝜆. Then the reproduction process of a triangle is

𝜉(𝑡) =
∑︁

𝜏𝑖≤𝑡∧𝜆

𝜀𝑖 = 𝑆Π(𝑡∧𝜆),

where 𝑆𝑛 = 𝜀1 + · · · + 𝜀𝑛 gives the total number of offspring before the (𝑛 + 1)th
birth event and 𝑥 ∧ 𝑦 denotes the minimum of {𝑥, 𝑦}.

Let 𝐿(𝑡) be the distribution function of 𝜆. We assume that the survival function
of the triangle’s life length is

1− 𝐿(𝑡) = P(𝜆 > 𝑡) = exp

⎛
⎝−

𝑡∫︁

0

𝑙(𝑢) d𝑢

⎞
⎠ ,

where 𝑙(𝑡) is the hazard rate of the life span 𝜆. Moreover, we assume that the
hazard rate depends on the number of offspring as

𝑙(𝑡) = 𝑏 + 𝑐𝜉(𝑡)

with positive constants 𝑏 and 𝑐.
The whole evolution process is the following. The life and the reproduction pro-

cess of the initial triangle is the same as that of the above described generic triangle.
When a child triangle is born, then it starts its own life and reproduction process
which is also defined by the same way as its parent triangle. The same applies to

Simulation results on a triangle-based network evolution model 9



the grandchildren, etc. Therefore the evolution of the network is described by a
continuous time branching process. We underline that the life and reproduction
process of any triangle have the same distribution as those of the generic triangle,
but the reproduction processes of different triangles are independent.

3. Theoretical results

Here we summarize the theoretical results of our paper [5].
Let 𝜇(𝑡) = E𝜉(𝑡) be the expectation of the number of offspring of a triangle

up to time 𝑡. The total number of offspring of a triangle is 𝜉(∞). The expected
offspring number of a triangle can be calculated as

𝜇(∞) = E𝜉(∞) = (𝑞1 + 3𝑞3)E(𝜆) =

(𝑞1 + 3𝑞3)
1

𝑐

1∫︁

0

(1− 𝑢)
𝑏+1−𝑞0

𝑐 −1𝑒
𝑢
3𝑐 (𝑞3𝑢

2−3𝑞3𝑢+3(𝑞1+𝑞3)) d𝑢.

The probability of extinction is 1 if 𝜇(∞) ≤ 1.

Theorem 3.1. If 𝜇(∞) > 1, then the probability of the extinction of the triangles
is the smallest non-negative solution of equation

𝑞1 + 𝑞3(𝑦2 + 𝑦 + 1)

𝑐

1∫︁

0

(1− 𝑢)
1+𝑏−𝑞0

𝑐 −1𝑒(
𝑞1𝑦+𝑞3𝑦3

𝑐 𝑢− 𝑞3𝑦3

𝑐 𝑢2+
𝑞3𝑦3

3𝑐 𝑢3) d𝑢 = 1. (3.1)

Assume that 𝜇(∞) > 1, that is our branching process is supercritical. Then the
Malthusian parameter 𝛼 is the only positive solution of equation

∫︀∞
0

𝑒−𝛼𝑡𝜇(𝑑𝑡) = 1.
We can see that

𝑞1 + 3𝑞3 − 𝑏− 1 < 𝛼 < 𝑞1 + 3𝑞3 − 𝑏.

In our model the Malthusian parameter 𝛼 satisfies the equation

1 =
(𝑞1 + 3𝑞3)

𝑐

1∫︁

0

(1− 𝑢)
𝛼+(𝑏+1)

𝑐 − 𝑞0
𝑐 −1𝑒

3𝑞1𝑢+𝑞3𝑢(𝑢2−3𝑢+3)
3𝑐 d𝑢. (3.2)

Now we give the asymptotic behaviour of the number of triangles. Let us denote by
𝑍(𝑡) the number of triangles alive at time 𝑡. Let 𝛼 be the Malthusian parameter.

Theorem 3.2. We have

lim
𝑡→∞

𝑒−𝛼𝑡𝑍(𝑡) = 𝑌∞𝑚∞

almost surely and in 𝐿1, where the random variable 𝑌∞ is nonnegative, it is positive
on the event of non-extinction, it has expectation 1 and

𝑚∞ =
1

(𝑞1 + 3𝑞3)2
∫︀∞
0

𝑡𝑒−𝛼𝑡(1− 𝐿(𝑡))𝑑𝑡
.

10 I. Fazekas, A. Barta, Cs. Noszály



Now we turn to the asymptotic behaviour of vertices and edges. Let us denote
by 𝑉 (𝑡) the total number of vertices (dead or alive) up to time 𝑡. Let 𝑊 (𝑡) be the
number of edges (dead or alive) up to time 𝑡. Let 𝛾 denote the number of new
edges at a birth. Then its distribution is P(𝛾 = 𝑗) = 𝑝𝑗 , 𝑗 = 0, 1, 2, 3.

Theorem 3.3. We have

𝑉 (𝑡)

𝑍(𝑡)
→ 1

𝛼
and

𝑊 (𝑡)

𝑍(𝑡)
→ E𝛾

𝛼

as 𝑡→∞ almost surely on the event of non-extinction.

4. Numerical and simulation results

To get a closer look on the theoretical results, we made some simulations about
them. We generated our code in Julia language [4]. We chose Julia, because of
the great implementation of priority queues. The simulation time of our code was
significantly faster in Julia than in other programming languages. We handled the
main objects (the triangles) of our model as arrays with 3 elements. The elements
were the indices of the edges that formed an individual for the process. We put all
triangles in a priority queue with the priority of its birth time, because we can pop
out the element with the lowest priority. After we have got the triangle with the
lowest birth time, we can handle its birth process with the predefined parameters
𝑏, 𝑐, 𝑞1, 𝑞3. In the birth process we generated an exponential time step for the next
birth step of our triangle. After that we checked if the triangle is still alive by
calculating the survival function. If the triangle is dead, we move to the next one.
If it is alive, then we generate 1 or 3 new triangles and put them into the priority
queue with the calculated birth time priorities. After this step we moved to the
next birth event. The pseudocode of the birth process is seen at Algorithm 1.

We made several simulation experiments. Here we show only some typical
results. For the above demonstration first we used the parameter set 𝑏 = 0.2, 𝑐 =
0.2, 𝑝0 = 0.05, 𝑝1 = 0.05, 𝑝2 = 𝑞1 = 0.6, 𝑝3 = 𝑞3 = 0.3. On Figure 2a the solid
curve shows the number of triangles. According to Theorem 3.2 it has asymptotic
rate 𝑒𝛼𝑡. Therefore we put logarithmic scale on the vertical axis, so the function
𝑍(𝑡) is a straight line for large values of 𝑡. On the figure one can see that the shape
of the curve is close to a straight line, so it supports our Theorem 3.2.

Then we checked the value of the Malthusian parameter 𝛼. We can find it in
two ways. On the one hand, the slope of the line on Figure 2a is 𝛼 for large values
of the time. This slope can be approximated by the differences of the function. So
on Figure 2b we present these differences (solid line). On the other hand, 𝛼 can
be calculated numerically from equation (3.2). This 𝛼 value is shown of Figure 2b
by the horizontal dashed line. The fit of the differences to this 𝛼 can be seen for
large values of 𝑡. To get a closer look on the Malthusian parameter 𝛼, we fixed
5 parameter sets. Then we calculated 𝛼 from equation (3.2) for each case. It
is shown in the fifth column of Table 1. Then for each of the parameter sets we

Simulation results on a triangle-based network evolution model 11
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Figure 2: Simulation results for 𝑏 = 0.2, 𝑐 = 0.2, 𝑞1 = 0.6, 𝑞3 = 0.3

simulated our process 𝑍(𝑡) five times. Then we calculated the differences of log𝑍(𝑡)
which should be good approximations of 𝛼 according to Theorem 3.2. In Table 1,
̂︁𝛼1, ̂︁𝛼2, ̂︁𝛼3, ̂︁𝛼4, ̂︁𝛼5 show the values of these approximations for large 𝑡. One can
see that each ̂︀𝛼𝑖 is close to the corresponding 𝛼. We calculated numerically the

𝑏 𝑐 𝑞1 𝑞3 𝛼 ̂︁𝛼1 ̂︁𝛼2 ̂︁𝛼3 ̂︁𝛼4 ̂︁𝛼5

0.2 0.4 0.7 0.1 0.5628 0.5651 0.5730 0.5701 0.5611 0.5594
0.2 0.4 0.8 0.1 0.6531 0.6537 0.6497 0.6570 0.6510 0.6589
0.4 0.4 0.8 0.1 0.4531 0.4503 0.4519 0.4584 0.4541 0.4524
0.4 0.4 0.7 0.2 0.6545 0.6533 0.6517 0.6548 0.6534 0.6574
0.4 0.4 0.6 0.3 0.8535 0.8519 0.8489 0.8559 0.8547 0.8566

Table 1: 𝛼 from equation (3.2) and ̂︀𝛼𝑖 from simulations

probability of extinction from equation (3.1). It is shown in the column ‘Numerical’
of Table 2. In the column ‘Simulation’ the relative frequency of the extinction is
shown using our computer experiment. For each parameter sets, we simulated
104 processes and counted the number of extinctions occured. The value of the
relative frequency is close to the corresponding value of the probability in each
case. So Table 2 supports the result of Theorem 3.1. To investigate how our
difference process approximates 𝛼 for large values of time 𝑡, we simulated around
500 independent processes with the same parameters 𝑏 = 0.2, 𝑐 = 0.2, 𝑝0 =
0.05, 𝑝1 = 0.05, 𝑝2 = 𝑞1 = 0.6, 𝑝3 = 𝑞3 = 0.3 and same running time. Then
we checked the differences of the last two values in the numbers of triangles that
we simulated and made a histogram, seen in Figure 3. From equation (3.2) we
obtained that the value of 𝛼 is 0.3365. We see that the values of the differences are
in [0.332, 0.340], so they are very close to 0.3365.

12 I. Fazekas, A. Barta, Cs. Noszály



𝑏 𝑐 𝑞1 𝑞3 Simulation Numerical

0.0 0.2 0.4 0.4 0.0 0.0
0.1 0.2 0.4 0.4 0.1304 0.1282
0.1 0.2 0.5 0.4 0.1165 0.1158
0.1 0.2 0.5 0.5 0.1097 0.1025
0.2 0.2 0.5 0.4 0.2227 0.2180
0.2 0.2 0.6 0.4 0.2038 0.2002
0.3 0.3 0.5 0.4 0.3231 0.3185
0.4 0.4 0.5 0.4 0.3966 0.4020

Table 2: The relative frequency and the probability of
the extinction of the triangles

Figure 3: Histogram of differences

To get some information about the random variable 𝑌∞𝑚∞ represented in Theo-
rem 3.2, we calculated the value of 𝑍(𝑡)𝑒−𝛼𝑡 for 103 independent repetitions of the
process for the same time 𝑡 and same parameters 𝑞1 = 0.3, 𝑞3 = 0.6, 𝑏 = 0.2, 𝑐 =
0.2. On Figure 4 we represent the histogram and the empirical cumulative dis-
tribution function (ECDF) calculated from the simulation. We obtained that the
empirical cumulative distribution function of 𝑌∞𝑚∞ fits to a gamma distribution,
as the Kolmogorov–Smirnov test gave us 𝑝 value 0.6713.
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Figure 4: Simulation results for 𝑍(𝑡)𝑒−𝛼𝑡
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5. Summary

In this paper and in [5] we offer a network evolution model which describes col-
laborations of 3 persons. Our model grasps certain features of real collaborations
as emerging and disappearing collaborations, moreover collaborations of 2 persons
are also allowed. Our numerical results confirm the theoretical ones. The present
results prepare our future research on more complicated collaborations.

Algorithm 1 Birth process of a triangle
1: procedure Birth process
2: 𝑌 ← non-empty Priority Queue
3: 𝑏, 𝑐, 𝑞1, 𝑞3 ← parameters of the survival function
4: 𝑥← dequeue Y
5: if 𝑥 is a new triangle then
6: 𝑡0 ← the birth time of 𝑥 in the whole process
7: 𝑡← 0, lifetime of 𝑥
8: 𝑙← 1, life variable
9: while 𝑙 = 1 do

10: 𝑡← 𝑡 + 𝐸𝑥𝑝(1)
11: 𝑝← the calculated survival function
12: if 𝑝 > 𝑈𝑛𝑖(0, 1) then
13: 𝑝0 ← 𝑈𝑛𝑖(0, 1)
14: if 𝑝0 < 𝑞1 then
15: take a new triangle with 𝑡0 + 𝑡 birth time to 𝑌
16: offspring number is 1 at birth time 𝑡
17: else if 𝑝0 > 1− 𝑞3 then
18: take three new triangles with 𝑡0 + 𝑡 birth times to 𝑌
19: offspring number is 3 at birth time 𝑡

20: else
21: 𝑙← 0
22: take 𝑡 as the death time of 𝑥 to 𝑌
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Abstract

We study the eigenvalues of large perturbed matrices. We consider an
Hermitian pattern matrix 𝑃 of rank 𝑘. We blow up 𝑃 to get a large block-
matrix 𝐵𝑛. Then we generate a random noise 𝑊𝑛 and add it to the blown
up matrix to obtain the perturbed matrix 𝐴𝑛 = 𝐵𝑛 + 𝑊𝑛. Our aim is to
find the eigenvalues of 𝐵𝑛. We obtain that under certain conditions 𝐴𝑛 has
𝑘 ‘large’ eigenvalues which are called structural eigenvalues. These structural
eigenvalues of 𝐴𝑛 approximate the non-zero eigenvalues of 𝐵𝑛. We study a
graphical method to distinguish the structural and the non-structural eigen-
values. We obtain similar results for the singular values of non-symmetric
matrices.

Keywords: Eigenvalue, symmetric matrix, blown-up matrix, random matrix,
perturbation of a matrix, singular value
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1. Introduction

Spectral theory of random matrices has a long history (see e.g. [1, 5–8] and the
references therein). This theory is applied when the spectrum of noisy matrices is
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considered. In [2] and [3] the eigenvalues and the singular values of large perturbed
block matrices were studied. In [4] we extended the results of [2] and [3] and we
suggested a graphical method to study the asymptotic behaviour of the eigenval-
ues. In this paper we consider the following important question for the numerical
behaviour of the eigenvalues. How large the blown-up matrix should be in order
to show the asymptotic behaviour given in the mathematical theorems? We also
study the influence of the signal to noise ratio for our results.

Thus we consider a fixed deterministic pattern matrix 𝑃 , we blow up 𝑃 to obtain
a ‘large’ block-matrix 𝐵𝑛, then we add a random noise matrix 𝑊𝑛. We present limit
theorems for the eigenvalues of 𝐴𝑛 = 𝐵𝑛 +𝑊𝑛 as 𝑛→∞ and show corresponding
numerical results. We also consider a graphical method to distinguish the structural
and the non-structural eigenvalues. This test is important, because in real-life only
the perturbed matrix 𝐴𝑛 is observed, but we are interested in eigenvalues or the
singular values of 𝐵𝑛 which are approximated by the above mentioned structural
eigenvalues/singular values of 𝐴𝑛.

In Section 2 we list some theoretical results of [4]. In Section 3 the numerical
results are presented. We obtained that the asymptotic behaviour of the eigenvalues
can be seen for relatively low values of 𝑛, that is if the block sizes are at least 50, then
we can use our asymptotic results. We also study the influence of the signal/noise
ratio on the gap between the structural and non-structural singular values. Our
numerical results support our graphical test visualised by Figure 1.

2. Eigenvalues of perturbed symmetric matrices

In this section we study the perturbations of Hermitian (resp. symmetric) blown-up
matrices. We would like to examine the eigenvalues of perturbed matrices.

We use the following notation:

• 𝑃 is a fixed complex Hermitian (in the real valued case symmetric) 𝑘 × 𝑘
pattern matrix of rank 𝑟

• 𝑝𝑖𝑗 is the (𝑖, 𝑗)’th entry of 𝑃

• 𝑛1, . . . , 𝑛𝑘 are positive integers, 𝑛 =
∑︀𝑘

𝑖=1 𝑛𝑖

• �̃�𝑛 is an 𝑛×𝑛 matrix consisting of 𝑘2 blocks, its block (𝑖, 𝑗) is of size 𝑛𝑖×𝑛𝑗

and all elements in that block are equal to 𝑝𝑖𝑗

• 𝐵𝑛 is called a blown-up matrix if it can be obtained from �̃�𝑛 by rearranging
its rows and columns using the same permutation

Following [2], we shall use the growth rate condition

𝑛→∞ so that 𝑛𝑖/𝑛 ≥ 𝑐 for all 𝑖, (2.1)

where 𝑐 > 0 is a fixed constant. Here we list those theorems of [4] which will be
tested by numerical methods.
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Proposition 2.1. Let 𝑃 be a symmetric pattern matrix, that is a fixed complex
Hermitian (in the real valued case symmetric) 𝑘 × 𝑘 matrix of rank 𝑟. Let 𝐵𝑛 be
the blown-up matrix of 𝑃 . Then 𝐵𝑛 has 𝑟 non-zero eigenvalues. If condition (2.1)
is satisfied, then the non-zero eigenvalues of 𝐵𝑛 are of order 𝑛 in absolute value.

Now, we assume that 𝑟𝑎𝑛𝑘(𝑃 ) = 𝑘. We shall consider the eigenvalues in de-
scending order, so we have |𝜆1(𝐵𝑛)| ≥ · · · ≥ |𝜆𝑛(𝐵𝑛)|. Since 𝑘 eigenvalues of 𝐵𝑛

are non-zero and the remaining ones are equal to zero, we shall call the first 𝑘
ones structural eigenvalues of 𝐵𝑛. Similarly, we shall call structural eigenvalue
that eigenvalue of 𝐴𝑛, which corresponds to a structural eigenvalue of 𝐵𝑛. This
correspondence will be described by Theorem 2.2 and Corollary 2.3. We shall see
that the magnitude of any structural eigenvalue is large and it is small for the other
eigenvalues.

First we consider perturbations by Wigner matrices. Next theorem is a gener-
alization of Theorem 2.3 of [2] where the real valued case and uniformly bounded
perturbations were considered.

Theorem 2.2. Let 𝐵𝑛, 𝑛 = 1, 2, . . . , be a sequence of complex Hermitian matrices.
Let the Wigner matrices 𝑊𝑛, 𝑛 = 1, 2, . . . , be complex Hermitian 𝑛 × 𝑛 random
matrices satisfying the following assumptions. Let the diagonal elements 𝑤𝑖𝑖 of
𝑊𝑛 be i.i.d. (independent and identically distributed) real, let the above diagonal
elements be i.i.d. complex random variables and let all of these be independent. Let
𝑊𝑛 be Hermitian, that is 𝑤𝑖𝑗 = �̄�𝑗𝑖 for all 𝑖, 𝑗. Assume that E𝑤2

11 <∞, E𝑤12 = 0,
E|𝑤12 − E𝑤12|2 = 𝜎2 is finite and positive, E|𝑤12|4 <∞. Then

lim sup
𝑛→∞

|𝜆𝑖(𝐵𝑛 + 𝑊𝑛)− 𝜆𝑖(𝐵𝑛)|√
𝑛

≤ 2𝜎

for all 𝑖 almost surely.

Corollary 2.3. Let 𝐵𝑛, 𝑛 = 1, 2, . . . , be blown-up matrices of a complex Hermi-
tian matrix 𝑃 having rank 𝑘. Assume that condition (2.1) is satisfied. Let the
Wigner matrices 𝑊𝑛, 𝑛 = 1, 2, . . . , satisfy the conditions of Theorem 2.2. Then
Theorem 2.2 and Proposition 2.1 imply that 𝐵𝑛 +𝑊𝑛 has 𝑘 eigenvalues of order 𝑛
and the remaining eigenvalues are of order

√
𝑛 almost surely.

So the structural eigenvalues have magnitude 𝑛 while the non-structural eigen-
values have magnitude

√
𝑛.

3. Singular values of perturbed matrices

In this section we study the perturbations of arbitrary blown-up matrices. We are
interested in the singular values of matrices perturbed by certain random matrices.
We use the following notation:

• 𝑃 is a fixed complex 𝑎× 𝑏 pattern matrix of rank 𝑟
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• 𝑝𝑖𝑗 is the (𝑖, 𝑗)’th entry of 𝑃

• 𝑚1, . . . ,𝑚𝑎 are positive integers, 𝑚 =
∑︀𝑎

𝑖=1 𝑚𝑖

• 𝑛1, . . . , 𝑛𝑏 are positive integers, 𝑛 =
∑︀𝑏

𝑖=1 𝑛𝑖

• �̃�𝑛 is an 𝑚 × 𝑛 matrix consisting of 𝑎 × 𝑏 blocks, its block (𝑖, 𝑗) is of size
𝑚𝑖 × 𝑛𝑗 and all elements in that block are equal to 𝑝𝑖𝑗

• 𝐵𝑛 is called blown-up matrix if it can be obtained from �̃� by rearranging its
rows and columns

Following [3], we shall use the growth rate condition

𝑚,𝑛→∞ so that 𝑚𝑖/𝑚 ≥ 𝑐 and 𝑛𝑖/𝑛 ≥ 𝑑 for all 𝑖, (3.1)

where 𝑐, 𝑑 > 0 are fixed constants. The following proposition is an extension of
Proposition 6 of [3] to the complex valued case.

Proposition 3.1. Let 𝑃 be a fixed complex 𝑎 × 𝑏 matrix of rank 𝑟. Let 𝐵 be
the 𝑚 × 𝑛 blown-up matrix of 𝑃 . If condition (3.1) is satisfied, then the non-zero
singular values of 𝐵 are of order

√
𝑚𝑛.

Now we consider perturbation with matrices having independent and identically
distributed (i.i.d.) complex entries. Let 𝑥𝑗𝑘, 𝑗, 𝑘 = 1, 2, . . . , be an infinite array
of i.i.d. complex valued random variables with mean 0 and variance 𝜎2. Let 𝑋 =
(𝑥𝑗𝑘)𝑚, 𝑛

𝑗=1, 𝑘=1 be the left upper block of size 𝑚× 𝑛.

Theorem 3.2. For each 𝑚 and 𝑛 let 𝐵 = 𝐵𝑚𝑛 be a complex matrix of size 𝑚×𝑛
and let 𝑋 = 𝑋𝑚𝑛 be the above complex valued random matrix of size 𝑚 × 𝑛 with
i.i.d. entries. Moreover, assume that the entries of 𝑋 have finite fourth moments.
Assume that 𝑚,𝑛→∞ so that 𝐾1 ≤ 𝑚

𝑛 ≤ 𝐾2, where 0 < 𝐾1 ≤ 𝐾2 <∞ are fixed
constants. Denote by 𝑠𝑖 and 𝑧𝑖 the singular values of 𝐵 and 𝐵 + 𝑋, respectively,
𝑠1 ≥ · · · ≥ 𝑠min{𝑚,𝑛}, 𝑧1 ≥ · · · ≥ 𝑧min{𝑚,𝑛}. Then for all 𝑖

|𝑠𝑖 − 𝑧𝑖| = O(
√
𝑛)

as 𝑚,𝑛→∞ almost surely.

Corollary 3.3. Proposition 3.1 and Theorem 3.2 imply the following. Let 𝑃 be
a fixed complex 𝑎 × 𝑏 matrix of rank 𝑟. Let 𝐵 be the 𝑚 × 𝑛 blown-up matrix of
𝑃 . Assume that condition (3.1) is satisfied. Let 𝑋 be complex valued perturbation
matrices satisfying the assumptions of Theorem 3.2. Denote by 𝑧𝑖 the singular
values of 𝐵 + 𝑋, 𝑧1 ≥ · · · ≥ 𝑧min{𝑚,𝑛}. Then 𝑧𝑖 are of order 𝑛 for 𝑖 = 1, . . . , 𝑟
and 𝑧𝑖 = O(

√
𝑛) for 𝑖 = 𝑟 + 1, . . . ,min{𝑚,𝑛} almost surely as 𝑚,𝑛 → ∞ so that

𝐾1 ≤ 𝑚
𝑛 ≤ 𝐾2, where 0 < 𝐾1 ≤ 𝐾2 <∞ are fixed constants.

So the structural singular values (i.e. the largest 𝑟 values) are ‘large’, and the
remaining ones are ‘small’.
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4. Numerical results

4.1. Eigenvalues of a symmetric matrix perturbed with
Wigner noise

In [4] we concluded the following facts. In the case when the perturbation matrix
has zero mean random entries, then the structural eigenvalues are ‘large’ and the
non-structural ones are ‘small’. More precisely let |𝜆1| ≥ |𝜆2| ≥ . . . be the absolute
values of the eigenvalues of the perturbed blown-up matrix in descending order.
Then the structural eigenvalues |𝜆1| ≥ |𝜆2| ≥ · · · ≥ |𝜆𝑙| are ‘large’ and they rapidly
decrease. The other eigenvalues |𝜆𝑙+1| ≥ |𝜆𝑙+2| ≥ . . . are relatively small and they
decrease very slowly. To obtain the structural eigenvalues we can use the following
numerical (graphical) procedure. Calculate some eigenvalues of 𝐴𝑛 starting with
the largest ones in absolute value. Stop when the last 5-10 eigenvalues are close to
zero and they are almost the same in absolute value. Then we obtain the increasing
sequence |𝜆𝑡| ≤ |𝜆𝑡−1| ≤ · · · ≤ |𝜆1|. Plot their values in the above order, then find
the first abrupt change. If, say,

0 ≈ |𝜆𝑡| ≈ |𝜆𝑡−1| ≈ · · · ≈ |𝜆𝑙+1| ≪ |𝜆𝑙| < · · · < |𝜆1|,

that is the first abrupt change is at 𝑙, then 𝜆𝑙, 𝜆𝑙−1, . . . , 𝜆1 can be considered as
the structural eigenvalues. The typical abrupt change after the non-structural
eigenvalues can be seen in Figure 1.

non-structural eigenvalues structural eigenvalues

first abrupt 
change

Figure 1: The abrupt change after the non-structural eigenvalues

Our first example supports Theorem 2.2 and Corollary 2.3 in the real valued
case. The following results were obtained using the Julia programming language
version 1.1.1. The simulations were divided into four steps. Let 𝑃 be the real
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symmetric pattern matrix
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 7 2 5 3 2 4 0 3 1

7 9 6 3 4 0 2 5 2 0

2 6 7 6 5 4 2 0 3 4

5 3 6 8 7 6 0 5 4 2

3 4 5 7 9 8 8 6 5 1

2 0 4 6 8 7 6 8 0 4

4 2 2 0 8 6 9 7 6 6

0 5 0 5 6 8 7 8 8 4

3 2 3 4 5 0 6 8 9 6

1 0 4 2 1 4 6 4 6 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the initial step we have matrix 𝑃 . It has the following eigenvalues: 45.302,
15.497, 10.914, 7.677, −7.245, 6.188, 4.696, −3.789, −3.381 and 3.141. This matrix
is blown up with the help of a vector containing the size informations of the blocks.
If the vector is n = [𝑛1, 𝑛2, . . . , 𝑛10], then the first row of blocks is built with the
following block sizes: 𝑛1 × 𝑛1, 𝑛1 × 𝑛2, . . .𝑛1 × 𝑛10, the second row of blocks:
𝑛2 × 𝑛1, 𝑛2 × 𝑛2, . . .𝑛2 × 𝑛10 and we continue this pattern till the last row. In
different simulations we used different vectors n to blow up the matrix, it will be
detailed separately for each simulation.

The next step is to generate the noise matrix, which is a symmetric real Wigner
matrix, as defined in Section 2. The entries are generated in the following way: let
the diagonal elements 𝑤𝑖𝑖 of 𝑊𝑛 be i.i.d. real with standard normal distribution,
let the above diagonal elements be i.i.d. real random variables and let all of these
be independent. The size of the noise matrix is equal to the size of the blown
up matrix. After that, in order to obtain the noisy matrix, in each iteration we
generate a new Wigner matrix and add to the blown up matrix.

As the last step we calculate the eigenvalues of the perturbed matrix. To do so
we used the eigvals function from the LinearAlgebra package. Julia provides native
implementations of many common and useful linear algebra operations which can
be loaded with using LinearAlgebra, to install the package we used using Pkg
and then with the Pkg.add("LinearAlgebra") command we installed the package.

We studied 4 different schemes to blow up matrix 𝑃 , in each of these 4 schemes
we applied 6 different block size vectors. These block series are given in Table 1.

We realised 1000 simulations for all block series in Table 1 and checked if the
abrupt change like in Figure 1 was seen. For very low values of 𝑛𝑖 we did not find the
abrupt change. In each case the first well distinguishable abrupt change appeared
when 𝑛1 was 50. This result is shown in Figures 2, 3, 4, and 5. At each figure the
left side: |𝜆20(𝐴𝑛)| < · · · < |𝜆1(𝐴𝑛)|; right side: |𝜆20(𝐴𝑛)| < · · · < |𝜆6(𝐴𝑛)| in a
typical realization in our example. The right side figures show only a part of the
sequence around the change, so the jumps are clearly seen.

Each of the figures shows that there is an abrupt change between the 11th and
10th eigenvalues. So we can decide that the 10 largest eigenvalues are the structural
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ones (which is the true value, since we used matrix 𝑃 having rank 10).

Name of the scheme Series of the blocks

Equal

𝑛1 = 𝑛2 = · · · = 𝑛10 = 10

𝑛1 = 𝑛2 = · · · = 𝑛10 = 20

𝑛1 = 𝑛2 = · · · = 𝑛10 = 50

𝑛1 = 𝑛2 = · · · = 𝑛10 = 100

𝑛1 = 𝑛2 = · · · = 𝑛10 = 500

𝑛1 = 𝑛2 = · · · = 𝑛10 = 1000

Two types

𝑛1 = 𝑛2 = · · · = 𝑛5 = 10, 𝑛6 = · · · = 𝑛10 = 20

𝑛1 = 𝑛2 = · · · = 𝑛5 = 20, 𝑛6 = · · · = 𝑛10 = 40

𝑛1 = 𝑛2 = · · · = 𝑛5 = 50, 𝑛6 = · · · = 𝑛10 = 100

𝑛1 = 𝑛2 = · · · = 𝑛5 = 100, 𝑛6 = · · · = 𝑛10 = 200

𝑛1 = 𝑛2 = · · · = 𝑛5 = 500, 𝑛6 = · · · = 𝑛10 = 1000

𝑛1 = 𝑛2 = · · · = 𝑛5 = 1000, 𝑛6 = · · · = 𝑛10 = 2000

Arithmetic progression

𝑛1 = 10, 𝑛2 = 20, . . . , 𝑛10 = 100

𝑛1 = 20, 𝑛2 = 30, . . . , 𝑛10 = 110

𝑛1 = 50, 𝑛2 = 60, . . . , 𝑛10 = 140

𝑛1 = 100, 𝑛2 = 110, . . . , 𝑛10 = 190

𝑛1 = 500, 𝑛2 = 510, . . . , 𝑛10 = 590

𝑛1 = 1000, 𝑛2 = 1010, . . . , 𝑛10 = 1090

Four types

𝑛1 = 𝑛2 = 10, 𝑛3 = 𝑛4 = 𝑛5 = 20,
𝑛6 = 𝑛7 = 𝑛8 = 30, 𝑛9 = 𝑛10 = 40

𝑛1 = 𝑛2 = 20, 𝑛3 = 𝑛4 = 𝑛5 = 40,
𝑛6 = 𝑛7 = 𝑛8 = 60, 𝑛9 = 𝑛10 = 80

𝑛1 = 𝑛2 = 50, 𝑛3 = 𝑛4 = 𝑛5 = 100,
𝑛6 = 𝑛7 = 𝑛8 = 150, 𝑛9 = 𝑛10 = 200

𝑛1 = 𝑛2 = 100, 𝑛3 = 𝑛4 = 𝑛5 = 200,
𝑛6 = 𝑛7 = 𝑛8 = 300, 𝑛9 = 𝑛10 = 400

𝑛1 = 𝑛2 = 500, 𝑛3 = 𝑛4 = 𝑛5 = 1000,
𝑛6 = 𝑛7 = 𝑛8 = 1500, 𝑛9 = 𝑛10 = 2000

𝑛1 = 𝑛2 = 1000, 𝑛3 = 𝑛4 = 𝑛5 = 2000,
𝑛6 = 𝑛7 = 𝑛8 = 3000, 𝑛9 = 𝑛10 = 4000

Table 1: Schemes used to blow up matrix 𝑃
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Figure 2: Equal: 𝑛1 = 𝑛2 = · · · = 𝑛10 = 50
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Figure 3: Two types: 𝑛1 = · · · = 𝑛5 = 50, 𝑛6 = · · · = 𝑛10 = 100
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Figure 4: Arithmetic progression: 𝑛1 = 50, 𝑛2 = 60, . . . , 𝑛10 = 140
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Figure 5: Four types: 𝑛1 = 𝑛2 = 50, 𝑛3 = 𝑛4 = 𝑛5 = 100,
𝑛6 = 𝑛7 = 𝑛8 = 150, 𝑛9 = 𝑛10 = 200
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As the block’s sizes are increasing, the border between the structural and non-
structural eigenvalues is getting more and more significant, as it is shown in Fig-
ure 6. We see, that when 𝑛𝑖 = 1000 (for all 𝑖), then the gap is much larger than in
the case of 𝑛𝑖 = 50.
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Figure 6: Equal: 𝑛1 = 𝑛2 = · · · = 𝑛10 = 1000

In Table 2, we list the averages of the absolute values of the eigenvalues making
1000 repetitions in each case. More precisely, 𝑛𝑖 means that all blocks were 𝑛𝑖×𝑛𝑖

and in the column below 𝑛𝑖 there are the 20 largest of the averages of the absolute
values of the corresponding eigenvalues of different 𝐴𝑛 matrices. We see, that
there is a gap between the 10th and 11th values even in the relatively small value
of 𝑛𝑖 = 10. The larger the value of 𝑛𝑖, the larger the gap. This table shows that
our test is very reliable for moderate (e.g. 𝑛𝑖 = 50) sizes of the blocks.

𝑗 𝑛𝑖 = 10 𝑛𝑖 = 20 𝑛𝑖 = 50 𝑛𝑖 = 100 𝑛𝑖 = 200 𝑛𝑖 = 500 𝑛𝑖 = 1000
1 453.26 906.28 2265.40 4530.50 9060.70 22652.00 45303.00
2 155.64 310.65 775.43 1550.31 3100.00 7748.90 15497.00
3 110.06 219.28 546.65 1092.40 2183.90 5458.00 10915.00
4 77.99 154.82 385.08 768.93 1536.70 3839.60 7677.90
5 73.76 146.21 363.63 725.90 1450.40 3624.10 7246.90
6 63.36 125.32 310.93 620.41 1239.20 3095.40 6189.40
7 48.86 95.95 236.92 471.66 941.21 2349.90 4697.80
8 40.51 78.39 192.04 381.54 760.54 1897.10 3791.70
9 36.30 70.32 171.90 340.95 678.98 1693.20 3383.40

10 34.06 65.84 160.18 317.23 631.47 1573.90 3144.70
11 18.56 27.21 44.03 62.73 89.04 141.14 199.78
12 17.96 26.70 43.58 62.33 88.67 140.84 199.50
13 17.45 26.27 43.20 61.99 88.37 140.58 199.27
14 17.03 25.92 42.90 61.72 88.14 140.38 199.09
15 16.65 25.59 42.62 61.47 87.92 140.18 198.92
16 16.33 25.28 42.36 61.25 87.72 140.01 198.77
17 15.99 25.00 42.11 61.03 87.53 139.85 198.63
18 15.69 24.74 41.89 60.83 87.34 139.69 198.49
19 15.40 24.47 41.67 60.64 87.17 139.54 198.36
20 15.12 24.23 41.47 60.45 87.01 139.40 198.23

Table 2: Eigenvalues in the case of equal size blocks
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4.2. Singular values of a non-symmetric perturbed matrix
This example supports Theorem 3.2 and Corollary 3.3. Let 𝑃 be the 7 × 8 real
non-symmetric pattern matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 5 6 5 3 2 1 2
3 9 6 7 4 5 6 1
4 8 9 8 3 4 2 1
5 7 6 8 7 5 3 2
2 5 7 8 9 6 5 3
1 3 4 5 6 7 6 4
2 1 4 6 7 8 9 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the previous example we showed the effect of the blocks’ sizes, now we show
the effect of the signal to noise ratio (snr) on the singular values of 𝑃 . To blow
up 𝑃 , we chose block heights as [𝑚1, . . . ,𝑚𝑎] = [500, 750, 500, 600, 750, 550, 500]
and block widths as [𝑛1, . . . , 𝑛𝑏] = [500, 500, 600, 1000, 550, 500, 550, 500]. Then we
blew up 𝑃 , and we added a noise to get the perturbed matrix. Like in Section 3,
we denote by 𝐵 the blown-up matrix which is the signal, by 𝑋 the noise matrix,
and by 𝐴 = 𝐵 + 𝑋 the perturbed matrix. We shall use the following definition of
the signal to noise ratio

snr =
1

𝑚𝑛

∑︀𝑚
𝑖=1

∑︀𝑛
𝑗=1 𝑏

2
𝑖,𝑗

1
𝑚𝑛

∑︀𝑚
𝑖=1

∑︀𝑛
𝑗=1 𝑥

2
𝑖,𝑗

.

Here 𝑚 =
∑︀𝑎

𝑖=1 𝑚𝑖 is the number of rows, 𝑛 =
∑︀𝑏

𝑗=1 𝑛𝑗 is the number of columns
in 𝐵 and 𝑋, 𝑏𝑖,𝑗 is the element of the signal matrix 𝐵, while 𝑥𝑖,𝑗 is the element of
the noise matrix 𝑋 in the 𝑖th row and 𝑗th column.

In this example, the entries of the noise matrix 𝑋 are independent and, at the
initial step, they are from standard normal distribution. In each of the following
steps we increased the noise, by multiplying each of the elements of the noise matrix
by certain multipliers. The first multiplier was 1.002, the second one was 1.004,
then 1.006, . . . , 3.000.

So, during the experiment, we amplify the noise step-by-step and check at
each iteration the snr and the ratio of the last (smallest) structural singular value
and the first (largest) non-structural one. If the structural/non-structural ratio
reaches a certain point, the signal gets so noisy, that it is not possible any more to
distinguish the structural singular values from the non-structural ones. On Figure 7
the dashed line is the signal to noise ratio and the solid line is the ratio of the
the last (smallest) structural singular value and the first (largest) non-structural
singular value. On the horizontal axis the scale is given by the variance of the
noise. One can see, that when the noise grows, then the snr decreases quickly, but
the structural/non-structural ratio decreases quite slowly. If the structural/non-
structural ratio decreases close to 1, then we reach a point, where the structural
and non-structural singular values are not well distinguishable any more. However,
Figure 7 shows that our method is reliable, that is if the noise in not higher than
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25% of the signal, then the structural singular values are well distinguishable from
the non-structural ones.

1

6

11

16

21

26

31

36

1 2 3 4 5 6 7 8 9

snr Last structural singular value/First non-structural

3

Figure 7: Signal to noise ratio compared to
structural/non-structural singular value ratio

5. Conclusion

The shown graphical method works appropriately to distinguish the structural and
non-structural eigenvalues and singular values. The size of the blocks has an in-
fluence on the ‘jump’ between the non-structural and the structural eigenvalues.
As the block’s sizes are increasing, the border between the structural and non-
structural eigenvalues is getting more and more significant. If the block sizes are
at least 50, then the structural and the non-structural eigenvalues are well distin-
guishable. Our test is reliable, if the noise is less than 25%, but above this noise
level it can be unreliable.
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Abstract

Indoor position estimation is an important part of any indoor application
which contains object tracking or environment mapping. Many indoor local-
ization techniques (Angle of Arrival – AoA, Time of Flight – ToF, Return
Time of Flight – RToF, Received Signal Strength Indicator – RSSI) and tech-
nologies (WiFi, Ultra Wideband – UWB, Bluetooth, Radio Frequency Identi-
fication Device – RFID) exist which can be applied to the indoor localization
problem. Based on the measured distances (with a chosen technique), the
position of the object can be estimated using several mathematical methods.
The precision of the estimated position crucially depends on the placement
of the anchors, which makes the position estimate less reliable. In this paper
a simulation framework is presented, which uses genetic algorithm and the
multilateral method to determine an optimal anchor placement for a given
pathway in an indoor environment. In order to make the simulation more re-
alistic, the error characteristics of the DWM1001 UWB ranging module were
measured and implemented in the simulation framework. Using the proposed
framework, various measurements with an optimal and with a reference an-
chor placement were carried out. The results show that using an optimal
anchor placement, a higher position estimation accuracy can be achieved.

Keywords: Anchor placement, Ultra Wide Band, Multilateral, Genetic Algo-
rithm, Indoor Localization, Non-linear Measurement Error Model
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1. Introduction

The location of a device or user can be effectively obtained outdoor using the
Global Positioning System (GPS), but it could be challenging in an indoor envi-
ronment. During the last decade, indoor localization has been investigated mainly
for wireless sensor networks and robotics. However, nowadays, the wide-scale usage
of mobile phones and wearable devices has enabled localization in a wide range of
applications like health-care, industry, surveillance and home management.

In the literature many localization technologies and techniques are available [9].
A Received Signal Strength Indicator (RSSI), which is the strength of the signal
received usually measured in decibel-milliwatts (dBm), and a wireless Ethernet
based localization approach is used in [4]. Using a path-loss model and the RSS,
the distance between the sender and receiver can be estimated. In [7] an Angle of
Arrival (AoA) and Wireless LAN (Wifi) based method is applied using an antennae
array for the estimation of the angle by computing the difference between the arrival
times at the individual elements of the array. A Time of Flight (ToF) and 2.4GHz
radio based approach is presented in [5], using signal propagation time to compute
the distance between the transmitter and the receiver. A similar technique, the
Return Time of Flight (RToF) is used in conjunction with RSSI in a Wifi-based
method in [10].

RToF is a two-way ranging method where the transmitter sends a ranging mes-
sage to the receiver at 𝑡1 time. The receiver sends it back with a delay of 𝑡proc
time and it arrives to the original transmitter at 𝑡2 time. The time of flight is
𝑡2 − 𝑡1 − 𝑡proc, and the distance can be calculated with the speed of the signal,
depending on the technology. The accuracy of the measurement highly depends on
𝑡proc.

The UWB is a recently researched communication technology providing more
accurate ToF and RToF estimations. It uses ultra-short pulses with a time period
less than a nanosecond, resulting in a low duty cycle which leads to lower power
consumption. Its frequency range is from 3.1 to 10.6 GHz with a bandwidth of
500 MHz. Since the UWB usually operates at a low energy level, typically between
−40 and −70 dB, most of the other technologies detect it as background noise.
This makes it practically immune to interference with other systems since it has a
radically different signal type and radio spectrum. Moreover, the signal (especially
in its lower frequencies) can penetrate through walls because signal pulses are very
short. Utilizing this attribute, it is easier to differentiate the main path from the
multi-paths, providing more accurate estimations [8].

Once the point-to-point distances between the objects are measured, the un-
known position of the object can be estimated. There are various algebraic methods
to estimate the position from the point-to-point distances like triangulation or mul-
tilateration. Most of them require a few devices with known fixed positions (anchor
nodes) to calculate the actual position of the moving device (mobile node). In case
of error-free distance measurements, these methods theoretically give an exact po-
sition. But real distance measurements contain errors which depend on the relative
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position of the devices, the orientation of the antennas of the devices, and also the
technique and technology used. These result in a varying reliability of the position
estimation.

In this paper, a genetic-algorithm-based simulation framework is presented,
which takes the specific error characteristics of the chosen localization system
(DWM1001 a commercially available UWB localization system using RToF) into
consideration and uses a 2-dimensional (2D) version of the multilateral method to
determine an optimal anchor placement for a given pathway in a given environ-
ment. This framework can also be extended to 3-dimensional (3D) space in the
future.

2. Methods

During the research, several methods were used together. To calculate the posi-
tion of the object from the measured point-to-point distances, a 2D version of the
original 3D multilateral algorithm [6] was used. The evaluation of the calculated
positions was based on the Root-Mean-Squared Error (RMSE) of distances be-
tween the original and the calculated positions. To minimize this error, the genetic
algorithm with a special fitness function (Subsection 4.1) was used. In this section,
the various methods are presented.

2.1. Multilateral algorithm
The multilateral algorithm [6] can be used to determine the unknown position
in a 3D space – assuming an adequate number of reference points in a common
Descartes coordinate system spanning the space – by solving the following linear
equation system:

(𝑥− 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 + (𝑧 − 𝑧𝑖)
2 = 𝑑2𝑖 ; 𝑖 = 1, . . . , 𝑁, (2.1)

where 𝑁 is the number of anchor nodes, (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) is the coordinate of the 𝑖th an-
chor node, (𝑥, 𝑦, 𝑧) is the coordinate of the mobile node and 𝑑𝑖 is the point-to-point
distance between the 𝑖th anchor node and the mobile node respectively. Rearrang-
ing (2.1) in 2D case, it can be written in the following matrix representation:

⎛
⎜⎜⎜⎝

−1 −2𝑥1 −2𝑦1
−1 −2𝑥2 −2𝑦2
...

...
...

−1 −2𝑥𝑁 −2𝑦𝑁

⎞
⎟⎟⎟⎠ ·

⎛
⎝
𝑥2 + 𝑦2

𝑥
𝑦

⎞
⎠ =

⎛
⎜⎜⎜⎝

𝑑21 − 𝑥2
1 − 𝑦21

𝑑22 − 𝑥2
2 − 𝑦22
...

𝑑2𝑁 − 𝑥2
𝑁 − 𝑦2𝑁

⎞
⎟⎟⎟⎠ . (2.2)

Rewriting (2.2) in a short form:

A · 𝜂 = b; A ∈ R𝑁×3, 𝜂 ∈ R3, b ∈ R𝑁 . (2.3)

The solution of (2.3) for 𝜂 is given by:

𝜂 = A+ · b, (2.4)
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where A+ denotes the Moore-Penrose pseudo-inverse of matrix A. Assuming that
the positions of anchor nodes are fixed during the measurement, it is enough to
calculate 𝐴+ once offline thus speeding up the position estimation process.

2.2. Root-Mean-Squared error
There are several methods for qualifying models. In our case, to determine the
quality of the anchor topography in relation to the position estimation accuracy,
an appropriate quality factor is required which takes the standard deviation of the
positioning error into account. Such factor is the RMSE or Root-Mean-Squared
deviation (RMSD), which has the formula as follows [1]:

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷Σ𝑀
𝑖=1

(︁
𝑑2err,𝑖

)︁

𝑀
,

where 𝑀 is the number of discrete points in the field of mobile nodes, and 𝑑err,𝑖
is the Euclidean-distance between the estimated position (𝑥𝑖, 𝑦𝑖) and the exact
position (𝑥𝑖, 𝑦𝑖) of point 𝑖 ∈ [1,𝑀 ]:

𝑑err,𝑖 =
√︀

(�̂�𝑖 − 𝑥𝑖)2 + (𝑦𝑖 − 𝑦𝑖)2.

2.3. Genetic algorithm
The genetic algorithm (GA) is a metaheuristic, optimization algorithm based on the
concept of Darwin’s theory of evolution. During the optimization, the properties
of the initial population are altered in such way that the value of the predefined
fitness function should converge towards an optimal solution in every iteration.
The genetic algorithm requires a genetic representation of the solution and a fitness
function which can evaluate this representation. Since the GA usually works with
hundreds of candidate solutions per iteration, choosing a compact representation
and a fast evaluation method is crucial.

The GA typically starts with a randomly generated set of candidate solutions.
The solutions are evaluated one-by-one, and a portion of the higher-ranking can-
didates are kept for the next generation.

After the first iteration, the generations will consist of higher-ranking candi-
dates from the previous generations, cross-mutated individuals from the previous
candidates, and also of new randomized individuals. Random mutations may also
appear at any candidate. In the case of multi-population GA a migration step is
also performed.

The optimization stops after the fitness value has reached a predefined limit or
the number of maximum generations or stall-generations (i.e. generations, where
the fitness value did not improved) has been reached [3].
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3. Measurement setup

The environment of our experiment is a corridor in the University of Szeged. During
the simulation and also in the validation a belt-type topography is used as can be
seen in Fig. 1. The boundary conditions are derived from the physical capabilities of
the corridor. For details of the anchors and mobile nodes used, see Subsection 3.1.

Two sets of measurements were carried out. The first set consisted of two
measurements with 4 anchors using equidistant and optimised placement (see Sec-
tion 4). The second set of measurement differed only in the number of anchors,
since 8 anchors were used.

Figure 1: Measurement setup

During the measurements, the exact position of the discrete grid points (mobile
node position) is determined using a professional laser rangefinder. In each grid
point, the mobile node collected the distances from the anchors many times (at least
100 samples per point) and the aggregated data was sent to the data collector.

3.1. Hardware
The UWB based distance measurements were carried out by a commercially avail-
able localization system framework (MDEK1001), which consists of DWM1001
modules. The anchors were configured via the official mobile application (De-
caWave DRTLS manager). The 8 anchors were organized in 2 networks, each
network consisted of 4 anchors. On the measurements with 4 anchors, only one
network was used.

The DWM1001 was connected to an STM32F746ZGT6 nucleo-144 development
board (STM) via UART. The original program of the DWM1001 was modified to
gather the 4 distances in both networks, and send the collected data towards the
STM. The STM sent the data towards a mobile computer via UART trough an
USB cable. On the mobile computer, the data was captured and saved via PuTTY,
and were later evaluated with MATLAB.
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4. Genetic algorithm based simulation

The simulation framework is based on the GA implementation of the optimtool
toolbox of MATLAB. The implementation was slightly modified to run the multi-
population version of GA. The genetic representation of the system (the phenotype)
was the 𝑥 coordinates of the anchors. The 𝑦 coordinates were along the walls of
the simulated area, and the distribution of the anchors between the two walls
was equal, or its difference was 1. The phenotype had a lower limit of 0, and an
upper limit of 18 (see Section 3), and they were free to move within this interval.
The initial population range was 100 candidates. For each generation, the 20
highest-ranked candidates of the previous generation survived and further 60 were
generated with cross-breeding and 20 new were randomly generated. The maximum
number of generations, and the maximum number of stall-generations were both
100. The evaluation of the candidates was done by the special fitness function
(Subsection 4.1). During the optimization process the number of anchors was 4
and 8.

4.1. Fitness function
The aim of the fitness function in a GA is to order the candidates of the population
based on their phenotype. The input of the function is the 𝑥 coordinates of the
candidate anchors, and the output is a corresponding RMSE value. After that the
exact positions of the mobile node have been generated along a given path in the
simulated area, the point-to-point distances from these points and the anchor nodes
can be calculated. For each distance value, a unique error (see Subsection 4.2) is
added. Using the erroneous distance values and the anchor positions the simulated
mobile node positions can be determined using (2.4). Since the physical hardware
device distance horizon is limited to 10 metres, any distance value over this range
is discarded. The RMSE value can be calculated from the exact and simulated
positions (see Subsection 2.2), resulting a fitness value of the given candidate.

4.2. Determination of the 2D error characteristics
In order to implement a more realistic simulation, the UWB distance sensor cali-
bration was performed using a more accurate (±1 mm) class of laser rangefinder.
Based on the measurements, the 2D error characteristics of the DWM1001 module
with the built-in on-board antenna was determined. The measurement consisted
of placing two modules in a known distance from each other, and performing a
measurement with the UWB technology using RToF technique. The measured dis-
tance (𝑑) is the sum of the exact distance measured with a laser rangefinder (𝑑)
and the RToF measurement additive error (∆𝑑) as follows:

𝑑 = 𝑑 + ∆𝑑.

The ∆𝑑 was calculated in discrete points from 0.3 to 10 metres in steps of 0.3
meters. At each discrete point at least 100 measurements were conducted with
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varying antenna orientation (0∘, 90∘, 180∘) and the mean value was calculated.
After the measurements, at each measured distance, an error value was inter-

polated for every degree between 0∘–180∘. Since the error characteristic is sym-
metrical in this plane [2], the corresponding error values for degrees between 180∘

and 360∘ can be used from the interpolated ones. Each point of the 2D error char-
acteristic is loaded into a Look-Up-Table (LUT), since in the optimization process
the genetic algorithm reads the corresponding error value addressing the LUT by
the distance and orientation parameters.

5. Results

The main results of the proposed method are creating a realistic (hardware- and
environment-specific) 2D error characteristic of DWM1001, determining an opti-
mal placement of anchor nodes and experimentally validating the results of the
simulation.

5.1. Realistic 2D error characteristic
The visualization of the realistic 2D error characteristic can be seen in Fig. 2, where
one slice of the surface represents the distance error of one degree of rotation of the
DWM1001 module. In the data sheet of DWM1001 [2] it is claimed that the ranging
accuracy of the module is within 10 cm. But the results in Fig. 2 showed that the
accuracy is a nonlinear function of distance and orientation. Furthermore, between
0–1 m and 9–10 m, the error is significantly higher than 10 cm (17 cm± 2 cm). The
highest accuracy can be reached around 2 meters (7 cm± 2 cm).

Figure 2: Realistic 2D error characteristic of DWM1001
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5.2. Optimized anchor placements
The goal of the optimization process was to find an optimal anchor placement in
case of 4 and 8 anchors. During this process, linear and non-linear paths of the
mobile node was used. Table 1. shows the RMSE values of the position estimation
using the optimally and equidistantly placed anchors. The results showed that the
optimization significantly increases the accuracy of the position estimation in case
of 4 anchors, but in case of 8 anchors, it has a lower impact. However, using only
4 anchors, the robustness of the system is lower.

RMSE [m]
straight line sine wave arctangent wave Average

4 anchor opt. 0.086 0.088 0.087 0.087
4 anchor eq. 1.392 1.392 1.391 1.392
8 anchor opt. 0.057 0.060 0.060 0.059
8 anchor eq. 0.072 0.072 0.073 0.072

Table 1: RMSE of the optimized and equidistant anchor placement

Figure 3: Optimized and reference anchor placements for 4 anchors
(A) and 8 anchors (B)

In Fig. 3 the placement of the anchor nodes can be seen with and without op-
timization. The optimization process provides significantly different anchor place-
ment in case of 4 anchors but just a slightly different in the 8-anchor case compared
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to the equidistant placing. Analyzing the results of the optimization, it can be
stated that the algorithm places the anchors considering two main conditions. It
tries to cover the whole area to have at least 3 anchor nodes in the range of the
mobile node and places as many anchors as possible in the border of the mobile
node area since the accuracy of the DWM1001 is lower nearby its horizon.

5.3. Validation of the anchor placement
The purpose of the validation is to verify the localization accuracy by real measure-
ments using the proposed anchor placement in case of 4 and 8 anchors. In Fig. 4
and Fig. 5 the anchor position, the accurate position using the laser rangefinder
and the estimated position using the DWM1001 of the mobile node can be seen.

Figure 4: Experimental results for the 4 anchor measures

Figure 5: Experimental results for the 8 anchor measures

The results show that using an optimized anchor placement, the localization
accuracy can be increased in case of 4 anchors but there is no significant improve-
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ment using 8 anchors compared to the equidistant case. Using an optimal anchor
placement in case of limited number of anchors the space of the mobile nodes can
be effectively covered. Furthermore, the validation shows that using the simu-
lation framework, the same positioning results can be achieved as with the real
measurement.

6. Conclusion

In this paper, a genetic-algorithm-based simulation framework is presented to de-
termine an optimal anchor placement in an indoor environment. To implement
a realistic and precise simulation environment, the 2D error characteristics of the
DWM1001 module was measured and implemented in this work. Using the pro-
posed framework, various measurements with an optimal and with a reference
anchor placement were carried out. The results show that the optimal anchor
placement is crucial when the number of anchors is limited. It can also be con-
cluded that if the number of anchors are increasing, their placement becomes less
relevant. Furthermore, the validation shows that there is no significant difference
between the simulation and the real experiments.
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Abstract

In vitro biological experiments and in silico individual-based computa-
tional models are widely used to understand the low-level behavior of cells
and cellular functions. Many of these functions can not be directly observed,
however, may be deduced from other properties that can be well measured
and modeled. In this paper, we present a procedure to evaluate synthetic cell
colony formation generated by an off-lattice individual-based model. The
calculated shape features of the artificial cell aggregates can be related to the
parameter values of the simulated agents, therefore this data can be used to
quantify properties of real-life cells such as motility or binding affinity that
can not be easily determined otherwise. Our experiments showed that only
a few of these parameters are responsible for the difference in shape features
of the colonies.
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1. Introduction

1.1. Background and motivation
Biological experiments frequently carried out on cell cultures, also known as in
vitro cultures. These cells are usually kept alive in culture media added into dif-
ferent sized culture dishes. At ideal conditions, the cells start to proliferate and
reproduce, which leads to an increased size of the initial populations. Depending
on individual cellular-level properties, these cells may form tight, regularly-shaped
colonies, loosely-connected aggregates with irregular edges or no distinguishable
clusters at all.

An experienced researcher can recognize a change in some cellular functions or
properties only by looking at the culture under a microscope and see the differences
in the pattern of cell aggregates, their size, shape, etc. Analyzing microscopy images
by specific image processing applications can also also provide useful information,
such as the percentage area covered by cells, the number of cell aggregates detected
or the statistical features of the shape descriptors of colonies. On the other hand, it
is usually impossible to objectively and precisely define the changes in cellular-level
functions only by evaluating microscopy photos.

1.2. Aims of the research
Our objective was to propose a method, which demonstrates how it is possible
to relate some pre-selected cellular properties to the measured shape features of
multi-cellular aggregates. To do so, we first created an individual-based model
that captures the selected properties of a single cell in vitro. Then, a large number
of input parameters were generated and multiple simulations were executed. The
resulting dataset was processed by a shape feature extraction algorithm. Finally,
we used a multi-layered neural network to relate the extracted shape features of
the artificial cell-aggregates to the input parameters of each simulation.

2. Related work

In the last few decades, the so-called individual-based modeling technique became
more and more popular in this field, partially because it can provide useful insights
into cellular level features based on the emergent behavior of a large population of
individuals, also called as agents. For instance, such techniques can be utilizes to
study collective cell migration [14], to model the calcium dependent behaviour of
epithelial cells [16] or malignant tumor growth [12], just to mention some.

Previous researches showed, that even a relatively simple individual-based com-
putational model of individual cells is able to produce different colony morphologies
when some of the input parameters were altered [6–8]. The growth dynamics and
morphology features of multi-cellular aggregates can be also captured by statistical
physics models [1, 9]. Such models suggest that the key mechanism in monolayer
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colony formation is the surface diffusion of cells at the boundary of the aggregate
[3], however, this problem is still not entirely solved [4].

3. Methods

3.1. Agent-based modeling
We used a simplified version of the model introduced by Drasdo et al. [8] and pre-
viously presented in [11]. This model uses the position, mean diameter, core ratio,
adhesive ratio, adhesion factor and velocity data of each individual. Therefore,
cells can be interpreted as partially overlapping, sticky disks with diameter 𝑑 on
a two-dimensional circular and bounded flat surface (the bottom of the culture
dish). The position of agent 𝑖 is stored in its coordinate vector 𝑥𝑖. Core ratio
𝑟𝑐 < 1 defines the diameter of an embedded disk (core). For two or more agents
cores should not overlap, so values of 𝑟𝑐 ≈ 0 belong to highly elastic cells, while
𝑟𝑐 ≈ 1 to highly rigid ones. Adhesive ratio 𝑟𝑎 > 1 defines the distance in which
two agents form adhesive bonds. Interaction properties of agents 𝑖 and 𝑗 being in
distance 𝑥 are incorporated by an interaction potential function defined as

𝑉𝑖𝑗(𝑥) =

⎧
⎪⎨
⎪⎩

∞ if 𝑥 ≤ 𝑑𝑐𝑖𝑗
−𝜀 if 𝑑𝑐𝑖𝑗 < 𝑥 ≤ 𝑑𝑎𝑖𝑗
0 otherwise

(3.1)

where

𝑑𝑐𝑖𝑗 =
𝑟𝑐𝑖𝑑𝑖 + 𝑟𝑐𝑗𝑑𝑗

2
and 𝑑𝑎𝑖𝑗 =

𝑟𝑎𝑖 𝑑𝑖 + 𝑟𝑎𝑗 𝑑𝑗

2

are the core and adhesion distances of the agents, respectively. Value 𝜀 describes
the agent-agent adhesion energy and can be directly linked to quantities such as
cell membrane adhesion receptor density [2, 7]. To simulate this model, a Monte
Carlo rejection sampling process [13] is executed, during which agent 𝑖 is displaced
by the vector 𝛿�⃗� with acceptance probability

min

⎧
⎨
⎩1, exp−1

⎛
⎝∑︁

�̸�=𝑗

𝑉 𝑡+Δ𝑡
𝑖𝑗 −

∑︁

�̸�=𝑗

𝑉 𝑡
𝑖𝑗

⎞
⎠
⎫
⎬
⎭ ,

where �⃗� is a randomly directed unit vector, 𝛿 is a gamma distributed distance with
shape parameter 𝑘 and scale parameter 𝜃 and ∆𝑡 is the unit of simulation time
scale.

Duplication of agent 𝑖 is based on its cell cycle time 𝜏𝑖 (the time duration
between two division events) and time counter (internal clock) state 𝑡𝑖. When

𝑡𝑖 ≥
𝜏𝑖
∆𝑡
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cell duplication is performed by creating a copy 𝑖′ of agent 𝑖 and assigning new
coordinates

𝑥𝑖
new = 𝑥𝑖

old +
1

2
𝑟𝑐𝑖𝑑𝑖�⃗�

𝑥′
𝑖

new
= 𝑥𝑖

old − 1

2
𝑟𝑐𝑖𝑑𝑖�⃗�

to the agents, where �⃗� is a uniformly distributed two-dimensional unit vector. If
there is no sufficient space to locate both agents (that is, when the interaction
energy defined by (3.1) is infinity), the duplication trial is rejected. Otherwise,
both agents are set to their initial cell cycle state.

3.2. Input data generation and simulation
To simulate the model, we generated all possible input parameter combination to
better explore the structure of the feature space. However, to decrease the number
of individual combination, some model parameters were fixed by analyzing and
evaluating real microscopy images, therefore we set 𝑑 = 25 µm, 𝑟𝑐 = 0.8, 𝑟𝑎 = 1.2,
𝜏 = 24 h and 𝜃 = 0.1. All other input values were picked one by one from its
possible range (see Table 2 for details). To minimize stochastic effects, threefold
replication were used with all parameter combinations.

When a simulation is started, a given number of agents (approximately 250)
are randomly placed into the simulation space which is a circular surface with a
diameter of 6.4 mm (this is approximately equivalent to the diameter of a standard
96-well culture dish). The locations of each agent are saved periodically and a
pseudo-microscopy image is rendered from the simulation data, where black disks
represent the simulated cell on a white background (somewhat similar to in Fig. 1).
This photo is later loaded into the image processing software for further evaluation.

3.3. Shape feature extraction
To evaluate the rendered pseudo-microscopy images, we created a batch feature
extraction pipeline in CellProfiler [5]. This pipeline first smooths the image using
a Gaussian filter with kernel size 𝜎 = 1.0 to make the artificial image more real-
istic. Then, an automated binarization using minimum cross-entropy thresholding
separates the foreground (cell aggregates) from the background. To remove small
artifacts and holes at the boundary of the colonies, we performed a closing oper-
ation with a disk structuring element. After that, all distinct foreground objects
are marked and processed one by one. When shape features of all detected objects
are determined, the data is saved as an output file, along with the corresponding
simulation parameter values and identifiers such as object label, frame number,
etc.

The most significant attributes along with their description and key statistical
properties of the produced dataset is summarized on Table 1.
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Figure 1: Representative image of a pseudo-microscopy image of
simulated cells (black dots) in a small circular vessel. The bound-
aries of detected cell aggregate objects are shown red. Note, that
cell diameters and vessel diameter are not realistic on this image.

Attribute Unit Mean SD Min Max
Area: the number of pixels covered by
the given object pixel 1549.77 1995.13 259.0 228649.0

Perimeter: the total number of pixels
around the boundary of each region in
the image

pixel 157.11 119.8 64.42 9792.12

MeanRadius: the mean distance of
any pixel in the object to the closest
pixel outside of the object

pixel 5.74 1.61 3.0 26.65

Compactness: the mean squared dis-
tance of the object’s pixels from the
centroid divided by the area

dimensionless 1.15 0.21 1.0 5.29

Solidity: the proportion of the pixels
in the convex hull that are also in the
object

dimensionless 0.92 0.05 0.36 1.0

FormFactor: calculated as
4𝜋Area/Perimeter2 dimensionless 0.77 0.16 0.03 0.98

Table 1: Most significant shape attributes of simulated cell aggre-
gates along with their short description and basic statistical prop-

erties

3.3.1. Data filtering

Since the set contains time series data, measured values should be reviewed. An
interesting phenomenon can be observed when multiple distinct cell aggregates
merged into one large aggregate. In these cases, the segmentation method is not
able to correctly distinguish these objects, therefore produce invalid shape mea-
surements.

On the other hand, individual cell movements can result in breaking up these
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Parameter Unit Value
𝜀: adhesion energy parameter
(“stickyness”) dimensionless 𝜀 ∈ {1, 3, 5}
𝑘: distribution shape parameter
of the mean displacement step
size (“velocity”)

dimensionless 𝑘 ∈ {2, 3, 4}

Δ𝑡: time resolution of the simu-
lation minute Δ𝑡 ∈ {1, 2, 4, 8, 16, 32, 64}
𝑁𝑀𝐶 : number of repeated
Monte Carlo displacement trials
of an agent in a given time step.

dimensionless 𝑁𝑀𝐶 ∈ {1, 2, 4, 8, 16, 32, 64}

Table 2: Input parameter data of the simulated agents (See 3.1 for
a detailed description)

clusters into separate objects. These combined features cause outliers, resulting
significant noise in the observations. Affected objects can be removed from the
dataset based on the area sizes, using a simple algorithm. At time step 0, all
objects are removed from the set where the area size is considered large, according
to the input values. At every other time step 𝑖, the observed area size 𝐴𝑗

𝑖 of object
number 𝑗 is compared to the last observation 𝐴𝑗

𝑖−1, and if 𝐴𝑗
𝑖 > 𝑚𝐴𝑗

𝑖−1, where 𝑚 is
a factor defined as

√
2, 2 or 3, the observation is considered as an outlier; therefore,

it is removed.
The application of this method will result in serious imbalance, or – if all ob-

servations of an object are removed on detection – cropping of the dataset. In our
experiments, approximately 99% of objects are removed because of a size mismatch
at some point of their lifetime. It is important to point out, that object numbers
are not unique identifiers: the numbering in each frame restarts. As a consequence,
some objects which themselves are not affected by clustering error are removed by
the dataset because of incorrect labeling caused by a nearby error.

However, cell aggregate object identification is possible based on the coordinates
of their midpoint: an assumption can be made that object 𝑜1 at observed time
point 𝑡𝑘 and object 𝑜2 of observation 𝑡𝑘+1 are the same for some 𝑘 if the Euclidean
distance 𝑑(𝑜1, 𝑜2) between the center points 𝑐𝑜1𝑡𝑘 and 𝑐𝑜2𝑡𝑘+1

are minimal:

min
𝑖

𝑑(𝑐𝑜1𝑡𝑘 , 𝑐
𝑜𝑛
𝑡𝑘+1

).

We would like to note, that other methods, such as the iterative closest point
(ICP) method [15] could also be applied to extend or replace the described matching
procedure. After identifying the cells through frames, the previously described
outlier filtering method can be applied to filter the data, using the calculated
object IDs.

3.4. Statistical analysis
To analyze the behavior of the model for different inputs, a machine learning-based
model for regression was used. As a proof of concept, a classical multi-layered neural
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network was trained to predict the area size of a cell at a given time for a given set
of input parameters.

The input layer receives the normalized time and input features, a total of 11
features. The shallow network architecture (visualized on Fig. 2) consists of 7
hidden layers with parameter numbers between 100 and 25, followed by an output
layer with one single neuron with a “leaky” Rectified Linear Unit activation function
to predict the area. For training, the state-of-the-art Adam optimizer [10] was
used to minimize the mean squared error. Results showed a mean absolute error
of 13.5%.

Input (11)

Hidden (100)

Hidden (100)

Hidden (75)

Hidden (75)

Hidden(50)

Hidden (50)

Hidden (25)

Output (1)

Figure 2: The structure of the fully connected neural network.
The 11 input parameters are followed by a total of 7 hidden layers,
and one single output is calculated. The activation functions are
common ReLU activations, while the output neuron has a “leaky”

ReLU activation to support negative values.

The relatively high error rate can be explained by the dependency of the ad-
jacent cell objects, and the relatively small size of training data. We also would
like to point out, that our future plans include the analysis of convolutional neural
networks (CNN) to incorporate the features of adjacent cells, as well as recurrent
neural networks (RNN) to take the past states of the objects into account. This
paper shows a proof of concept, and the base idea of the procedure.

3.5. Input inference
The presented prediction technique of the output values is used as a basis of an
input inference method. The pre-trained network is extended with a first layer with
random trainable weights, while all other layers, including the trained parameters,
are unchanged. As it is shown in Fig. 3, the neuron number of the inserted layer
equals the number of input parameters, while other parts of the network – including
the weights – remain unchanged.

For a given output value, all input values are set to constant 1, and using these
values a few steps of back-propagation is done. The given values are flown through
the network to get a prediction, the error is calculated from the expected value,
this loss is then back-propagated to the first layer, and the weights are changed
accordingly. A few of these training steps are done until the error rate descends to
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a fixed value.
Afterwards, the final step is to calculate the so-called expected input parameters

from the trained parameters. Layer weights can be represented as a matrix 𝑊 with
a size of 11 × 11, as all the 11 neurons of the layer are connected with all the 11
neurons of the input, resulting in 11 rows of weight vectors of length 11. The layer
also has bias values for each neuron, resulting in a total of 11 values represented
by vector 𝑏.

Hidden (11)

Hidden (100)

Hidden (100)

Hidden(75)

Hidden (75)

Hidden (50)

Hidden (50)

Hidden (25)

Output (1)

Input (11)

Figure 3: The structure of the input inference model. The hidden
layers colored with red are “frozen”, non-trainable, the weights are
pre-trained. The fully connected layer inserted as the first layer is

the only trainable layer in the network.

Based on the classic formula of activation, the sum of each row i is calculated
as

𝑁∑︁

𝑗=1

𝑤𝑖,𝑗 ,

resulting in a vector of 11 values. This will be multiplied by the input values, which
are constant ones, therefore, vector 𝑤 is unchanged and the bias is added:

𝑧𝑖 =
𝑁∑︁

𝑗=1

𝑤𝑖,𝑗 + 𝑏𝑖.

In case the expected input values are in the domain of [0, 1], a sigmoid activation
function could be applied as

𝑎𝑖 = sigm(𝑧𝑖)

to get the expected input values for a given output.
It is notable, that the function of the neural network is non-injective, the inputs

can not be inverted, the inputs can only be inferred, while a set of multiple solutions
might exist, the method defined here only results in the input set with the lowest
error rate.
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4. Results

Since the large number of possible features, we inspected the resulting dataset
by performing a hierarchical clustering on the attributes and visualizing their de-
pendence on a correlation heatmap (see Fig. 4). To build the dendrogram of the
attributes, an agglomerative clustering process was used with Ward’s minimum
variance method and Euclidean distance function as a measure of dissimilarity. As
it was revealed, the measured shape attributes are highly interconnected, therefore
it is possible to reduce the number of shape features to a much smaller subset.
We selected Area, Compactness and FormFactor as they fall into separate classes
based on the hierarchical clustering.

FormFactor

Solidity

Extent

Orientation

Eccentricity

Compactness

MaximumRadius

MedianRadius

MeanRadius

MajorAxisLength

MaxFeretDiameter

Perimeter

Area

MinorAxisLength

MinFeretDiameter

−1 −0.5 0 0.5 1

Figure 4: Hierarchical clustering and correlation heatmap of the
dataset. As attributes are highly interconnected, a well-chosen sub-
set is able to catch most of the differences in the shape features of

the cell aggregates.

The final dataset contained approximately 250,000 records. The multi-layered
neural network is trained on these data to predict a selected shape feature. For
demonstration purposes, we chose Area, as it is easy to interpret and it is a good
representative element of the feature set. During training, 70% of the original
dataset was used for training, and the remaining 30% for validation, to detect
overfitting.

The training of this baseline model was evaluated with a separated test set of
1522 synthetic test records: the measured average difference between the expected
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and the predicted area size was 12.6%. After the model was trained, the parameters
were used to infer the input variable, now based on the outcome area size of the
cell aggregate, using the method defined in section 3.5. After freezing the original
weights, training affects only the parameters of the appended first layer. Training
concludes when the measured loss stops descending; during our experiments this
happened with a loss value near zero. During our experiments, the inferred inputs
were fed back to the original model, and the predicted area size is compared with
the expected.

During the experiments, we created a novel embedding structure, where a se-
lected input parameter can be predefined, and are not affected by training. This
defined method is easily extendable, allowing the researchers to predict some input
values for fixed input parameters. Future plans include the extension of the model
to examine the behavior of multiple cells and time-series based on the previously
mentioned CNN or RNN structures.

Our initial aim was to demonstrate the possibility of relating simulation input
parameters to measured shape features. We inspected this relation on our simu-
lation data. Using principal component analysis, we concluded that the two most
significant input parameters are 𝜀 and 𝑘, i.e. the interaction potential well depth
(“stickyness”) and the shape parameter of the step size distribution (“velocity”).

As depicted in Fig. 5, stronger attractive forces between the agents (larger
𝜀 values) results in smaller but more circular cell aggregates. This observation
was confirmed statistically by performing a two-way ANOVA which showed that
𝜀 has a clear effect on those features (𝑝 < 0.001). On the other hand, we found
that the velocity has statistically significant effect only on the FormFactor feature
(𝑝 < 0.001) but not on the Area.
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Figure 5: The effect of altered input parameters on shape features.
There is a relation between the distribution of Area (left) and Form-

Factor (right) and the input parameters 𝜀 and 𝑘.
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5. Conclusion

In this paper, we proposed a procedure to generate a dataset of colony forma-
tion process of simulated cell cultures. Using a simplified version of an existing
agent-based model, multiple simulations were executed parallelly and the results
were analyzed using an image processing pipeline. The details of the agent-based
model, the feature extraction method as well as the data filtering technique were
also discussed. Following the statistical analysis of the results, a proof-of-concept
regression method was presented to predict an output of the simulation, based on
input parameter data. Built on the regression model, an input inference method is
introduced to produce possible input parameters from the received output.

As a preliminary result, we found that the measured shape features of the
artificial cell aggregates (such as the area or the circularity) can be predicted by only
a few input parameters, namely the simulated time 𝑡 which is simple to understand,
but also the adhesion energy 𝜀 and velocity distribution shape parameter 𝑘 which
both belong to the motility of a living cell. This observation is consistent with other
published results. Our experiments show, that the proposed method – extended
by sensitivity analysis and a precisely defined search – could be promising in case
of parameter search for simulated environments.

We believe that the proposed procedure could serve as a useful base for cre-
ating and testing more accurate prediction models based on machine learning or
developing advanced statistical methods that reveal some non-trivial patterns of
in vitro cell pattern formation. This concept could also contribute to researches
aiming to predict some hard-to-measure properties of living cells by creating and
fitting a model with known parameters to the real phenomenon.
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Abstract

A retrial queuing system with a single server is investigated in this pa-
per. The server is subject to random breakdowns. The number of customers
is finite and collision may take place. A collision occurs when a customer
arrives to the busy server. In case of a collision both customers involved in
the collision are sent back to the orbit. From the orbit the customers retry
their requests after a random waiting time. The server can be down due to a
failure. During the failed period the arriving customers are sent to the orbit,
as well. The novelty of this analysis is the impatient behaviour of the cus-
tomers. A customer waiting in the orbit may leave it after a random waiting
time. The requests of these customers will not be served. All the random
variables included in the model construction are assumed to be exponentially
distributed and independent from each other.

The impatient property makes the model more complex, so the derivation
of a direct algorithmic solution (which was provided for the non-impatient
case) is difficult. For numerical calculations the MOSEL-2 tool can be used.
This tool solves the Kolmogorov system equations, and from the result-
ing steady-state probabilities various system characteristics and performance
measures can be calculated, i.e. mean response time, mean waiting time in
the orbit, utilization of the server, probability of the unserved impatient re-
quests. Principally the effect of the impatient property is investigated in
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these results, which are presented graphically, as well.

Keywords: queueing, finite source, non-reliable, collision, impatient

MSC: 91B70

1. Introduction

Retrial queueing systems (RQ-systems) are very useful tools for modeling a large
variety of problems of real life situations. An RQ-system can be described by the
following characteristics: when an arriving job from the outside world (from the
sources) or from the queue of the system finds the server busy, joins the orbit and
after a random, usually exponentially distributed time retries to reach the server
again. In case of an infinite source, the orbit is assumed to be infinitely large
and jobs keep retrying until they are served. The call centers, telecommunication
systems, computer networks, telephone switching systems and recently smart city
networks etc. can effectively be modeled by RQ-systems. Instead of the infinite
source models which have been investigated by many authors, the models with
finite number of sources are more appropriate to describe the behaviour of the
systems under consideration. The mobile networks, sensor networks, and cognitive
radio systems can be mentioned as common example of these finite source systems.
The random and multiple access protocols for these types of systems have been
investigated, for example in [3, 12].

In real life situations, unfortunately, the reliability of the systems cannot be
assumed and assured. The elements of the systems are subject to random break-
downs. These situations also have to be investigated, so the models contain random
server breakdowns and repairs. The system characteristics and performance mea-
sures are very sensitive to the non-reliable operation of the systems. Finite-source
RQ-systems with server breakdowns and repairs have been investigated in several
recent papers, for example in [2, 8–10, 20, 22].

The goal of this paper is to give a stochastic model for describing the phe-
nomenon of the impatient waiting customers. The customers may retry their re-
quests, the environment is non-reliable, and during the service process collisions
might occur. A single server 𝑀/𝑀/1//𝑁 retrial queueing system is useful and
efficient for this task. The server is subject to random breakdowns, and the cus-
tomers are subject to collisions at the service unit. This type of collisions are
essential part of various implementations of telecommunication systems, computer
networks. In case of busy communication channels there is large probability of
conflict of signals. In these cases the signals involved into collision are lost, and re-
transmission is needed. The performance measures of these systems are under an
optimal level. Consequently, the investigation of the systems subject to collisions
has great interest nowadays. The best solution, namely building systems without
collision is difficult to reach. The main effort of the investigations is to maximize
the performance of the systems with collision. Previous years many authors have
investigated queueing systems with conflict of customers, e.g. [1, 4, 11, 13–16, 18].
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The novelty of this paper is the impatient behaviour of the waiting customers in
the described environment, namely a single server unreliable system with a virtual
waiting facility (orbit) and with possibility of collision of customers. This type of
behaviour was also investigated by some authors, e.g. [5, 21]. A customer trans-
ferred to the orbit may retry its request several times. In case of unsuccessful retries
after a random, exponentially distributed time the customer leaves the system (the
orbit), and goes back to the source. This customer remains unserved. Our goal is
to calculate the steady-state probabilities and the performance measures of these
type of systems. The empirical distribution of the system probabilities and the
effect of the impatient parameter are also investigated.

2. System model

The system under consideration is modeled by a finite source closed retrial queuing
system of type 𝑀/𝑀/1//𝑁 . The system has one server and the number of sources
is 𝑁 . In this paper two working characteristics of the server are distinguished:

• Non-reliable server and patient customers. The server is subject to ran-
dom breakdowns. The breakdown times are exponentially distributed. The
breakdown parameters for busy and idle server are 𝛾0 and 𝛾1, respectively.
In case of breakdown the request under service is sent to the orbit. After the
breakdown the repair starts immediately. The repair time is exponentially
distributed with parameter 𝛾2. While the server is under repair, the sources
are able to generate requests. These customers are transferred to the orbit,
because the server is not available. The requests in the orbit may retry reach-
ing the server again after an exponentially distributed time with parameter
𝜎/𝑁 . The customers are patient, that is they keep retrying from the orbit
until they are served.

• Non-reliable server and impatient customers. The breakdown behaviour of
the server is the same, as in the previous point. The customers are impatient,
that is a customer keeps retrying until it is served, or the customer leaves the
orbit and goes back to the source after an exponentially distributed waiting
time with parameter 𝜏 .

A job (customer) is generated in the source towards the server. The distribution of
the inter-request times are exponential with parameter 𝜆/𝑁 . The customer enters
the system, and the source waits for a successful service. Until the end of service of
the job the source cannot generate a new request. The new customer tries reaching
the server. The state of the server can be busy or idle. When the server is idle,
the service of the customer starts immediately. The distribution of service times is
exponential with parameter 𝜇. In case of a busy server state a conflict of customers
can be occur: when an arriving job finds the server busy it involves into collision
with customer under service and both customers are moved into the orbit. See the
model on Figure 1.

Numerical analysis of finite source Markov retrial system . . . 55



Figure 1: System model

Let 𝑖(𝑡) be the number of customers in the system. The customer can be either
in the orbit or under service. Let 𝑘(𝑡) denote the status of the server:

𝑘(𝑡) =

⎧
⎪⎨
⎪⎩

0, if the server is idle,
1, if the server is busy,
2, if the server is under repair.

Let us denote the probability that at the time t there are 𝑖 customers in “waiting”
state and the server is in the state 𝑘 by 𝑃 (𝑘(𝑡) = 𝑘, 𝑖(𝑡) = 𝑖) = 𝑃𝑘(𝑖, 𝑡). Under the
above assumption the process 𝑋(𝑡) = {𝑘(𝑡), 𝑖(𝑡)} is a 2-dimensional Markov-chain
with a state space of {0, 1, 2} × {0, 1, . . . , 𝑁}.

The successfully served customer goes back to the source. All the random
variables involved in the model construction are assumed to be totally independent
from each other.

For the non-impatient case the, the Kolmogorov differential-equations for prob-
abilities 𝑃𝑘(𝑖, 𝑡) are the following (see in [14, 16]):

𝜕𝑃0(0, 𝑡)

𝜕𝑡
= −(𝜆 + 𝛾0)𝑃0(0, 𝑡) + 𝜇𝑃1(1, 𝑡) + 𝛾2𝑃2(0, 𝑡),

𝜕𝑃1(1, 𝑡)

𝜕𝑡
= −

(︂
𝜆
𝑁 − 1

𝑁
+ 𝜇 + 𝛾1

)︂
𝑃1(1, 𝑡) + 𝜆𝑃0(0, 𝑡) +

𝜎

𝑁
𝑃0(1, 𝑡),

𝜕𝑃2(0, 𝑡)

𝜕𝑡
= −(𝜆 + 𝛾2)𝑃2(0, 𝑡) + 𝛾0𝑃0(0, 𝑡),

𝜕𝑃0(𝑖, 𝑡)

𝜕𝑡
= −

(︂
𝜆
𝑁 − 1

𝑁
+ 𝜎

𝑖

𝑁
+ 𝛾0

)︂
𝑃0(𝑖, 𝑡) + 𝜇𝑃1(𝑖 + 1, 𝑡)

+ 𝜆
𝑁 − 𝑖 + 1

𝑁
𝑃1(𝑖− 1, 𝑡) + 𝜎

𝑖− 1

𝑁
𝑃1(𝑖, 𝑡) + 𝛾2𝑃2(𝑖, 𝑡),
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𝜕𝑃1(𝑖, 𝑡)

𝜕𝑡
= −

(︂
𝜆
𝑁 − 1

𝑁
+ 𝜎

𝑖− 1

𝑁
+ 𝛾1 + 𝜇

)︂
𝑃1(𝑖, 𝑡)

+ 𝜆
𝑁 − 𝑖 + 1

𝑁
𝑃0(𝑖− 1, 𝑡) + 𝜎

𝑖

𝑁
𝑃0(𝑖, 𝑡),

𝜕𝑃2(𝑖, 𝑡)

𝜕𝑡
= −

(︂
𝜆
𝑁 − 1

𝑁
+ 𝛾2

)︂
𝑃2(𝑖, 𝑡) + 𝛾0𝑃0(𝑖, 𝑡) + 𝛾1𝑃1(𝑖, 𝑡)

+ 𝜆
𝑁 − 𝑖 + 1

𝑁
𝑃2(𝑖− 1, 𝑡).

Since 𝑋(𝑡) = {𝑘(𝑡), 𝑖(𝑡)} is a finite state Markov-chain it can be assumed that it
operates in steady-state that is: 𝑃𝑘(𝑖, 𝑡) = 𝑃𝑘(𝑖).

Hence the steady-state Kolmogorov-equations can be written as

−(𝜆 + 𝛾0)𝑃0(0) + 𝜇𝑃1(1) + 𝛾2𝑃2(0) = 0,

−
(︂
𝜆
𝑁 − 1

𝑁
+ 𝜇 + 𝛾1

)︂
𝑃1(1) + 𝜆𝑃0(0) +

𝜎

𝑁
𝑃0(1) = 0,

−(𝜆 + 𝛾2)𝑃2(0) + 𝛾0𝑃0(0) = 0,

−
(︂
𝜆
𝑁 − 1

𝑁
+ 𝜎

𝑖

𝑁
+ 𝛾0

)︂
𝑃0(𝑖) + 𝜇𝑃1(𝑖 + 1) + 𝜆

𝑁 − 𝑖 + 1

𝑁
𝑃1(𝑖− 1)

+ 𝜎
𝑖− 1

𝑁
𝑃1(𝑖) + 𝛾2𝑃2(𝑖) = 0,

−
(︂
𝜆
𝑁 − 1

𝑁
+ 𝜎

𝑖− 1

𝑁
+ 𝛾1 + 𝜇

)︂
𝑃1(𝑖) + 𝜆

𝑁 − 𝑖 + 1

𝑁
𝑃0(𝑖− 1) + 𝜎

𝑖

𝑁
𝑃0(𝑖) = 0,

−
(︂
𝜆
𝑁 − 1

𝑁
+ 𝛾2

)︂
𝑃2(𝑖) + 𝛾0𝑃0(𝑖) + 𝛾1𝑃1(𝑖) + 𝜆

𝑁 − 𝑖 + 1

𝑁
𝑃2(𝑖− 1) = 0.

Note, if all of the 𝛾2 parameters and 𝑃2 probabilities are set to zero, we get the
formulas for the system with conflict and reliable server.

By the help of the same method described above, the steady-state Kolmogorov-
equations can be obtained for the system with conflict, non-reliable server and
impatient customers:

−(𝜆 + 𝛾0)𝑃0(0) + 𝜇𝑃1(1) + 𝛾2𝑃2(0) +
𝜏

𝑛
𝑃0(1) = 0,

−
(︂
𝜆
𝑁 − 1

𝑁
+ 𝜇 + 𝛾1

)︂
𝑃1(1) + 𝜆𝑃0(0) +

𝜎

𝑁
𝑃0(1) +

𝜏

𝑛
𝑃1(2) = 0,

−(𝜆 + 𝛾2)𝑃2(0) + 𝛾0𝑃0(0) = 0,

−
(︂
𝜆
𝑁 − 𝑖

𝑁
+ 𝜎

𝑖

𝑁
+ 𝜏

𝑖

𝑁
+ 𝛾0

)︂
𝑃0(𝑖) + 𝜇𝑃1(𝑖 + 1) + 𝜆

𝑁 − 𝑖 + 1

𝑁
𝑃1(𝑖− 1)

+ 𝜎
𝑖− 1

𝑁
𝑃1(𝑖) + 𝜏

𝑖 + 1

𝑁
𝑃0(𝑖 + 1) + 𝛾2𝑃2(𝑖) = 0,

−
(︂
𝜆
𝑁 − 𝑖

𝑁
+ 𝜎

𝑖− 1

𝑁
+ 𝜏

𝑖− 1

𝑁
+ 𝛾1 + 𝜇

)︂
𝑃1(𝑖) + 𝜆

𝑁 − 𝑖 + 1

𝑁
𝑃0(𝑖− 1)
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+ 𝜎
𝑖

𝑁
𝑃0(𝑖) + 𝜏

𝑖

𝑁
𝑃1(𝑖 + 1) = 0,

−
(︂
𝜆
𝑁 − 𝑖

𝑁
+ 𝛾2

)︂
𝑃2(𝑖) + 𝛾0𝑃0(𝑖) + 𝛾1𝑃1 + 𝜆

𝑁 − 𝑖 + 1

𝑁
𝑃2(𝑖− 1)

+ 𝜏
𝑖 + 1

𝑁
𝑃2(𝑖 + 1) = 0.

3. Performance Measures

The performance measures express the effect of the input parameters of the system.
Let us define the most important characteristics which can be determined directly
from the steady state probabilities.

• Mean number of customers in the system 𝑄 and in the orbit 𝑂

𝑄 =

𝑁∑︁

𝑖=0

𝑖𝑃 (𝑖), 𝑂 = 𝑄− 𝑃1,

• Mean arrival rate 𝜆

𝜆 =

1∑︁

𝑘=0

𝑁∑︁

𝑖=0

(𝑁 − 𝑖)
𝜆

𝑁
𝑃𝑘(𝑖),

• Mean response time 𝑇 and mean waiting time 𝑊 in the orbit can be obtained
by the Little-formula

𝑇 =
𝑄

𝜆
, 𝑊 =

𝑂

𝜆
, 𝑂 = 𝑄− 𝑃1,

• Mean total service time 𝐸(𝑇𝑆) and mean total sojourn time in the source
𝐸(𝜅)

𝐸(𝑇𝑆) = 𝑇 −𝑊, 𝐸(𝜅) =
(𝑁 −𝑄)𝑇

𝑄
,

• Mean number of trials from the source 𝐸(𝑁𝑇𝑆) and from the orbit 𝐸(𝑁𝑇𝑂)

𝐸(𝑁𝑇𝑆) =
𝜆

𝑁
𝐸(𝜏), 𝐸(𝑁𝑇𝑂) =

𝜎

𝑁
𝑊.

4. Numerical solution

Before this model several other systems were investigated. Simple retrial queueing
models, retrial models with conflict of customers, non-reliable retrial models with
conflict of customers, retrial models with two-way communications. Obtaining the
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system characteristics three different solutions were performed: recursive numer-
ical calculations, solving the system equations (e.g. by MOSEL-2 tool), and run
simulations. The results of the three different approaches were identical. Using
these results, we were able to investigate models, where all of the mentioned solu-
tions were not applicable. For example, systems with non-exponentially distributed
service times can not be solved by MOSEL-2, but simulation and, in some cases,
numerical solution proved useful.

The situation for this model is very similar. For the non-impatient case the
equations can be solved recursively (described in [14, 16, 19]). The resulting steady-
state probabilities 𝑃𝑘(𝑖) can be used for calculating the system performance mea-
sures. For double-checking the result, MOSEL-2 tool can also be applied here. For
the impatient case we did our best, but such recursive solution cannot be obtained,
because new variables enter into equations due to the impatient property. For this
impatient case a software tool, MOSEL-2 is used to solve the system equations.
The correctness of MOSEL-calculations was empirically proved in cases, when this
tool and the numerical calculations were used simultaneously.

On Figure 2 the steady-state probabilities are displayed for the different models
(non-conflict, conflict, unreliable, unreliable block, unreliable impatient). When the
calculations are performed by MOSEL-2 tool (MOdeling Specification and Eval-
uation Language), see in [6], we run into a strict limitations, namely the state
space grows extremely fast, consequently the number of sources cannot exceed 200.
In Excel we can go far more above 200 (when the recursive calculations can be
performed.

Figure 2: Different models

The first important question was the distribution of the system probabilities
𝑃𝑘(𝑖). Previous investigations the distribution was found very close to normal dis-
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tribution. The normality is important, because in general only the average number
of customers in the orbit or average waiting time of customers in the orbit can be
calculated by the methods mentioned in this paper. But, if the normality of steady
state probabilities can be assumed, the limiting probability distribution of the so-
journ time/waiting time of the customer in the orbit can be obtained by asymptotic
methods. See in [7, 17]. That’s why is it important to find domains of parameters,
where the steady-state system (or orbit) probabilities have normal or asymptotic
normal distribution. Here the normality of the distribution was checked for dif-
ferent numbers of sources: 𝑁 = 50, 100 and 200. Then the Kolmogorov-distance
was computed. For the Kolmogorov-distance the theoretical normal distribution is
calculated by using Excel built-in function. The parameters of the distribution is
calculated from the steady-state probabilities. For example, in case of 𝑁 = 100, a
normal distribution is generated with mean of 52.9 and standard deviation of 6.37.
The Kolmogorov-distance is defined as:

∆𝑁 = max
0≤𝑘≤𝑁

⃒⃒
⃒⃒
⃒

𝑘∑︁

𝑖=0

𝑃Theoretical(𝑖)−
𝑘∑︁

𝑖=0

𝑃Mosel(𝑖)

⃒⃒
⃒⃒
⃒ .

The following result were found: ∆50 = 0.03,∆100 = 0.02,∆200 = 0.003. Thus
the normality of the system probabilities can be accepted.

On Figure 3 the cumulative distribution function (CDF) of the normal (Gaus-
sian) distribution and the empirical CDF are compared. As from the Kolmogorov-
distance can be expected, the two distributions are almost identical.

Figure 3: Normal CDF vs. empirical CDF

As described above, from the steady-state probabilities the performance mea-
sures (system characteristics) can be calculated.

On Figure 4 the mean response time, calculated by the help of formulas pre-
sented in Chapter 3 is displayed as a function of the overall generation rate. The
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Figure 4: Mean response time vs. 𝜆

expected maximum characteristic can be observed on this figure, as well. Under
some parameter settings the finite-source retrial queueing systems have this max-
imum feature for several performance measures, e.g. response time. The reason
is the special coincidence of the high generation rate and the low number of ac-
tive tokens in the source (the number of jobs in the system is usually high at this
situation).

5. Conclusion

The goal of this paper was to handle the impatient behaviour of customers in
the environment of unreliable systems with collision. For non-impatient systems
computing the steady-state system characteristics a recursive solution can be given.
The impatient property makes the system equations more complex. New variables
appear in the equations, so the recursive numeric solution cannot be performed.
Because of this reason a software tool was used to solve the system equations. For
this complex case there is no limit distribution of sojourn and waiting times of
customers in the orbit. So, it is important to find domains of parameter, where
the distribution of steady-state probabilities can be accepted as normal, to give the
possibility of further theoretical investigations towards the limit distributions.
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Abstract
In this paper we present a new basis for association rules called Closed

Association Rules (𝒞ℛ). This basis contains all valid association rules that
can be generated from frequent closed itemsets. 𝒞ℛ is a lossless represen-
tation of all association rules. Regarding the number of rules, our basis is
between all association rules (𝒜ℛ) and minimal non-redundant association
rules (ℳ𝒩ℛ), filling a gap between them. The new basis provides a frame-
work for some other bases and we show that ℳ𝒩ℛ is a subset of 𝒞ℛ. Our
experiments show that 𝒞ℛ is a good alternative for all association rules. The
number of generated rules can be much less, and beside frequent closed item-
sets nothing else is required.

1. Introduction

In data mining, frequent itemsets (FIs) and association rules play an important
role [2]. Generating valid association rules (denoted by 𝒜ℛ) from frequent item-
sets often results in a huge number of rules, which limits their usefulness in real
life applications. To solve this problem, different concise representations of associ-
ation rules have been proposed, e.g. generic basis (𝒢ℬ), informative basis (ℐℬ) [3],
Duquennes-Guigues basis (𝒟𝒢) [5], Luxenburger basis (ℒℬ) [8], etc. A very good
comparative study of these bases can be found in [7], where it is stated that a
rule representation should be lossless (should enable the derivation of all valid
rules), sound (should forbid the derivation of rules that are not valid) and infor-
mative (should allow the determination of rules parameters such as support and
confidence).
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In this paper we present a new basis for association rules called Closed Associ-
ation Rules (𝒞ℛ). The number of rules in 𝒞ℛ is less than the number of all rules,
especially in the case of dense, highly correlated data when the number of frequent
itemsets is much more than the number of frequent closed itemsets. 𝒞ℛ contains
more rules than minimal non-redundant association rules (ℳ𝒩ℛ), but for the ex-
traction of closed association rules we only need frequent closed itemsets, nothing
else. On the contrary, the extraction ofℳ𝒩ℛ needs much more computation since
frequent generators also have to be extracted and assigned to their closures.1

The remainder of the paper is organized as follows. Background on pattern
mining and concept analysis is provided in Section 2. All association rules, closed
association rules and minimal non-redundant association rules are presented in
Sections 3, 4 and 5, respectively. Experimental results are provided in Section 6,
and Section 7 concludes the paper.

2. Basic concepts

In the following, we recall basic concepts from frequent pattern mining and formal
concept analysis (FCA). The following 5 × 5 sample dataset: 𝒟 = {(1, 𝐴𝐵𝐷𝐸),
(2, 𝐴𝐶), (3, 𝐴𝐵𝐶𝐸), (4, 𝐵𝐶𝐸)}, (5, 𝐴𝐵𝐶𝐸)} will be used as a running example.
Henceforth, we refer to it as dataset 𝒟.

Frequent itemsets. We consider a set of objects 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑚}, a set of
attributes 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}, and a binary relation 𝑅 ⊆ 𝑂 × 𝐴, where 𝑅(𝑜, 𝑎)
means that the object 𝑜 has the attribute 𝑎. In formal concept analysis the triple
(𝑂,𝐴,𝑅) is called a formal context [4]. The Galois connection for (𝑂,𝐴,𝑅) is
defined along the lines of [4] in the following way (here 𝐵 ⊆ 𝑂, 𝐷 ⊆ 𝐴):

𝐵′ = {𝑎 ∈ 𝐴 | 𝑅(𝑜, 𝑎) for all 𝑜 ∈ 𝐵}, 𝐷′ = {𝑜 ∈ 𝑂 | 𝑅(𝑜, 𝑎) for all 𝑎 ∈ 𝐷}.
In data mining applications, an element of 𝐴 is called an item and a subset of 𝐴
is called an itemset. Further on, we shall keep to these terms. An itemset of size 𝑖
is called an 𝑖-itemset.2 We say that an itemset 𝑃 ⊆ 𝐴 belongs to an object 𝑜 ∈ 𝑂,
if (𝑜, 𝑝) ∈ 𝑅 for all 𝑝 ∈ 𝑃 , or 𝑃 ⊆ 𝑜′. The support of an itemset 𝑃 ⊆ 𝐴 indicates
the number of objects to which the itemset belongs: 𝑠𝑢𝑝𝑝(𝑃 ) = |𝑃 ′|. An itemset
is frequent if its support is not less than a given minimum support (denoted by
min_supp). An itemset 𝑃 is closed if there exists no proper superset with the
same support. The closure of an itemset 𝑃 (denoted by 𝑃 ′′) is the largest superset
of 𝑃 with the same support. Naturally, if 𝑃 = 𝑃 ′′, then 𝑃 is a closed itemset. The
task of frequent itemset mining consists of generating all (closed) itemsets (with
their supports) with supports greater than or equal to a specified min_supp.

Two itemsets 𝑃,𝑄 ⊆ 𝐴 are said to be equivalent (𝑃 ∼= 𝑄) iff they belong to
the same set of objects (i.e. 𝑃 ′ = 𝑄′). The set of itemsets that are equivalent to

1Concepts in this section are defined in Section 2.
2For instance, {𝐴,𝐵,𝐸} is a 3-itemset. Further on we use separator-free set notations, i.e.

𝐴𝐵𝐸 stands for {𝐴,𝐵,𝐸}.

66 L. Szathmary



an itemset 𝑃 (𝑃 ’s equivalence class) is denoted by [𝑃 ] = {𝑄 ⊆ 𝐴 | 𝑃 ∼= 𝑄}. An
itemset 𝑃 ∈ [𝑃 ] is called a generator, if 𝑃 has no proper subset in [𝑃 ], i.e. it has no
proper subset with the same support. A frequent generator is a generator whose
support is not less than a given minimum support.

Frequent association rules. An association rule is an expression of the form
𝑃1 → 𝑃2, where 𝑃1 and 𝑃2 are arbitrary itemsets (𝑃1, 𝑃2 ⊆ 𝐴), 𝑃1 ∩ 𝑃2 = ∅
and 𝑃2 ̸= ∅. The left side, 𝑃1 is called antecedent, the right side, 𝑃2 is called
consequent. The (absolute) support of an association rule 𝑟 is defined as: 𝑠𝑢𝑝𝑝(𝑟) =
𝑠𝑢𝑝𝑝(𝑃1 ∪ 𝑃2). The confidence of an association rule 𝑟 : 𝑃1 → 𝑃2 is defined as the
conditional probability that an object has itemset 𝑃2, given that it has itemset
𝑃1: 𝑐𝑜𝑛𝑓(𝑟) = 𝑠𝑢𝑝𝑝(𝑃1 ∪ 𝑃2)/𝑠𝑢𝑝𝑝(𝑃1). An association rule is valid if 𝑠𝑢𝑝𝑝(𝑟) ≥
𝑚𝑖𝑛_𝑠𝑢𝑝𝑝 and 𝑐𝑜𝑛𝑓(𝑟) ≥ 𝑚𝑖𝑛_𝑐𝑜𝑛𝑓 . The set of all valid association rules is
denoted by 𝒜ℛ.

Minimal non-redundant association rules (ℳ𝒩ℛ) [3] have the following form:
𝑃 → 𝑄 ∖ 𝑃 , where 𝑃 ⊂ 𝑄, 𝑃 is a generator and 𝑄 is a closed itemset. That
is, an ℳ𝒩ℛ rule has a minimal antecedent and a maximal consequent. Minimal
(resp. maximal) means that the antecedent (resp. consequent) is a minimal (resp.
maximal) element in its equivalence class. Note that 𝑃 and 𝑄 are not necessarily
in the same equivalence class. As it was shown in [3], ℳ𝒩ℛ rules contain the
most information among rules with the same support and same confidence.

3. All association rules

From now on, by “all association rules” we mean all (frequent) valid association
rules. The concept of association rules was introduced by Agrawal et al. [1]. Orig-
inally, the extraction of association rules was used on sparse market basket data.
The first efficient algorithm for this task was Apriori. The generation of all valid
association rules consists of two main steps:

1. Find all frequent itemsets 𝑃 in a dataset, i.e. where 𝑠𝑢𝑝𝑝(𝑃 ) ≥ 𝑚𝑖𝑛_𝑠𝑢𝑝𝑝.

2. For each frequent itemset 𝑃1 found, generate all confident association rules 𝑟
of the form 𝑃2 → (𝑃1 ∖ 𝑃2), where 𝑃2 ⊂ 𝑃1 and 𝑐𝑜𝑛𝑓(𝑟) ≥ 𝑚𝑖𝑛_𝑐𝑜𝑛𝑓 .

The more difficult task is the first step, which is computationally and I/O intensive.

Generating all valid association rules. Once all frequent itemsets and their
supports are known, this step can be done in a relatively straightforward manner.
The general idea is the following: for every frequent itemset 𝑃1, all subsets 𝑃2 of 𝑃1

are derived, and the ratio 𝑠𝑢𝑝𝑝(𝑃1)/𝑠𝑢𝑝𝑝(𝑃2) is computed.3 If the result is higher
or equal to 𝑚𝑖𝑛_𝑐𝑜𝑛𝑓 , then the rule 𝑃2 → (𝑃1 ∖ 𝑃2) is generated.

3𝑠𝑢𝑝𝑝(𝑃1)/𝑠𝑢𝑝𝑝(𝑃2) is the confidence of the rule 𝑃2 → (𝑃1 ∖ 𝑃2).
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The support of any subset 𝑃3 of 𝑃2 is greater than or equal to the support of
𝑃2. Thus, the confidence of the rule 𝑃3 → (𝑃1 ∖𝑃3) is necessarily less than or equal
to the confidence of the rule 𝑃2 → (𝑃1 ∖ 𝑃2). Hence, if the rule 𝑃2 → (𝑃1 ∖ 𝑃2)
is not confident, then neither is the rule 𝑃3 → (𝑃1 ∖ 𝑃3). Conversely, if the rule
(𝑃1 ∖𝑃2)→ 𝑃2 is confident, then all rules of the form (𝑃1 ∖𝑃3)→ 𝑃3 are confident.
For example, if the rule 𝐴→ 𝐵𝐸 is confident, then the rules 𝐴𝐵 → 𝐸 and 𝐴𝐸 → 𝐵
are confident as well.

Using this property for efficiently generating valid association rules, the algo-
rithm works as follows [1]. For each frequent itemset 𝑃1, all confident rules with
one item in the consequent are generated. Then, using the Apriori-Gen function
(from [1]) on the set of 1-long consequents, we generate consequents with 2 items.
Only those rules with 2 items in the consequent are kept whose confidence is greater
than or equal to 𝑚𝑖𝑛_𝑐𝑜𝑛𝑓 . The 2-long consequents of the confident rules are used
for generating consequents with 3 items, etc.

Example. Table 1 depicts which valid association rules (𝒜ℛ) can be extracted
from dataset 𝒟 with 𝑚𝑖𝑛_𝑠𝑢𝑝𝑝 = 3 (60%) and 𝑚𝑖𝑛_𝑐𝑜𝑛𝑓 = 0.5 (50%). First, all
frequent itemsets have to be extracted from the dataset. In 𝒟 with 𝑚𝑖𝑛_𝑠𝑢𝑝𝑝 = 3
there are 12 frequent itemsets, namely 𝐴 (supp: 4), 𝐵 (4), 𝐶 (4), 𝐸 (4), 𝐴𝐵 (3),
𝐴𝐶 (3), 𝐴𝐸 (3), 𝐵𝐶 (3), 𝐵𝐸 (4), 𝐶𝐸 (3), 𝐴𝐵𝐸 (3) and 𝐵𝐶𝐸 (3).4 Only those
itemsets can be used for generating association rules that contain at least 2 items.
Eight itemsets satisfy this condition. For instance, using the itemset 𝐴𝐵𝐸, which
is composed of 3 items, the following rules can be generated: 𝐵𝐸 → 𝐴 (supp: 3;
conf: 0.75), 𝐴𝐸 ⇒ 𝐵 (3; 1.0) and 𝐴𝐵 ⇒ 𝐸 (3; 1.0). Since all these rules are
confident, their consequents are used to generate 2-long consequents: 𝐴𝐵, 𝐴𝐸 and
𝐵𝐸. This way, the following rules can be constructed: 𝐸 → 𝐴𝐵 (3; 0.75), 𝐵 → 𝐴𝐸
(3; 0.75) and 𝐴 → 𝐵𝐸 (3; 0.75). In general, it can be said that from an 𝑚-long
itemset, one can potentially generate 2𝑚 − 2 association rules.

4. Closed Association Rules

In the previous section we presented all association rules that are generated from
frequent itemsets. Unfortunately, the number of these rules can be very large,
and many of these rules are redundant, which limits their usefulness. Applying
concise rule representations (a.k.a. bases) with appropriate inference mechanisms
can lessen the problem [7]. By definition, a concise representation of association
rules is a subset of all association rules with the following properties: (1) it is much
smaller than the set of all association rules, and (2) the whole set of all association
rules can be restored from this subset (possibly with no access to the database, i.e.
very efficiently) [6].

4Support values are indicated in parentheses.
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𝒜ℛ supp. conf. 𝒞ℛ ℳ𝒩ℛ
𝐵 → 𝐴 3 0.75
𝐴→ 𝐵 3 0.75
𝐶 → 𝐴 3 0.75 + +
𝐴→ 𝐶 3 0.75 + +
𝐸 → 𝐴 3 0.75
𝐴→ 𝐸 3 0.75
𝐶 → 𝐵 3 0.75
𝐵 → 𝐶 3 0.75
𝐸 ⇒ 𝐵 4 1.0 + +
𝐵 ⇒ 𝐸 4 1.0 + +
𝐸 → 𝐶 3 0.75
𝐶 → 𝐸 3 0.75
𝐵𝐸 → 𝐴 3 0.75 +
𝐴𝐸 ⇒ 𝐵 3 1.0 + +
𝐴𝐵 ⇒ 𝐸 3 1.0 + +
𝐸 → 𝐴𝐵 3 0.75 + +
𝐵 → 𝐴𝐸 3 0.75 + +
𝐴→ 𝐵𝐸 3 0.75 + +
𝐶𝐸 ⇒ 𝐵 3 1.0 + +
𝐵𝐸 → 𝐶 3 0.75 +
𝐵𝐶 ⇒ 𝐸 3 1.0 + +
𝐸 → 𝐵𝐶 3 0.75 + +
𝐶 → 𝐵𝐸 3 0.75 + +
𝐵 → 𝐶𝐸 3 0.75 + +

Table 1: Different sets of association rules extracted from dataset
𝒟 with 𝑚𝑖𝑛_𝑠𝑢𝑝𝑝 = 3 (60%) and 𝑚𝑖𝑛_𝑐𝑜𝑛𝑓 = 0.5 (50%)

Related work. In addition to the first method presented in the previous section,
there is another approach for finding all association rules. This approach was
introduced in [9] by Bastide et al. They have shown that frequent closed itemsets
are a lossless, condensed representation of frequent itemsets, since the whole set of
frequent itemsets can be restored from them with the proper support values. They
propose the following method for finding all association rules. First, they extract
frequent closed itemsets5, then they restore the set of frequent itemsets from them,
and finally they generate all association rules. The number of FCIs is usually much
less than the number of FIs, especially in dense and highly correlated datasets. In
such databases the exploration of all association rules can be done more efficiently
by this way. However, this method has some disadvantages: (1) the restoration of
FIs from FCIs needs lots of memory, (2) the final result is still “all the association
rules”, which means lots of redundant rules.

5For this task they introduced a new algorithm called “Close”. Close is a levelwise algorithm
for finding FCIs.
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Figure 1: Left: position of Closed Rules; Right: equivalence
classes of 𝒟 with 𝑚𝑖𝑛_𝑠𝑢𝑝𝑝 = 3 (60%). Support values are in-

dicated in the top right corners.

Contribution. We introduce a new basis called Closed Association Rules, or
simply Closed Rules (𝒞ℛ). This basis requires frequent closed itemsets only. The
difference between our work and the work presented in [9] stems from the fact that
although we also extract FCIs, instead of restoring all FIs from them, we use them
directly to generate valid association rules. This way, we find less and probably
more interesting association rules.
𝒞ℛ is a generating set for all valid association rules with their proper support

and confidence values. Our basis fills a gap between all association rules and min-
imal non-redundant association rules (ℳ𝒩ℛ), as depicted in Figure 1 (left). 𝒞ℛ
contains all valid rules that are derived from frequent closed itemsets. Since the
number of FCIs are usually much less than the number of FIs, the number of rules
in our basis is also much less than the number of all association rules. Using our
basis the restoration of all valid association rules can be done without any loss of
information. It is possible to deduce efficiently, without access to the dataset, all
valid association rules with their supports and confidences from this basis, since
frequent closed itemsets are a lossless representation of frequent itemsets. Further-
more, we will show in the next section that minimal non-redundant association
rules are a special subset of the Closed Rules, i.e. ℳ𝒩ℛ can be defined in the
framework of our basis. 𝒞ℛ has the advantage that its rules can be generated
very easily since only the frequent closed itemsets are needed. As there are usually
much less FCIs than FIs, the derivation of the Closed Rules can be done much
more efficiently than generating all association rules.
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Before showing our algorithm for finding the Closed Rules, we present the essential
definitions.

Definition 4.1 (closed association rule). An association rule 𝑟 : 𝑃1 → 𝑃2 is called
closed if 𝑃1 ∪ 𝑃2 is a closed itemset.

This definition means that the rule is derived from a closed itemset.

Definition 4.2 (Closed Rules). Let 𝐹𝐶 be the set of frequent closed itemsets.
The set of Closed Rules contains all valid closed association rules:

𝒞ℛ = {𝑟 : 𝑃1 → 𝑃2 | (𝑃1∪𝑃2) ∈ 𝐹𝐶∧𝑠𝑢𝑝𝑝(𝑟) ≥ 𝑚𝑖𝑛_𝑠𝑢𝑝𝑝∧𝑐𝑜𝑛𝑓(𝑟) ≥ 𝑚𝑖𝑛_𝑐𝑜𝑛𝑓}.

Property 4.3. The support of an arbitrary frequent itemset is equal to the support
of its smallest frequent closed superset [9].

By this property, FCIs are a condensed lossless representation of FIs. This is also
called the frequent closed itemset representation of frequent itemsets. Property 4.3
can be generalized the following way:

Property 4.4. If an arbitrary itemset 𝑋 has a frequent closed superset, then 𝑋
is frequent and its support is equal to the support of its smallest frequent closed
superset. If 𝑋 has no frequent closed superset, then 𝑋 is not frequent.

The algorithm. The idea behind generating all valid association rules is the
following. First we need to extract all frequent itemsets. Then rules of the form
𝑋 ∖ 𝑌 → 𝑌 , where 𝑌 ⊂ 𝑋, are generated for all frequent itemsets 𝑋, provided the
rules have at least minimum confidence.

Finding closed association rules is done similarly. However, this time we only
have frequent closed itemsets available. In this case the left side of a rule 𝑋 ∖𝑌 can
be non-closed. For calculating the confidence of rules its support must be known.
Thanks to Property 4.3, this support value can be calculated by only using frequent
closed itemsets. It means that only FCIs are needed; all frequent itemsets do not
have to be extracted. This is the principle idea behind this part of our work.

Example. Table 1 depicts which closed association rules (𝒞ℛ) can be extracted
from dataset 𝒟 with 𝑚𝑖𝑛_𝑠𝑢𝑝𝑝 = 3 (60%) and 𝑚𝑖𝑛_𝑐𝑜𝑛𝑓 = 0.5 (50%). First, fre-
quent closed itemsets must be extracted from the dataset. In 𝒟 with 𝑚𝑖𝑛_𝑠𝑢𝑝𝑝 = 3
there are 6 FCIs, namely 𝐴 (supp: 4), 𝐶 (4), 𝐴𝐶 (3), 𝐵𝐸 (4), 𝐴𝐵𝐸 (3) and
𝐵𝐶𝐸 (3). Note that the total number of frequent itemsets by these parameters is
12. Only those itemsets can be used for generating association rules that contain
at least 2 items. There are 4 itemsets that satisfy this condition, namely itemsets
𝐴𝐶 (supp: 3), 𝐵𝐸 (4), 𝐴𝐵𝐸 (3) and 𝐵𝐶𝐸 (3). Let us see which rules can be
generated from the itemset 𝐵𝐶𝐸 for instance. Applying the algorithm from [1], we
get three rules: 𝐶𝐸 → 𝐵, 𝐵𝐸 → 𝐶 and 𝐵𝐶 → 𝐸. Their support is known, it is
equal to the support of 𝐵𝐶𝐸. To calculate the confidence values we need to know
the support of the left sides too. The support of 𝐵𝐸 is known since it is a closed
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itemset, but 𝐶𝐸 and 𝐵𝐶 are non-closed. Their supports can be derived by Prop-
erty 4.3. The smallest frequent closed superset of both 𝐶𝐸 and 𝐵𝐶 is 𝐵𝐶𝐸, thus
their supports are equal to the support of this closed itemset, which is 3. Then,
using the algorithm from [1], we can produce three more rules: 𝐸 → 𝐵𝐶, 𝐶 → 𝐵𝐸
and 𝐵 → 𝐶𝐸. Their confidence values are calculated similarly. From the four
frequent closed itemsets 16 closed association rules can be extracted altogether, as
depicted in Table 1.

5. Minimal non-redundant association rules

As seen in Section 2, minimal non-redundant association rules (ℳ𝒩ℛ) have the
following form: 𝑃 → 𝑄 ∖ 𝑃 , where 𝑃 ⊂ 𝑄, 𝑃 is a generator and 𝑄 is a closed
itemset.

In order to generate these rules efficiently, one needs to extract the frequent
closed itemsets (FCIs), the frequent generators (FGs), and then these itemsets
must be grouped together. That is, to generate these rules, one needs to explore all
the frequent equivalence classes in a dataset (see Figure 1, right). Most algorithms
address either FCIs or FGs, and only few algorithms can extract both types of
itemsets.

Example. Table 1 depicts which ℳ𝒩ℛ rules can be extracted from dataset 𝒟
with 𝑚𝑖𝑛_𝑠𝑢𝑝𝑝 = 3 (60%) and 𝑚𝑖𝑛_𝑐𝑜𝑛𝑓 = 0.5 (50%). As can be seen, there
are 14 ℳ𝒩ℛ rules in the dataset. For instance, 𝐵𝐸 → 𝐴 is not an ℳ𝒩ℛ rule
becasue its antecedent (𝐵𝐸) is not a generator (see Figure 1, right). To learn more
about the ℳ𝒩ℛ rules, please refer to [11].

Comparing 𝒞ℛ and ℳ𝒩ℛ. As we have seen, 𝒞ℛ is a maximal set of closed
association rules, i.e. it contains all closed association rules. As a consequence,
we cannot say that this basis is minimal, or non-redundant, but by all means it is
a smaller set than 𝒜ℛ, especially in the case of dense, highly correlated datasets.
Moreover, 𝒞ℛ is a framework for some other bases. For instance, minimal non-
redundant association rules are also closed association rules, since by definition the
union of the antecedent and the consequent of such a rule forms a frequent closed
itemset. Thus, ℳ𝒩ℛ is a special subset of 𝒞ℛ, which could also be defined the
following way:

Definition 5.1. Let 𝐶𝑅 be the set of Closed Rules. The set of minimal non-
redundant association rules is:

ℳ𝒩ℛ = {𝑟 : 𝑃1 → 𝑃2 | 𝑟 ∈ 𝐶𝑅 ∧ 𝑃1 is a frequent generator}.

This is equivalent to the following definition:

ℳ𝒩ℛ = {𝑟 : 𝑃1 → 𝑃2 | (𝑃1 ∪ 𝑃2) ∈ 𝐹𝐶 ∧ 𝑃1 is a frequent generator},

where 𝐹𝐶 stands for the set of frequent closed itemsets.
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6. Experimental results

For comparing the different sets of association rules (𝒜ℛ, 𝒞ℛ andℳ𝒩ℛ), we used
the multifunctional Zart algorithm [11] from the Coron6 system [10]. Zart was
implemented in Java. The experiments were carried out on an Intel Pentium IV 2.4
GHz machine running Debian GNU/Linux with 2 GB RAM. All times reported are
real, wall clock times as obtained from the Unix time command between input and
output. For the experiments we have used the following datasets: T20I6D100K,
C20D10K and Mushrooms.7 It has to be noted that T20 is a sparse, weakly
correlated dataset imitating market basket data, while the other two datasets are
dense and highly correlated. Weakly correlated data usually contain few frequent
itemsets, even at low minimum support values, and almost all frequent itemsets are
closed. On the contrary, in the case of highly correlated data the difference between
the number of frequent itemsets and frequent closed itemsets is significant.

6.1. Number of rules
Table 2 shows the following information: minimum support and confidence; number
of all association rules; number of closed rules; number of minimal non-redundant
association rules. We attempted to choose significant 𝑚𝑖𝑛_𝑠𝑢𝑝𝑝 and 𝑚𝑖𝑛_𝑐𝑜𝑛𝑓
thresholds as observed in other papers for similar experiments.

In T20 almost all frequent itemsets are closed, thus the number of all rules and
the number of closed association rules is almost equal. For the other two datasets
that are dense and highly correlated, the reduction of the number of rules in the
Closed Rules is considerable.

The size of theℳ𝒩ℛ set is almost equal to the size of 𝒜ℛ in sparse datasets,
but in dense datasets ℳ𝒩ℛ produces much less rules.

6.2. Execution times of rule generation
Figure 3 shows for each dataset the execution times of the computation of all, closed
and minimal non-redundant association rules. For the extraction of the necessary
itemsets we used the multifunctional Zart algorithm [11] that can generate all three
kinds of association rules. Figure 3 does not include the extraction time of itemsets,
it only shows the time of rule generation.

For datasets with much less frequent closed itemsets (C20, Mushrooms), the
generation of closed rules is more efficient than finding all association rules. As
seen before, we need to look up the closed supersets of frequent itemsets very often
when extracting closed rules. For this procedure we use the trie data structure
that shows its advantage on dense, highly correlated datasets. On the contrary,
when almost all frequent itemsets are closed (T20), the high number of superset
operations cause that all association rules can be extracted faster.

6http://coron.loria.fr
7https://github.com/jabbalaci/Talky-G/tree/master/datasets
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dataset 𝒜ℛ 𝒞ℛ ℳ𝒩ℛ
(min_supp) min_conf
𝒟 (40%) 50% 50 30 25

90% 752,715 726,459 721,948
T20I6D100K 70% 986,058 956,083 951,572

(0.5%) 50% 1,076,555 1,044,086 1,039,575
30% 1,107,258 1,073,114 1,068,603
90% 140,651 47,289 9,221

C20D10K 70% 248,105 91,953 19,866
(30%) 50% 297,741 114,245 25,525

30% 386,252 138,750 31,775
90% 20,453 5,571 1,496

Mushrooms 70% 45,147 11,709 3,505
(30%) 50% 64,179 16,306 5,226

30% 78,888 21,120 7,115

Table 2: Comparing sizes of different sets of association rules

dataset 𝒜ℛ 𝒞ℛ ℳ𝒩ℛ
(min_supp) min_conf

90% 114.43 120.30 394.14
T20I6D100K 70% 147.69 152.31 428.59

(0.5%) 50% 165.48 167.07 441.52
30% 169.66 170.06 449.47
90% 15.72 12.49 1.68

C20D10K 70% 26.98 21.10 2.77
(30%) 50% 34.74 24.24 3.35

30% 41.40 27.36 4.04
90% 1.93 1.49 0.54

Mushrooms 70% 3.99 2.44 0.78
(30%) 50% 5.63 2.98 1.00

30% 6.75 3.31 1.28

Table 3: Execution times of rule generation (given is seconds)

Experimental results show that 𝒞ℛ can be generated more efficiently than
ℳ𝒩ℛ on sparse datasets. However, on dense datasets ℳ𝒩ℛ can be extracted
much more efficiently.

7. Conclusion

In this paper we presented a new basis for association rules called Closed Rules
(𝒞ℛ). This basis contains all valid association rules that can be generated from
frequent closed itemsets. 𝒞ℛ is a lossless representation of all association rules.
Regarding the number of rules, our basis is between all association rules (𝒜ℛ) and
minimal non-redundant association rules (ℳ𝒩ℛ), filling a gap between them. The
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new basis provides a framework for some other bases. We have shown thatℳ𝒩ℛ
is a subset of 𝒞ℛ. The number of extracted rules is less than the number of all
rules, especially in the case of dense, highly correlated data when the number of
frequent itemsets is much more than the number of frequent closed itemsets. 𝒞ℛ
contains more rules thanℳ𝒩ℛ, but for the extraction of closed association rules
we only need frequent closed itemsets, nothing else. On the contrary, the extraction
of minimal non-redundant association rules needs much more computation since
frequent generators also have to be extracted and assigned to their closures.

As a summary, we can say that 𝒞ℛ is a good alternative for all association
rules. The number of generated rules can be much less, and beside frequent closed
itemsets nothing else is required.

Acknowledgement

This work was supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002.
The project was supported by the European Union, co-financed by the European
Social Fund.

References

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. I. Verkamo: Fast discovery of
association rules, in: Advances in knowledge discovery and data mining, American Associa-
tion for Artificial Intelligence, 1996, pp. 307–328, isbn: 0-262-56097-6.

[2] R. Agrawal, R. Srikant: Fast Algorithms for Mining Association Rules in Large Databases,
in: Proc. of the 20th Intl. Conf. on Very Large Data Bases (VLDB ’94), San Francisco, CA:
Morgan Kaufmann, 1994, pp. 487–499, isbn: 1-55860-153-8.

[3] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, L. Lakhal: Mining Minimal Non-
Redundant Association Rules Using Frequent Closed Itemsets, in: Proc. of the Computational
Logic (CL ’00), vol. 1861, LNAI, Springer, 2000, pp. 972–986.

[4] B. Ganter, R. Wille: Formal concept analysis: mathematical foundations, Berlin / Hei-
delberg: Springer, 1999, p. 284, isbn: 3540627715.

[5] J. L. Guigues, V. Duquenne: Familles minimales d’implications informatives résultant
d’un tableau de données binaires, Mathématiques et Sciences Humaines 95 (1986), pp. 5–18.

[6] B. Jeudy, J.-F. Boulicaut: Using condensed representations for interactive association
rule mining, in: Proc. of PKDD ’02, volume 2431 of LNAI, Helsinki, Finland, Springer-Verlag,
2002, pp. 225–236.

[7] M. Kryszkiewicz: Concise Representations of Association Rules, in: Proc. of the ESF
Exploratory Workshop on Pattern Detection and Discovery, 2002, pp. 92–109.

[8] M. Luxenburger: Implications partielles dans un contexte, Mathématiques, Informatique
et Sciences Humaines 113 (1991), pp. 35–55.

[9] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal: Efficient mining of association rules
using closed itemset lattices, Inf. Syst. 24.1 (1999), pp. 25–46, issn: 0306-4379,
doi: http://dx.doi.org/10.1016/S0306-4379(99)00003-4.

[10] L. Szathmary: Symbolic Data Mining Methods with the Coron Platform, PhD Thesis in
Computer Science, Univ. Henri Poincaré – Nancy 1, France, Nov. 2006.

Closed Association Rules 75



[11] L. Szathmary, A. Napoli, S. O. Kuznetsov: ZART: A Multifunctional Itemset Mining
Algorithm, in: Proc. of the 5th Intl. Conf. on Concept Lattices and Their Applications (CLA
’07), Montpellier, France, Oct. 2007, pp. 26–37,
url: http://hal.inria.fr/inria-00189423/en/.

76 L. Szathmary



Improving the simultaneous application of
the DSN-PC and NOAA GFS datasets∗

Ádám Vasa, Oluoch Josphat Owinoa, László Tóthab

aFaculty of Informatics, University of Debrecen
vas.adam@inf.unideb.hu
josphatowino@gmail.com

bSciTech Műszer Kft, Debrecen, Hungary
laszlo.toth@scitechmuszer.com

Submitted: February 4, 2020
Accepted: July 1, 2020

Published online: July 23, 2020

Abstract

Our surface-based sensor network, called Distributed Sensor Network for
Prediction Calculations (DSN-PC) obviously has limitations in terms of ver-
tical atmospheric data. While efforts are being made to approximate these
upper-air parameters from surface-level, as a first step it was necessary to
test the network’s capability of making distributed computations by apply-
ing a hybrid approach. We accessed public databases like NOAA Global
Forecast System (GFS) and the initial values for the 2-dimensional computa-
tional grid were produced by using both DSN-PC measurements and NOAA
GFS data for each grid point. However, though the latter consists of assim-
ilated and initialized (smoothed) data the stations of the DSN-PC network
provide raw measurements which can cause numerical instability due to mea-
surement errors or local weather phenomena. Previously we simultaneously
interpolated both DSN-PC and GFS data. As a step forward, we wanted for
our network to have a more significant role in the production of the initial
values. Therefore it was necessary to apply 2D smoothing algorithms on the
initial conditions. We found significant difference regarding numerical stabil-
ity between calculating with raw and smoothed initial data. Applying the
smoothing algorithms greatly improved the prediction reliability compared
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to the cases when raw data were used. The size of the grid portion used for
smoothing has a significant impact on the goodness of the forecasts and it’s
worth further investigation. We could verify the viability of direct integra-
tion of DSN-PC data since it provided forecast errors similar to the previous
approach. In this paper we present one simple method for smoothing our
initial data and the results of the weather prediction calculations.

Keywords: sensor network, distributed computing, weather prediction, data
assimilation, data smoothing

MSC: 86A10, 68M14

1. Introduction

Sensor networks have generated a great interest in scientific areas and becoming
more popular as the devices used for building such a network are available at a
low price while their reliability and capabilities are higher than ever before. In the
early days sensor networks consisted of simple data logger devices equipped with
sensors. Their only role was to collect and store the measured data. However,
recent sensor networks usually make real-time data available through the Internet,
and they can be used for purposes other than data logging.

Such sensor networks are already widely used by meteorological agencies, al-
though their network nodes (sensor stations) are of a much developed and industrial
category. However, a lot of other competitors entered the business worldwide, and
it looks like they can produce significant results, too. One reason for that is the
higher spatial resolution in terms of surface-level measurements. With the evolu-
tion of wireless technologies and IoT, their role is expected to grow even further.

It’s worth mentioning that the computing potential that’s available at large
meteorological agencies is unquestionably a great advantage. Still, there is po-
tential in sensor networks in this matter, because the network nodes can also be
used for computational tasks [25, 27]. This way a central supercomputer can be
eliminated because the calculations can be performed in a fully distributed way.
Previously we followed a mixed approach by integrating our own Distributed Sen-
sor Network for Prediction Calculations (DSN-PC) nodes and NOAA GFS data
into a hybrid sensor- and computational network [28]. Following that, we wanted
to step further by increasing the involvement of our own measurements in the final
hybrid network’s initial data. This approach arose some problems that we tried
to mitigate, such as big differences (spikes) between two geographically adjacent
measurements. Due to the simplicity of our currently used numerical model these
caused numerical instability and incorrect results in the forecast calculations. This
is a widely researched area in meteorology and several data assimilation [1, 16, 17]
and data smoothing [14, 21, 31] techniques exist to address that problem. Among
them, the spline methods have been the most widely used which have been dis-
cussed in several articles [2, 4–7, 20, 24, 29] and algorithms are already available to
implement them in a distributed form [22]. Applications in atmospheric and geo-
sciences also show the viability of these smoothing methods [11, 12, 15]. A subtype
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called thin-plate smoothing spline procedure described by Hutchinson [10] has been
widely used in geosciences and performed well in global studies [18, 19] as well as
in comparative tests of multiple interpolation techniques [9, 13]. Our final goal is
to implement it on our system in a distributed form – however, before moving to
these advanced techniques we aimed for a much simpler distributed algorithm to
check if smoothing alone is enough to achieve numerical stability and satisfactory
prediction results.

In this paper we introduce a minor improvement over our previous approach by
directly injecting our measurements into the computational grid’s initial data. A
simple smoothing algorithm was applied to the initial data which can be performed
distributedly by the nodes communicating with each other. Below the results of
these numerical weather prediction calculations are shown.

2. System and model description

2.1. The geographical area and data sources
We implemented a virtual sensor network which covers a European area and con-
sists of 20 × 20 nodes forming a regular grid on a map using polar stereographic
projection. In order to produce the results in this paper the network nodes were
simulated as Java threads. Figure 1 shows the locations of the grid points. The
detailed properties of the grid are described in our previous paper [28].

The initial values for the computations are from 2 data sources: our 5 DSN-
PC weather stations installed in Hungary and data from the publicly available
GFS-ANL database [8]. DSN-PC weather stations are equipped with temperature,
pressure and relative humidity sensors [26]. For our currently used model they
calculate the 500 hPa geopotential height from the hypsometric equation [28, 30].
Regarding GFS sources, in the current calculations the 0.5∘ resolution dataset was
used.

2.2. Integrating DSN-PC and GFS data
As a first step we performed natural neighbor interpolation [23, 28] on the 𝑧500
values of the GFS grid points to calculate the 𝑧500 values for the 20 × 20 compu-
tational grid. For the interpolation the latitude(∘) and longitude(∘) coordinates of
the grid points were converted to (x,y) coordinates based on polar stereographic
map projection [3]:

𝑟 =
cos(latitude)

1 + sin(latitude)
· 2𝑎,

where 𝑎 = 4 · 107/2𝜋 is the radius of the Earth (m). Then

𝑥 = 𝑟 · sin(longitude),
𝑦 = −𝑟 · cos(longitude).
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After the interpolation 5 grid points’ initial values were replaced by DSN-PC mea-
surements. For that purpose we installed our weather stations to geographical
locations near those 5 grid points. Table 1 shows the latitude(∘) and longitude(∘)
coordinates of the grid points and their respective DSN-PC stations.

Figure 1: The regular grid of the 20 × 20 computational network
(marked with +), the grid points of the NOAA GFS dataset (marked
with ·), the geographical locations of our DSN-PC weather stations
in Hungary (marked with o) and the 5 grid points whose data were
replaced by the nearest DSN-PC stations’ data (marked with *)

ID lat (∘N) lon (∘E) grid point lat (∘N) grid point lon (∘E)
1 48.17 20.42 48.18 20.14
2 46.92 19.67 47.08 19.55
3 46.65 21.29 46.67 21.15
4 47.31 18.01 47.46 17.91
5 46 18.68 45.98 18.99

Table 1: The geographic locations of our currently operational
DSN-PC weather stations and their respective grid points
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2.3. The distributed smoothing algorithm
Sometimes the DSN-PC measurements contain outlier values. The reason for these
can be measurement errors or local weather phenomena. If we do not handle these
errors, our simple model cannot handle the big differences between adjacent grid
points and will produce incorrect results. To smooth out those spikes we applied
a simple averaging algorithm which is executed by each node before starting the
forecast algorithm. The nodes get the initial values from their adjacent nodes and
calculate the average of those and their own values. The adjacency distance can
vary between 1–3 hops, thence near neighbours are always queried and distant
neighbors may be queried as well. On Figure 2 the algorithm’s operation is visu-
alized on a 20 × 20 grid. On Figure 3 the flowchart diagram of the algorithm is
shown.

Figure 2: Examples of smoothing areas for different nodes with
Np = 1 (red) and Np = 2 (blue)

2.4. The forecast algorithm
The applied distributed algorithm is based on the barotropic vorticity equation and
was developed by Charney, Fjørtoft, and von Neumann (CFvN) [3]. Later, during
our previous work we altered it so that it operates on a distributed sensor network.
The details of how the algorithm operates on the network nodes were covered
previously [25]. Like in the previous case [28] we ran calculations on data from the
period between 2019.03.21. and 2019.03.27. For each day the measurements taken
at 00:00 UTC were chosen as initial values. The Mean Absolute Error (MAE) was
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calculated for each forecast by

MAE =
1

18 · 18
18∑︁

𝑖=1

18∑︁

𝑗=1

⃒⃒
𝑧500,𝑖,𝑗 − 𝑧′500,𝑖,𝑗

⃒⃒
,

where 𝑧′500,𝑖,𝑗 is the predicted and 𝑧500,𝑖,𝑗 is the measured 500 hPa geopotential 24
hours later. Due to the special way of handling the boundary grid points [3] we
did not include them in the calculation of MAE.

Np = max_neighbor_distance

sum = initial_value

count = 1

i = max(0 , node_x-Np)

 

i < min(node_x+Np , number_of_rows-1)

j = max(0 , node_y-Np)

 true 

smoothed_value = sum / count

 false 

 

j < min(node_y+Np , number_of_cols-1)

i!=node_row && j!=node_col

 true 

i++

 false 

nv = tcpGetNeighborValue(neighbor_row , neighbor_col)

 true 

j++

 false  sum = sum + nv

count++

Figure 3: The smoothing algorithm as executed on one node
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3. Results

The MAE values of the forecast calculations are summarized in Table 2 where the
previous (simultaneous interpolation) results [28] are also included for comparison.
The CFvN algorithm remained numerically unstable in cases where the initial data
were unsmoothed and stable when smoothing was applied. The adjacency distance
(Np = 1, 2, 3) value used during the smoothing phase had a significant impact on
the goodness of the forecast. As a general rule, a minimum of Np = 2 seems to be
necessary to achieve satisfactory results. On Figure 4 the initial, the analysis and
the forecast height fields are shown for 2019.03.21. 00:00 UTC.
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(d) Height field measured 24 hours later

Figure 4: Initial height fields and the result of the CFvN forecast
performed on 2019.03.21. 00:00 UTC data
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date previous method
current method

no smoothing smoothing
Np = 1 Np = 2 Np = 3

CFvN pers CFvN pers CFvN CFvN CFvN
2019.03.21. 59.52 31.29 NaN 31.14 206.06 22.82 34.91
2019.03.22. 50.63 44.33 NaN 45.26 182.30 45.52 38.89
2019.03.23. 73.76 49.23 81.19 50.00 202.92 87.90 61.31
2019.03.24. 37.88 94.54 NaN 93.87 41.81 96.91 79.26
2019.03.25. 85.71 101.07 89.95 100.12 206.17 134.39 77.60
2019.03.26. 46.33 60.31 NaN 59.79 253.58 57.04 65.44
2019.03.27. 35.87 61.54 NaN 61.10 207.80 40.87 76.99

Table 2: Mean Absolute Error (m) values of the forecast calcula-
tions performed by the CFvN algorithm and the persistence method

Regarding performance, the smoothing algorithm’s execution time strongly de-
pends on the network conditions, but shouldn’t take more than a few seconds.
This, in our current hardware environment, is negligible compared to the forecast
algorithm’s typical execution time which is a few minutes.

4. Conclusion

We succeeded in integrating DSN-PC measurements and GFS datasets into a com-
mon dataset used as initial conditions for the CFvN weather forecast algorithm.
It is a step forward from the simultaneous interpolation because of the direct in-
tegration of our data. As can be seen from the results, handling the outliers in
the 2D grid is necessary while we use the CFvN algorithm. For that purpose, we
successfully implemented a simple data smoothing algorithm on the virtual net-
work nodes that can compute it by communicating with each other. This way we
could achieve numerical stability in every investigated case. As a next step this
smoothing method can be refined, especially on the boundaries. More complex
smoothing methods can also be tested on the input data, although their conversion
into distributed form can be challenging. However, the best way to improve our
system would be the application of more advanced forecast models that can handle
small-scale phenomena. Currently our system is not eligible to compete with more
advanced and complex weather prediction models. Instead, our long-term goal is
to make highly distributed weather prediction calculations possible.
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Abstract

The current paper takes into consideration a cognitive radio network with
impatient customers, by the help of finite-source retrial queueing system. We
consider two different types of customers (Primary and Secondary) assigned
to two interconnected frequency bands. A first frequency band with a priority
queue and a second one with an orbit, both are respectively dedicated for the
Primary Users (PUs) and Secondary Users (SUs). In case the servers are
busy, both customers (Licensed and Unlicensed) join either the queue or the
orbit. Before joining the orbit, secondary customers receive a random retrial
time according to Exponential distribution, which is the holding time before
the next retry. Unlicensed users (impatient) are obliged to leave the system
once their total waiting time exceeds a given maximum waiting time.

The novelty of this work is the investigation of the abandonment and its
impact on several performance measures of the system such as the mean re-
sponse time and waiting time of users, probability of abandonment of SU, etc.
Several figures illustrate the problem in question by the help of simulation.

Keywords: Retrial queuing systems, simulation, cognitive radio networks,
performance and reliability measures, Impatient customers, Tandem queue,
Abandonment.
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1. Introduction

Cognitive Radio (CR) is a smart technique capable to get rid of the under-utilization
spectrum issues, by allowing secondary customers to use opportunistically the pri-
mary channel without performing any interference to the communication of the
primary customers to enhance the performance of the network. This intelligent
technology is skilled to modify its transmitter parameters in compliance with the
interaction of the environment in which it operates. The main objective of CRN
is to exploit the unused sections of the primary frequency bands for the favour of
unlicensed customers, more details can be found in [1, 6, 8, 24].

The expression cognitive radio was presented for the first time in 1999 by Mitola
[13], explaining that this technology is conscious of the surrounding environment
where performers and can adjust its parameters to improve customers performance.
Several studies and researches, as [25, 28] reveal that often many parts of the chan-
nels are unused in time and space. These parts (white spaces) are not occupied
by any licensed users. Secondary users in these parts of the service unit can de-
tect this disuse and communicate freely with each other without performing any
harmful consequences on the primary users. Nowadays, two types of Cognitive
Radio Network exist. The first type is termed as (underlay network) in which
unlicensed users might use the primary channels simultaneously with the licensed
users, based on some predetermined conditions. The second type is called (overlay
networks) where the unlicensed users are allowed at any given time to use the Pri-
mary Service Unit whilst it is unoccupied by licensed customers, more information
was introduced by the authors of [18, 22, 26, 29] . However, the current paper
deals with overlay CRN, by modelling a system that contains two finite-source
subsystems(Primary and Secondary).

In this queuing system, we take into account two elements, a first subsystem is
allocated for the jobs of Primary Users (PU), with a finite number of sources. In
this subsystem, each source generates a primary call for the PUs after an exponen-
tially distributed time, the latter requests are forwarded to a single server Primary
Channel Service (PCS) with a preemptive discipline (FIFO queue) to start the
service, supposing that the service time is exponentially distributed as well. The
second component of the model is built for the requests of Secondary Users (SU),
coming from a fi nite-source and heading to the Secondary Channel Service (SCS),
knowing that the source and service times of the secondary users are exponentially
distributed.

The generated primary tasks are targeting the PCS to check its accessibility. If
this service unit is unoccupied, the service starts immediately. However, if the PCS
is busy by another primary job, this last task joins a First In First Out (FIFO)
queue. Nevertheless, if a secondary job is being treated in the primary unit, this
job disconnects right away and should be routed back to the Secondary Channel
Service.

Per the status of the secondary channel, the cancelled task either begins again
the service on its original server (SCS) or joins the retrial queue (orbit). Besides,
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the secondary channel will receive the low priority requests. If the aimed unit is idle,
the service might start immediately, otherwise, these secondary requests will try to
join the primary unit. If it is free the secondary requests have the opportunity to
begin. If not, they will join automatically the orbit. From the orbit, the postponed
requests retry to get the service after an exponentially distributed random interval,
more details can be found in [6, 8, 18, 22, 24, 29].

In this study, we assume that impatient customers in the orbit who their total
waiting times exceed a given maximum waiting time need to leave the system,
which is the novelty of this work.

Several studies have investigated the CRN based on different scenarios. Taking
[20] as an example the authors have used some methods of queuing theoretical
on a finite source cognitive radio network with two service units (primary and
secondary) in order to examine the main performances of this system by the help
of tool-supported approach.

However, in a similar work [2] authors studied a single server network, which
is subject to breakdowns and repairs. This kind of networks suffer from many
difficulties while dealing with the requests, as the breakdown of the only server
affects the whole network.

By the help of retrial queuing model and using Primary and Secondary service
channels [14] supposed that both units are subject to random breakdowns and
repairs. The authors used several distributions (Exponential, Hypo and Hyper
Exponential) in order to show the impact of these distributions on the performance
measures of the system.

As extended work, in [27] Gamma distribution was added to the above men-
tioned above distributions.

In papers [15] and [16] authors used as well Hypo, Hyper and Exponential dis-
tributions supposing that the secondary users of the system are subject to collisions
and the two services in the system are unreliable, respectively.

However, after a deep dive in many similar investigations and studies, we fig-
ured out that none of them dealt with this model taking into consideration the
abandonment phenomena.

Instead, many probes analysed abandonment in other types of network, en-
dorsing that customers can leave systems from queues, server units, while getting
services and while waiting, more details are found in [5, 9–11, 23]. However, in the
present paper, we suppose that the impatient users (Secondary ones) are forced to
leave the system from the orbit only while waiting.

Several figures will show the impact of the abandonment on the performance
measures of the system, by the help of simulation.

2. System’s operation model

Fig.1 demonstrates a finite source queuing system that models the considered cog-
nitive radio network. Our queuing system consists of two not independent, inter-
connected sub-systems. A first part is allocated to primary requests, with 𝑁1 the
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Figure 1: Finite-source retrial queuing system: Modeling the Cog-
nitive Radio Network with impatient customers

number of sources. These sources will be responsible for generating a high priority
requests with an inter-request time exponentially distributed, using a parameter 𝜆1.
All the produced requests are directed to a single server unit (PCS) with a FIFO
queue. The service times of the primary tasks are supposed to be exponentially
distributed as well with rate 𝜇1.

The second subsystem is devoted for the low-priority requests. The number of
sources is denoted by 𝑁2, the inter-arrival times and service times in this subsystem
are assumed to be exponentially distributed with parameter 𝜆2 and 𝜇2, respectively.

Both servers can be in two states: idle or busy. Per the server’s state, the
generated primary packet goes to the primary server (if the server is idle) or joins
the FIFO queue (if the service unit is busy with a PU). However, if the PCS is
occupied by an unlicensed user, its service is instantly stopped and the interrupted
secondary request is sent back to the Secondary unit.

Depending on the availability of the secondary unit, the aborted task is ad-
dressed either to the server or the retrial queue (orbit) and reties again its service
from the beginning after an exponentially distributed time with parameter 𝜈.

In the other hand, requests from SUs are directed to SCS. If it is idle, the service
begins, if not, this unlicensed task will sens the PCS. In case of an idle status for
PCS, this service may opportunistically join the high priority channel. If the PCS
is engaged, the request goes to the orbit. It should be noted that Secondary Users
in the orbit are obliged to leave the system once their total waiting time will exceed
a specified maximum waiting time.

We introduce the following notations, to create a stochastic process describing
the behaviour of the system:

• 𝑘1(𝑡): represents the number of licensed sources at given time 𝑡;

• 𝑘2(𝑡): refers to the number of unlicensed at time given 𝑡;
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• 𝑞(𝑡): is the number of primary requests in the queue at certain time 𝑡;

• 𝑜(𝑡): denotes the number of tasks in the orbit at time 𝑡;

• 𝑦(𝑡) = 0, if the primary channel is idle, 𝑦(𝑡) = 1, if the primary channel is
processing (busy) a high-priority request and 𝑦(𝑡) = 2, if the primary service
unit is processing (busy) a low-priority request at time 𝑡;

• 𝑐(𝑡) = 0, if the secondary service unit is idle(free) and 𝑐(𝑡) = 1, if the sec-
ondary service unit is busy at given time 𝑡.

As consequence we can see that:

𝑘1(𝑡) =

{︃
𝑁1− 𝑞(𝑡), y(t)=0,2,
𝑁1− 𝑞(𝑡)− 1, y(t)=1.

As a result we can see that:

𝑘2(𝑡) =

{︃
𝑁2− 𝑜(𝑡)− 𝑐(𝑡), y(t)=0,1,
𝑁2− 𝑜(𝑡)− 𝑐(𝑡)− 1, y(t)=2.

We assume that all the random variables used in the model construction are ex-
ponentially distributed, therefore we decided to use a stochastic simulation by the
help of C coding language with GSL stochastic library.

All the numerical results of this were collected by the validation of the simulation
outputs. Speaking of exponentially distributed inter-event time, we can construct
continuous-time Markov chain and the main steady-state performance measures
can be obtained, see for example [19]. The input parameters are displayed in
Table 1.

Parameters Value at moment 𝑡 Maximum Value
Primary sources 𝑘1(𝑡) N1

Secondary Sources 𝑘2(𝑡) N2
Primary arrival rate 𝜆1

Secondary arrival rate 𝜆2

Number of requests at the queue (FIFO) 𝑞(𝑡) N1-1
Number of requests at the orbit 𝑜(𝑡) N2-1

Primary service rate 𝜇1

Secondary service rate 𝜇2

Table 1: Parameters of the simulation

3. Simulation results

The batch-mean method was used in the simulation to estimate the mean response
times of the requests. This method is a common confidence interval technique
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which is applied for steady-state simulation output analysis. See for example [3, 4,
7, 12, 21].

Based on the values shown in Table 2 we could generate several figures supposing
that the maximum waiting time of SU is constant, it should be noted as well, that
in our simulation the Secondary Users were divided into two categories (Successful
and Abandoned).

Figure No. N1 N2 𝜆1 𝜆2 𝜇1 𝜇2 𝜈 𝑀𝑎𝑥𝑊.𝑇.

Figure 2,3 7 12 0.5 0.2 2 1 10 x-axis
Figure 4 6 6 0.6 x-axis 4 4 0.4 10
Figure 5 8 10 0.5 0.2 1 0.5 20 x-axis

Table 2: Numerical values of model parameters

Figure 2: The effect of the Maximum waiting time of SU on the
Probability of loss of SU

Figure 2 illustrates the impact of the maximum waiting time of SU on the
probability of loss, as anticipated, by increasing the abandonment time, the proba-
bility of loss decreases as more secondary customers have the chance to get served
without leaving the system, which makes the SCS busier.

Using the following formula we could generate Figure 3:

𝑊𝑎 = 𝑃𝑎𝑏𝑜𝑛.𝐶 + (1− 𝑃𝑎𝑏𝑜𝑛)𝑊𝑠𝑢𝑐𝑐

• 𝑊𝑎: Mean waiting time of an arbitrary (patient or impatient) SU

• 𝑃𝑎𝑏𝑜𝑛: Probability of abandonment

• 𝐶: Maximum waiting time of SU
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Figure 3: The effect of the Maximum waiting time of SU on the
mean waiting time of an arbitrary SU

• 𝑊𝑠𝑢𝑐𝑐: Mean waiting time of successful Secondary user.

In Figure 3 the effect of abandonment time of SU on the mean waiting time
of an arbitrary SU (Patient or Impatient) was displayed. This figure confirms the
expectation that is increasing the maximum waiting time for SU involves higher
waiting times for the two categories of unlicensed customers.

Figure 4: The effect of the secondary arrival rate on the mean
response time of the successful Secondary Users
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Figure 4 shows the effect of the request generation rate on the mean response
time of the secondary users. The result presents the phenomenon of having a maxi-
mum value of the mean response time which was noticed in [17]. The abandonment
of impatient SU from the orbit provides shorter response time for the patient users.

Figure 5: The effect of the Maximum waiting time of SU on the
Utilization of SCS

The last Figure exhibits the effect of the abandonment time of the secondary
users on the utilization of the secondary server. The innovation of abandonment
contributes less utilization for the server when the maximum waiting time is too
small, as a consequence, only the SU with a small amount of waiting time will
benefit the service.

4. Conclusion

In this paper a finite-source retrial queuing model was introduced using two not
independent, interconnected channels servicing licensed and unlicensed users in a
cognitive radio network with abandonment from the orbit. Licensed users have
preemptive priority over the unlicensed ones in servicing at the primary channel.
However, at the secondary channel, an orbit was established for the secondary jobs
finding the secondary service unit occupied upon arrival. SU may leave the system
from the orbit, once their total waiting time reaches a given maximum. By the
help of simulation, several sample examples were obtained, showing the effect of
the abandonment on the different performance measures of the system.

Lastly, as future work, we will keep investigating the impact of the abandon-
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ment on a such system assuming that the maximum waiting time is a generally
distributed random variable.

Acknowledgements. The research work of János Sztrik and Mohamed Hedi
Zaghouani is supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002
and by the Stipendium Hungaricum Scholarship, respectively.

References

[1] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, S. Mohanty: Next generation/dynamic spec-
trum access/cognitive radio wireless networks: A survey, Computer networks 50.13 (2006),
pp. 2127–2159,
doi: https://doi.org/10.1016/j.comnet.2006.05.001.

[2] B. Almási, T. Bérczes, A. Kuki, J. Sztrik, J. Wang: Performance modeling of finite-
source cognitive radio networks, Acta Cybernetica 22.3 (2016), pp. 617–631,
doi: https://doi.org/10.14232/actacyb.22.3.2016.5.

[3] E. Carlstein et al.: The use of subseries values for estimating the variance of a general
statistic from a stationary sequence, The annals of statistics 14.3 (1986), pp. 1171–1179,
doi: https://doi.org/10.1214/aos/1176350057.

[4] E. J. Chen, W. D. Kelton: A procedure for generating batch-means confidence intervals
for simulation: Checking independence and normality, Simulation 83.10 (2007), pp. 683–694,
doi: https://doi.org/10.1177/0037549707086039.

[5] E. Danilyuk, O. Vygoskaya, S. Moiseeva: Retrial queue M/M/N with impatient customer
in the orbit, in: International Conference on Distributed Computer and Communication
Networks, Springer, 2018, pp. 493–504,
doi: https://doi.org/10.1007/978-3-319-99447-5_42.

[6] N. Devroye, M. Vu, V. Tarokh: Cognitive radio networks, IEEE Signal Processing Mag-
azine 25.6 (2008), pp. 12–23,
doi: https://doi.org/10.1109/MSP.2008.929286.

[7] G. S. Fishman, L. S. Yarberry: An implementation of the batch means method, INFORMS
Journal on Computing 9.3 (1997), pp. 296–310,
doi: https://doi.org/10.1287/ijoc.9.3.296.

[8] S. Gunawardena, W. Zhuang: Modeling and Analysis of Voice and Data in Cognitive
Radio Networks, Springer, 2014,
doi: https://doi.org/10.1007/978-3-319-04645-7.

[9] Q.-M. He, H. Zhang, Q. Ye: An M/PH/K queue with constant impatient time, Mathe-
matical Methods of Operations Research 87.1 (2018), pp. 139–168,
doi: https://doi.org/10.1007/s00186-017-0612-2.

[10] R. Ibrahim: Managing queueing systems where capacity is random and customers are im-
patient, Production and Operations Management 27.2 (2018), pp. 234–250,
doi: https://doi.org/10.1111/poms.12796.

[11] R. Kulshrestha et al.: Channel allocation and ultra-reliable communication in CRNs with
heterogeneous traffic and retrials: A dependability theory-based analysis, Computer Commu-
nications (2020).

[12] A. M. Law, W. D. Kelton, W. D. Kelton: Simulation modeling and analysis, vol. 3,
McGraw-Hill New York, 2000.

[13] J. Mitola, G. Q. Maguire: Cognitive radio: making software radios more personal, IEEE
personal communications 6.4 (1999), pp. 13–18,
doi: https://doi.org/10.1109/98.788210.

Performance evaluation of finite-source Cognitive Radio Networks . . . 97



[14] H. Nemouchi, J. Sztrik: Performance Simulation of Finite-Source Cognitive Radio Net-
works with Servers Subjects to Breakdowns and Repairs, Journal of Mathematical Sciences
237.5 (2019), pp. 702–711,
doi: https://doi.org/10.1007/s10958-019-04196-y.

[15] H. Nemouchi, J. Sztrik: Performance evaluation of finite-source cognitive radio networks
with collision using simulation, in: 2017 8th IEEE International Conference on Cognitive
Infocommunications (CogInfoCom), IEEE, 2017, pp. 000127–000131,
doi: https://doi.org/10.1109/CogInfoCom.2017.8268228.

[16] H. Nemouchi, J. Sztrik: Performance evaluation of finite-source cognitive radio net-
works with non-reliable services using simulation, in: Annales Mathematicae et Informati-
cae, vol. 49, Eszterházy Károly University Institute of Mathematics and Informatics, 2018,
pp. 109–122,
doi: https://doi.org/10.33039/ami.2018.12.001.

[17] H. Nemouchi, J. Sztrik: Performance Simulation of Non-reliable Servers in Finite-Source
Cognitive Radio Networks with Collision, in: International Conference on Information Tech-
nologies and Mathematical Modelling, Springer, 2017, pp. 194–203,
doi: https://doi.org/10.1007/978-3-319-68069-9_16.

[18] F. Palunčić, A. S. Alfa, B. T. Maharaj, H. M. Tsimba: Queueing models for cognitive
radio networks: A survey, IEEE Access 6 (2018), pp. 50801–50823,
doi: https://doi.org/10.1109/ACCESS.2018.2867034.

[19] J. Sztrik: On the finite-source G/M/r queue, European Journal of Operational Research
20.2 (1985), pp. 261–268,
doi: https://doi.org/10.1016/0377-2217(85)90068-2.

[20] J. Sztrik, B. Almási, J. Roszik: Heterogeneous finite-source retrial queues with server
subject to breakdowns and repairs, Journal of Mathematical Sciences 132.5 (2006), pp. 677–
685,
doi: https://doi.org/10.1007/s10958-006-0014-0.

[21] H. C. Tijms: A first course in stochastic models, John Wiley and sons, 2003,
doi: https://doi.org/10.1002/047001363X.

[22] T. Van Do, N. H. Do, Á. Horváth, J. Wang: Modelling opportunistic spectrum renting in
mobile cellular networks, Journal of Network and Computer Applications 52 (2015), pp. 129–
138,
doi: https://doi.org/10.1016/j.jnca.2015.02.007.

[23] J. Wang, H. Abouee Mehrizi, O. Baron, O. Berman: Staffing Tandem Queues with
Impatient Customers–Application in Financial Service Operations, Rotman School of Man-
agement Working Paper 3116815 (2018),
doi: https://doi.org/10.2139/ssrn.3116815.

[24] L. Wang, C. Wang, F. Adachi: Load-Balancing Spectrum Decision for Cognitive Radio
Networks, IEEE Journal on Selected Areas in Communications 29.4 (2011), pp. 757–769,
doi: https://doi.org/10.1109/JSAC.2011.110408.

[25] T. A. Weiss, F. K. Jondral: Spectrum pooling: an innovative strategy for the enhancement
of spectrum efficiency, IEEE communications Magazine 42.3 (2004), S8–14,
doi: https://doi.org/10.1109/MCOM.2004.1273768.

[26] E. W. Wong, C. H. Foh: Analysis of cognitive radio spectrum access with finite user
population, IEEE Communications Letters 13.5 (2009), pp. 294–296,
doi: https://doi.org/10.1109/LCOMM.2009.082113.

[27] M. H. Zaghouani, J. Sztrik, A. Uka: Simulation of the performance of Cognitive Radio
Networks with unreliable servers, in: Annales Mathematicae et Informaticae.

[28] S. A. Zekavat, X. Li: User-central wireless system: ultimate dynamic channel allocation,
in: First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access
Networks, 2005. DySPAN 2005. IEEE, 2005, pp. 82–87.

98 M. H. Zaghouani, J. Sztrik



[29] Y. Zhao, L. Bai: Performance analysis and optimization for cognitive radio networks with
classified secondary users and impatient packets, Mobile Information Systems 2017 (2017),
doi: https://doi.org/10.1155/2017/3613496.

Performance evaluation of finite-source Cognitive Radio Networks . . . 99





Review papers





A comprehensive review on software
comprehension models∗

Anett Fekete, Zoltán Porkoláb

Eötvös Loránd University, Faculty of Informatics
{hutche,gsd}@inf.elte.hu

Submitted: February 4, 2020
Accepted: July 9, 2020

Published online: July 23, 2020

Abstract

Software comprehension is one of the most important among software de-
velopment tasks since most developers do not start a brand new software
every time they switch jobs or get transferred from one project to another
but join long-running software projects. Every experienced and expert devel-
oper has their own established methods of understanding complex software
systems. These methods might be different for everyone but they still have
common aspects by which multiple well-defined code comprehension models
can be constructed. Furthermore, the degree of understanding of a software
can be categorized as well, according to the ability of the programmer to mod-
ify or develop a certain part of the software system. This paper is intended
to provide a review of the cognitive software comprehension models estab-
lished by extensive research in this topic as well as describe the dimensions
of understanding software. It also determines the editor support of cognition
models by examining common editor functionalities and categorizing code
editors based on the availability of functionalities of each cognition approach.
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1. Introduction

Since the very inception of computer science, software comprehension has been an
ongoing challenge for everyone that ever tried to understand any unfamiliar code.
Each programmer, even the ones with the least experience possesses some kind of
– either conscious or subconscious – way of understanding source code. Naturally,
more experienced developers have more sophisticated methods and workflows, since
they are more familiar with the language, framework and architecture they work
with.

Throughout the history of computer science, several researchers tried to grasp
how a programmer approaches software comprehension and constructed high-level
abstraction models from the collected information. There have been several em-
pirical experiments done in this area where researchers observed the process of
understanding unfamiliar source code and tried to draw comprehension patterns
from the results. The acquired information was used to define mental models that
determine a certain direction of thinking while a developer is executing code com-
prehension tasks. As a result of decades of research, several complete cognition
models were constructed which can be classified as being one of two determinant
approaches, or a combination of them.

Cognition models are easily applicable in everyday software development. If
we consider code editor functionalities, we can see that they can be categorized
into one or both approaches according to their individual purpose. Based on this
classification, we can also determine which approach is supported by code editors.

Sec. 2 provides an overview of the common elements of comprehension models,
followed by a comprehensive review on comprehension approaches illustrated by
the most well-designed mental models of each category. We classify the common
software comprehension features in standalone comprehension tools and code ed-
itors in Sec. 3 by the categories discussed in Sec. 2 and decide about the most
popular editors which category they fit in based on their available features. Sec. 4
concludes our paper.

2. Models of code comprehension

Although computer science is a relatively new discipline, it has always been a great
interest of software programmers to find a decent way to understand program code
that has been written by fellow developers. One of the most frequent activities of
a programmer is comprehending the code others wrote from the very beginning of
their careers. Several prestigious companies tried to measure exactly how much
time is spent looking at or searching for code: IBM found in 1989 that more than
50% of working hours are consumed by static analysis [3]. A research conducted by
Microsoft in 2007 [2] showed that 95% of developers thought code comprehension
was an important part of their daily tasks while 65% said that they engage in
software comprehension activities at least once a day.
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Every programmer, no matter how little experience they have, has their own,
conscious or subconscious way of getting familiar with unknown source code. Young
programmers at the beginning of their career often try to understand code in an
ad hoc way, e.g. jumping from one part of the code to another while running the
program. On the other hand, experienced programmers usually don’t just hop
into the middle of a code but tries understanding in a more structured, thus more
effective way.

The methods applied by different programmers provide us with information
about the workflow of software comprehension, from which several different struc-
tures can be extracted. A structure constitutes a mental model which is an abstrac-
tion of the software comprehension process. Several comprehension models have
been constructed since the beginning of software production and multiple excel-
lent research papers tried to collect and classify them based on similar viewpoints.
Comprehensive research was done by von Mayrhauser [19] who also constructed
their own mental model (see Sec. 2.4). Another similar review was done by Storey
[18]. The paper of O’Brien [12] presents a somewhat different review as he compares
the models based on their data collection methods. They all determined two main
directions for software comprehension: top-down (see Sec. 2.2) and bottom-up (see
Sec. 2.3).

As noticed by Levy [10], top-down models serve the purpose of learning about
architecture and system components first, then move onto finer details. On the
other hand, the bottom-up approach is the exact opposite, intended to obtain
knowledge about smaller code snippets of a feature. However, the two directions
can be switched between in an opportunistic way, thus creating combined compre-
hension models.

2.1. Common elements in comprehension models
All research on the subject revealed that comprehension models have common ele-
ments of which the models’ components are built up. Practically, the elements are
telltale code snippets and conjectures about the programming goals, and activities
that brings the developer closer to the complete mental model.

• Static elements include recognizable patterns and clues in the source code as
well as domain knowledge and conjectures.

– Beacons [20] are signs standing close to human thinking that may give
a hint for the programmer about the purpose of the examined code, e.g.
function or variable identifiers.

– Chunks [4] are coherent code snippets that describe some level of ab-
straction in the program (e.g. an algorithm).

– Hypotheses [9] are assumptions about the source code based on domain
knowledge that are a result of applying various comprehension tech-
niques. They are classified by Letovsky [9] according to whether they
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are aimed at the purpose (why), implementation method (how) or type
(what) of a source code detail like a function.

– Plans [17] include characteristic features of the source code that are so
frequently used that they are easily recognizable.

∗ Domain plans include high-level abstractions about the problem do-
main and its environment. It contains the mapping of real-world ob-
jects to programming objects (not necessarily meaning the objects
of the object-oriented paradigm).

∗ Programming plans describe typical practical concepts, e.g. data
structures and their operations or significant details of algorithms.

– Rules of programming discourse are the consensus about coding that are
intended to facilitate comprehension by not having to adapt to other
programmers’ coding habits like coding style. Rules may determine
coding conventions or data structure and algorithm implementations.

– Text-structure knowledge [19] contains information about statements
and commands in the source code and their relationships. It includes
familiarity with control statement syntax and semantics.

• Dynamic elements are comprehension activities that bring the developer
closer to the complete mental model.

– Strategies include methods in the comprehension process to move from
low-level abstractions to high-level ones.

∗ Chunking [4] is the process of producing higher level chunks from
lower level chunks. After repeating the process multiple times, high-
level abstractions can be built.

∗ Cross-referencing connects different abstraction levels by mapping
the elements of source code to level description elements. Cross-
referencing is the key step in building a mental model of the existing
abstractions.

2.2. Top-down approach
Generally speaking, when applying a model that belongs to the set of top-down
approach models means that the programmer starts the comprehension process
from “the big picture” and gradually moves on to the smaller details of the project.
The first step is to acquire a comprehensive system overview e.g. by running the
program and placing breakpoints through which the programmer can trace the
running process and locate the significant parts.

The developer in this case is usually equipped with some previous domain knowl-
edge. In the theory of Brooks [1], comprehension is built upon the domain knowl-
edge by constituting an initial hypothesis about the source code. This is later
refined into follow-up hypotheses that are either proved right or wrong.
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When the developer comes across a familiar algorithm, the same algorithm
should be easily understandable for them in a different programming language or
framework. This serves as a base to the cognitive model of Soloway, Adelson and
Ehrlich [17], who also focus on the hierarchical structure of programming plans and
goals. The plans are also ordered in their own hierarchical upbuilding. They say
that programmers also make use of beacons and rules of programming discourse
during the comprehension process.

2.3. Bottom-up approach
The bottom-up approach is the opposite of the top-down approach, as in when
applied, programmers first try to understand the details of the code, then move
towards the larger units by chunking the code statements. Shneiderman and Mayer
[16] present a theory that consists of two main knowledge areas: the language de-
pendent syntactic knowledge and the semantic knowledge that, although indepen-
dent of any particular programming language, relies heavily on general program-
ming knowledge. The semantic knowledge is built up of hierarchically structured
layers from low-level details to the actual, high-level mental model.

Pennington [14] describes a similar, two-component model in her paper. How-
ever, unlike the previous model, the components here are rather coordinative than
completing each other like the syntactic and semantic knowledge. According to
Pennington, a program model is built first in the programmer’s mind by observing
the control-flow of the program. Then, a situation model is built while refining the
program model in parallel, which incorporates the programming goals.

2.4. Combined approaches
Some cognition models apply both the top-down and bottom-up approach in some
form; either they have a component that opportunistically applies one direction
(or switch between them if needed) or utilize elements of other models from both
approaches in their own components. An example for the former case is Letovsky’s
[9] model. Beside the knowledge base and the internal representation, it consists
of a third component, the assimilation process which follows the discursive human
thinking as it tries to acquire the most knowledge possible in the shortest possible
time. During the assimilation process, the developer soaks up as much information
as possible with the help of the knowledge base and external representations of the
code (like documentation).

Another similarly high-level combined mental model was described by von
Mayrhauser et al. [19], called the integrated metamodel. Four major components
build up this model, two of them borrowed from Pennington’s bottom-up model
[14] (the program and situation model) and one borrowed from the top-down model
of Soloway, Adelson and Ehrlich [17] (the top-down model). These three compo-
nents are supported by a knowledge base. Any of the components can be activated
at any time during the comprehension process.
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3. Tool support for understanding the comprehen-
sion process

Other than domain knowledge like language syntax or coding conventions, program-
mers are aided by various software features during code comprehension activities.
There are standalone tools that were made for specifically this purpose such as
CodeCompass [15], CodeSurveyor [6] or OpenGrok [13]. These software provide a
wide range of textual and/or visual information about the source code. However,
most modern integrated development environments (IDEs) and code editors are
also rich in code comprehension supporting functionalities [11, 18]. These can be
categorized according to the cognition approach they support, top-down, bottom-
up, or even both, when a functionality serves multiple actions in the comprehension
process.

3.1. Editor functionalities
• Call hierarchy views support the top-down approach since they offer a

well-structured view of the program’s control-flow.

• Code browsing: top-down comprehension is intuitively helped by searching
for previously captured beacons in the software files. On the other hand,
control-flow and data-flow is also supported by code browsing which are key
elements of bottom-up comprehension.1

• Find all references is an obvious tool for bottom-up comprehension since
it serves as a navigation tool when the developer tries to get a hint of the
usage of a symbol thus helps in chunking. Control-flow is also supported by
this feature.

• Go to definition supports top-down comprehension because its main pur-
pose is to find the definition (source) of a beacon thus helps the programmer
move from higher to lower abstraction level.

• Intelligent code completion supports top-down comprehension as it offers
the possibility to capture beacons by providing intuitive perspective of the
various classes, functions and variables of a program.

• Split view provides top-down perspective as it makes the developer able to
grasp beacons from multiple files at the same time. This functionality also
supports typical bottom-up elements like data-centric views.

• UML diagrams are in support of top-down comprehension as their pur-
pose is to provide a high-level visualization of the code structure (e.g. class
diagram, activity diagram) and the program domain (e.g. use-case diagram).

1By code browsing we mean high-level navigation across files, classes, symbols etc., not a
simple text search.
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Functionality Top-down Bottom-up
Call graphs 3 7

Code browsing 3 3

Find all references 7 3

Go to definition 3 7

Code completion 3 7

Split view 3 3

UML diagrams 3 7

Table 1: Classification of editor functionalities based on cognition
approaches

3.2. Editors and comprehension models
As Table 1 shows, most functionalities primarily support top-down comprehension.
If we investigate the available tools in the most popular IDEs [11], we can determine
which cognition approach is supported by a certain IDE.

Top-down Bottom-
up Both

Editor Call
graphs

Go to
defini-
tion

Code
com-

pletion

UML
dia-

grams

Find all
refer-
ences

Code
brows-

ing

Split
view

Atom 7 3 3 7 3 7 3

Eclipse 3 3 3 3 3 3 3

JetBrains 3 3 3 3 3 3 3

NetBeans 3 3 3 7 3 3 3

Notepad++ 7 7 3 7 7 7 3

Sublime
Text 7 3 3 7 3 3 3

vim 7 3 3 7 3 3 3

Visual Stu-
dio Code 3 3 3 7 3 3 3

Table 2: Editor support of cognition approaches

Table 2 shows that the most popular IDEs and code editors support every
software comprehension approach in general by providing the previously classified
functionalities. All-purpose IDEs support most if not all examined features. Open-
source IDEs like Eclipse and Visual Studio code are further extendable by software
comprehension supporting plugins [5, 11]. It is also worth noticing that IDEs
generally perform poorly regarding visual features such as call graphs or diagrams.
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4. Conclusion

In this paper, we gave a comprehensive review on the various types of code compre-
hension models and their influence on software editors. We discussed their common
elements, and categorized the cognition models based on their components and the
direction of their workflow. We investigated several widespread code editor features
and classified them considering whether they support a comprehension approach
or not. This investigation allowed us to determine which of the most popular IDEs
support the described approaches based on the availability of functionalities. We
determined that the majority of IDEs support all approaches.

It is worth considering that well-defined cognition models seem to be overly
strict regarding the human thinking process. Multiple research has shown that
developers do not usually follow a rigorous pattern or a concrete model during
their understanding activities, they rather apply opportunistic strategies [7]. For
example, Koenemann et al. [8] concluded that programmers perform best in com-
prehension tasks when they try to understand only the relevant parts of the code
in an as-needed manner. This means that cognition models work well as abstrac-
tions about the comprehension process and are also provide a good basis for IDE
functionalities but they shouldn’t be considered the only ways of ’correct’ compre-
hension workflows.
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Abstract

The evolution of computer hardware in the past decades has truly been
remarkable. From scalar instruction execution through superscalar and vector
to parallel, processors are able to reach astonishing speeds – if programmed
accordingly. Now, writing programs that take all the hardware details into
consideration for the sake of efficiency is extremely difficult and error-prone.
Therefore we increasingly rely on compilers to do the heavy-lifting for us.

A significant part of optimizations done by compilers are loop optimiza-
tions. Loops are inherently expensive parts of a program in terms of run time,
and it is important that they exploit superscalar and vector instructions. In
this paper, we give an overview of the scientific literature on loop optimiza-
tion technology, and summarize the status of current implementations in the
most widely used C and C++ compilers in the industry.

Keywords: loops, optimization, compilers, C, C++

MSC: 68N20 Compilers and interpreters

1. Introduction

The Illiac IV, completed in 1966, was the first massively parallel supercomputer
[13]. It marked the first milestone in a decades-long period that would see com-
puting machines become unbelievably fast and increasingly complex. To harness
the capabilities of such ever more parallel systems, researchers started writing tools
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that could transform sequential programs (typically written in Fortran for scientific
applications) to their own parallel equivalents.

By the mid 70’s, a group of University of Illinois researchers led by David Kuck
developed the Parafrase [18] tool, which pioneered the most influential ideas on
automatic program transformations including dependence testing [19] and the first
loop transformations [32].

In the late 70’s, researchers led by Ken Kennedy at Rice University started the
Parallel Fortran Compiler (PFC) [2] project. The authors’ initial goal was to extend
Parafrase, but they ended up implementing a completely new system, furthering
the theory of data dependence [4] and inventing effective algorithms for a number
of transformations including vector code generation, the handling of conditional
statements [3], loop interchange, and other new transformations [5].

In this paper, we take a step aside, and instead of discussing the optimization
of Fortran programs, for which most of the classical algorithms have been invented,
we take a look at how C and C++ compiler writers are coping with the challenge.
C family languages are very similar to Fortran, but notorious for the lack of con-
straints imposed on the programmer, which makes their analysis and optimization
undoubtedly more difficult.

The structure of this paper is as follows. Section 2 describes the challenges C
and C++ compiler developers face in contrast to classic Fortran optimization, and
lists some of the strategies used to mitigate these issues. In Section 3, we give a
status report of loop optimizations in the two open-source compilers most heavily
used in the industry. Finally, in Section 4, we survey the latest research papers in
the field of loop optimizations.

2. Adapting classic algorithms for C/C++

2.1. Challenges in optimizing C/C++
In their 1988 paper, [6] Allen and Johnson pointed out a number of considerations
that make the vectorization and parallelization of C code difficult, as opposed to
Fortran, the language that inspired most of the classic loop transformations in the
literature. These concerns pose a challenge in optimizing programs written in C
and C++ to the present day:

• Pointers instead of subscripts. C/C++ programs often address memory
using pointer variables rather than arrays and explicit subscripts. Because
of this, it is extremely difficult to decide whether two statements refer to the
same section of memory or not.

• Sequential operators. Conditional operators and operators with side ef-
fects (e.g. ++) are inherently sequential. Vectorization of such operations
require them to be either transformed or removed.

• Loops. The for statement used in C family languages is less restricted than
the DO loop of Fortran, for which most of the classic loop transformations
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were developed. This makes its vectorization considerably more difficult. The
loop can contain operations that almost arbitrarily change the loop variable,
and the loop body can contain branching statements.

• Small functions. Function calls can hide information that is necessary
for optimization. Modern compilers often run optimizations together with
inlining in an iterative fashion, trying to regain some information lost to the
fine modularity encouraged in C and C++.

• Argument aliasing. Unline Fortran, function parameters in C and C++
are allowed to point into the same section of memory. Aliasing prohibits
vectorization, but can only be checked at run-time, resulting in a high run-
time cost.

• Volatile. In C, volatile variables represent values that may change outside
of the context of the program, even if the change cannot be “seen” from
the source code. Obviously, such language constructs are very difficult to
optimize.

• Address-of operator. The & operator allows the programmer to take the
address of any variable and modify it. This greatly increases the analysis
needed for optimization.

2.2. Compiler strategies for C/C++ optimization
Inlining. The problems listed in the previous section are relatively hard to handle
in compilers. Suprisingly, a large portion of the problems can be removed by the
judicious inlining of function calls. Some of the benefits of inlining:

• If the body of a function call is available in the caller function, the compiler
no longer has to calculate its effects conservatively, assuming the worst case.
It can use the actual function body, making the analysis more precise, and
allowing more optimizations to happen.

• Some of the argument aliasing problems disappear when the origins of arrays
become visible.

• Function calls are inherently sequential operations. Their removal helps vec-
torization in its own right.

A high-level IR. Low-level intermediate representations had long been the norm
for C [16] and Fortran [29] compilers before their vectorizing versions began gaining
ground. Lowering the code too early can introduce unnecessary complexity in the
analyses that precede optimizations. For example, the ability to analyze loops and
subscripts is crucial for loop optimizations, and breaking down the loop into gotos
and pointers would make it considerably more difficult. Other information such as
the volatile modifier also get lost or obfuscated after the lowering phase.
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Loop conversion. The C for loop is a fairly unconstrained language construct:
the increment and termination conditions can have side effects, bounds and strides
can change during execution, and control can enter and leave the loop body. Be-
cause of this, most C compilers perform a doloop conversion, when they attempt
to transform the unconstrained for loop into a more regular DO-like form. It often
makes sense to do the high-level transformations on this representation as well.

3. Loop optimization in modern compilers

The most widely used C and C++ compilers include both open-source (GCC,
LLVM) and commercial (Microsoft Visual C++, IBM XL, Intel C Compiler) prod-
ucts. Unfortunately, there is limited information available for closed-source appli-
cation, thus in this section we decided to review the status of loop transformations
in GCC and LLVM. Both of these compilers are heavily used in the industry, and
have a populous base of active contributors.

3.1. LLVM
The LLVM optimization pipeline [24] consists of 3 stages. The Canonicalization
phase removes and simplifies the IR as much as possible by running scalar opti-
mizations. The second part is called the Inliner cycle, as it runs a set of scalar
simplification passes, a set of simple loop optimization passes, and the inliner itself
iteratively. The primary goal of this part is to simplify the IR, through a cycle of
exposing and exploiting simplification opportunities. After the Inliner cycle, the
Target Specialization phase is run, which deliberately increases code complexity
in order to take advantage of target-specific features as make the code as fast as
possible on the target.

Figure 1: The LLVM optimization pipeline

LLVM supports various pragmas that allow users to guide the optimization
process, which saves them the trouble of performing the optimizations by hand.
Alternatively, they can rely on the heuristics in the compiler that strive to achieve
similar performance gains.

The optimization infrastructure is modular, passes can be switched on and off on
demand [17]. The currently available loop transformation passes are the following:
loop unrolling, loop unswitching, loop interchange, detection of memcpy and memset

116 R. Kovács, Z. Porkoláb



idioms, deletion side-effect-free loops, loop distribution, and loop vectorization.
Members of the open-source community are working on adding loop fusion to the
list [7].

As part of the modular structure of the optimizer, a common infrastructure
is available to optimizations in the form of certain passes that perform analy-
ses (LoopInfo, ScalarEvolution) and normalizing transformations (LoopRotate,
LoopSimplify, IndVarSimplify) on the loops.

Many of the mentioned loop transformations are disabled by default, as they
are either experimental in nature or not mature enough to be used by the wide
public. Such transformations are e.g. LoopInterchange and LoopUnrollAndJam.

The order of the loop optimizations is fixed within the pipeline. This may result
in conflicts or less profitable sequences of transformations. Additionally, because
scalar and loop passes are run in cycles, they often interfere with each other by
destroying canonical structures and invalidating analysis results.

A recent proposal plans to switch to a single integrated LoopOptimizationPass
that would not interact with scalar optimizations, making it simpler. Similarly, the
introduction of a loop tree intermediate representation could make loop modifica-
tions easier and might also help the profitability analysis. This idea is inspired by
red-green trees [23] used in the Roslyn C# compiler.

3.2. GCC
As the early days of GCC date back to the 80’s, its old monolithic structure made
it hard to keep it aligned with the forefront of optimization research for a long
time. However, its loop optimizer was almost completely re-written in the early
2000’s [11]. Its new modular structure is similar to that of LLVM’s, starting with
an initialization pass, followed by several optimization passes, and ended with a
trivial finalization phase that de-allocates any data structures used.

During initialization, the optimizer runs the induction variable, scalar evolution,
and data dependence analyses [8] to gather necessary information about the loop,
and performs preliminary transformations that simplify and canonicalize it. The
optimization passes include loop unswitching, loop distribution, and two types
of auto-vectorization [22]. The middle block of pass_graphite transformations
refers to the polyhedral framework GRAPHITE that comes with GCC, but is
unfortunately turned off by default, due to a lack of resources for maintenance.

In spite of its long history, GCC was still not very good at optimizing loop nests
in 2017 [9]. This was mainly caused by

• a lack of traditional loop nest transformations, including loop interchange,
unroll-and-jam, loop fusion and scalar expansion,

• transformations in need of a revision, and possibly

• a suboptimal arrangement of passes.
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Figure 2: The GCC optimization pipeline

Since 2017, members of the community have started adding some of the missing
transformations to the compiler, e.g. loop interchange [14], but others e.g. loop
fusion and scalar expansion are still future work.

Similarly to LLVM, the latest proposal to the pass arrangement problem is a
single loop transformation pass with a unified cost model.

4. Current trends in optimization research

Transformation ordering. One of the main research directions in the past few
years concerns the choice of loop transformations and their ordering. With ever
more complex machines, the performance gap between hand-tuned and compiler-
generated code is getting wider. [31] presents a system and language named Locus
that uses empirical search to automatically generate valid transformation sequences
and then return the list of steps to the best variant. The source code needs to
be annotated. [33] gives a template of scheduling algorithms with configurable
constraints and objectives for the optimization process. The template considers
multiple levels of parallelism and memory hierarchies and models both temporal
and spatial effects. [10] describes a similar loop transformation scheduling approach
using dataflow graphs. [30] recognizes that some combinations of loop optimizations
can create memory access patterns that interfere with hardware prefetching. They
give an algorithm to decide whether a loop nest should be optimized mainly for
temporal or mainly for spatial locality, taking hardware prefetching into account.
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Straight-line code vectorization. The past few years saw significant new de-
velopments in the field of straight-line code vectorization. The original Superword-
Level Parallelism algorithm (SLP) [20] was designed for contiguous memory access
patterns that can be packed greedily into vector instructions, without expensive
data reordering movements. Throttled SLP [26] attempts to identify statements
harmful to vectorization and stop the process earlier if that leads to better re-
sults. SuperGraph SLP [25] operates on larger code regions and is able to vectorize
previously unreachable code. Look-ahead SLP [28] extends SLP to commutative
operations, and is implemented in both LLVM and GCC. The latest development,
SuperNode SLP [27] enables straight-line vectorization for expressions involving a
commutative operator and its inverse.

Improving individual transformations. Other research efforts target the im-
provement of individual optimizations. [21] gives an algorithm to locate where to
perform code duplication in order to enable optimizations that are limited by con-
trol flow merges. [1] describes a software prefetching algorithm for indirect memory
accesses. [12] shows how to discover scalar reduction patterns and how it was im-
plemented in an LLVM pass. [15] created a framework to enable collaboration
between different kinds of dependency analyses.

5. Conclusion

In the age when hardware evolution makes machines ever more complex, compiler
optimizations become ever more important, even for the simplest applications. This
paper gave a short history of parallel hardware and compiler optimizations, followed
by a discussion of hardships that the C and C++ languages pose to compiler
writers. We gave a status report on the loop optimizing capabilities of the most
popular open-source compilers for these languages, GCC and LLVM. In the end,
we reviewed the latest research directions in the field of loop optimization research.

Acknowledgements. The publication of this paper is supported by the Euro-
pean Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-
2017-00002).

References

[1] S. Ainsworth, T. M. Jones: Software prefetching for indirect memory accesses, in: 2017
IEEE/ACM International Symposium on Code Generation and Optimization (CGO), IEEE,
2017, pp. 305–317,
doi: https://doi.org/10.1145/3319393.

[2] J. R. Allen, K. Kennedy: PFC: A program to convert Fortran to parallel form, tech. rep.,
1982.

Loop optimizations in C and C++ compilers: an overview 119



[3] J. R. Allen, K. Kennedy, C. Porterfield, J. Warren: Conversion of control depen-
dence to data dependence, in: Proceedings of the 10th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, 1983, pp. 177–189,
doi: https://doi.org/10.1145/567067.567085.

[4] J. R. Allen: Dependence Analysis for Subscripted Variables and Its Application to Program
Transformations, AAI8314916, PhD thesis, USA, 1983,
doi: https://doi.org/10.5555/910630.

[5] R. Allen: K. Kennedy, Automatic translation of FORTRAN programs to vector form. A
CM Transactzons on Programming Languages and Systems 9.2 (1987), pp. 491–542,
doi: https://doi.org/10.1145/29873.29875.

[6] R. Allen, S. Johnson: Compiling C for vectorization, parallelization, and inline expansion,
ACM SIGPLAN Notices 23.7 (1988), pp. 241–249.

[7] K. Barton: Loop Fusion, Loop Distribution and their Place in the Loop Optimization
Pipeline, LLVM Developers’ Meeting, 2019,
url: https://www.youtube.com/watch?v=-JQr9aNagQo.

[8] D. Berlin, D. Edelsohn, S. Pop: High-level loop optimizations for GCC, in: Proceedings
of the 2004 GCC Developers Summit, Citeseer, 2004, pp. 37–54.

[9] B. Cheng: Revisit the loop optimization infrastructure in GCC, GNU Tools Cauldron, 2017,
url: https://slideslive.com/38902330/revisit-the-loop-optimization-infrastructure-
in-gcc.

[10] E. C. Davis, M. M. Strout, C. Olschanowsky: Transforming loop chains via macro
dataflow graphs, in: Proceedings of the 2018 International Symposium on Code Generation
and Optimization, 2018, pp. 265–277,
doi: https://doi.org/10.1145/3168832.

[11] Z. Dvorák: A New Loop Optimizer for GCC, in: GCC Developers Summit, Citeseer, 2003,
p. 43.

[12] P. Ginsbach, M. F. O’Boyle: Discovery and exploitation of general reductions: a con-
straint based approach, in: 2017 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), IEEE, 2017, pp. 269–280.

[13] R. M. Hord: The Illiac IV: the first supercomputer, Springer Science & Business Media,
2013.

[14] Introduce loop interchange pass and enable it at -O3. https://gcc.gnu.org/ml/gcc-
patches/2017-12/msg00360.html, Accessed: 2020-05-24.

[15] N. P. Johnson, J. Fix, S. R. Beard, et al.: A collaborative dependence analysis frame-
work, in: 2017 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), IEEE, 2017, pp. 148–159.

[16] S. C. Johnson: A portable compiler: theory and practice, in: Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, 1978, pp. 97–104,
doi: https://doi.org/10.1145/512760.512771.

[17] M. Kruse: Loop Optimizations in LLVM: the Good, the Bad, and the Ugly, LLVM Devel-
opers’ Meeting, 2018,
url: https://www.youtube.com/watch?v=QpvZt9w-Jik.

[18] D. J. Kuck: Automatic program restructuring for high-speed computation, in: International
Conference on Parallel Processing, Springer, 1981, pp. 66–84,
doi: https://doi.org/10.1007/BFb0105110.

[19] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, M. Wolfe: Dependence graphs and
compiler optimizations, in: Proceedings of the 8th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, 1981, pp. 207–218,
doi: https://doi.org/10.1145/567532.567555.

120 R. Kovács, Z. Porkoláb



[20] S. Larsen, S. Amarasinghe: Exploiting superword level parallelism with multimedia in-
struction sets, Acm Sigplan Notices 35.5 (2000), pp. 145–156,
doi: https://doi.org/10.1145/349299.349320.

[21] D. Leopoldseder, L. Stadler, T. Würthinger, et al.: Dominance-based duplication
simulation (DBDS): code duplication to enable compiler optimizations, in: Proceedings of
the 2018 International Symposium on Code Generation and Optimization, 2018, pp. 126–
137,
doi: https://doi.org/10.1145/3168811.

[22] D. Naishlos: Autovectorization in GCC, in: Proceedings of the 2004 GCC Developers Sum-
mit, 2004, pp. 105–118.

[23] Persistence, Facades and Roslyn’s Red-Green Trees, https://docs.microsoft.com/en-
gb/archive/blogs/ericlippert/persistence-facades-and-roslyns-red-green-trees,
Accessed: 2020-05-24.

[24] Polly: The Architecture. https://polly.llvm.org/docs/Architecture.html, Accessed:
2020-05-24.

[25] V. Porpodas: Supergraph-slp auto-vectorization, in: 2017 26th International Conference on
Parallel Architectures and Compilation Techniques (PACT), IEEE, 2017, pp. 330–342,
doi: https://doi.org/10.1109/PACT.2017.21.

[26] V. Porpodas, T. M. Jones: Throttling automatic vectorization: When less is more, in:
2015 International Conference on Parallel Architecture and Compilation (PACT), IEEE,
2015, pp. 432–444,
doi: https://doi.org/10.1109/PACT.2015.32.

[27] V. Porpodas, R. C. Rocha, E. Brevnov, L. F. Góes, T. Mattson: Super-Node SLP: op-
timized vectorization for code sequences containing operators and their inverse elements, in:
2019 IEEE/ACM International Symposium on Code Generation and Optimization (CGO),
IEEE, 2019, pp. 206–216,
doi: https://doi.org/10.1109/CGO.2019.8661192.

[28] V. Porpodas, R. C. Rocha, L. F. Góes: Look-ahead SLP: Auto-vectorization in the
Presence of Commutative Operations, in: Proceedings of the 2018 International Symposium
on Code Generation and Optimization, 2018, pp. 163–174,
doi: https://doi.org/10.1145/3168807.

[29] R. G. Scarborough, H. G. Kolsky: A vectorizing Fortran compiler, IBM Journal of
Research and Development 30.2 (1986), pp. 163–171,
doi: https://doi.org/10.1109/10.1147/rd.302.0163.

[30] S. Sioutas, S. Stuijk, H. Corporaal, T. Basten, L. Somers: Loop transformations
leveraging hardware prefetching, in: Proceedings of the 2018 International Symposium on
Code Generation and Optimization, 2018, pp. 254–264,
doi: https://doi.org/10.1145/3168823.

[31] S. T. Teixeira, C. Ancourt, D. Padua, W. Gropp: Locus: a system and a language for
program optimization, in: 2019 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), IEEE, 2019, pp. 217–228,
doi: http://doi.acm.org/10.1145/2737924.2738003.

[32] M. J. Wolfe: High performance compilers for parallel computing, Addison-Wesley Longman
Publishing Co., Inc., 1995.

[33] O. Zinenko, S. Verdoolaege, C. Reddy, et al.: Modeling the conflicting demands of
parallelism and temporal/spatial locality in affine scheduling, in: Proceedings of the 27th
International Conference on Compiler Construction, 2018, pp. 3–13,
doi: https://doi.org/10.1145/3178372.3179507.

Loop optimizations in C and C++ compilers: an overview 121








	AMI-51-borító
	AMI-51-belív

