
A survey on the global optimization
problem using Kruskal–Wallis test

Viliam Ďuriš, Anna Tirpáková

Department of Mathematics
Constantine The Philosopher University in Nitra

Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
vduris@ukf.sk

atirpakova@ukf.sk

Submitted: April 1, 2020
Accepted: May 26, 2020

Published online: June 3, 2020

Abstract

The article deals with experimental comparison and verification of stochas-
tic algorithms for global optimization while searching the global optimum in
dimensions 3 and 4 of selected testing functions in Matlab computing envi-
ronment. To draw a comparison, we took the algorithms Controlled Random
Search, Differential Evolution that we created for this test and implemented
in Matlab, and fminsearch function which is directly built in Matlab. The
basic quantities to compare algorithms were time complexity while searching
the considered area and reliability of finding the global optimum of the 1st De
Jong function, Rosenbrock’s saddle, Ackley’s function and Griewangk’s func-
tion. The time complexity of the algorithms was determined by the number of
test function evaluations during the global optimum search and we analysed
the results of the experiment using the “Kruskal–Wallis test” non-parametric
method.

Keywords: global optimization; test functions; simplex; population; Con-
trolled Random Search; Differential Evolution; fminsearch; Matlab, Kruskal–
Wallis test

MSC: 90C26, 62G09

Annales Mathematicae et Informaticae
52 (2020) pp. 281–298
doi: https://doi.org/10.33039/ami.2020.05.004
url: https://ami.uni-eszterhazy.hu

281

1. Introduction

In mathematics, we often solve a problem that we characterize as finding a mini-
mum value of an examined function (so-called global optimization) 𝑓 : 𝐷 → 𝑅 on
a specific set 𝐷 ⊆ 𝑅𝑑, 𝑑 ∈ 𝑁 . This minimum value (global minimum or global
optimum) is one or more points from the smallest functional value set 𝐷, that is
a set {𝑥′ ∈ 𝐷 : 𝑓(𝑥′) ≤ 𝑓 (𝑥) ∀𝑥 ∈ 𝐷} [8]. From mathematical analysis, we know
the procedure for finding the extreme of a function when 𝑑 = 2 and there are the
first and second function derivatives. However, finding a general solution to the
problem formulated this way is very difficult (or even impossible) for any 𝑑 or if
the function considered is multimodal or not differentiable [3]. Any determinis-
tic algorithm addressing the generally formulated problem of global optimization
is exponentially complex [2]. That is why we use the so-called randomly working
(stochastic) algorithms to find a solution to this task, which, although not capable
of finding a solution, are capable of finding a satisfactory solution to the problem
within a reasonable time. Thus, for the same input problem, such an algorithm
performs several different calculations and we aim to create conditions for the al-
gorithm so that we reduce the probability of incorrect calculation as much as pos-
sible. Today, the use of stochastic algorithms, especially of the evolutionary type,
is very successful in seeking global optimization functions [4]. Those are simple
models of Darwin’s evolutionary theory of populations development using selection
(the strongest individuals are more likely to survive), crossing (from two or more
individuals new individuals with combined parental properties will emerge) and
mutation (accidental modification of information that an individual bears); to cre-
ate a population with better properties. For some classes of evolution algorithms,
the truly best “individuals” of the population are approaching the global optimum.

Experimental verification and comparison of algorithms on test functions offer
us an insight into the performance and behavior of the used global optimization
algorithms. Based on this, we can then decide which algorithm is most efficient
and usable under the given conditions when solving practical tasks. The most basic
test functions include the 1st De Jong function, Rosenbrock’s saddle (2nd De Jong
function), Ackley’s function and Griewangk’s function. Matlab source code of these
functions can be found in [12].

In the Matlab environment, there are several implemented optimization func-
tions, of which the fminsearch function [6] is very important. The fminsearch
function serves for finding a global minimum of the function of multiple variables.
The variables of the function, the global minimum of which we are looking for,
are entered into the vector and, also, we specify the so-called start vector 𝑥0, from
which the search for the minimum will start. The start vector 𝑥0 must be suffi-
ciently close to the global minimum (not necessarily in unimodal functions only),
because different estimates of the start vector may result in different local minima
being found instead of the global one. Since the algorithm fminsearch is based on
the so-called simplex method [9], it may happen that the solution will not be found
at all. Otherwise, the fminsearch function returns the vector 𝑥, that is the point

282 V. Ďuriš, A. Tirpáková

at which the global minimum of the given function is located.
Some optimization parameters for global minimum search can be specified in

options structure using the function optimset [7]. Then the generic call command
of the fminsearch function has the form

[x, fval, exitflag, output] = fminsearch(fun, x0, options),

where fun is a string that records a given mathematical function, 𝑥0 start vector,
search setup options, x is the resulting vector of the global minimum, fval func-
tional value at 𝑥, exitflag is a value, which specifies the type of search termination
and output is a structure that contains the necessary optimization information (al-
gorithm used, number of function evaluations, number of iterations).

For each algorithm, we need to distinguish four types of search termination.
Type 1 is the correct completion of the algorithm when it is found (sufficiently
close) to the global minimum, type 2 means that the algorithm is completed by
reaching the maximum allowed number of iterations (although it converts to a
global minimum), type 3 is an early convergence (the algorithm has completed
searches in the local minimum) and type 4 means that browsing is completed by
reaching the maximum allowed number of iterations, but no close point to the
minimum has been found.

In order to determine the type of algorithm termination for the fminsearch
function, it is possible to use the nested funcCount element of the output structure
(which gives the number of function evaluations). You can also find out how to
complete by using the exitflag element.

The Controlled Random Search (CRS) algorithm [11] works with a population
of 𝑁 points in space 𝐷, from which a new point 𝑦 is generated with the so-called
simplex reflex. Simplex 𝑆 = {𝑥1, 𝑥2, . . . , 𝑥𝑑+1} is a set of randomly selected 𝑑 + 1
space 𝐷 points. In simplex, we find the point 𝑥ℎ = max𝑥∈𝑆 𝑓 (𝑥) with the highest
functional value and, as the worst of simplex, we remove it. To the remaining 𝑑
points, we find their center of gravity

𝑔 =
1

2

∑︁

𝑥∈𝑆

(𝑥− 𝑥ℎ) .

Reflexion means a point overturning 𝑥ℎ around the center of gravity 𝑔 to obtain a
point

𝑦 = 𝑔 + (𝑔 − 𝑥ℎ) = 2𝑔 − 𝑥ℎ.

The simplest variant of the reflection algorithm can then be entered as a function
in Matlab as follows: [12]

Reflection algorithm
1: function [y] = reflex(P)
2: N = length(P(:, 1))
3: d = length(P(1, :)) – 1
4: v = random_simplex(N, d + 1)
5: S = P(v, :)

A survey on the global optimization problem using Kruskal–Wallis test 283

6: [x, id] = max(S(:, d + 1))
7: x = S(id, 1:d)
8: S(id, :) = []
9: S(:, d + 1) = []
10: g = mean(S)
11: y = 2*g − x

where a random selection of a set 𝑆 is provided by the function

Random selection algorithm
1: function [res] = random_simplex(N, j);
2: v = 1:N;
3: res = [];
4: for i = 1:j
5: index = fix(rand(1) * length(v)) + 1;
6: res(end + 1) = v(index);
7: v(index) = [];
8: end

If the 𝑓 (𝑦) < 𝑓 (𝑥ℎ), the point 𝑦 of the population replaces the point 𝑥ℎ and we
continue to do so. In case that 𝑓 (𝑦) ≥ 𝑓 (𝑥ℎ), simplex is reduced. By replacing the
worst points of the population, this is concentrated around the lowest functional
point being sought. However, the reflection does not guarantee that the newly
generated point 𝑦 will be in the searched area 𝐷. Then, we flip all coordinates
𝑦𝑖 /∈ ⟨𝑎𝑖, 𝑏𝑖⟩ , 𝑖 = 1, . . . , 𝑑, and inside of the searched area 𝐷 around the relevant
side of the 𝑑−dimensional rectangular parallelepiped 𝐷. The algorithm of the
so-called mirroring can be entered as a function in Matlab:

Mirroring algorithm
1: function [res] = mirror(y, a, b);
2: f = find(y < a | y > b);
3: for i = f
4: while(y(i) < a(i) | y(i) > b(i))
5: if y(i) > b(i)
6: y(i) = 2 * b(i) - y(i);
7: elseif(y(i) < a(i))
8: y(i) = 2 * a(i) - y(i);
9: end
10: end
11: end
12: res = y;

The algorithm’s source text itself, Controlled Random Search, can be then writ-
ten as an m-file crs.m in Matlab.

CRS algorithm
1: function [FunEvals, fval, ResType] = crs(N, d, a, b, TolFun, MaxIter, fnear, fname);
2: P = zeros(N, d + 1);
3: for i = 1:N
4: P(i, 1:d) = a + (b - a).* rand(1, d);
5: P(i, d + 1) = feval(fname,(P(i, 1:d)));
6: end

284 V. Ďuriš, A. Tirpáková

7: [fmax, indmax] = max(P(:, d + 1));
8: [fval, indmin] = min(P(:, d + 1));
9: FunEvals = N;
10: while (fmax - fval > TolFun) & (FunEvals < d * MaxIter)
11: y = reflex(P);
12: y = mirror(y, a, b);
13: fy = feval(fname, y);
14: FunEvals = FunEvals + 1;
15: if(fy < fmax)
16: P(indmax, :) = [y fy];
17: [fmax, indmax] = max(P(:, d + 1));
18: [fval, indmin] = min(P(:, d + 1));
19: end
20: end
21: if fval <= fnear
22: if (fmax - fval) <= TolFun
23: ResType = 1;
24: else
25: ResType = 2;
26: end
27: elseif (fmax - fval) <= TolFun
28: ResType = 3;
29: else
30: ResType = 4;
31: end

The FunEvals variable is the counter of the number of algorithms’ function
evaluations. As the previous selection 𝑁 of population points results in 𝑁 function
evaluation, it must be preset to the value 𝑁 . Line 10 represents a search termination
condition (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 < 𝜖)∨(𝐹𝑢𝑛𝐸𝑣𝑎𝑙𝑠 > 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 * 𝑑) where 𝑑 is the dimension
of the searched area, 𝑓𝑚𝑎𝑥 is the largest functional value that is located in the
searched population, 𝑓𝑚𝑖𝑛 is the smallest functional value, 𝜖 is the tolerance of the
distance of the largest and smallest functional value, MaxIter*d is the limitation
of the maximum number of permitted function evaluations during the execution of
the algorithm. For test functions, where the solution to the problem is known in
advance, it is sufficient that the best point of the population has a value less than
f_near, a value close enough to the global minimum that we pre-set. At the end
of the algorithm, we find the type of search termination.

Differential Evolution is a stochastic algorithm for a heuristic search for a global
minimum using evolutionary operators [10], [1]. The Differential Evolution algo-
rithm creates a new population 𝑄 by gradually creating a point 𝑦 for each point
𝑥𝑖, 𝑖 = 1, . . . , 𝑁 of the old population 𝑃 , and assigning a point with a lower func-
tional value to the population 𝑄 from that pair. The point 𝑦 is created by crossing
the vector 𝑣, where the point 𝑣 is generated from three different points, 𝑟1, 𝑟2, 𝑟3
which are randomly selected from the population 𝑃 and different from the point
𝑥𝑖 of the relationship 𝑣 = 𝑟1 + 𝐹 (𝑟2 − 𝑟3), where 𝐹 > 0 is the input parameter
which can be determined according to different rules and the vector 𝑥𝑖 so that
any of its elements 𝑥𝑖𝑗 , 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . , 𝑑, is replaced by a value 𝑣𝑗 with
probability 𝐶 ∈ ⟨0, 1⟩. If no change occurs for 𝑥𝑖𝑗 or for 𝐶 = 0 one randomly
selected vector 𝑥𝑖 element is replaced. We can see that, compared to the algorithm

A survey on the global optimization problem using Kruskal–Wallis test 285

Controlled Random Search, Differential Evolution does not replace the worst point
in a population but only the worse of a pair of points and thus the Differential
Evolution algorithm tends to end searches in a local minimum. On the other hand,
however, it converges more slowly with the same end condition. The algorithm for
generating a point 𝑦 can be entered as a function in Matlab [12]:

Algorithm for generating a point 𝑦
1: function [y] = gen(P, F, C, v);
2: N = length(P(:, 1));
3: d = length(P(1, :)) - 1;
4: y = P(v(1), 1:d);
5: re = rand_elem(N, 3, v);
6: r1 = P(re(1), 1:d);
7: r2 = P(re(2), 1:d);
8: r3 = P(re(3), 1:d);
9: v = r1 + F * (r2 - r3);
10: prob = find(rand(1, d) < C);
11: if(length(prob) == 0)
12: prob = 1 + fix(d * rand(1));
13: end
14: y(prob) = v(prob);

Selecting points 𝑟1, 𝑟2, 𝑟3 from the population 𝑃 provides a function

Algorithm for selecting points 𝑟1, 𝑟2, 𝑟3
1: function [res] = rand_elem(N, k, v);
2: c = 1 N;
3: c(v)=[];
4: res = zeros(1, k);
5: for i = 1:k
6: index = 1 + fix(rand(1) * length(c));
7: res(i) = c(index);
8: c(index) = [];
9: end

We construct the source text of the algorithm Differential Evolution in the same
way as with the algorithm Controlled Random Search as the m-file difevol.m.

Differential Evolution algorithm
1: function [FunEvals, fval, ResType]
= difevol(N, d, a, b, TolFun, MaxIter, fnear, fname, F, C);
2: P = zeros(N, d + 1);
3: for i = 1:N
4: P(i, 1:d) = a + (b - a) .* rand(1, d);
5: P(i, d + 1) = feval(fname, (P(i, 1:d)));
6: end
7: fmax = max(P(:, d + 1));
8: [fval, imin] = min(P(:, d + 1));
9: FunEvals = N;
10: Q = P;
11: while (fmax - fval > TolFun) (FunEvals < d * MaxIter)
12: for i = 1:N
13: y = gen(P, F, C, i);

286 V. Ďuriš, A. Tirpáková

14: fy = feval(fname, y);
15: FunEvals = FunEvals + 1;
16: if(fy < P(i, d + 1))
17: Q(i, :) = [y fy];
18: end
19: end
20: P = Q;
21: fmax = max(P(:, d + 1));
22: [fval, imin] = min(P(:, d + 1));
23: end
24: if fval <= fnear
25: if (fmax - fval) <= TolFun
26: ResType = 1;
27: else
28: ResType = 2;
29: end
30: elseif (fmax - fval) <= TolFun
31: ResType = 3;
32: else
33: ResType = 4;
34: end

2. Methodology of research and algorithms verifica-
tion and comparison

The experiment was carried out at the Faculty of Natural Sciences of Constan-
tine the Philosopher University in Nitra during the academic years 2018/2019 and
2019/2020. A total of 42 students of single branch study of mathematics and
students of teaching combined with maths, who selected the subject numerical
mathematics, participated in the experiment. The group of students was taught
a selected part “global optimization” of the mathematics curriculum with use of
Matlab.

The aim of our research was to verify the behavior and efficiency of three selected
algorithms in the global optimization problem. We used four known test functions
to test the efficiency of each of the three selected algorithms. In the experiment
while searching a global optimum, we recorded the number of evaluations of each
algorithm used for each of the selected function. When algorithms are compared,
tests must be performed under the same conditions. The experiment was realized
for two different dimensions 𝑑 = 3 and 𝑑 = 4, the number of times the minimum
search is repeated to 100, tolerance 𝜖 to the value seteps = 1e−7; and the default
value MaxIter=10000 for one dimension. The search algorithm ends when the
minimum and maximum distance are at the selected value or the maximum number
of function evaluations has been reached. Especially for the function fminsearch,
the above end condition is maintained by the code sequence:

Termination condition for fminsearch
1: while func_evals < maxfun && itercount < maxiter
2: if max(abs(fv(1)-fv(two2np1))) <= max(tolf,10*eps(fv(1))) &&
3: max(max(abs(v(:,two2np1)-v(:,onesn)))) <= max(tolx,10*eps(max(v(:,1))))
4: break
5: end

A survey on the global optimization problem using Kruskal–Wallis test 287

in the part Main algorithm of the source text fminsearch [6]. The func_evals
variable is in the role of the variable FunEvals, the maxfun constant in the role of
the expression MaxIter*d.

The required limit to the number of algorithm iterations and the tolerance of
any point in the population from the local minimum point, but also the necessary
tolerance 𝜖 of functional values and the limit to the maximum number of test
function evaluations can be adjusted by setting the appropriate parameters of the
structure options for the fminsearch function.

optimset(’MaxFunEvals’, MaxIter*d, ’MaxIter’, MaxIter*d, ’TolX’, seteps,
’TolFun’, seteps));

The dimension of space to be searched, the space limitations, the number of searches
repeated and ensuring that the correct function is linked to the algorithm and
the correct file name for storing the necessary records are entered through the
formal run_test parameters that can be run for each global optimization algorithm
(depending on the altype parameter). While searching for the global optimum,
the function writes the repeat number, the number of function evaluations, the
type of algorithm termination, the function value of the minimum found into the
filenamesaveres text file.

Algorithm for running the test
1: function run_test(fname, filenamesaveres, boundary_interval, repcount, d, algtype);
2: N = 10 * d;
3: a = boundary_interval * ones(1, d);
4: b = -a;
5: MaxIter = 10000;
6: seteps = 1e-7;
7: fnear = 1e-6;
8: fid = fopen(filenamesaveres, ’a’);
9: if(algtype == 3) %fminsearch
10: setval = optimset(’MaxFunEvals’, MaxIter*d, ’MaxIter’, MaxIter*d,
’TolX’, seteps, ’TolFun’, seteps);
11: end
12: for i = 1:repcount
13: i
14: switch(algtype)
15: case 1 %crs
16: [FunEvals, fmin, ResType] = crs(N, d, a, b, seteps, MaxIter, fnear, fname);
17: case 2 %difevol
18: F = 0.8;
19: C = 0.5;
20: [FunEvals, fmin, ResType] = difevol(N, d, a, b, seteps, MaxIter, fnear, fname, F, C);
21: case 3 %fminsearch
22: x = a + (b - a).* rand(1, d);
23: [x, fmin, exitflag, output] = fminsearch(fname, x, setval);
24: FunEvals = output.funcCount;
25: if fmin <= fnear
26: if FunEvals < MaxIter*d
27: ResType = 1;
28: else
29: ResType = 2;
30: end
31: elseif FunEvals < MaxIter*d

288 V. Ďuriš, A. Tirpáková

32: ResType = 3;
33: else
34: ResType = 4;
35: end
36: end
37: fprintf(fid, ’%5.0f ’, i);
38: fprintf(fid, ’%10.0f’, FunEvals);
39: fprintf(fid, ’ %1.0f’, ResType);
40: fprintf(fid, ’ %15.4e’, fmin);
41: fprintf(fid, ’%1s\r\n’, ’ ’);
42: end
43: fclose(fid);

The fminsearch algorithm has 4 output parameters (x, fmin, exitflag, output).
Thus, in determining the type of algorithm termination for the fminsearch func-
tion, it is not possible to use the non-existent variable fmax. The disadvantage in
the run_test function above is solved by using the nested funcCount element of
the output structure, which indicates the number of function evaluations.

We ran the run_test function for each dimension, for each algorithm, and for
each test function, so we each time got 100 evaluations of the test function by
selected algorithm in selected dimension.

Example of calling the run_test function
for the 1st De Jong function in dimension 4
1: fname = ’dejong’;
2: filenamesaveres = ’dejong.txt’;
3: boundary_interval = -5.12;
4: repcount = 100;
5: d = 4;
6: algtype = 1;
7: run_test(fname, filenamesaveres, boundary_interval, repcount, d, algtype);

For example, program code creates a dejong.txt file with 100 rows and 4
columns i, FunEvals, ResType, fmin for the 1st De Jong function in dimension
4, with the CRS algorithm used. Thus, for all combinations of the algorithm and
the test function, we get 12 files for each dimension, each with 100 evaluations.

3. Results of the experiment and their statistical
analysis

Based on the results of the experiment, we can compare the search time complexity
[2] and reliability of the algorithms used. The time complexity of the algorithm
is determined by the number of test function evaluations during the search, which
ensures comparability of results regardless of the speed of the computer used. We
analysed the results of the experiment using selected statistical methods. Since
we have been following the influence of two factors − the algorithm and function
on the assessment numbers, the possibility to use a two-factor variance analysis in

A survey on the global optimization problem using Kruskal–Wallis test 289

addition to descriptive statistics was offered for the assessment of the results of the
experiment. However, we can only use the variance analysis if the following condi-
tions are met: The sample files come from the basic files with normal distributions,
the sample files are independent of each other and the variances of the basic files
are equal. Given that the observed feature assumptions described above were not
met, we used the non-parametric method of Kruskal–Wallis test [5] for the analysis.
Since the Kruskal–Wallis test is a non-parametric analogue to a one-factor analysis,
all combinations of the levels of the original two factors were a factor: algorithms
and types of functions. In our case, we tested 3 algorithms in combination with 4
types of functions, so we gained 12 independent selections (sub-groups) or 12 levels
of the factor “algorithm type + function type” in each of the two dimensions.

In the experiment, 100 measurements of the assessment numbers were per-
formed in dimension 3 and 4 in each of the 12 selections (so-called sub-groups), i.e.
altogether 1200 measurements. The tested problem is formulated as follows. We
test a null hypothesis 𝐻0: the numbers of evaluations in the 12 sub-groups created
according to the factor levels “algorithm type + function type” are identical as in
the alternative hypothesis 𝐻1: The numbers of evaluations in the 12 sub−groups
created according to the factor levels indicated are not identical (or, at least at
a level, they are different). As we have already stated, since the condition of the
normal distribution of observed features was not met, we used the Kruskal–Wallis
test to test the null hypothesis.

The Kruskal–Wallis test is a non-parametric analogue to one-factor variance
analysis, i.e. it allows testing the hypothesis 𝐻0 that 𝑘 (𝑘 ≥ 3) independent files
originate from the same distribution. It is a direct generalization of Wilcoxon
signed-rank test in the case k of independent selection files (𝑘 ≥ 3).

Let’s mark 𝑛1, 𝑛2, . . . , 𝑛𝑘 the ranges of individual selection files. Let’s pose,
𝑛 = 𝑛1 + 𝑛2 + · · · + 𝑛𝑘. Let’s line all 𝑛 elements into a non-decreasing sequence
and let’s assign its rank to each element. Let’s mark 𝑇𝑖 the sum of the elements
ranks of the ith selection file (𝑖 = 1, 2, . . . , 𝑘). Since 𝑇1 + 𝑇2 + · · · + 𝑇𝑘 = 𝑛(𝑛+1)

2
must hold, we can use this relationship to check the calculation of the values of the
characteristics 𝑇𝑖 (𝑖 = 1, 2, . . . , 𝑘). The test statistics is the statistics

𝐾 =
12

𝑛 (𝑛 + 1)

𝑘∑︁

𝑖=1

𝑇 2
𝑖

𝑛𝑖
− 3 (𝑛 + 1)

which has asymptotically the 𝜒2-distribution with 𝑘 − 1 degrees of freedom. We
reject the null hypothesis 𝐻0 at significance level 𝛼 if 𝐾 ≥ 𝜒2 (𝑘 − 1), where
𝜒2 (𝑘 − 1) is the critical value of the 𝜒2-distribution with 𝑘 − 1 degrees of free-
dom. As the statistics 𝐾 has an asymptotic 𝜒2-distribution, we can only use the
above relationship if the selections have a large range (𝑛𝑖 ≥ 5, 𝑖 = 1, 2, . . . , 𝑘), and
if 𝑘 ≥ 4. For some 𝑖 is 𝑛𝑖 < 5, or if 𝑘 = 3, we compare the test criteria value 𝐾
with the critical value 𝐾𝛼 of the Kruskal–Wallis test. Critical values 𝐾𝛼 are listed
in the critical values table. The tested hypothesis 𝐻0 is rejected at significance
level 𝛼 if 𝐾 ≥ 𝐾𝛼.

290 V. Ďuriš, A. Tirpáková

If identical values occur in the obtained sequence data, that are assigned the
average rank, it is necessary to divide the value of the testing criterion 𝐾 by the
so−called correction factor. Its value is calculated by the following formula:

𝑓 = 1 −
∑︀𝑝

𝑖=1

(︀
𝑡3𝑖 − 𝑡𝑖

)︀

𝑛3 − 𝑛

where 𝑝 is the number of classes with the same rank, 𝑡𝑖 the number of ranks in the
𝑖−th class. The testing statistics will then have the form

𝐾2 =
𝐾

𝑓
.

If we reject the tested hypothesis 𝐻0 in favour of the alternative hypothesis 𝐻1,
which means that the selections do not come from the same distribution, a question
remains unanswered: which selections differ statistically significantly from each
other. In the analysis of variance, Duncan test, Tukey method, Scheffe method or
Neményi test are used to answer this question. In the Kruskal–Wallis test, Tukey
method is most frequently used to test contrasts, which we also briefly describe
below.

In the Tukey method, we compare the 𝑖−th and the 𝑗−th file for each 𝑖, 𝑗, where
𝑖, 𝑗 = 1, 2, . . . , 𝑘 and 𝑖 ̸= 𝑗, according to the following procedure. For each pair of
compared files, we calculate average ranks

𝑇𝑖 =
𝑇𝑖

𝑛𝑖
, 𝑇𝑗 =

𝑇𝑗

𝑛𝑗
.

The testing criterion of the null hypothesis 𝐻0, that the distributions of the files 𝑖
and 𝑗 are identical, is the absolute value of the difference in their average rank

𝐷 =
⃒⃒
𝑇𝑖 − 𝑇𝑗

⃒⃒
.

The tested hypothesis 𝐻0 is rejected at significance level 𝛼, if 𝐷 > 𝐶, where

𝐶 =

√︃
𝜒2
𝛼 (𝑘 − 1)

𝑛 (𝑛 + 1)

12

(︂
1

𝑛𝑖
+

1

𝑛𝑗

)︂

𝜒2
𝛼 (𝑘 − 1) is the critical value of the 𝜒2−distribution with 𝑘−1 degrees of freedom,

𝑘 is the number of compared files. In our case, we verified by the Kruskal–Wallis test
whether the 12 sub-groups produced by the level of the factor “type of algorithm
+ type of function” statistically significantly differ in the observed feature “the
numbers of evaluations”. Therefore 𝑘 = 12, while 𝑛1 = 𝑛2 = · · · = 𝑛12 = 100, 𝑛 =
𝑛1 +𝑛1 + · · ·+𝑛12 = 1200 are measured numbers of evaluations. We implemented
the Kruskal–Wallis test in program STATISTICA. After entering the input data in
the computer output reports, we get the following results for the selected Kruskal–
Wallis test: the testing criterion value 𝐻 and the probability value 𝑝.

A survey on the global optimization problem using Kruskal–Wallis test 291

Dimension 3

We have used the Kruskal–Wallis test to test the null hypothesis 𝐻0: the numbers
of evaluations in the 12 sub-groups created according to the factor levels “algorithm
type + function type” are identical as in the alternative hypothesis 𝐻1: the numbers
of evaluations in the 12 sub-groups created according to the factor levels indicated
are not identical (or, at least at a level, they are different).

First, we calculated arithmetic averages and standard deviations of the assess-
ment numbers (Table 1) and also presented it graphically in Figure 1 in each of
the 12 sub-groups.

Evaluations count
Groups Means N Std. Dev.

1 22709,21 100 7098,061
2 2249,60 100 114,419
3 27863,82 100 3143,617
4 2703,36 100 191,001
5 5980,20 100 328,916
6 2711,70 100 117,233
7 10827,00 100 1327,715
8 16384,20 100 1092,761
9 192,89 100 25,877
10 234,79 100 14,931
11 272,89 100 28,379
12 376,47 100 69,821

All Grps. 7708,84 1200 9504,885

Table 1: Numbers of evaluations in each subgroup in dimension 3

Figure 1: Numbers of evaluations (average values) in each subgroup
in dimension 3

We have calculated the rank sums Table 2, the test criterion value 𝐾 = 1172.02

292 V. Ďuriš, A. Tirpáková

and the value 𝑝 = 0.000 by the Kruskal–Wallis test in dimension 3 for the assess-
ment numbers. As the calculated probability value 𝑝 is less than 0.01, we reject the
null hypothesis at the significance level 𝛼 = 0.01, i.e. the difference between the 12
sub-groups in dimension 3 with respect to the observed feature of the “number of
evaluations” is statistically significant.

Groups Evaluation Sum of
count Ranks

1 100 105274,0
2 100 45221,0
3 100 111855,0
4 100 59602,0
5 100 75050,0
6 100 60327,0
7 100 85271,5
8 100 97799,5
9 100 6294,5
10 100 15348,0
11 100 24279,5
12 100 34278,0

Table 2: Kruskal–Wallis test results

The test confirmed that the individual sub-groups in dimension 3 differ statis-
tically significantly from each other in relation to the assessment numbers. In the
same way, as in dimension 2, we have been able to find out by multiple comparisons
which groups are statistically significantly different from each other Table 3 in this
case.

Groups
2 3 4 5 6 7 8 9 10 11 12

1 0,00* 1,00 0,00* 0,00* 0,00* 0,00* 1,00 0,00* 0,00* 0,00* 0,00*
2 0,00* 0,22 0,00* 0,14 0,00* 0,00* 0,00* 0,00* 0,00* 1,00
3 0,00* 0,00* 0,00* 0,00* 0,27 0,00* 0,00* 0,00* 0,00*
4 0,11 1,00 0,00* 0,00* 0,00* 0,00* 0,00* 0,00*
5 0,18 1,00 0,00* 0,00* 0,00* 0,00* 0,00*
6 0,00* 0,00* 0,00* 0,00* 0,00* 0,00*
7 0,70 0,00* 0,00* 0,00* 0,00*
8 0,00* 0,00* 0,00* 0,00*
9 1,00 0,02* 0,00*
10 1,00 0,01*
11 1,00

Table 3: Results of Kruskal–Wallis multiple comparison test
(𝑝-values)

The Table 3 shows that there is a statistically significant difference in the num-
bers of evaluations in dimension 3 between sub-group 1 and sub-group 2, between
sub-group 1 and sub-groups 4 to 7 and between the sub-group 1 and sub-groups
9 to 12 (probability value 𝑝 = 0.000). This means that the measured assessment

A survey on the global optimization problem using Kruskal–Wallis test 293

numbers in sub-group 1 are statistically significantly different as measured in sub-
group 2 and sub-groups 4 to 7 and 9 to 12 (or the assessment numbers between
sub-groups 1st and 2nd and between the 1st sub-group and sub-groups 4–7 a 9–
12 are significantly different respectively). In the same way, we can interpret all
results in Table 3 marked with a *. We also illustrated the situation graphically
(Figure 2).

Figure 2: Numbers of evaluations (average values) in each subgroup
in dimension 3

Dimension 4

As in previous dimensions, we also tested the statistical significance of differences
in the number of evaluations in 12 sub-groups by the Kruskal–Wallis test in di-
mension 4. In each of the 12 sub-groups of dimension 4, we calculated arithmetic
averages and standard deviations of the number of evaluations (Table 4) and we
also presented the situation graphically in Figure 3.

We have calculated the rank sums (Table 5) and the test criterion value 𝐾 =
1180.46 and the value 𝑝 = 0.000 by the Kruskal–Wallis test. As the calculated
probability value 𝑝 is as well less than 0.01 in this case, we reject the null hypoth-
esis at the significance level 𝛼 = 0.01, i.e. the difference between the 12 sub-groups
in dimension 4 with respect to the observed feature “numbers of evaluations” is
statistically significant. The Kruskal–Wallis test confirmed that the individual
sub-groups in dimension 4 differ statistically significantly from each other in re-
lation to the assessment numbers. Subsequently, we have identified by multiple
comparisons (Table 6) which groups are statistically significantly different from
each other. Table 6 shows that there is a statistically significant difference in the
numbers of evaluations in dimension 4 between sub-group 1and sub-group 2. and
sub-group 1 and sub-groups 4 to 6 and between the sub-group 1 and sub-groups

294 V. Ďuriš, A. Tirpáková

Evaluations count
Groups Means N Std. Dev.

1 34741,03 100 3119,75
2 4666,28 100 186,43
3 40000,00 100 0,00
4 5618,71 100 237,65
5 11676,80 100 518,89
6 4992,00 100 160,60
7 22800,00 100 2404,70
8 40000,00 100 0,00
9 298,57 100 57,56
10 379,91 100 44,35
11 439,19 100 61,26
12 609,18 100 129,52

All Grps 13851,81 1200 15432,29

Table 4: Numbers of evaluations in each subgroup in dimension 4

Figure 3: Numbers of evaluations (average values) in each subgroup
in dimension 4

9 to 12 (probability value 𝑝 = 0.000). This means that the measured assessment
numbers in sub-group 1 in dimension 4 are statistically significantly different as
measured in this dimension in sub-groups 2, 4 to 6 as well as 9 to 12 (or the assess-
ment numbers between sub-groups 1 and sub-groups 4− 7 and 9− 12 in dimension
4 are significantly different). In the same way, we can interpret all results in Table
6 marked with a *. We also illustrated the situation graphically (Figure 4).

A survey on the global optimization problem using Kruskal–Wallis test 295

Groups Evaluation Sum of
count Ranks

1 100 105000,0
2 100 49972,5
3 100 105000,0
4 100 65050,0
5 100 75050,0
6 100 50127,5
7 100 85200,0
8 100 105000,0
9 100 5884,5
10 100 16658,5
11 100 23892,5
12 100 33764,5

Table 5: Kruskal–Wallis test results

Groups
2 3 4 5 6 7 8 9 10 11 12

1 0,00* 0,24 0,00* 0,00* 0,00* 1,00 0,24 0,00* 0,00* 0,00* 0,00*
2 0,00* 0,01* 0,00* 1,00 0,00* 0,00* 0,00* 0,00* 0,00* 0,83
3 0,00* 0,00* 0,00* 0,00* 1,00 0,00* 0,00* 0,00* 0,00*
4 1,00 1,00 0,00* 0,00* 0,00* 0,00* 0,00* 0,00*
5 0,00* 1,00 0,00* 0,00* 0,00* 0,00* 0,00*
6 0,00* 0,00* 0,00* 0,00* 0,00* 0,00*
7 0,00* 0,00* 0,00* 0,00* 0,00*
8 0,00* 0,00* 0,00* 0,00*
9 1,00 0,04* 0,00*
10 1,00 0,02*
11 1,00

Table 6: Results of Kruskal–Wallis multiple comparison test
(𝑝-values)

Figure 4: Numbers of evaluations (average values) in each subgroup
in dimension 4

296 V. Ďuriš, A. Tirpáková

4. Conclusion

In conclusion, we can summarize based on the results of the experiment that the
fminsearch function is the fastest algorithm and, on the other hand, the Differ-
ential Evolution algorithm is the slowest one. Only type 1 search is considered
successful. Then the reliability of finding the global minimum can be characterized
as the relative number of type 1 termination, that is 𝑅 = 𝑛1

𝑛 , where 𝑛1 is the num-
ber of type 1 terminations and 𝑛 the number of repetitions. The algorithms based
on the experiment determine this reliability (in percent) of the global minimum
finding (Table 7).

De Jong 1 Rosen Ackley Griewangk Average
CRS

100% 100% 53% 3% 64%
fminsearch

100% 87% 0% 0% 47%
difevol

100% 35% 99% 94% 82%

Table 7: Reliability of algorithms id dimensions 3 and 4

We can see a considerable difference in the reliability of the Differential Evolu-
tion algorithm (which is very slow) and algorithms Controlled Random Search and
fminsearch. We can say that evolutionary operations mutation, cross-breeding,
and selection are a major benefit of reliability for the algorithm. The difference
in reliability of the algorithm Controlled Random Search and Fminsearch can also
be considered significant given the number of times the global minimum search
and the test functions used are repeated. Furthermore, based on the results of the
test, we can say that finding a global minimum of the First De Jong function is
simple and almost certain for any algorithm. Finding a global minimum for Rosen-
brock’s saddle is not easy just for an algorithm Differential Evolution that searches
unreliably. From the above-mentioned reliabilities, it can be said that finding the
global minimum of the Ackley function and Griewangk’s function is difficult for the
truly fast Fminsearch algorithm implemented in the Matlab environment, which
produces great results for the Second De Jong function reliably and quickly. In
general, the finding of the global minimum of the Griewangk’s function is least
likely in dimensions 3 and 4.

Based on the results of the experiment, we can conclude that by involving math-
ematical software to solve global optimization problems, a higher level of knowledge
was achieved, a better understanding of various principles and algorithms, and,
thus, students better mastered the issue. It is therefore effective and necessary to
pay sufficient attention to these methods. Thanks to the use of computer tech-
niques in the pedagogical process, everyone can draw into mathematics secrets of
global optimization problems. On the basis of the results and theoretical starting
points of the work, we have arrived at the following recommendations:

1. lead the students in solving mathematical application tasks in order to best

A survey on the global optimization problem using Kruskal–Wallis test 297

understand the theoretical starting points of the subject topic

2. use computer technology to increase students’ activity and to provide a suc-
cessful motivation to work

3. create suitable, modern and pregnant study material that will enhance the
knowledge of students

4. within the cross-subject relations, extend the students’ knowledge from the
computer algebra systems

5. involve the use of computer algebra systems into maths teaching for achieving
better results

6. effectively use the subject matter from another field within the framework of
cross-subject relationships (such as mathematics and informatics).

References

[1] Y. Gao, K. Wang, C. Gao, Y. Shen, T. Li: Application of Differential Evolution Algo-
rithm Based on Mixed Penalty Function Screening Criterion in Imbalanced Data Integration
Classification, Mathematics 7.12 (2019), p. 1237,
doi: https://doi.org/10.3390/math7121237.

[2] M. R. Garey, D. S. Johnson: Computers and intractability, vol. 174, Freeman San Fran-
cisco, 1979.

[3] K. N. Kaipa, D. Ghose: Glowworm swarm optimization: theory, algorithms, and applica-
tions, vol. 698, Springer, 2017,
doi: https://doi.org/10.1007/978-3-319-51595-3.

[4] V. Kvasnicka, J. Pospíchal, P. Tino: Evolutionary algorithms, STU Bratislava (2000).

[5] D. Markechová, B. Stehlíková, A. Tirpáková: Statistical Methods and their Applica-
tions. FPV UKF in Nitra, 534 p, 2011.

[6] Mathworks: Online documentation, accessed 6th March, 2020, 2020,
url: https://www.mathworks.com/help/matlab/ref/fminsearch.html.

[7] Mathworks: Online documentation, accessed 16th March, 2020, 2020,
url: https://www.mathworks.com/help/matlab/ref/optimset.html.

[8] S. Míka: Mathematical optimizatio, Plzeň: ZCU Plzeň, 1997.

[9] J. A. Nelder: A Simplex Method for Function Minimization, Computer Journal 7.1 (1964),
pp. 308–313.

[10] K. Price, R. M. Storn, J. A. Lampinen: Differential evolution: a practical approach to
global optimization, Springer Science & Business Media, 2006.

[11] W. L. Price: A Controlled Random Search Procedure for Global Optimization, Computer
Journal 20.4 (1977), pp. 367–370.

[12] J. Tvrdík: Evolutionary algorithms, Ostrava: University of Ostrava, 2010.

298 V. Ďuriš, A. Tirpáková

