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Abstract

In this paper, the notions of rainbow neighbourhood and rainbow neigh-
bourhood number of a graph are generalised and further to these general-
isations, the notion of a proper 𝑘-jump colouring of a graph is also intro-
duced. The generalisations follow from the understanding that a closed 𝑘-
neighbourhood of a vertex 𝑣 ∈ 𝑉 (𝐺) denoted, 𝑁𝑘[𝑣] is the set, 𝑁𝑘[𝑣] = {𝑢 :
𝑑(𝑣, 𝑢) ≤ 𝑘, 𝑘 ∈ N and 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺)}. If the closed 𝑘-neighbourhood 𝑁𝑘[𝑣]
contains at least one of each colour of the chromatic colour set, we say that
𝑣 yields a 𝑘-rainbow neighbourhood.

Keywords: 𝑘-rainbow neighbourhood, 𝑘-rainbow neighbourhood number, 𝑘-
jump colouring.

MSC: 05C15, 05C38, 05C75, 05C85.

Annales Mathematicae et Informaticae
52 (2020) pp. 147–158
doi: https://doi.org/10.33039/ami.2020.02.003
url: https://ami.uni-eszterhazy.hu

147



1. Introduction

For general notation and concepts in graphs and digraphs we refer to [1, 2, 8].
Unless mentioned otherwise all graphs 𝐺 are simple, connected and finite graphs.
For corresponding results of disconnected graphs, see [3].

Recall that a vertex colouring of a graph 𝐺 is an assignment 𝜙 : 𝑉 (𝐺) ↦→ 𝒞,
where 𝒞 = {𝑐1, 𝑐2, 𝑐3, . . . , 𝑐ℓ} is a set of distinct colours. A vertex colouring is said
to be a proper vertex colouring of a graph 𝐺 if no two distinct adjacent vertices
have the same colour. The cardinality of a minimum set of colours in a proper
vertex colouring of 𝐺 is called the chromatic number of 𝐺 and is denoted 𝜒(𝐺). A
colouring of 𝐺 consisting of exactly 𝜒(𝐺) colours may be called a 𝜒-colouring or a
chromatic colouring of 𝐺.

When the cardinality of the set of colours 𝒞 is bound by conditions such as
minimum, maximum or others and since 𝑐(𝑉 (𝐺)) = 𝒞, it can be agreed that 𝑐(𝐺)
means 𝑐(𝑉 (𝐺)) and hence 𝑐(𝐺) ⇒ 𝒞 and |𝑐(𝐺)| = |𝒞|.

Index labelling the elements of a graph such as the vertices say, 𝑣1, 𝑣2, 𝑣3, . . . , 𝑣𝑛
or written as 𝑣𝑖; 1 ≤ 𝑖 ≤ 𝑛 or as 𝑣𝑖; 𝑖 = 1, 2, 3, . . . , 𝑛, is called a minimum parameter
indexing. Similarly, a minimum parameter colouring of a graph 𝐺 is a proper
colouring of 𝐺 which consists of the colours 𝑐𝑖; 1 ≤ 𝑖 ≤ ℓ. The set of vertices of
𝐺 having the colour 𝑐𝑖 is said to be the colour class of 𝑐𝑖 in 𝐺 and is denoted by
𝒞𝑖. Unless stated otherwise, we consider minimum parameter colouring throughout
this paper.

Note that the closed neighbourhood 𝑁 [𝑣] of a vertex 𝑣 ∈ 𝑉 (𝐺) which contains
at least one vertex from each colour class of 𝐺 in the chromatic colouring, is called a
rainbow neighbourhood (see [4–7] for further results on rainbow neighbourhoods of
different graphs). The number of vertices in 𝐺 which yield rainbow neighbourhoods,
denoted by 𝑟𝜒(𝐺), is called the rainbow neighbourhood number of 𝐺 corresponding
to the chromatic colouring. Note that 𝑟−𝜒 (𝐺) and 𝑟+𝜒 (𝐺) respectively denote the
minimum value and maximum value of 𝑟𝜒(𝐺) over all minimum proper colourings
(see [4]).

Rainbow neighbourhood convention ([4]): The rainbow neighbourhood con-
vention is a colouring protocol as described below:

Let 𝑋1 be a maximal independent set in 𝐺. Let 𝐺1 = 𝐺 − 𝑋1. Let 𝑋2 be a
maximal independent set in 𝐺1 and 𝐺2 = 𝐺1 −𝑋2. Proceed like this, until after
a finite number of iterations, say 𝑘, the induced graph ⟨𝑋𝑘⟩ is a trivial or empty
graph. Clearly, we have |𝑋1| ≥ |𝑋2| ≥ . . . |𝑋𝑘−1| ≥ |𝑋𝑘|. Now, consider a set
C = {𝑐1, 𝑐2, . . . , 𝑐𝑘} of 𝑘 colours and we assign the colour 𝑐𝑖 to all vertices in 𝑋𝑖

for 1 ≤ 𝑖 ≤ 𝑘.
Unless mentioned otherwise the rainbow neighbourhood convention together

with a minimum parameter colouring will be used for all graph colourings.
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2. 𝑘-rainbow neighbourhood number of a graph

In this section, we generalise the notion of a rainbow neighbourhood of a graph.
A closed 𝑘-neighbourhood of a vertex 𝑣 ∈ 𝑉 (𝐺), denoted by 𝑁𝑘[𝑣], is the set,
𝑁𝑘[𝑣] = {𝑢 : 𝑑(𝑣, 𝑢) ≤ 𝑘, 𝑘 ∈ N} (Note that 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺)).

Definition 2.1. If the closed 𝑘-neighbourhood 𝑁𝑘[𝑣]; 𝑣 ∈ 𝑉 (𝐺) contains at least
one of each colour from the chromatic colour class, we say that 𝑣 yields a 𝑘-rainbow
neighbourhood.

In this context, a rainbow neighbourhood defined in [5] is indeed a 1-rainbow
neighbourhood.

Definition 2.2. For a chromatic colouring of a graph 𝐺, the number of distinct
vertices which yield a 𝑘-rainbow neighbourhood is called the 𝑘-rainbow neighbour-
hood number of 𝐺 and is denoted by 𝑟𝜒,𝑘(𝐺).

Definition 2.3. The 𝑘−-rainbow neighbourhood number of a graph 𝐺, denoted
by 𝑟−𝜒,𝑘(𝐺), is defined as the minimum number of distinct vertices which yield a
𝑘-rainbow neighbourhood. That is,

𝑟−𝜒,𝑘(𝐺) = min{𝑟𝜒,𝑘(𝐺) : over all chromatic colourings of 𝐺}.

Definition 2.4. The 𝑘+-rainbow neighbourhood number of a graph 𝐺, denoted
by 𝑟+𝜒,𝑘(𝐺), is defined as the maximum number of distinct vertices which yield a
𝑘-rainbow neighbourhood. That is,

𝑟+𝜒,𝑘(𝐺) = max{𝑟𝜒,𝑘(𝐺) : over all chromatic colourings of 𝐺}.

Note that 𝑟−𝜒,𝑘(𝐺) necessarily corresponds to a chromatic colouring in accor-
dance with the rainbow neighbourhood convention. Note that if vertex 𝑣 yields a
𝑘-rainbow neighbourhood it does not imply that 𝑣 yields a (𝑘 − 1)-rainbow neigh-
bourhood. The aforesaid is true because 𝑁(𝑘−1)[𝑣] ⊆ 𝑁𝑘[𝑣] and hence for any
colouring, |𝑁𝑘[𝑣]| ≥ |𝑁(𝑘−1)[𝑣]|. However, all vertices yield a 𝑑𝑖𝑎𝑚(𝐺)-rainbow
neighbourhood. Hence, for a graph 𝐺 of order 𝑛 we have, 𝑟𝜒,𝑑𝑖𝑎𝑚(𝐺)(𝐺) = 𝑛. Also,
if the vertex 𝑣 yields a 1-rainbow neighbourhood, it yields a 𝑘-rainbow neighbour-
hood, where 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺).

We now present a fundamental recursive lemma.

Lemma 2.5. If the vertex 𝑣 ∈ 𝑉 (𝐺) yields a 𝑡-rainbow neighbourhood in graph 𝐺,
it yields a 𝑘-rainbow neighbourhood for 𝑡+ 1 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺).

Proof. Because 𝑁𝑡[𝑣] ⊆ 𝑁𝑘[𝑣], 𝑡+1 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺), the result immediately follows
by mathematical induction.

Lemma 2.5 implies that 𝑟𝜒,𝑘(𝐺) ≥ 𝑟𝜒(𝐺), because for a vertex 𝑣 that yields
a rainbow neighbourhood all 𝑢 ∈ 𝑁 [𝑣] yields a 2-rainbow neighbourhood if 𝑁2[𝑢]
exists. For now our interest lies in understanding the invariant 𝑟𝜒,2(𝐺) and deter-
mining 𝑟−𝜒,2(𝐺).
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Proposition 2.6. The minimum 2-rainbow neighbourhood number for the follow-
ing graphs, all of order 𝑛 are:

(i) For 2-colourable graphs 𝐺, 𝑟−𝜒,2(𝐺) = 𝑛.
(ii) For cycle 𝐶3, 𝑟−𝜒,2(𝐶3) = 3, for 𝐶𝑛, 𝑛 is odd and 𝑛 ≥ 5 we have: 𝑟−𝜒,2(𝐶𝑛) = 5.
(iii) For wheels 𝑊𝑛 = 𝐾1 + 𝐶𝑛, 𝑛 ≥ 3:

𝑟−𝜒,2(𝑊𝑛) =

⎧
⎪⎨
⎪⎩

4, if 𝑛 = 3;

6, if 𝑛 ≥ 5, 𝑛 is odd;
𝑛+ 1, if 𝑛 is even.

Proof. (i) Because 𝑟−𝜒 (𝐺) = 𝑛 for 2-colourable graphs and 𝑟−𝜒 (𝐺) = 𝑟−𝜒,1(𝐺) it
follows that, 𝑟−𝜒,2(𝐺) = 𝑛.

(ii) The first part, which states that 𝑟−𝜒,2(𝐶3) = 3, is straight forward. Further-
more, because 𝑟−𝜒,2(𝐺) corresponds to a chromatic colouring in accordance with
the rainbow neighbourhood convention, such chromatic colouring of a cycle 𝐶𝑛,
𝑛 is odd and 𝑛 ≥ 5 permits a single vertex to have colour 𝑐3. The result follows
immediately from the aforesaid.

(iii) Part (1) and Part(2) of (iii) are direct consequence of (ii). Furthermore,
since an even cycle is 2-colourable, result (i) read together with the fact that the
central vertex is adjacent to all cycle vertices implies that, 𝑟−𝜒,2(𝐶𝑛) = 𝑛+ 1 if 𝑛 is
even.

The results for many other cycle related graphs such as sun graphs, sunlet
graphs, helm graphs and so on, can be derived easily through similar reasoning.

2.1. 𝑘-rainbow neighbourhood number of certain graph oper-
ations

Generally, graph operations are distinguished between operations on a graph 𝐺 such
as the complement graph, the line graph, the total graph, the power graph and so
on. It results in a new graph or a derivative graph of the given graph 𝐺. Then
there are those which are operations between graphs 𝐺 and 𝐻. In this subsection
the join and the corona of graphs 𝐺 and 𝐻 will be considered.

Theorem 2.7. Let two graphs 𝐺 and 𝐻 of order 𝑛1, 𝑛2 respectively. Let 𝐺 +𝐻
and 𝐺 ∘𝐻 be the join and the corona of 𝐺 and 𝐻. Then,

(i) 𝑟−𝜒,2(𝐺+𝐻) = 𝑛1 + 𝑛2.
(ii) (a) 𝑟−𝜒,2(𝐺 ∘𝐻) = 𝑛1 · 𝑛2, if 𝜒(𝐻) ≥ 𝜒(𝐺)− 1; else,

(b) 𝑟−𝜒,2(𝐺 ∘𝐻) = 𝑟−𝜒,2(𝐺).

Proof. (i) Since, for any two vertices 𝑣, 𝑢 ∈ 𝑉 (𝐺+𝐻) the distance is, 𝑑(𝑣, 𝑢) ≤ 2,
the result is immediate.

(ii)(a): For 𝜒(𝐻) ≥ 𝜒(𝐺) − 1 each 𝑣 ∈ 𝑉 (𝐺) yields a rainbow neighbourhood.
Also for 𝑢 ∈ 𝑉 (𝐻), 𝑑(𝑣, 𝑢) ≤ 2, and therefore, the result is immediate.
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(b): For the second part it is clear that all the vertices 𝑣 ∈ 𝑉 (𝐺) that yield
a 2-rainbow neighbourhood in 𝐺 will yield a 2-rainbow neighbourhood in 𝐺 ∘ 𝐻.
Therefore, 𝑟−𝜒,2(𝐺 ∘𝐻) ≥ 𝑟−𝜒,2(𝐺).

It also follows that no vertex 𝑤 ∈ 𝑉 (𝐻) can yield a 2-rainbow neighbourhood
in 𝐺 ∘ 𝐻. To show the aforesaid, assume that the vertex 𝑤 ∈ 𝑉 (𝐻) of the 𝑡-th
copy of 𝐻 joined to 𝑣 ∈ 𝑉 (𝐺) is a vertex yielding a 2-rainbow neighbourhood
in 𝐺 ∘ 𝐻. It means that vertex 𝑤 has at least one 2-reach neighbour for each
colour 𝑐𝑖, 1 ≤ 𝑖 ≤ 𝜒(𝐻) < 𝜒(𝐺) − 1 as well as the neighbour 𝑣 with, without loss
of generality the colour 𝑐(𝑣) = 𝑐𝜒(𝐻)+1. Since, 𝑐𝜒(𝐻)+1 can at best be the colour
𝑐𝜒(𝐺)−1, the colour 𝑐𝜒(𝐺) /∈ 𝑁 [𝑤] in 𝑟−𝜒,2(𝐺∘𝐻) which is a contradiction. Therefore,
𝑟−𝜒,2(𝐺 ∘𝐻) = 𝑟−𝜒,2(𝐺).

3. On 𝑘-jump colouring

In this section, we introduce the main concept of study and the main results of this
paper.

A path of length 𝑘 also called a 𝑘-path is a path on 𝑘 + 1 vertices. Similarly, a
cycle of length (or circumference) 𝑘, also called a 𝑘-cycle is a cycle on 𝑘 vertices. If
a graph 𝐺 has 𝑑𝑖𝑎𝑚(𝐺) = ℓ, then clearly it is possible for each vertex 𝑣 ∈ 𝑉 (𝐺) to
find a vertex 𝑢 which is at maximum distance 𝑑(𝑣, 𝑢) = ℓ′ ≤ ℓ and hence furthest
away from 𝑣 in 𝐺. We say 𝑢 is a ℓ′-jump away from 𝑣. Consider a graph 𝐺 for
which 𝑋 ∪ 𝑌 = 𝑉 (𝐺) and for which the vertices in set 𝑋 ⊆ 𝑉 (𝐺) are uncoloured
and the vertices in set 𝑌 ⊆ 𝑉 (𝐺) are coloured. We say 𝐺 is partially coloured.

Definition 3.1. Consider a partially coloured graph 𝐺 and let the set of uncoloured
vertices be 𝑋 ⊆ 𝑉 (𝐺). A 𝑘-jump colouring in 𝐺 with respect to 𝑣 is the colouring in
𝐺 such that of vertex 𝑣 ∈ 𝑋 together with all vertices 𝑢 ∈ 𝑋 for which 𝑑(𝑣, 𝑢) = 𝑘
have the same colour.

The rainbow neighbourhood convention can naturally be extended to vertices
at distance 𝑘. The derivative is called the rainbow 𝑘-neighbourhood convention.
It is also clear that since 𝐺 is finite, that colouring 𝑣 say, 𝑐1 and then colouring all
vertices 𝑢𝑖 at jump ℓ′ from 𝑣 also 𝑐1 followed by repeating the colouring procedure
for all ℓ′-jumps from vertices 𝑢𝑖 and so on will exhaust in finite number of iterations
and either, colour all vertices in 𝐺 the colour 𝑐1 or result in some vertices remaining
uncoloured. It means that no vertex which remains uncoloured is at distance ℓ from
any vertex coloured 𝑐1. The aforesaid implies that the procedure is possible for a
𝑘-jump, 𝑘 ≤ ℓ. For a graph 𝐺 with 𝑑𝑖𝑎𝑚(𝐺) = ℓ and 0 ≤ 𝑘 ≤ ℓ, consider the
𝑘-jump colouring procedure (𝑘-JCP) as explained below:

𝑘-JCP for a graph
Step-0: Let 𝒱0 = ∅.
Step-1: For 0 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺), choose an arbitrary vertex 𝑣1 ∈ 𝑉 (𝐺). Let 𝒱1 =
𝒱0 ∪ {𝑣1} and colour 𝑣1 and all uncoloured vertices 𝑢1,𝑖 ∈ 𝑉 (𝐺) at distance 𝑘
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(𝑘-jump) from 𝑣1 if such vertices exist, the colour 𝑐1. Repeat the procedure for
all vertices 𝑢1,𝑖 to obtain all vertices 𝑤1,𝑖 to be coloured 𝑐1 and so on. When this
procedure is exhausted proceed to Step 2.
Step 2: If any uncoloured vertices exist, choose an arbitrary vertex 𝑣2. Let 𝒱2 =
𝒱1∪{𝑣2} and colour 𝑣2 and all uncoloured vertices 𝑢2,𝑖 at distance 𝑘 (𝑘-jump) from
𝑣2 if such vertices exist, the colour 𝑐2. Repeat the procedure similar to that in Step
1 for all vertices 𝑢2,𝑖 to obtain all vertices 𝑤2,𝑖 to be coloured 𝑐2, if such vertices
exist and so on. When this procedure is exhausted proceed to Step 3.
Step-3: If possible proceed iteratively through the arbitrary choice of an uncoloured
𝑣3 and update 𝒱3 = 𝒱2 ∪ {𝑣3} and colour corresponding 𝑘-jump vertices 𝑐3, and so
on, until the graph has a 𝑘-jump colouring which might not be proper.
Step-4: When this iterative procedure is exhausted, delete all edges between ver-
tices 𝑢 and 𝑣 for which 𝑐(𝑢) = 𝑐(𝑣).

On conclusion of Step-4, a proper colouring is obtained. Call the conclud-
ing set of vertices say, 𝒱𝑖, a 𝑘-string. Note that it means that the graph per-
mits a maximum of 𝑖 colours in respect of the 𝑘-string 𝒱𝑖. For the correspond-
ing set of colours 𝒞, we call the mapping 𝑓𝒱⟩ : 𝑉 (𝐺) ↦→ 𝒞, a 𝑘-jump colouring
of 𝐺 in respect of 𝒱𝑖. The 𝑘-jump colouring number of 𝐺, with respect to the
rainbow 𝑘-neighbourhood convention, is defined to be, 𝜒𝐽(𝑘)(𝐺) = 𝑗 = |𝒱𝑗 | =
max{|𝒱𝑖| : 𝑓𝒱𝑖

(𝐺); a 𝑘-jump colouring of 𝐺 in respect of 𝒱𝑖}. It is easy to verify
that 𝜒𝐽(2)(𝐶9) = 1, 𝜒𝐽(3)(𝐶9) = 3 and 𝜒𝐽(4)(𝐶9) = 1. Hence, in general there is
no relation between 𝜒𝐽(𝑘)(𝐺) and 𝑘 per se. Also, there is no relation between the
chromatic number 𝜒(𝐺) and the jump colouring number, 𝜒𝐽(𝑘)(𝐺).

For 𝑘 = 0 we have the jump string 𝒱𝑛 = 𝑉 (𝐺) and 𝑐(𝑣) ̸= 𝑐(𝑢) ⇔ 𝑣 ̸= 𝑢. It
is called the Type I primitive jump colouring. For 𝑘 = 1 the we have the 𝑘-string,
𝒱1 = {𝑣}, 𝑣 ∈ 𝑉 (𝐺), 𝑐(𝐺) = 𝑐1. It is called the Type II primitive jump colouring
which returns a null graph in Step 4 of the 𝑘-JCP.

Further throughout this section the bounds for a 𝑘-jump colouring, 2 ≤ 𝑘 ≤
𝑑𝑖𝑎𝑚(𝐺) will apply. A complete graph 𝐾𝑛, 𝑛 ≥ 3 only permits a 𝑘-jump colouring
for 𝑘 = 0, 1 and the 1-jump colouring always returns a null graph. It is easy to
verify that a path 𝑃𝑛, 𝑛 ≥ 3 has 𝜒𝐽(𝑘)(𝑃𝑛) = 𝑘, 1 ≤ 𝑘 ≤ 𝑛 − 1. Because acyclic
graphs are bipartite and hence 2-colourable, such graphs permit a 2-jump colouring
without the deletion of any edges. It implies that the 2-jump colouring returns a
chromatic 2-colouring. For 2-colourable graphs 𝐺, 𝜒𝐽(2)(𝐺) = 𝜒(𝐺). It is easy to
see that a 2-jump colouring returns a null graph for an odd cycle graph, meaning
that all vertices are coloured 𝑐1. We say that an odd cycle permits a Type II
primitive jump colouring or returns a null graph in respect of a 2-jump colouring.
We are now in a position to state and prove two of the main results of this study.

Theorem 3.2. A non-trivial graph 𝐺 returns a null graph in respect of a 2-jump
colouring if and only if 𝐺 contains an odd cycle (not necessarily an induced odd
cycle).

Proof. Say that for an odd cycle 𝐶𝑚 ⊆ 𝐺 and 𝑢, 𝑣 ∈ 𝑉 (𝐶𝑚), 𝑚 ≤ 𝑛, a 2-path
from 𝑢 to 𝑣, if it exists, is within 𝐶𝑚. Similarly, say that a 2-path from 𝑢 to 𝑣,
𝑢 /∈ 𝑉 (𝐶𝑚), 𝑣 ∈ 𝑉 (𝐶𝑚) if it exists, is into 𝐶𝑚. Also, say that a 2-path from 𝑢 to 𝑣,
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𝑢 ∈ 𝑉 (𝐶𝑚), 𝑣 /∈ 𝑉 (𝐶𝑚) if it exists, is out of 𝐶𝑚. Consider a graph which contains
an odd cycle, 𝐶𝑚, 𝑚 ≤ 𝑛. Here are two sub-cases to be considered.

(a) Assume that 𝐺 has odd cycle 𝐶𝑚 and the arbitrary vertex 𝑣1 /∈ 𝑉 (𝐶𝑚).
For any vertex 𝑢 ∈ 𝑉 (𝐶𝑚) a 𝑣𝑢-path exists because 𝐺 is connected. If the 𝑣𝑢-
path is odd then 𝑐(𝑣1) = 𝑐(𝑢) = 𝑐1. Without loss of generality, 2-jump colour
the cycle to exhaustion, followed by 2-jump colouring the 𝑣𝑢-path. It follows that
𝑐(𝑉 (𝑣𝑢-path) ∪ 𝑉 (𝐶𝑚))) = 𝑐1.

(b) If the 𝑣𝑢-path is even then a vertex 𝑤 which is adjacent to 𝑢 exists and
which does not lie on the 𝑣𝑢-path. Extend to the 𝑣𝑤-path which is odd and 2-
jump colour similar to (a). It follows that 𝑐(𝑣1) = 𝑐(𝑤) = 𝑐1. Without loss of
generality, 2-jump colour the cycle to exhaustion, followed by 2-jump colouring the
𝑣𝑢-path. It follows that 𝑐(𝑉 (𝑣𝑢− 𝑝𝑎𝑡ℎ) ∪ 𝑉 (𝐶𝑚))) = 𝑐1.

Invoking the sub-cases (a), (b) together, the result follows by mathematical
induction.

If a non-trivial graph 𝐺 returns a null graph with respect to a 2-jump colouring,
the result follows by logical deduction in that, from say 𝑣𝑗 , the 2-jump colouring
iteration must be along a combination of paths or even cycles (not necessarily
induced even cycles).

The proof of Theorem 3.2 makes a generalized result for cycles possible. Note
that for the discussion of cycles and chorded cycles and certain cycle related graphs
the bounds on 𝑘 are relaxed for convenience to, 2 ≤ 𝑘 ≤ 𝑛. For graphs in general
a similar relaxation is possible by substituting modulo bounds on 𝑑𝑖𝑎𝑚(𝐺).

Theorem 3.3. Let 𝑘 ≥ 3. A cycle 𝐶𝑛, returns a null graph in respect of a 𝑘-jump
colouring if and only if 𝑛 ̸= 𝑡 · 𝑘 where 𝑡 ∈ N.

Proof. For a cycle 𝐶𝑛, 𝑛 ≥ 3 and by relaxed convention, 2 ≤ 𝑘 ≤ 𝑛, all paths from
vertices 𝑢 to 𝑣 are within 𝐶𝑛. Also, for any 𝑛-path from 𝑢 to 𝑣 we have 𝑢 = 𝑣.
Similarly, for any 𝑘 for which 𝑛 is divisible by 𝑘, a (𝑘 · 𝑛

𝑘 )-path from 𝑢 to 𝑣 implies
𝑢 = 𝑣. Therefore, for any 𝑘 for which 𝑛 is not divisible by 𝑘, Step 1 will exhaust
all vertices with colouring 𝑐1. Hence, the result.

The following two corollaries are direct consequences of Theorem 3.3.

Corollary 3.4. For 𝑘1, 𝑘2, 𝑘3, . . . , 𝑘𝑠 and 𝑘𝑖 ≥ 3, let the least common multiple,
𝐿𝐶𝑀(𝑘1, 𝑘2, 𝑘3, . . . , 𝑘𝑠) = ℓ. A cycle 𝐶𝑛, returns a null graph in respect of a
𝑘𝑖-jump colouring if and only if 𝑛 ̸= 𝑡 · ℓ where 𝑡 ∈ N.

Corollary 3.5. For 𝑘1, 𝑘2, 𝑘3, . . . , 𝑘𝑠 and 𝑘𝑖 ≥ 3, let the least common multiple,
𝐿𝐶𝑀(𝑘1, 𝑘2, 𝑘3, . . . , 𝑘𝑠) = ℓ. A cycle 𝐶𝑛, has 𝜒𝐽(𝑘𝑖)(𝐶𝑛) = 1 𝑜𝑟 𝑘𝑖 in respect of a
𝑘𝑖-jump colouring.

It is observed that cycles has the extremal edge deletion properties i.e. either
all edges are deleted for a 𝑘-jump colouring or no edges are deleted.
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3.1. Investigating chorded cycles, slings graphs and 𝑝-sling
graphs

From Corollary 3.4 a general result for chorded cycles follows.

Theorem 3.6. For 𝑘1, 𝑘2, 𝑘3, . . . , 𝑘𝑠 and 𝑘𝑖 ≥ 3 let the least common multiple,
𝐿𝐶𝑀(𝑘1, 𝑘2, 𝑘3, . . . , 𝑘𝑠) = ℓ. A chorded cycle 𝐶~

𝑛 , 𝑛 ≥ 4 returns a null graph in
respect of a 𝑘𝑖-jump colouring.

Proof. From Corollary 3.4, a cycle 𝐶𝑚1
and 𝐶𝑚2

must both have 𝑚1 = 𝑡1 ·ℓ, 𝑡1 ∈ N
and 𝑚2 = 𝑡2 · ℓ, 𝑡2 ∈ N for each to permit a 𝑘𝑖-jump colouring, 1 ≤ 𝑖 ≤ 𝑠. Obtain
a chorded cycle 𝐶~

𝑛 by merging two edges, one each from 𝐶𝑚1
and 𝐶𝑚2

. It is easy
to verify that 𝑛 = 𝑚1 + 𝑚2 is not divisible by at least one 𝑘𝑖, 1 ≤ 𝑖 ≤ 𝑠. From
Corollary 3.3 it then follows that 𝐶~

𝑛 will return a null graph. Though immediate
induction the resut follows for any chorded graph 𝐶~

𝑛 , 𝑛 ≥ 4.

An immediate consequence of Theorem 3.6 is that Theorem 3.2 cannot be gen-
eralized for 𝑘-jump colouring for 𝑘 ≥ 3. Hence, for 𝑘-jump colouring, 𝑘 ≥ 3 only
graphs with edge-disjoint holes (induced cycles) can be investigated.

Consider a cycle 𝐶𝑛, 𝑛 ≥ 3 and a path 𝑃𝑚+1, 𝑚 ≥ 1 (also called a 𝑚-path).
The graph obtained by merging an end vertex of the path with a vertex of 𝐶𝑛 is
called a sling graph and is denoted by 𝑆𝑛,𝑚+1. We begin with an important lemma.

Lemma 3.7. Let the vertices of a 𝑚-path be labeled, 𝑣1, 𝑣2, 𝑣3, . . . , 𝑣𝑚+1. For the
cycle 𝐶𝑛, 𝑛 = 𝑡 · ℓ, 𝑡 = 1, 2, . . ., and ℓ = 𝐿𝐶𝑀(1, 2, 3, . . . ,𝑚), construct the sling
graph 𝑆𝑛,𝑚+1 by merging 𝑣1 with a vertex on 𝐶𝑛. For 2 ≤ 𝑘 ≤ 𝑚 initiate (Step 1 of
the 𝑘-JCP) a 𝑘-jump colouring from vertex 𝑣𝑘+1. The sling graph 𝑆𝑛,𝑚+1 permits
such 𝑘-jump colouring.

Proof. Initiating a 𝑘-jump colouring from vertex 𝑣𝑘+1 in accordance with the con-
ditions set, clearly colours vertex 𝑣1 to be, 𝑐(𝑣1) = 𝑐1. Proceeding along the cycle
without returning a null graph follows from Corollary 3.4.

A 𝑝-sling graph has paths, 𝑃𝑚𝑖+1, 1 ≤ 𝑖 ≤ 𝑝, each linked to a common cycle
in accordance to the construction of a sling graph. It is denoted, 𝑆1≤𝑖≤𝑝

𝑛,𝑚𝑖+1. In this
sense a sling graph is a 1-sling graph.

Assume without loss of generality that 𝑚1 ≤ 𝑚2 ≤ 𝑚3 ≤ · · · ≤ 𝑚𝑝. Label the
vertices of the respective paths to be, 𝑣𝑖,1, 𝑣𝑖,2, 𝑣𝑖,3, . . . , 𝑣𝑖,𝑚𝑖 , 1 ≤ 𝑖 ≤ 𝑝. The next
lemma generalizes Lemma 3.7.

Lemma 3.8. For a cycle 𝐶𝑛, 𝑛 = 𝑡 · ℓ, 𝑡 ∈ N, and ℓ = 𝐿𝐶𝑀(1, 2, 3, . . . ,𝑚𝑝),
construct the 𝑝-sling graph 𝑆1≤𝑖≤𝑝

𝑛,𝑚𝑖+1 by merging 𝑣𝑖,1 with some vertex on 𝐶𝑛. For 2 ≤
𝑘 ≤ 𝑚𝑝 initiate (Step-1 of the 𝑘-JCP), a 𝑘-jump colouring from any vertex 𝑣𝑖,𝑘+1.
The 𝑝-sling graph 𝑆1≤𝑖≤𝑝

𝑛,𝑚𝑖+1 permits such 𝑘-jump colouring if all paths 𝑃𝑚𝑗+1, 𝑗 ̸= 𝑖
are merged with some vertex on 𝐶𝑛 which is coloured 𝑐1.

Proof. Note that ℓ is divisible by 𝑚𝑖, 1 ≤ 𝑖 ≤ 𝑝. The result follows trivially from
Lemma 3.7 by induction on the number of paths.

154 J. Kok, S. Naduvath, E. G. Mphako-Banda



A trivial illustration of Lemma 3.8 is the observation that a thorny cycle 𝐶⋆
𝑛, 𝑛

is even, permits a 2-jump colouring.

Theorem 3.9. If a graph 𝐺 which permits a 𝑘-jump colouring then 𝑣 ∈ 𝑉 (𝐺)
yields a (𝑘 − 1)-rainbow neighbourhood.

Proof. Consider any vertex 𝑣 and any (𝑘 − 1)-path 𝑃𝑘 leading from 𝑣. Label the
vertices on 𝑃𝑘 to be, 𝑣1, 𝑣2, 𝑣3, . . . , 𝑣𝑘. Since for any pair of distinct vertices say,
𝑣𝑖, 𝑣𝑗 the distance, 𝑑(𝑣𝑖, 𝑣𝑗) ≤ 𝑘 − 1 it follows that 𝑐(𝑣𝑖) ̸= 𝑐(𝑣𝑗). Therefore, all
𝑐(𝑃𝑘) = 𝒞. Hence, the result.

Theorem 3.9 implies that if 𝐺 permits a 𝑘-jump colouring, then 𝑟−𝜒,(𝑘−1)(𝐺) =

|𝑉 (𝐺)|.

Theorem 3.10. For 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺), the 𝑘-jump colouring of 𝐺 returns a null
graph if 𝐺 contains a cycle 𝐶𝑚 (not necessarily induced) of length, 𝑚 ̸= 𝑡 · 𝑘; 𝑡 =
1, 2, 3 . . ..

Proof. The result follows by similar reasoning to that found in the proof of Theorem
3.2.

3.2. On acyclic graphs
With some understanding of the importance of path, cycles and chorded cycles two
general results can be stated. We begin with two important lemmas.

Lemma 3.11. If an acyclic graph 𝐺 with 𝑑𝑖𝑎𝑚(𝐺) = ℓ, permits a 𝑘-jump colouring
for 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺) such colouring is unique (up to isomorphism).

Proof. Note that for an acyclic graph a path from 𝑣 to 𝑣 in 𝐺 exists and is unique.
Hence, Theorem 3.9 read together with with any injective mapping 𝑓 : 𝒞 ↦→ 𝒞
implies up to isomorphism that the 𝑘-jump colouring is unique.

Lemma 3.11 implies that a 𝑘-jump colouring may initiate from any 𝑣 ∈ 𝑉 (𝐺).

Lemma 3.12. If an acyclic graph 𝐺 is 𝑘-jump colourable, 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺) then
𝐺 is 𝑡𝑘-jump colourable for 2 ≤ 𝑡𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺).

Proof. Let 𝐺 be 𝑘-jump colourable, 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺). Note that for an acyclic
graph 𝐺 a path from 𝑣 to 𝑣 in 𝐺 exists and is unique. Consider a vertices 𝑣, 𝑢, 𝑤
such that 𝑑(𝑣, 𝑢) = 𝑘 and 𝑑(𝑢,𝑤) = (𝑡−1)𝑘. Clearly 𝑐(𝑣) = 𝑐(𝑢) = 𝑐(𝑤). Hence, in
a 𝑡·-jump colouring, 𝑐(𝑣) = 𝑐(𝑤) ̸= 𝑐(𝑢). The aforesaid holds for all 𝑣𝑢-paths and
all 𝑢𝑤-paths in 𝐺. Therefore, the result follows through immediate induction.

Theorem 3.13. An acyclic graph 𝐺 with 𝑑𝑖𝑎𝑚(𝐺) = ℓ, permits a 𝑘-jump colouring
for 𝑘 = 2, 3, 4, . . . , ℓ.
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Proof. If 𝐺 is acyclic the result for 𝑘 = 2, 3, 5, 7, . . . , 𝑝 ≤ 𝑑𝑖𝑎𝑚(𝐺), 𝑝 is prime
follows by the same reasoning as for 𝑑(𝑣, 𝑢) = 𝑘 and 𝑑(𝑢,𝑤) = (𝑡− 1)𝑘 in the proof
of Lemma 3.12. For the multiples of the corresponding prime jumps, the result is
a direct consequence of Lemma 3.12.

We can now state and prove results for the elementary graph operations, join
and corona. First, the result for the corona 𝑃𝑛 ∘𝐻 will be stated.
Remark 3.14. Heuristic reasoning suggests that in Step i of the 𝑘-JCP the vertex 𝑣𝑖
should be such that an uncoloured vertex 𝑢 at maximum distance from 𝑣𝑖 (furthest
away) exists. So for such 𝑣1 such 𝑢 always exists at distance 𝑑(𝑣1, 𝑢) = 𝑑𝑖𝑎𝑚(𝐺).

Theorem 3.15. The join 𝐺+𝐻 of two graphs 𝐺 and 𝐻 returns a Type II primitive
jump colouring.

Proof. Since 𝑑𝑖𝑎𝑚(𝐺+𝐻) = 2 we only consider 𝑘 = 2. Without loss of generality
consider vertices 𝑣, 𝑢 ∈ 𝑉 (𝐺) and vertex 𝑤 ∈ 𝑉 (𝐻). Since 𝑑(𝑣, 𝑢) ≥ 2 in 𝐺 there
exists a cycle from 𝑣 to 𝑢 to 𝑤 to 𝑣 in 𝐺+𝐻 with length (circumference) at least 4.
If the cycle length is odd the result follows from Theorem 3.2. If the cycle length
is even then since there exists a vertex 𝑣′ adjacent to 𝑣 on a 𝑣𝑢-path in 𝐺, there
exists an odd cycle from 𝑣′ to 𝑢 to 𝑤 to 𝑣′ in 𝐺 +𝐻. Similarly the result follows
from Theorem 3.2.

For the corona of graphs some special graph classes will be discussed.

Proposition 3.16. (i) For a path 𝑃𝑛, 𝑛 ≥ 4 and graph 𝐻 of order 𝑚, the corona
𝑃𝑛 ∘ 𝐺 is 𝑘-jump colourable, if 2 ≤ 𝑘 ≤ 𝑛 + 1 and 𝑘 ̸= 3. A 3-jump colouring
returns a Type-II trivial jump colouring.
(ii) For 𝑃𝑛, 𝑛 = 1, 2, 3, 2-jump colourings are returned.

Proof. (i) Consider any path 𝑃𝑛, 𝑛 ≥ 4 and any graph 𝐻 of order 𝑚. Two sub-cases
must be considered.

(a) Let 𝑘 = 3. In accordance with the rainbow 𝑘-neighbourhood convention and
without loss of generality begin Step 1 of the 𝑘-JCP by selecting any 𝑢 ∈ 𝑉 (𝐻1).
The first iteration results in 𝑐(𝑢) = 𝑐(𝑣3) = 𝑐(𝑉 (𝐻2) = 𝑐1. The second iteration
results in 𝑐(𝑣4) = 𝑐(𝑉 (𝐻3) = 𝑐1 followed by, 𝑐(𝑣1) = 𝑐1. Immediate iterative
exhaustion shows that a Type II trivial jump colouring returns.

(b) Begin by considering the case of maximum 𝑘-jump. Clearly 𝑑𝑖𝑎𝑚(𝑃𝑛∘𝐻) =
𝑛 + 1. Let the path vertices be 𝑣1, 𝑣2, 𝑣3, . . . , 𝑣𝑛 and the corresponding corona’d
copies of 𝐻 be labeled 𝐻1, 𝐻2, 𝐻3, . . . ,𝐻𝑛. In accordance with the rainbow 𝑘-
neighbourhood convention and without loss of generality begin Step 1 of the 𝑘-JCP
by selecting any 𝑢 ∈ 𝑉 (𝐻1). Step 1 results in 𝑐(𝑢) = 𝑐(𝑉 (𝐻𝑛) = 𝑐1. Similarly,
Step 2 results in 𝑐(𝑉 (𝐻1) = 𝑐1. Hereafter, for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 2 ≤ 𝑗′ ≤ 𝑛 − 2,
all pairs of vertices 𝑣𝑖, 𝑣𝑗 , 𝑣𝑖𝑢𝑗′ , 𝑢𝑗′ ∈ 𝑉 (𝐻𝑗′ and pair 𝑢𝑖′𝑢𝑗′ all distances are at

most, 𝑛 − 1. Hence, 𝑘-JCP results in each vertex in {𝑣𝑖 : 1 ≤ 𝑖 ≤ 𝑛}
𝑛−1⋃︀
𝑗=2

𝑉 (𝐻𝑗)

to be distinctly coloured. The result follows for 𝑘 = 𝑛 + 1. By immediate inverse
induction the result follows for 𝑘 ̸= 3.
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(ii)(a) For 𝑘 = 2, and applying 𝑘-JCP to 𝑃1 ∘𝐻1 returns a 2-jump colouring.
𝑃2 ∘𝐻 returns a 2-jump colouring. Also, 𝑃3 ∘𝐻 returns a 2-colouring.

(b) For 𝑘 = 3, and applying 𝑘-JCP to 𝑃2 ∘𝐻 returns a 2-jump colouring with
3 colours needed. 𝑃3 ∘ 𝐻 returns a 2-jump colouring with all vertices except 𝑣2
coloured 𝑐1 and 𝑐(𝑣2) = 𝑐2.

Theorem 3.17. Consider a cycle 𝐶𝑛, 𝑛 ≥ 3. For all graphs 𝐻, of order 𝑚 the 𝑘-
colourability of the corona, 𝐶𝑛 ∘𝐻 is equivalent to the 𝑘-colourability of the thorny
graph 𝐶⋆

𝑁 with 𝑚 thorns (pendant vertices) attached to each vertex, 𝑣 ∈ 𝑉 (𝐶𝑛).

Proof. The adjacency properties of 𝐻 are irrelevant in 𝐶𝑛 ∘ 𝐻 in that for 𝑣, 𝑢 ∈
𝑉 (𝐻) the distance reduces to 𝑑(𝑣, 𝑢) ≤ 2. So for the direct application of Lemma
3.8, 𝐶𝑛 ∘𝐻 can be treated as if, equivalent to a thorny cycle.

3.3. On modified 𝑘-jump colouring
Consider a cycle 𝐶𝑛, 𝑛 ≥ 3 which for some 2 ≤ 𝑘 ≤ 𝑛− 1 is not 𝑘-jump colourable.
Certainly 𝑃𝑛 is 𝑘-jump colourable. Now allocate any colour 𝑐𝑖 ∈ 𝒱𝑘, 𝑐𝑖 ̸= 𝑐(𝑣𝑛) or a
new colour 𝑐𝑘+1 to vertex 𝑣𝑛 in accordance to a proper colouring. If colour 𝑐𝑘+1 is
needed, then update, 𝒱𝑘+1 = 𝒱𝑘∪{𝑐𝑘+1}. The (𝑘+1)-string colouring of 𝐶𝑛 is called
a modified 𝑘-jump colouring of 𝐶𝑛. Now similarly for 𝑃𝑛 which has been 𝑘-jump
coloured, it is possible to recolour a vertex 𝑣𝑖 with 𝑐𝑗 ∈ 𝒱𝑘 or with 𝑐𝑘+1 to add the
edge 𝑣𝑖𝑣𝑗 . From Theorem 3.12 it follows that for a graph 𝐺 and 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺),
any spanning tree 𝑇 of 𝐺 is 𝑘-jump colourable. Therefore it is possible to obtain
a modified 𝑘-jump colouring of 𝐺 by iteratively applying the colouring principles
set out. Clearly the modified modified 𝑘-jump colouring obtained in respect of a
particular spanning tree is minimal. The minimum colours in a modified 𝑘-jump
colouring over all distinct spanning trees is the optimal modified 𝑘-jump colouring
of 𝐺.

Theorem 3.18. For any graph 𝐺 and 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺), an optimal modified
𝑘-jump colouring exists.

Proof. For any graph 𝐺 and any spanning tree 𝑇 we have, 𝑑𝑖𝑎𝑚(𝐺) ≤ 𝑑𝑖𝑎𝑚(𝑇 ).
Hence, 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝐺) ⇒ 2 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝑇 ). Therefore, from Theorem 3.15, it
follows that all possible distinct spanning trees are 𝑘-jump colourable and there-
fore permits a corresponding modified 𝑘-jump colouring. By the principle of well-
ordering of integers a minimum number of colours exists over all minimal modified
𝑘-jump colourings of 𝐺.

4. Conclusion

In this paper, we introduced the notion of the 𝑘-rainbow neighbourhood number
of a graph 𝐺. There is a wide scope for determining the minimum and maximum
𝑘-rainbow neighbourhood numbers for many other classes of graphs. In terms of
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graph operations on and between graphs, investigations in respect of the comple-
ment of a graph, the line graph, the jump graph, the total graph etc. seem to be
promising. Studies in this area on graph products such as the Cartesian product,
the tensor product, the strong product and the lexicographical product of various
graph classes also seem to be worthy research directions.

In this article, we also introduced a new notion of a 𝑘-jump colouring of graphs.
Further studies on various aspects of 𝑘-jump colouring remains open. Note from
Proposition 3.16 that for the (𝑛+1)-jump colouring, where 𝑛 ≥ 4, 𝜒𝐽(𝑛+1)(𝑃𝑛∘𝐻) =
(𝑛+1)+𝑚(𝑛−2). Determining the values of 𝜒𝐽(𝑘)(𝑃𝑛 ∘𝐻), 0 ≤ 𝑘 ≤ 𝑑𝑖𝑎𝑚(𝑃𝑛 ∘𝐻)
is another open problem in this area.

Complexity analysis with respect to the optimal modified 𝑘-jump colouring of a
graph 𝐺 is considered to be worthy research. There are good algorithms to find the
spanning trees such as Prim’s algorithm for edge weighted graphs and Kruskal’s
algorithm. It is also well-known that the number of distinct spanning trees of
a graph denoted by, 𝑡(𝐺) can be calculated by using the Kirchhoff matrix-tree
theorem.

All the above mentioned facts show that there is a wide scope for further inves-
tigations in this direction.
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