A NÁTRIUM-HIDRID X $^1\Sigma^+_{\rightarrow}$ A $^1\Sigma^+$ SÁVJAI EMISSZIÓS SPEKTRUMÁNAK ROTÁCIÓS ANALÍZISÉRŐL

DR. PATKÓ GYÖRGY

(Közlésre érkezett: 1973. január 1.)

Dolgozatom tárgya a NaH 4250 Å—5000 Å közötti hullámhossztartományról ISZP—51-es spektrográffal készített felvételem és annak rotációs analízise. Kísérletem leírása során ismertetek egy olyan megbízható, kisülési csöves NaH fényforrással működő berendezést, amelyet az eddigi irodalmi eredmények felhasználásával ¹³ állítottam össze. A berendezéssel előállított és gerjesztett NaH $X^{1}\Sigma^{+} \rightarrow A^{1}\Sigma^{+}$ sávjáról készített emissziós színképfelvételek az irodalomban eddig közölt mérési eredmények ellenőrzésére alkalmasak.

1. A kísérlet leírása

A hidrogént elektrolízissel állítottam elő (1. ábra). Elektrolitnak 2xn KOH oldatot, elektródáknak nikkel-lemezeket használtam. Az elektrolizálást 10—20 A áramerősségű árammal végeztem. A fejlődő oxigén a szabadba távozott. A hidrogén a H harang alakú üvegedényben halmozódott fel. A 8. csap nyitásával a hidrogén az E elektrolit felfogóba jutott. Az elektrolizálást habképződés, erős párolgás, forrás kísérte, és az elektrolizáló áram függvényében több-kevesebb elektrolit és víz jutott az elektrolit felfogóba. Ha a kelleténél nagyobb mennyiségű folyadék halmozódik fel, a 6. csap zárása és a 8. nyitása után a harangban fejlesztett, egy atmoszféránál nagyobb nyomású hidrogénnel az óvatosan megnyitott 7. csapon át kinyomható a folyadék az F főzőpohárba úgy, hogy a rendszerbe levegő nem jut be. A fejlődő hidrogén a 6., 5., 4. csapokon szárított kalciumkloridon keresztül jut a P pufferbe.

A kisülési cső P pirex-, ablaka kvarc Qu-üvegből készült. A anódját, K katódját, kvarc (k) cső állványát alumíniumból esztergályoztuk. A jól megtisztított nátriumot vákuum szárítással ¹ készítettem elő. A (K) katód a csiszolt dugóval kiemelhető, s a nátriummal töltött (k) kvarc küvetta ezen a nyíláson tolható be a P kisülési csőbe. A kisülési csövet 1., 2., 3. csapok nyitásával BP—5 duplex rendszerű rotációs szivattyúval fogyasztón keresztül ritkítottam. A nyomást M manométerrel és az IM—22 ioni-

zációs mérőfejjel mértem. A kisülési csövet 10^{-4} — 10^{-5} torr nyomásig ritkítottam, $3 \cdot 10^3$ cm³ hidrogénnel átöblítettem, majd 0,1 torr nyomású hidrogénnel töltöttem meg. Az U₁ változtatható egyenfeszültséget két RG 1000/ /3000 higanygőz töltésű elektroncsővel készült, kétutas egyenirányítóval állítottam elő. 1000—1500 V feszültségnél a P kisülési csövön átfolyó áramerősség 300 mA volt. A működő kisülési cső a 2. ábrán látható.

2. ábra A működő kisülési cső

A kísérlet optikai bepontosításához⁸ a fotografikus lemez helyén kijelölt hullámhossztartományán belül nagy teljesítményű izzólámpát, a kisülési csőben pedig a (k) kvarc cső helyére, kis kör alakú ernyőt helyeztem el. A spektrográf helyes adatainak beállítása után az L lencsével az ernyőn állítottam elő az izzószál képét.

307

A P kisülési cső üzembe helyezése után a NaH spektrumot 8-szoros nagyításban vizuálisan ellenőriztem, hogy a spektrum képét a spektrográf különböző paramétereinek változtatásával a lehető legélesebbre állíthassam.

A felvétel adatai a következők:

Spektrográf:	ISZP-51 ¹⁶ ; ⁸
A kollimátor objektívje:	24,5
A hullámhosszdob állása:	11,65
A kamara dőlési szöge:	9,1°
A rés szélessége:	$10\mu^{-10}$
A rés magassága:	10 mm
A leképzés fajtája:	külső! ¹⁰
A fényforrás réstől való távolsága:	450 mm
Az L lencse — réstől való sávolsága:	220 mm
— átmérője:	80 mm
— fókusztávolsága:	94 mm
Fotólemez:	Gevaert GEVAPAN 33 PL
Megvilágítási idő:	12 perc
Hívó:	FD—25 filmhívó
A hívó hőmérséklete:	20 °C
A film hívásának ideje:	3 perc
Fixálási idő:	10 perc

Mérővonalaknak a Pfund-féle vas ív spektrum vonalait használtam⁸. Az egyenáramú berendezés 250 V feszültségű és 5 A áramerősségű. A 40– 46 ohmig változtatható 1,5 kW teljesítményű előtét ellenállást házilag készítettem.

A vas ív spektrumának adatai:

A fényforrás neme:	Pfund-féle vasív
Az áramkör adatai:	U = 220 V; I = 5 A
Az előégetés ideje:	60 másodperc
Texp:	10 s
\mathbf{R}_{SZ} :	10μ
R _m :	1 mm
Leképzés:	külső
Az ívnek a réstől való távolsága:	155 mm

A teljes spektrum képét ötszörös nagyításban a 3. ábra mutatja. A NaH széles spektrumára a vasív keskenyebb spektrumát fényképeztem. A kép jobb oldalán néhány erősebb vas vonalat azonosítottam. Értéküket a Zajgyel ¹⁹ táblázatból század angsröm pontosságig jelöltem meg. Az ábra bal oldalán a 4., 5. tartományból három NaH vonalat tüntettem fel. (A zárójelben levő egész szampár az egyes sávokat, a P az ágat, az egy- vagy kétjegyű szám a rotációs kvantumszámot jelenti.) A (10,1) P33-as NaH vonalat (4634, 18 Å) Johnson is észlelte.

A 3. ábrán látható spektrum a NaH spektrumával csak első, második, harmadik tartományban (4250 Å-től kb. 4600 Å-ig) egyezik meg, mert a többi tartományokat néhány erős ionvonal torzítja. A spektrumon kb. 70

3. ábra A NaH emissziós spektruma

Ce és néhány Na, O, H, Al, W atomvonal is található. A felismert atomspektrumvonalak közül csak a szennyező Ce és az O vonalai kifogásolhatók.

A kisülési csőben elhelyezett kvarccsövet salétromsavval, vízzel, alkohollal és újból vízzel tisztítottam. A spektrum analizálása után derült ki, hogy a kvarccsövet CeO_2 -dal csiszolták. Ez az üvegcsiszolópor majdnem fehér, gyengén sárgás árnyalatú és izzítás után a salétromsav alig oldja. Az említett tisztítás ezért kevésnek bizonyult.

A 4. ábrán a 4., 5. tartomány 20-szoros nagyításban látható. Az ábra jobb oldalán néhány erősebb vasvonalat, a bal oldalán intenzívebb NaH és egy nátrium ionvonalat jelöltem meg.

4. ábra Részlet a NaH 20-szoros nagyítású emissziós spektrumból

2. A rotációs analízis

Mivel spektrográfunk diszperziója nem lineáris, a hullámhossz meghatározást a Hartmann-féle formulával⁸ végeztem. Spektrográfunk korreakciós görbéjét⁸ nem ismerjük, ezért megvizsgáltam, hogy 300, 100, 50 Å hullámhossz-tartományban az általam mért és az irodalmi vasvonalak között maximálisan milyen hullámhosszeltérés adódik. 300 Å tartományban $\pm 0,6$ Å különbséggel nyertem a vasvonalakat, 100 Å-nél $\pm 0,3$ Å, 50 Å-nél szintén $\pm 0,3$ Å eltéréssel. A nem mérővonalaknál $\pm 0,5$ Å adódott.

A 750 Å hullámhossz-tartományt nyolc, közel 100 Å-ös tartományra osztottam.

Tartományonként három vas $(\lambda_1; \lambda_2; \lambda_3)$ vagy más atom mérővonalat választottam ki. A mérővonalak $(x_1 \ x_2 \ x_3)$ távolságából, meghatároztam a tartományokra jellemző Hartmann-állandókat

$$\lambda_{\mathrm{t,i}} = A_{\mathrm{t}} + \frac{C_{\mathrm{t}}}{B_{\mathrm{t}} - X_{\mathrm{t,i}}}$$

Ahol: t - a tartományokat jelenti $t = 1, \ldots, 8$

i — a tartományonkénti mérővonalak számát i = 1, 2, 3.

A Hartmann-féle összefüggés tehát tartományonként egy-egy háromismeretlenes egyenletrendszert jelent. Elsődleges feladatom a tartományok mérővonalainak vizsgálata, a Hartmann-állandók (At; Bt; Ct) kiszámolása volt. Az egyenletrendszert általánosan megoldva, gépi számolásra alkalmas összefüggéseket nyertem.

A numerikus számolást egy lengyel "Meskó" jelzésű mechanikus számológéppel végeztem.

A színképvonalakat Zeiss Abbe-féle komparátorral, metronómiai sorrend⁸ betartásával mértem ki.

A Hartmann-állandók tartományonkénti meghatározása után kiszámoltam az ismeretlen spektrumvonalak hullámhosszait század angström pontosságig. A H. Kayser táblázat alapján interpoláció alkalmazásával több mint 800 spektrumvonal vákuumhullámszámát határoztam meg.

Az a tény, hogy felvételemet középbontású spektrográffal és viszonylag kis expozíciós idővel készítettem, a komparálás lehetőségeit is megszabta. Munkámat nehezítette, hogy a sávfejek, valamint az R és P ágak felismerhetetlenek, s hogy az egymás közvetlen közelébe eső vagy részben egymásra eső vonalak néhány esetben egyetlen diffúz vonalnak tűntek, s a komparátor alatt nem lehetett szétválasztani őket. Analizált sávjaim ezért hiányosak.

Mérési anyagomat Hori⁵ dolgozata alapján \pm 0,5 Å hullámhossz intervallumon belül sávonként R és P ágakba soroltam. A sávok jelölését Olsson dolgozatának¹¹ figyelembevételével végeztem.

Érdemes megemlíteni, hogy a (6,1) sávban jelentkezett R 5 4320,64 Å; R 7 4332,57 Å; P 3 4317,67 Å vonalak Johnson⁶, Hori 5 ;⁴ Olsson¹¹ spektrumaiban egyaránt megtalálhatók.

Néha atomvonal molekulavonalat takar. Pl. Hori felvételén 5 a (2,3) R 16-os hidridvonalat Na atomvonal fedi.

Analízisem során kikomparáltam ilyen vonalakat is, alulexponált felvételeim alapján, amelyeknél az expozíciós időt úgy sikerült megválasztanom, hogy a feketedési görbe egyenes szakaszán dolgozzam. Így a komparálásnál a maximális feketedésű helyet mérhettem. Ilyen módon mértenı néhány Ce atomvonallal takart NaH vonalat és egy Na atomvonallal takart hidridvonalat is.

Mikrofotométerrel készített felvételen a fedés jelensége jól kimutatható. Az 5. ábra az (5,3) R 16-os NaH vonal és az azt takaró 4978,59 Å hullámhosszúságú nátriumvonal egybeesését mutatja.

5. ábra A NaH és a Na vonalának koincidenciája

A vonalprofil széles részét a Na ionvonal, kiemelkedő keskeny részét a NaH vonal eredményezte.

Egy-egy sáv hullámszám adatainak helyességét Fortrat-diagrammal ellenőriztem. Példaként bemutatom a 6. ábrán a (6,1) sáv Fortrát-diagramját. A rotációs állandókat az $y = \frac{1}{2}$ -del osztott kimbinációdifferenciákból számoltam ki.

Majd kiszámoltam a $B''_{v,j}$ és $B'_{v,j}$ rotációs állandókat. Egyes sávok (pl a [7,1]-sáv) rotációs állandóinak változásából jól leolvasható az az alkálihidrideknél jelentkező anomália, amely szerint a rotációs kvantumszámok függvényében a rotációs állandók értéke kezdetben növekszik, majd csökken.

A $B''_{v,j}$ és $B'_{v,j}$ értékeiből a B''_v és B'_v állandókat gyors, grafikus eljárással³ 185. o. határoztam meg. A 7. ábrán a NaH (5,1) (5,2) (5,3)-sávok felső és alsó állapotaira vonatkozó $\Delta_2 F''(J)$ és $\Delta_2 F'(J)$ görbéket, a 8. ábrán a B''_v ; B'_v és D''_v ; D'_v rotációs állandók grafikus meghatározására al-

7. abra

kalmas egyeneseket ábrázoltam. A grafikus eljárással nyert B["]_v, B[']_v és D["]_v, D[']_v állandókat az I. táblázatban állítottam össze. A $|\Delta B''_v|$; $|\Delta B'_v|$ és a $|\Delta D''_v|$ $|\Delta D'_v|$ valamint a $|\Delta B''_e|$; $|\Delta B'_e|$ a T. Hori ⁵ által megadott és a méréseimből számolt eredmények különbségének abszolút értékeit mutatja.

v	B_v'' cm ⁻¹	$ \underline{\mathcal{J}} \mathbf{B}_{\mathbf{v}}'' $ cm ⁻¹	D_{v}'' 10-4em-1	⊿D″ cm ⁻¹	$\mathbf{B}'_{\mathbf{v}}$ \mathbf{cm}^{-1}	$ \underline{J} \mathbf{B}'_{\mathbf{v}} $ cm ⁻¹	D'v 10 ⁻⁴ cm ⁻¹	$ \Delta \mathbf{D}'_{\mathbf{v}} $ em ⁻¹
3	4,700	0,131	-3,3		1,875	0,025	-2	0,02
. 4	4,625	0,076	3,3		1,912	0,008	-2	0,02
5	4,550	0,021	3,3	—	1,975	0,045	2	0,02
6	4,525	0,125	3,3		1,968	0,022	2	0,02
7	<i>.</i> _	·			1,875	0,052	2	0,02
8		—			1,866	0,050	2	0,02

I. TÁBLÁZAT

A B",-ből a B",-t, valamint a B',-ből a B',-t a legkisebb négyzetek módszerével 3 határoztam meg.

Ismeretes, hogy

$$B_{v} = B_{e} - \alpha_{e} \left(v + \frac{1}{2} \right).$$
$$U_{v} = v + \frac{1}{2}.$$
$$\overline{B}_{v} = \frac{1}{n} \Sigma B_{v}^{*}$$

Legyen

Meghatároztam a

és a

$$\mathbf{U}_{\mathbf{v}} = \frac{1}{n} \, \boldsymbol{\varSigma} \, \mathbf{U}_{n}$$

számtani középértékeket.

Az $a_{\rm e}$ és ${\rm B}_{\rm e}$ állandók

$$\alpha_{e} = \frac{\Sigma \left(U_{v} - \overline{U}_{v} \right) \left(B_{v} - \overline{U}_{v} \right)}{\Sigma \left(U_{v} - \overline{U}_{v} \right)^{2}},$$

$$B_{e} = \overline{B}_{v} - \alpha_{e} \cdot \overline{U}.$$

A B_e'' és a B_e' értékét a I. táblázat v = 3 . . . 8-ig, n = 1 . . . 6-ig $B_v''\,;\;B_v'$ adataiból számoltam ki.

II. TÁBLÁZAT

$B_e'' = 4,896 \text{ cm}^{-1}$	$ \Delta B_{e}'' = 0,062 \text{ cm}^{-1}$
$B'_{e} = 1,929 \text{ cm}^{-1}$	$ \Delta B'_{e} = 0,038 \text{ cm}^{-1}$

Sor- szám	λÅ	<i>v</i> cm−1	I	ıe	ЛìÅ	Megjegyzés
1	4317,67	23154,15	1	0	+0,48	(4,0) R 13; (6,1) P3
2	4323,56	23122,61	00	1	0,28	
3	4422,95	22603,02	2	0	+0,37	
4	4452,90	22450,99	2	0	+0,12	
5	4471,76	22356,80	0	1	+0,14	
6	4605,29	21708,10	0	00	+0,15	
7	4631,63	21584,65	10	2	+0,47	John.
8	4651,21	21493,78	00	00	0,44	
9	4652,91	21485,93	4	1	-0,29	John. (8,2) R23
10	4735,34	21111,92	00	00	0,02	
11	4755 ,6 0	21021,98	00	00	+0,30	(3,2) R4; (5,2) R17
12	4765,36	20978,93	00	00	+0,01	
13	4779,07	20918,74	00	0	0,35	
14	4792,35	20860,78	00	00	0,35	(8,2) R28
15	4815,12	20762,13	0	00	0,10	
16	4827,18	20710,26	0	0	+0,25	
17	4883,59	20471,04	0	0	+0,45	

.

A II. táblázatban azoknak a spektrumvonalaknak az adatait foglaltam öszsze, amelyeket az analízis során Horihoz 5 hasonlóan nem tudtam a NaH vonalak közé sorolni, s a Zajgyel 19 -féle táblázat atomvonalaival sem tudtam azonosítani.

Köszönettel tartozom dr. Mátrai Tibor tanszékvezető főiskolai tanár úrnak, aki a témát irányította.

IRODALOMJEGYZÉK

- ¹ Angerer E.—Elbert: Technische Kunstgriffe bei physikalischen Untersuchungen 13., verbesserte und erweiterte Auflage Friedz. Vieweg Sohn. Braunschweig. Berlin, 1964.
- ² Balázs M.: A nátriumhidrid molekula $A^1 \Sigma \rightarrow X^1 \Sigma$ sávrendszere (0,2), (1,2), (2,2), (3,2), (4,2), (5,2) sávjainak kiértékelése számítógépen. TDK X. Országos Konferenciája, Nyíregyháza, 1972.
- ³ Herzberg G.: Molekula-színképek és molekula-szerkezet I. Akademiai Kiadó, Budapest, 1959.
- ⁴ Hori T.: Zs. Phys. 61. 352. 1930.
- ⁵ Hori T.: Zs. Phys. 71, 478, 1931.
- ⁶ Johnson E.: H. Phys. Rev. 29, 85, 1927.
- ⁷ Koczkás E.: CsD spektruma. Budapest Műszaki Egyetem. Disszertáció, 1969.
- ⁸ Mátrai T.: Gyakorlati spektroszkópia. Műszaki Könyvkiadó, Budapest, 1963.
- ⁹ Mika J.—Török T.: Emissziós színképelemzés. Akadémiai Kiadó, Budapest, 1968.
- ⁴⁰ Nakamura G.: Zs. Phys. 59, 218, 1930.
- ⁽¹⁾ Olsson E.: Z. Phys. 93, 206, 1935.
- ¹² Pankhurst R.: C. Proc. Phys. Soc. (London) 62. A. 191. 1949.
- ¹³ Patkó Gy.: A nátriumhidrid (NaH) emissziós spektrumának vizsgálata. Egyetemi doktori disszertáció, Eger, 1970.
- ¹⁴ Patkó Gy.: A NaH elektronsávjaira vonatkozó spektroszkópiai kutatások eredményeinek rövid áttekintése. Tud. Közl. X. kötet, Eger, 1972.
- ⁴⁵ Pearse R.: W. B., Rep. Progr. Phys. V. 249, 1938.
- ¹⁶ Szpektrograf ISZP—51. Leningrád, 1962.
- ¹⁷ Watson W.: Phys. Rev. 32, 600, 1929.
- ¹⁸ Weizel W.: Zs. Phys. 60, 599, 1938.
- ¹⁹ Zajgyel A. N.—Prokofjev V. K.—Rajszkij Sz. M.: Tablicü. Szpektrolnüchlinij. Gosz. Izd. Tech. Teoreticseszkoj Literaturü, Moszkva—Leningrád, 1952.

ÜBER ROTATIONS — ANALYSE EINIGER ELEKTRONEN — BANDEN $X^1 \Sigma^+_{-} A^1 \Sigma^+$ DES NaH-MOLEKÜLS

by Dr. G. Patkó

Das Thema dieser Abhandlung ist die Untersuchung über den Wellenlängenbereich zwischen 4250 Å-5000 Å mit Spektrograph ISZP 51 aufgenommener Spektrogrammen des NaH — Moleküls und deren Rotations — Analyse. Das Versuch wurde mit einer verläss lichen NaH — Entlandungsrohr — Licht-

Das Versuch wurde mit einer verläss lichen NaH — Entlandungsrohr — Lichtquelle vollgeführt, welche von dem Verfasser auf Grund der bisheringen fachliterarischen Daten zusammengestellt wurde.

Die Emissions – Spektralaufnahmen über den $X^1\Sigma^+ \rightarrow A^1\Sigma^+$ Banden des Natrium-hydrids können zur Kontrolle der in der Fachliteratur mitgeteilten bisheringen Ergebnisse dienen.

.