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Abstract

Using connected transversals we determine the six-dimensional indecom-
posable solvable Lie groups with five-dimensional nilradical and their sub-
groups which are the multiplication groups and the inner mapping groups
of three-dimensional connected simply connected topological loops. Together
with this result we obtain that every six-dimensional indecomposable solvable
Lie group which is the multiplication group of a three-dimensional topological
loop has one-dimensional centre and two- or three-dimensional commutator
subgroup.
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1. Introduction

The multiplication group Mult(L) and the inner mapping group Inn(L) of a loop
L are important tools for the investigations in loop theory since there are strong
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relations between the structure of the normal subloops of L and that of the normal
subgroups of Mult(L) (cf. [1, 2]). In [9] the authors have obtained necessary and
sufficient conditions for a group G to be the multiplication group of L. These
conditions say that one can use special transversals A and B with respect to a
subgroup K of G. The subgroup K plays the role of the inner mapping group of L
whereas the transversals A and B belong to the sets of left and right translations
of L.

P. T. Nagy and K. Strambach in [8] investigate thoroughly topological and
differentiable loops as continuous and differentiable sections in Lie groups. In this
paper we follow their approach and study topological loops L of dimension 3 having
a solvable Lie group as their multiplication group. Applying the criteria of [9] we
obtained in [3] all solvable Lie groups of dimension < 5 which are the multiplication
group of a 3-dimensional connected simply connected topological proper loop. This
classification has resulted only decomposable Lie groups as the group Mult(L) of
L. Hence we paid our attention to 6-dimensional solvable indecomposable Lie
groups. If their Lie algebras have a 4-dimensional nilradical, then among the 40
isomorphism classes of Lie algebras there is only one class depending on a real
parameter which consists of the Lie algebras of the group Mult(L) of L (cf. [4]).
This result has confirmed the observation that the condition for the multiplication
group of a topological loop to be a (finite-dimensional) Lie group is strong. Since
the 6-dimensional solvable indecomposable Lie algebras have 4 or 5-dimensional
nilradical it remains to deal with the 99 classes of solvable Lie algebras having 5-
dimensional nilradical (cf. [7, 10]). In [5] we proved that among them there are 20
classes of Lie algebras which satisfy the necessary conditions to be the Lie algebra
of the group Mult(L) of a 3-dimensional loop L. We determined there also the
possible subalgebras of the corresponding inner mapping groups.

The purpose of this paper is to determine the indecomposable solvable Lie
groups of dimension 6 which have 5-dimensional nilradical and which are the mul-
tiplication group of a 3-dimensional connected simply connected topological loop.
To find a suitable linear representation of the simply connected Lie groups for the
20 classes of solvable Lie algebras given in [5] is the first step to achieve this clas-
sification (cf. Theorem 3.1). Applying the method of connected transversals we
show that only those Lie groups G in Theorem 3.1 which have 2- or 3-dimensional
commutator subgroup allow continuous left transversals A and B in the group
G with respect to the subgroup K given in Theorem 3.1 such that A and B are
K-connected and A U B generates G (cf. Proposition 3.2 and Theorem 3.3). An
arbitrary left transversal A to the 3-dimensional abelian subgroup K of G depends
on three continuous real functions with three variables. The condition that the
left transversals A and B are K-connected is formulated by functional equations.
Summarizing the results of Theorem in [6], of Theorem 16 in [4] and of Theorem
3.3 we obtain that each 6-dimensional solvable indecomposable Lie group which
is the multiplication group of a 3-dimensional topological loop has 1-dimensional
centre and two- or three-dimensional commutator subgroup.
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2. Preliminaries

A loop is a binary system (L, -) if there exists an element e € L such that x =
e-x = x - e holds for all z € L and the equations z -a = b and a -y = b have
precisely one solution = b/a and y = a\b. A loop is proper if it is not a group.

The left and right translations A\, =y~ ay: L - Landp, : y—y-a: L — L,
a € L, are bijections of L. The permutation group Mult(L) = (A, pa;a € L) is
called the multiplication group of L. The stabilizer of the identity element e € L
in Mult(L) is called the inner mapping group Inn(L) of L.

Let G be a group, let K < G, and let A and B be two left transversals to K
in G. We say that A and B are K-connected if a='b~'ab € K for every a € A
and b € B. The core Cog(K) of K in G is the largest normal subgroup of G
contained in K. If L is a loop, then A(L) = {\,;a € L} and R(L) = {ps;a € L}
are Inn(L)-connected transversals in the group Mult(L) and the core of Inn(L)
in Mult(L) is trivial. In [9], Theorem 4.1, the following necessary and sufficient
conditions are established for a group G to be the multiplication group of a loop L:

Proposition 2.1. A group G is isomorphic to the multiplication group of a loop if
and only if there exists a subgroup K with Cog(K) =1 and K -connected transver-
sals A and B satisfying G = (A, B).

A loop L is called topological if L is a topological space and the binary oper-
ations (z,y) — x -y, (z,y) — z\y,(x,y) = y/x : L x L — L are continuous. In
general the multiplication group of a topological loop L is a topological transforma-
tion group that does not have a natural (finite dimensional) differentiable structure.
In this paper we deal with 3-dimensional connected simply connected topological
loops L. We assume that the multiplication group of L is a 6-dimensional solvable
indecomposable Lie group G such that its Lie algebra has 5-dimensional nilradical.
Then L is homeomorphic to R? (cf. [3, Lemma 5]). Since it has nilpotency class 2
(cf. [5, Theorem 3.1]) by Theorem 8 A in [2] the subgroup K in Proposition 2.1 is
a 3-dimensional abelian Lie subgroup of G which does not contain any non-trivial
normal subgroup of G, A and B are continuous K-connected left transversals to
K in G such that AU B generates G.

3. Six-dimensional solvable Lie multiplication
groups with five-dimensional nilradical

Using necessary conditions we found in [5], Theorems 3.6, 3.7, those 6-dimensional
solvable indecomposable Lie algebras with 5-dimensional nilradical which can occur
as the Lie algebra g of the multiplication group of a 3-dimensional topological loop
L. We obtained also the Lie subalgebras k of the inner mapping group of L. With
the notation in [10] they are the following:

e =b=0 _ _ .
g1 = gg,14 ) k1,1 - <62a eq4 + e, €5>, k172 - <€3a eq + 61,65>,



74 A. Figula, K. Ficzere, A. Al-Abayechi

g2 = 8039, ko = (e3,e4 + €1, €5),

g3 1= g‘éi%’“zszo, k31 = (e3,eq,e5 +e1), ks o = (e2,e4,65 + €1);

g4 = ggf;l, ky = {(e1 + area,e3+ ea,e4), a1 €R;

85 = 855", ks = (e1 + €2, €3 + azea, e4), az € R;

86 = 8659, ke = (e1 + ez, e3 + asgea,eq), az € R;

g7 =803, kr = (e1 + es, €2 +ce5,e4), € = 0,1

g 1= ggjg, ks = (e1 + e5, €2 + ages, eq + ages), az € R\ {0}, az € R;

a=0,0<[b|<1 :
89 = 86,21 , kg = (e3,eq +e1,e5 +€1);

810 = 86,24, k1o = (€3, €a, €5 + €1);
811 = 86,30, ki1 = (e3,e4 + ase1,e5 +e1), az € R;

812 = g‘éﬁg’bzo, kio1 = (e3,eq,e5 +e1), kioo = (e3,e4 + e1,e5 + azer), ag € R;
813 := 86,16, K13 = (€1 + €5, €2 + ases, e4 + ases), as,az € R;

814 1= gZE%’b:‘S:O, kig = (e1 +es5, 62 + ages, eq), az € R;

gi5 := géjg’ﬂ, kis = (e1 + are3, ea + e3,e4 + azes), ar,a3 € R;

e=0,£1 .
816 = 852+ Ki6 = (e1 +ares, ez +e2,e4), a1 €R;

817 := 8&%57, kir = (e1 + ez, e3 + agea, eq), az € R;

818 == 8376, kis = (e1 + €2, €3 + azen, e4), az € R;

. 0=e=0,a#0 _ .
819 = 8g.17 , kig = (€1 + €4, e2 + azeq,e5 + e4), a2 €R;
§=0,a=e=1
820 = &g,17 , koo = (€1 + €4, e2 + agey, e5 + azey), az, a3 € R.

In [11] a single matrix M is established depending on six variables such that the
span of the matrices engenders the given Lie algebra in the list g;, ¢ = 1,...,20.
To obtain the matrix Lie group G; of the Lie algebra g; we exponentiate the space
of matrices spanned by the matrix M. Simplifying the obtained exponential image
we get a suitable simple form of a matrix Lie group such that by differentiating
and evaluating at the identity its Lie algebra is isomorphic to the Lie algebra g;.
In case of the Lie algebras g;, j = 1,2,8,9,16, we take in order the exponential
image of the matrices:

0 —s3 s2 0 —s5 25
0 0 0 0 0 s
{0 0o o 0 0 s | o
M= 0 O 0 —s¢ O S4 ; sieRii=1,...,6,
0 0 0 0 0 2
O 0 0 0 0 0
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0 —s3 s3 0 —sg 25
0 0 0 0 0 s
0 —S6 0 0 0 S3 ‘ .
MZ_ 0 0 0 —Sg 0 S4 7516R,’L—1’_._’67
0 O 0 0 0 0
—S¢ —S3 —S2 0 0 231
0 —S6 0 0 0 S9
0 0 0 0 0 —s5 o
MS_ O _86 0 _86 O 84 ,SZGR’/L—l""76’
0 0 —-s¢ 0 0 —s5
0 0 0 0O 0 O
0 —s3 s2 0 0 251
0 0 0 0 0 S
O —S6 O 0 O S3 . .
Mo = 0 0 0 —-s O S4 , si€Ri=1,...,6,
0 O 0 0 —bsg ss
0 O 0 0 0 0
—56 0 0 0 0 S3
0 0 285 —es¢ esa 259
0 0 0 S5 0 -5 4 7 -
Mie = 0O 0 0 0 S5 84 , s €Re=0,£1,:=1,...,6.
0 0 O 0 0 0

This procedure yields the following

Theorem 3.1. The simply connected Lie group G; and its subgroup K; of the Lie

algebra g; and its subalgebra k;, i = 1,...,20, is isomorphic to the linear group of
matrices the multiplication of which is given by:
Fori=1:

9(z1, T2, T3, T4, 5, 76)9(Y1, Y2, Y35 Y45 Y5, Y6 )

= g(z1 + Y1 + T2ys — T3Y2 — TeYs, T2 + Y2, T3 + Y3, T4 + Yae” ", T5 + Y5, Te + Yo,
Kq1={g(u1,us,0,u1,u2,0);u; € R,i=1,2,3},
K2 ={g(u1,0,us,u1,us,0);u; € R,i=1,2,3},

fori=2:
g(xl,:ﬂg,xg,m,x5,x6)g(y1,yg,yg,y4,y5,y6)
= g(x1 +y1 + 22y3 — T3y2 — 6 (Y5 + T2Y2),

T2 + Y2, T3 + Y3 — TeY2, Ta + Yae ", T5 + Ys, Te + Yo,
K2 = {g(UhO,Ug,Ul,Ug,O);Ui S R>Z = 17233}3
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fori=3:
9(3101,332,9637964,5857556)9(111,y27y3ay47y5ay6)
= g(z1 +y1 — veys + (325 + 23)y2,
To + Y2, T3 + Y3, Ta + Ya — TeY2, Ts + Yse 0, 6 + Yo),
K3,1 = {g(ug,u3,07u1,u2,0);ui S R7Z = 172a3}7
K39 = {g(u2,0,u3,ui,u,0);u; € R,i=1,2,3},
fori=4:
9(x1, 22,23, 24,75, 26) g (Y1, Y2, Y3, Y4, Y5, Y6 )
= g(z1 +y1 + T5Ya, T2 + Y2 + T5Y1 + ET4y6 + %33?)?/47
x3 +yse ", x4 +ya, T5 + Ys, Te + Ys), € = £,
K4 = {g(u17a1u1 + UQ,UQ,U?,,O,O);’U"L‘ S R7Z = 17273}70/1 S R7
fori=5:

g($1,$27$37$47$57$6)9(y1;y27y3ay4vy5ay6)
= g(x1+ (y1 + w5y3)e” ", 12 + Y2 + Tsya, T3 + yze” T4 + Ya, T5 + Ys, Te + Ys),
K5 = {g(ulaul + CLQUQ,UQ,UB,0,0);Ui € va = 1,2,3},&2 € Rv

fori=6:

9(1”1;332,173a134’$57$6)9(y1,y27y3;Z/479573/6)
= g(x1 + (y1 + yzzs)e " °,
To + Y2 — (@5 + T6)ya, T3 + yse~ S, x4 + ya, 5 + Y5, T + Vo),

Kg = {g(u1,u1 + agug, uz,us3,0,0);u; € R,i =1,2,3},a2 € R,
fori=1:

9($1,$2,$3,3«“473?57936)9(?}17:U27y3,y4yys,y6)
=g(x1 4+ (Y1 + yox3)e” 0, 29 + yoe~ 0,23 + Y3, T4 + Y4, T5 + Y5 — TaYs, Te + Ys),
K7 = {g(u17u2707u37u1 —’-E’UQ,O);’U/’L‘ € Ral = 17273}7 = 07 1u

fori=238:

9(z1, T2, T3, T4, Ts, 6 )9 (Y1, Y2, Y3, Y4, Y5, Y6 )
= g(@1 + (y1 + y2w3)e™ ™ — Y3z,
T2+ y2e "0, w3 + Y3, ¥4 + (Y4 — Y2¥6)e” 0, Ts + Ys — T6Y3, T + Yo),
Ks = {g(u1,us2,0,u3,u; + asus + azug,0);u; € R,i=1,2,3},a3 € R\ {0}, a2 € R,
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fori=9:
g(x1, 22,23, 4, 75, 26)9(Y1, Y2, Y3, Y4, Y5, Y6 )
= g(z1 +y1 + 22y3 — (v3 + T276)y2, T2 + Y2,
T3 + Y3 — TeY2, Ta + yae ", x5 + yse 70, w6+ yg), 0 < [b] <1,
Ky = {g(u1 + u2,0,u3,ui,u,0);u; € R,i=1,2,3},
for i =10:
9(37171‘2,133,35473357336)9@17yzvy37y47y5yy6)
= g(x1 +y1 — 226Ys + (ﬂfg — T2)y3 — (éx% — T2%6 — T3)Y2, T2 + Y2,

T3 + Y3 — TeY2, Ta + Y1 — TeYs + 25y, Ts + yse ", x6 + Ys),
Ko = {g(u2,0,u3,u1,u2,0);u; € R,i=1,2,3},
fori=11:
9(95173327203,9647$57$6)9(Z/1>y27y3>y473/5>y6)
=g(z1 +y1 + z2y3 — %565216,562 + Y2, 23 + Y3 — TaYs,

x4 +yse” "0, x5 + yse” "0 — xay6, T + Ys)s
Kll = {g(a'Qul +U2,0,U3,U1,U2,0);’U;¢ S R7Z = 1,2,3},0/2 S Ra
fori=12:
g(x1, 2, 23,4, T5,%6)9(Y1, Y2, Y3, Y4, Y55 Yo )
= g(x1 + y1 — 22y3 + y2(r3 + T226), T2 + Y2, T3 + Y3 — TeY2,
Z4 4 yse "% cos zg + yse 6 sin xg,
z5 — yae 70 sinxg + yse " cos x6, 26 + Ys), b > 0,
K12,1 = {g(UQ,O,’LL3,’LL1,u2,O);Ui € Rai = 1a273}7
K29 = {g(u1 + agug, 0, u3, u1, uz,0);u; € R,i =1,2,3}, a3 € R,
fori=13:
9(331,9027963,5847965,336)9(2/1,1127y37y47y571/6)
= g(21 + [y1 — yaze + y2(32F + 23)]e ™" — 2oys3, T2 + Yoe T,
3+ Y3, T4 + (Ya — y2we)e” *°, x5 + Y5 — TeY3, Te + Yo),
K13 = {g(U]_,’U/Q,O,’LLg,U]_ + asU2 + a3U/3,0);U2‘ S Ral = 172,3},a27a3 S R?

fori=14:

9($17I2,I3,5174a135@6)9@173/2,y37y4ay5796)
= g(w1 +y1e” " + way3, T2 + y2e~ 0, w3 + Y3,

Ty +Ya — T6Y3,T5 + Y5 — TeYa + %x%y&mﬁ + Y6),
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K14 = {g(u1,us2,0,u3,u1 + asug,0);u; € R,i=1,2,3},a2 € R,
fori=15:
9(z1, T2, T3, T4, T5, 26)9(Y1, Y25 Y35 Y4, Y55 Y6)
=g(z1 +y1e” " + 24ys5, T2 + (Y2 — 26Ya6 — Y125)e” "0 + (1 — T475)Ys5,
T3+ Y3 — TeYs, Ta + Yae 0,5 + Ys, Te + Y6 ), € = 0, 1,
K15 = {g(u1,us, arus + ug + asus, us,0,0);u; € R,i =1,2,3},a1,a3 € R,
for i =16:
9(x1, 22, T3, T4, T5, T6) 9 (Y1, Y2, Y3, Y4, Y5, Y6)
=g(z1 +y1 +5ys + %»’Ugyﬁ,
Ty + Yo + 225y1 + (22 — ewe)ys + (%x% +e(xq — 2576) ) Ys,
x3 +yse” ", xq + ya + T5Y6, Ts + Ys, Te + Y6 ), € = 0, %1,
K6 = {g(u1,a1u1 + ug,ua,us,0,0);u; € R,i=1,2,3},a1 € R,
fori=17:
9(w1, 22, 23,74, T5, 26)9(Y1, Y2, Y3, Y4, Y55 Y6)
= g(z1 4 (y1 + T5y3)e ™, T2 + Y2 + T5ys — 223Ye,
T3 +yze ", T4+ ys — T5Ye, Ts + Ys, Te + Yo),
K17 = {g(u1,u1 + agus,us,u3,0,0);u; € R,i=1,2,3},a2 € R,
for i =18:

9(z1, T2, T3, T4, Ts, 6 )9 (Y1, Y2, Y3, Y4, Y5, Y6 )
= g(x1+ (Y1 + ysas)e ™, w2 + y2 — (5 + 26)ya — 3 (x5 + 26)°ys,
T3 +yse "0, w4+ ys + (T5 + T6)Ys, T5 + Y5, T + Ys),
Kig = {g(u1,u; + agus, us,us3,0,0);u; € R;i=1,2,3},a2 € R,
fori=19:
9(x1, T2, T3, T4, T5,26)9 (Y1, Y2, Y35 Y45 Y5, Y6)
= g(x1 +y1e” " 4+ w3Yy2, T2 + Yo, T3 + yze” °,
Ty + Y1 — TeY2, Ts + yse "°, w6 + Ys),a € R\ {0},
K9 = {g(u1,0,us,u1 + asug + uz, uz,0);u; € R;i=1,2,3}, a2 € R,
for i =20:
9(z1, T2, T3, T4, T5, T6)9 (Y1, Y2, Y35 Y4, Y5, Y6 )
= g(z1 + (y1 — TeYs + Yy2x3)e” "0, 2 + yoe” *°,
T3+ Y3, T4+ Ya — T3Ye, T5 + Yse 0, Te + Yo),
Koo = {g(u1,u2,0,u; + agus + azus,us,0);u; € Rii=1,2,3},as,a3 € R.
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Among the Lie groups in Theorem 3.1 only the group G; has 2-dimensional
commutator subgroup and the groups G;, i = 2,...,7, have 3-dimensional commu-
tator subgroup. We show that among the 6-dimensional solvable indecomposable
Lie groups with 5-dimensional nilradical precisely these Lie groups are the multipli-
cation groups of three-dimensional connected simply connected topological loops.

Proposition 3.2. There does not exist 3-dimensional connected topological proper
loop L such that the Lie algebra g of the multiplication group of L is one of the Lie
algebras g;, i =8, ...,20.

Proof. If L exists, then there exists its universal covering loop L which is homeo-
morphic to R3. The pairs (G;, K;) in Theorem 3.1 can occur as the group Mult(i)
and the subgroup Inn(L). We show that none of the groups Gj, i = 8, ..., 20,
satisfies the condition that there exist continuous left transversals A and B to Kj;
in G; such that for all @ € A and b € B one has a~'b~'ab € K;. By Proposition 2.1
the groups Gj, i = 8,...,20, are not the multiplication group of a loop L. Hence
no proper loop L exists which yields that also no proper loop L exists. This proves
the assertion.
Two arbitrary left transversals to the group K; in G; are:

For i = 9,10, 11, 12,

A = {g(u,v, hy(u,v,w), ha(u,v,w), hg(u, v, w),w);u,v,w € R},
B= {g(kal7f1(kalam)7f2(k7lam)a f3(kalvm)7m);kalam € R}7

for i = 8,13, 14, 15,

A = {g(h1(u,v,w), ha(u,v,w), u, hy(u,v,w),v,w);u,v,w € R},
B ={g(f1(k,l,m), fa(k,l,m), k, f3(k,I,m),l,m); k,l,m € R},

for i = 16,17, 18,

A = {g(h1(u,v,w),u, h2(“7U7w)7h3(uavaw)7v7w);u7vvw S R})
B ={g(f1(k,l,m), k, fa(k,l,m), f3(k,l,m),l,m); k,l,m € R},

for i =19

A= {g(hl(uav7w)aua h?(uava)vvah3(uav7w)7w);uvv7w S R}7
B ={g(fi(k,l,m), k, fo(k,l,m), 1, fs(k,l,m),m); k,l,m € R},

for i = 20

A= {g(hl(u,v,w),hz(u,v,w),u,v,hg(u,v,w),w);u,v,w € R}»
B = {g(fl(k7 l7m)7f2(k7 l’m)’ k7l7 f3(k7 l7m)7m);k7 l7m 6 R},

where h;(u,v,w) : R® — R and f;(k,l,m) : R® = R, i = 1,2,3, are continuous
functions with f;(0,0,0) = h;(0,0,0) = 0. Taking in G;, i = 9,11,12, the elements

a = ¢(0,v,h1(0,v,0), h2(0,v,0), h3(0,v,0),0) € A,
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b= g(O, 07 fl(oa 07 m)7 f2(07 Oa m)a f3(07 Oa m)v m) €B
and in G17 the elements

a = g(h1(0,v,0),0,hs(0,v,0), h3(0,v,0),v,0) € A,
b = g(f1(07 07 m)’07 f2(07 07 m)’f3(07 07 m)70’ m) e B

one has a~'b~lab € K; if and only if

fori=29
mv? — 20 f1(0,0,m) = ha(0,v,0)(1 — ™) + h3(0,v,0)(1 — ™), (3.1)
for i =11

imov® +vf1(0,0,m) = (™ — 1)(h3(0,v,0) + azha(0,v,0)) — e™mhs(0,v,0), (3.2)
for i = 12 and for K21
20f1(0,0,m) —muv® = (1 — "™ cosm)h3(0,v,0) — "™ sinmhy(0,v,0),  (3.3)
for i = 12 and for K22

20f1(0,0,m) — mv? = (1 — "™ cosm)(h(0,v,0) + ashs(0,v,0))
+ e sinm(hs(0,v,0) — ashs(0,v,0)), (3.4)

for 1 =17

—1mv* —vf3(0,0,m) = (1 —€™)[h1(0,v,0) + (az — v)h2(0, v, 0)]
—e™vf2(0,0,m) (3.5)

is satisfied for all m,v € R. On the left hand side of equations (3.1), (3.2), (3.3),
(3.4), (3.5) is the term mv? hence there does not exist any function f;(0,0,m) and
hi(0,v,0), i = 1,2, 3, satisfying these equations. Taking in Gy the elements

a = g(0,v,h1(0,v,w), ha(0,v,w), h3(0,v,w),w) € A
b = 9(0707f1(0»07m)7f2(0a07m)7f3(0703m)7m) € Bv

respectively in G1g the elements

b= g(fl(oa Oa m)a 07 f2(07 Oa m)ﬂ f3(0703m)a O7m) € Ba
respectively in Gig the elements

a = g(h1(0,v,0),0,hs(0,v,0), h3(0,v,0),v,0) € A,
b = g(f1(07 l7m)707 fg(o’ l’m)’f3(07l’ m),l’m) 6 B
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we obtain that a~'b~'ab € K; if and only if in case i = 10 the equation

eV(1 —e™)h3(0,v,w) + e™(e” —1)f3(0,0,m)
= (w? + 2v + 2mw) £1(0,0,m) + 2w f2(0,0,m)
— (m? + 2wm)h1(0,v,w) — 2mhy(0, v, w)
2 2 2_1,. 3

—mwv — w my — mu* — zum®, (3.6)

respectively in case i = 18 the equation
e™(e” = 1)(f1(0,0,m) + a2 f2(0,0,m))
+e“(1 —e™)[h1(0,v,w) + (ag — v)h2(0,v, w)]
= "0 f5(0,0,m) + (w +v) f3(0,0,m)
— mh3(0,v,w) + v’m + $m*v + wom, (3.7)
respectively in case ¢ = 16 the equation
— %vgm —v2lm — Pom — %anm —em?v — ayvlm
= (1 —e™)ha(0,v,0) — 21h1(0,v,0) + (I 4 20l + a1l + 2em)h3(0,v,0)
+20f1(0,1,m) — (v + 20l + ayv) f3(0,1,m) (3.8)

holds for all m,l,v,w € R. Substituting into (3.6)
12(0,0,m) = f5(0,0,m) — mf1(0,0,m), ho(0,v,w) = h5(0,v,w) — whq(0,v,w),
respectively into (3.7)
f1(0,0,m) = f1(0,0,m)—az f2(0,0,m), h1(0,v,w) = hi(0,v,w)+(v—az)hz(0, v, w),
respectively into (3.8)
h1(0,v,0) = h1(0,v,0) + (v + %a1) hs(0,v,0),
f1(0,1,m) = f1(0,1,m) + (I + 3a1) f3(0,1,m),
we get in case ¢ = 10

e’(1 —e™)hs(0,v,w) +e™(e” — 1) f3(0,0,m)

= (w? + 20) £1(0,0,m) — m?hy (0, v, w) + 2w f35(0,0,m)
2 2 2 1.3

— 2mhj(0,v, w) — m*wv — w?mv — mv* — Fom?, (3.9)

respectively in case ¢ = 18

e™(e” —1)£1(0,0,m) — ™™ v f5(0,0,m) + e (1 — e™)h} (0, v, w)
= (w + v) f3(0,0,m) — mh3(0,v,w) + v*m + tm?v + wom, (3.10)
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respectively in case ¢ = 16

(1 —€e™)ha(0,v,0) + (I + 2em)h3(0, v, 0)
— 02 £3(0,1,m) — 21R}(0,v,0) + 2vf](0,1,m)

1,3 2

=—3zv°m— v?lm — Pom — %alvzm —em?v — ayvlm. (3.11)

Since on the right hand side of (3.9), respectively (3.10), respectively (3.11) there is

the term — fvm?, respectively $m?v, respectively —£v*m there does not exist any

3
function f;(0,0,m) and h;(0,v,w), ¢ = 1,2, 3, respectively f;(0,l,m), i = 1,3, and

hj(0,v,0), j = 1,2,3, satisfying equation (3.9), respectively (3.10), respectively
(3.11).
Taking in G;, i = 8,13, 14, the elements
a = g(h1(0,0,w), h2(0,0,w),0,h3(0,0,w),0,w) € A,
b= g(fl(k70am)7 f2(k70am)7k7f3<k705m)707m) € Ba

respectively in G19 the elements
a = g(hl(oa 07 w)7 07 hZ(Oa 07 w)7 07 h3(01 07 ’LU), w) € Aa
b = g(fl(k7 O’ m)’ k7 fQ(k’ O’m>707 f3(k,07 m)7m) E B7
respectively in Gog the elements
a = g(h1(0,0,w), h2(0,0,w),0,0, h3(0,0,w),w) € A,
b= g(fl(k707m)7f2(k707m)7kaO7f3(k707m)7m) €B
we have a~'b~1ab € K; precisely if for i = 8 the equation
wk = e (1 —e™)[(az + asw)ha(0,0,w) + ashs(0,0,w) + hq1(0,0,w)]

+e™(e” — D[(agm + a2 — k) fa(k,0,m) + az f3(k,0,m) + f1(k,0,m)]
+ ™ agw fo(k, 0,m) + (2k — azm)ho (0,0, w)], (3.12)

for ¢ = 13 the equation

wk = e“(1—e™)[(3w® + as + azw)h2(0,0,w) + (a5 + w)hs(0,0,w) + h1(0,0,w)]
+e™(e” — D[(3m® — k + azm + az) f2(k,0,m)
+ (m+ as)f3(k,0,m) + f1(k,0,m)]
+ ™t ((m + az)w + %w2)f2(k‘, 0,m) + (2k — %mQ — (w + az)m)h2(0,0, w)]
+ ™ (w f3(k,0,m) — mh3(0,0,w)), (3.13)

for i = 14 the equation

%w2k + mwk + w f3(k,0,m) — mhsz(0,0,w)
= ew(l - em)(hl(ov 0,’[0) + a2h2(0707w))
+e™(e” — 1)(f1(k,0,m) + azf2(k,0,m)) — €™ khy(0,0,w), (3.14)
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for ¢ = 19 the equation

wk = e”(1 — e™)h3(0,0,w) — e™(1 — ) f3(k,0,m) — e kR (0,0, w)
+e*(1 — am)(h1(0 0,w) + azhs(0,0,w))
7€am(1 - )(fl(kaoam)+a2f2(k707m))3 (315)

for ¢ = 20 the equation

—wk =e" (1 —e™)(h1(0,0,w) + azh2(0,0,w) + (w + a3)h3(0,0,w))
+e™ (1 —e”)((k — az)fa(k,0,m) — fi(k,0,m) — (m + a3) f3(k,0,m))
+ €™ (kho(0,0,w) — mh3(0,0,w) +wf3(k,0,m)) (3.16)

is satisfied for all k, m,w € R, as,as € R. Putting into (3.12)

h1(0, O7w) = hll(ov Oa ’LU) - ((13’LU + a2)h2(03 O7w) - a3h3(07 Oa ’UJ),
fl(k707m) = f{(k,O,m) + (k —asm — a2)f2(k507m> - a3f3(ka07m)7

respectively into (3.13)

h1(0,0,w) = K} (0,0,w) — (2w? + azw + a2)h2(0,0,w) — (a3 + w)hz(0,0,w),
fi(k,0,m) = f{(k,0,m) + (k — 4m* — agm — a3) f2(k,0,m) — (m + a3) f3(k,0,m),

f3(k,0,m) = f3(k,0,m) — (m + a3) f2(k,0,m),

h3(0,0,w) = h%(0,0,w) — (w + as)h2(0,0, w),

respectively into (3.14)

h1(0,0,w) = h7(0,0,w) — azha(0,0,w),
f3(k,0,m) = fi(k,0,m) — mk,
fl(k?ovm) = f{(k707m> - a2f2(kao>m>7

respectively into (3.15)

hl(oa Oa ’U_)) = h’ll(ovoaw) - a2h2(0707w)5
fl(k707m) = f]l.(k707m) - a/2f2(k507m)7

respectively into (3.16)

hl(oa Oa w) - hll(ovoaw) - a2h2(0’07w) - (U) + a3)h3(03 O,"UJ),
f1(/€,0,m) = f{(kjaovm) + (k - a2)f2(ka07m) - (m+ a3)f3(k70’m)

in order equations (3.12), (3.13), (3.14), (3.15), (3.16) reduce in case i = 8 to

wk =€ (1 —e™)h}(0,0,w) +e™(e” — 1) f1(k,0,m)
+ ™ agw fo(k,0,m) + (2k — azm)hs (0,0, w)], (3.17)
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in case i = 13 to
wk = €“(1 —€e™)Rh1(0,0,w) + e™(e” — 1) f1(k,0,m)
+ em+w[%w2f2(k:, 0,m) + (2k — %mQ)hg(O, 0, w)
+wfi(k,0,m) —mh5(0,0,w)], (3.18)
in case i = 14 to
%wzk + wfé(k? 07 m) - mh3(0a 07 w)
=" (1 —e™)h}(0,0,w) +e™(e¥ — 1) f1(k,0,m) — €™ khy(0,0,w),  (3.19)
in case i = 19 to
wk = e*(1 — e™)h3(0,0,w) — e™(1 — e®) f3(k,0,m) — e* ™ T khy(0,0, w)
+ e (1 — e )h}(0,0,w) — e (1 —e™) f1(k,0,m), (3.20)
and in case ¢ = 20 to
—wk = €“(1 —€e™)Rh}(0,0,w) +e™(e” — 1) fi(k,0,m)
+ €™ (khy(0,0,w) — mh3(0,0,w) + wf3(k,0,m)). (3.21)

Since on the left hand side of (3.17), (3.18), (3.20), (3.21), respectively of (3.19)
is the term wk, respectively %ka‘ there does not exist any function f;(k,0,m),
h;(0,0,w), i = 1,2, 3, satisfying equation (3.17), (3.18), (3.20), (3.21), respectively
(3.19).
Taking in (G5 the elements
a = g(h1(0,0,w), h2(0,0,w),0,h3(0,0,w),0,w) € A,
b= g(fl(O,l,m),fg(O,l,m),O,fg(O,l,m),l,m) €B

the product a='b~'ab lies in K15 if and only if the equation

wl =e¥(1 —e")[h2(0,0,w) + (ag + 2we)h3(0,0,w) + a1hy (0,0, w)]
+ em(ew - 1)[]02(07 la m) + (l + al)fl(oa lam) + (a3 + 2m5)f3(03 lam)}
+ ™ [2we f3(0,1,m) — 21h1 (0,0, w) — (1% + 2me + a11)h3(0,0,w)] (3.22)

is satisfied for all m, [, w € R. Substituting into (3.22)

h1(0,0,w) = h{(0,0,w) — a1hs(0,0,w),
h2(07 Oa ’LU) = h/Q(Oa 07 w) - alhl (Oa Oa w) - (a3 + 2w€)h3(07 Oa w)7
f2(0,1,m) = f5(0,1,m) — (I + a1) f1(0,1,m) — (a3 + 2me) f3(0,1,m),

we obtain

wl = e (1 —e™)h5(0,0,w) +e™(e” — 1) f5(0,1,m)
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+ ™ [2we f3(0,1,m) — 211} (0,0, w) — (I* + 2me)h3(0,0,w)].  (3.23)

On the left hand side of equation (3.23) is the term wl hence there does not exist
any function f;(0,{,m), ¢ = 2,3, and h;(0,0,w), j = 1,2,3 such that equation
(3.23) holds. O

Theorem 3.3. Let L be a connected simply connected topological proper loop of
dimension 3 such that its multiplication group is a 6-dimensional solvable indecom-
posable Lie group having 5-dimensional nilradical. Then the pairs of Lie groups
(Gi, K;), i = 1,...,7, are the multiplication groups Mult(L) and the inner map-
ping groups Inn(L) of L.

Proof. The sets
A={gk,1—€",l,me ™, 2l,m);k,l,m € R},
B ={g(u,w,v,2ve™" 1 — ¥ w);u,v,w € R},
respectively
C={g(k,l,1—e™ me™™, =21,m); k,l,m € R},
D = {g(u,v,w,—2ve~" 1 —e® w);u,v,w € R}
are K 1-, respectively K o-connected left transversals in G';. The sets
A={g(k,l,l,me"™ 1> =14+ e™ m);k,l,m € R},
B = {g(u,v,v,—we ", v* +1 — ¥, w);u,v,w € R}
are Ko-connected left transversals in G5. The sets
A= {g(k, é —,l,em—1— m(%m2 —0),me”",m);k,l,m € R},
B ={g(u % 2 _v0,1—e"— w(%w2 —v),—we” Y, w);u,v,w € R},
respectively
*{g( ’ 72m +€ 71aflm+maleim7m);kalamER}?
= {g(u, v, §w2 —e’ +1,—vw+ w, —ve ", w);u,v,w € R}
are K3 1-, respectively K3 o-connected left transversals in G's. The sets
A={g((l+a)(1—€e™) +1,k,—e™(3 2+ em),1—e™1,m);k,1,m¢c R},
B= {g((’U + al)(ew - 1) +vaU,eiw(§v + S'LU), - 1,v,w);u,v,w € R}
are K -connected left transversals in G4. The sets
A={g(le ®(ag —1+1),m,—le " 1 —1e* — ¥ 1,k); k,1,m € R},
B={g(ve "(v—1-— ag),w,ve_“,ve“ +e' —1,v,u);u,v,w € R}
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are Ks-connected left transversals in G5. The sets

A={g((l = ax)l+ (I +m)e”™ k,l,e™ —1,1,m);k,l,m € R},
B = {g((U - ag)’l} - (U + w)e_“’,u,v, 1- ew,v,w);u,v,w S R}

are Kg-connected left transversals in Gg. The sets

A= {g((E - k)me_ma _me—m’ kv _kemv la m); kv l7 me R}v

B ={g((u—e)we™ we™" u,ue”,v,w),u,v,w € R}

are Ky-connected left transversals in G;. For all ¢ = 1,...,7, the sets A, B,
respectively C'; D generate the group G;. According to Proposition 2.1 the pairs
(Gi, K;), i = 1,...,7, are multiplication groups and inner mapping groups of L
which proves the assertion. O

Corollary 3.4. FEach 3-dimensional connected topological proper loop L having a
solvable indecomposable Lie group of dimension 6 as the group Mult(L) of L has
1-dimensional centre and 2- or 3-dimensional commutator subgroup.

Proof. If L has a 6-dimensional indecomposable nilpotent Lie group as its multi-
plication group, then the assertion follows from case b) of Theorem in [6]. If it has
a 6-dimensional indecomposable solvable Lie group with 4-dimensional nilradical,
then the assertion is proved in Theorem 16 in [4]. If it has a 6-dimensional inde-
composable solvable Lie group with 5-dimensional nilradical, then Theorems 3.6
and 3.7 in [5] and Theorem 3.3 give the assertion. O
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