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Abstract . For sequences Hn(a,b) of positive integers, defined by H0 = a, Hi-b and 
/ / „ - / / „ _ ! + / / „_2 , we investigate the problem: for a given positive integer N find positive 
integers a and b such tha t N=Hn(a,b) and n is as large as possible. Denoting by R(N) = r 
the largest integer, for which N=Hr(a,b) for some a and 6, we give bounds for R(N) and 
a polynomial time algori thm for computing it. Some properties of R(/V) are also proved. 

Introduction 

Let Hn(a,b) be a sequence of positive integers defined by HQ = a, 
II1 = b and Hn = Hn _i -f IIn-2 where a and b are arbitrary positive 
integers (the parameters). The sequence Hn(a,b) occurs in a problem of 
COHN [1]: Given a positive integer N, find positive integers a and b such 
that N = Hn(a, 6) and n is as large as possible. 

C O H N [1] actually formulated the problem slightly differently, replacing 
'n is as large as possible' by 'a + 6 is as small as possible'. However this makes 
little difference. We shall consider the problem as stated above. 

Let R = R(N) be the largest integer R such that N — IIji(a, b) for some 
a, b > 1. The function R is well defined. For any N > 1, there exist integers 
a, b and n such that N = Hn(a,b), 1 < a, 1 < b. Since N = IIi(l,N), we 
can let n = 1, a = 1 and b = N. If 2 < N, we can also let a — 1, b = N — 1 
and n = 2 so N = H2(l,N — 1). Thus there always exist integers n, a and 
b such that N — Hn(a, 6), 1 < a and 1 < b. 

It is also easy to see that there exist a, b and r such that N = Hr(a, b), 
1 < a, 1 < b and r is maximal. If Ar = i / r (a ,6) , 1 < a and 1 < 6, then 
r < Hr(a.b). Hence for all such r,a and b, r < N. Thus all possible values 
of r are bounded above by TV. In fact this argument shows that R(N) < N 
for all N. 
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The first few values of R are given by R( 1) = 1, R(2) = 2, R(3) = 3, 
R(4) = 3, R{5) = 4, i?(6) = 3, i2(7) = 4, i2(8) = 5, R(9) = 4, £(10) = 4, 
Ä ( l l ) = 5. R(12) = 4 and £(13) = 6. Note that the function R is not 
increasing. That is, TV < M does not imply R(N) < R(M). 

Since R(N) is well defined, Cohn's problem becomes one of giving an 
algorithm to compute R(N). In this paper we shall give a simple algorithm 
which solves this problem. We shall also show that this algorithm is polyno-
mial time, that is the time to find R(N) is less than a polynomial in I n ( N ) . 
We also prove some theorems about the number of N such that R(N) = r 
and about the number of pairs (a,b) such that Hr(a:b) = N. First we need 
some lemmas. 

1. Representat ion of N in the form N = Hr(a,b) with r maximal 

We use [xj to denote the floor of x, (integer part of x). [x] denotes 
the ceiling of x, [x] = - [ " ^ J - Fn denotes the n th Fibonacci number, where 
F0 = 0, Fi = 1 and F;+2 = F\: + Fi+1- Ln denotes the nth Lucas number, 
defined by L0 = 2, — 1 and = Ll + Z t+1- We define / /_ n (a ,6 ) by 
H-n(a,b) — ( — l ) n + 1 / / n ( —a, 6 — a). 

Below we shall use many elementary identities and inequalities such as 
Ln+1 = 2Fn + Fn+1, Ln + 1 < Fn+2 for 1 < n and F n + 1 < Ln, for 2 < n. 
We shall also need the following well known identity due to H O R A D A M [3]. 

Lemma 1.1. For a11 integers n,a and b, Hn(a. b) = aFn-1 + bFn. 

Proof. By induction on n using F,+2 = F{ -f . The result can also 
be seen to hold for negative n since H-n(a,b) = ( - 1 ) n ( a F n + 1 — bFn). 

Lemma 1.2. Hn(a, 6) = Hn(a -f Fn, b — F n _ i ) and Hn(a, b) = i^nía — 
F n , 6 + F n _i) . 

Lemma 1.3. For all integers n, k, a and 6, we have 

( 0 ffnM) = + 

(«) Hn(a,b)= Hn_k(Hk(a,b),Hk+l(a,b)), 

(iii) IIn(a,b) = / f n + i ( 6 - a, a). 

(ii>) &) = b), Bi-k(a, b)). 

Proof. They follow from the definitions. 

Lemma 1.4. If N = Hr(a,b), 1 < a, 1 < b and R(N) = r, then b < a. 

Proof. Suppose R(n) = r and N = Hr(a, b). If a < b, then by Lemma 
1.3 we would have N = Hr(a,b) = / / r + 1 (6 - a, a) so that r + 1 < R(N), 
contradicting r = R(N). 
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Earlier we saw that n = 1 is realizable as a value of n such that N — 
Iln(a,b) for a > 1, b > 1. In the next lemma we shall show that all values 
of n < R(N) are realizable as values of n such that N = Hn(a, b). We shall 
call this the Intermediate Value Lemma (IVL). 

Lemma 1.5. (I.V.L.) If n < R(N), then there exist a,b such that 
N = fín(a, b), 1 < a and 1 < 6 . 

Proof. Suppose r = R(N) and n < r. There exist a > 1, b > 1 
such that N = Hr(a,b). Let k = r — n. Then 0 < k. By Lemma 1.3 
(ii), N = Hr(a, b) = Hr.k(Hk(a,b),Hk+l(a,b)) = IIn{Hk(a, b), Hk+l (a, b)) 
where 1 < Hk(a,b) and 1 < IIk+i(a,b), since 0 < k and a, b > 1. 

Lemma 1.6. If n > 1 then R(Fn+1) = n. 

Proof. Let r = R(Fn+i). Since Fn+X = F n _ i + Fn = Hn(l,l),n < r. 
Conversely, F n + 1 = Hr(a.b) = aFr_i + bFr > Fr-i + Fr = iv+i • Hence 
n > r. Therefore n — r. 

Lemma 1.7. If n > 2, then R(Ln+1) = n + 1. 

Proof. Here we need the inequality LN+I + 1 < -Fn+3- Let r = R(LN+1). 
Since LN may be defined by LQ = 2, L\ = 1 and LN+2 = LN + LN+\ > w e 

have Ln — IIn{2,1) and so = Hn+i(2,l). Hence n-f-1 < r. Conversely, 
Ln+i — Hr(a,b) — aF r _i + bFr > Fr-\ + Fr = Fr+\. Hence Fr+1 < Ln+i-
Therefore Fr+1 + 1 < Xn+i + 1 < ^n+3 and s o ^V+i < ^n+3• Therefore 
r + 1 < n + 3. Hence r < n -f 2. Therefore r < n + 1. So r = n + 1 and 
Ä ( i „ + i ) = 1. 

Lemma 1.8. If N < Fn+1, then R(N) < n. 

Proof. Let R(N) = r. Then there exist a, b > 1 such that N — Hr(a, b). 
Hence we have F n + i > N — Hr(a,b) = aFr-\ + bFr > Fr_i + Fr = F r + 1 . 
Thus F n + i > Fr+1. Hence we have n - f l > r + 1 so that n > r. In otherwords 
n > R(N). 

Corollary 1.9. If 1 < n and N < Fn+lFn+2, then R(N) < 2n. 

Proof. If 1 < n, then Fn+2 < Ln+1- Hence Fn+iFn+2 < Fn+iLn+i = 
F2n+2. Therefore N < F2n+2. Hence by Lemma 1.8, R(N) <2n + l. There-
fore R(N) < 2n. 

Lemma 1.10. Let A be an arbitrary positive integer and suppose 0 < 
n. Then 

(0 
(ii) 

n = R(AFn+i) if A<Fn, 
n < f t ( A F n + i ) if Fn < A. 
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Proof . AFn+i = A(Fn..i + Fn) = AFn.x + AFn = Hn(A, A) implies 
n < R(AFn+1). For (i) suppose A < Fn and n + 1 < R(AFn+i). By the 
Intermediate Value Lemma there exist c > 1 and d > 1 such that AFn+i = 
cFn + dFn+1. Then F n + 1 | cFn and ( F n , F n + 1 ) = 1 imply F n + 1 | c. Hence 
F n + i < c so that cf = 0. Hence R(AFn+1) = n. For (ii) suppose Fn < A. 
Then there exist b and t such that A = tFn + 6, 1 < b and 1 < t. Let a = 
tFn+1. Then i f n + i = (*Fn+i)Fn + bFn+1 = iTn + 1 ( iF n + 1 6) = iTn + i (a ,6) , 
1 < a and 1 < b. Hence n + 1 < R(AFn+i) so that n < R(AFn+1). 

Corollary 1.10. For all n > 0, fí(FnFn+i) = n. 

Lemma 1.11. If FnFn+\ < N, then n < R(N). 

Proof. Suppose F n F n + i < N. We shall show that n + 1 < R(N) by 
finding a and b such that N = 7 / n + 1(a ,6) = aFn + 6F n + 1 , 1 < a and 
1 < 6. Let b be the least positive solution to the congruence N = bFn+\ 
(mod F n ) , (taking b = F n , if Fn | N, so that b > 1). We claim 

(1.12) bFn+l + Fn < N. 

This inequality (1.12) will be proved by considering two cases: 
Case 1. N = 0 (mod Fn). Then b = Fn. Since Fn | N and F n F n + 1 < 

N, we have F n ( F n + i + 1) < N. So we have F n + 1 6 + Fn = F n + i Fn + Fn = 
F n ( F n + i + 1) < iV, and so (1.12) holds. 

Case 2. ÍV ^ 0 (mod Fn). Then 1 < 6 < F n , so b < Fn - 1. Therefore 
^^n+i + F n < (Fn — l ) F n + 1 -f Fn = FnFn+i + (Fn - F n + i ) < FnFn+1 < Ar 

and so again (112) holds. 
Now that (1.12) is established, let a = (N — 6F n +i ) /F n . Then a is an 

integer, N = aFn + bFn+i — Hn+i(a,b) and (1.12), implies 1 < a. 

Corollary 1.13. If 1 < n and F2n < N, then n < R(N). 

Proof. By Lemma 1.11. If 1 < n, then F n + i < Ln and F n F n + i < 
FnLn = F2n < N. 

Lemma 1.14. If 1 < N, then R{N) < ([1 + 2.128 • ln(JV))J. 

Proof. Let r = R(N). The inequahty holds for N = 1, since R{ 1) = 1. 
Suppose N > 2. Then 2 < r. Let k = r -f 1. Then 3 < k so that we can use 
the inequality 

(1.15) (8/5)*~2 < Fk (3 < Ä). 

(This inequahty, which is well known, is easy to prove by induction on 
k > 3, using the fact that if x = 8/5, then x2 < x + 1). Using the inequality 
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with k = r + 1, by Lemma 1.8 we get (8 /5 ) r _ 1 < Fr+l < N. Taking logs 
of both sides we have (r - l ) ln(8/5) < ln(jV). Hence we have r — 1 < 
ln(/V)/ln(8/5) < ln(iV)/(47/100) < ln(JV) • 2.128, proving the lemma. 

Lemma 1.16. If 1 < N, then [1.5 + .893 -]n(N)] < R(N). 

Proof. Let r = R(N). Lemma 1.11 implies N < FrFr+l. If N < 6, the 
inequality can be checked by cases. Suppose 7 < N. Then 4 < r. We will 
use the following elementary inequality which is easy to prove using the fact 
that x2 > x + 1 for x = 7/4. 

(1.17) Fk<{ 7/4)*"2 (3<ifc). 

Using the inequahty twice, with k — r and k — T + 1, we get 

(1.18) N < FrFr+l < (7 /4 ) r ~ 2 (7 /4 ) r _ 1 = (7/4) 2 r~ 3 . 

Taking logs of both sides, ln(iV) < (2r - 3)ln(7/4). Hence ln(A r)/ln(7/4) < 
2(r - 1.5). Therefore 2~x • ln(A r)/ln(7/4) < r - 1.5. Consequently 1.5 + 
2"1 • ln(iV)/ ln(7/4) < r. Hence [1.5 + 2"1 • ln(A r)/ln(7/4)l < r. Therefore 
[1.5 + .893 • ln(7V)] < r. 

Corollary 1.19. For N > 1, 

[1.5 + .893 • ln(Ar)] < R(N) < [1 + 2.128 • ln(7V)J. 

P r o o f . By Lemma 1.14 and Lemma 1.15. 
Corollary 1.20. If R(N) = r, then Fr+l < N < FrFr+l. 

Proof. Suppose i?(Ar) = r. By Lemma 1.8, Fr+i < N. By Lemma 1.11, 
N < FrFr+i. 

The equation N = Hr(a,b) sometimes has two solutions (a, b) in pos-
itive integers with r = R(N). E.g. if N = 6, then R(6) = 3, 6 = / /3(2.2) 
and 6 = H3(4,1). 

Definit ion 1.21. N is called a double number if there exist a,b,c,d > 1 
such that N = Hr(a,b) = Hr(c,d),a ^ c or b f- d, (equivalently if a ^ c 
and b / d), where r — R(N). If N is not a double number, then N is called 
a single number. 

Examples 1.22. Some representations of N in the form N = Hr(a,b) 
with R = R(N): 
N = 1, R= 1, a= 1, 6 = 1, 
N = 10, R = 4, a = 2, 6 = 2, 
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N = 100, R = 7, a = 6, 6 = 4, 
N = 1,000, £ = 12, a = 8, 6 = 2 , 
N = 10,000, R = 12, a = 80, 6 = 20, 
N = 100,000, £ = 14, a = 269, 6 = 99, 
N = 1,000,000, £ = 19, a = 154, 6 = 144, 
N = 10,000,000, £ = 19, a = 1540, 6 = 1440, 
N = 100,000,000, £ = 23, a = 5143, 6 = 311, 
N = 1,000,000,000, £ = 23, a = 51430, 6 = 3110. 

N = 1,000,000,000 happens to be an example of a double number. 
we have N = IIr(c, d) also for c = 22773 and d = 20821, besides a = 51430 
and b = 3110. Other examples of double numbers are 15 = £4(6,1) = 
//4(3,3) and 32 = / /5(9,1) = £ 5 (4 ,4) . 

In the next section we shall prove that the equation N = £ r ( a , 6) never 
has three solutions (a, b) in positive integers with r = R(N). (Of course it 
may have other solutions when r < R(N). E.g. for Ar = 6 and r — 3 we have 
6 = £2(1,5) = £2(2,4) = £2(3,3) where 2 < r.) Thus there is no concept 
of a triple number. 

2. A n algorithm for R(N) 

In this section we shall show that there exists an algorithm for comput-
ing R(N). In fact we shall prove that there is a polynomial-time algorithm 
for computing R(N). We give a procedure which finds, given iV, the value 
of R(N) and also a and 6. Since the number of steps in the procedure will 
be less then a polynomial in ln(7V), the number of bit operations needed to 
compute R(N) will be less than a polynomial in ln(JV). 

Suppose N is given. To compute R(N), begin with any sufficiently large 
value of r, satisfying r > R(N). For example by Corollary 1.19 we can take 
r = [1 -f 2.128 • ln(7V)J. Then proceed as follows. 

Step 1: Find a positive solution b to the congruence 

(2.1) N = bFr ( m o d / ; _ ! ) , (1 < b). 

This congruence is solvable in natural numbers since (Fr, /V- i ) = 1. Hence 
there is a solution b in the range 1 < b < Fr- \. Take the least such b in this 
range. 

Step 2: Check whether 

(2.2) bFr < N. 

If this is the case, put a = (N - bFr)/Fr_ 1. Then a is an integer by (2.1). 
Also we have N = aFr-\ + bFr and condition (2.2) implies 1 < a. In this 
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case the algorithm terminates arid R(N) = r. If (2.2) does not hold, then we 
decrease r by 1 and return to Step 1. We iterate steps 1 and 2, decreasing 
r until (2.2) holds. Since initially R(N) < [1 + 2.128 • hi{N)\ < r, the 
algorithm must terminate after at most [1 + 2.128 -ln(yV)] iterations. 

We claim that this computation is polynomial time. Certainly the num-
ber of operations needed at each step is less than or equal to a polynomial 
in ln(jV). Calculation of Fr requires time exponential in ln(r), i.e. propor-
tional to a polynomial in r. However r is less than or equal to a polynomial 
in ln(7V), since Fr < N. So this is polynomial time. 

In addition to finding r, the algorithm also finds (a, 6) such that Hr(a1 b) 
= N. The pair (a, b) is not uniquely dependent upon N. There is sometimes a 
second pair (c, d) such that Hr(c,d) = N. As sketched above the algorithm 
finds the pair (a, 6) with least b. It can easily be extended also to find 
the second pair (c, (i), when that exists. After (a,b) has been found, let 
d — b + F r_1 and c = a — Fr. Then N = / / r (c , ci) by Lemma 1.2. d is 
positive. If dFr < iV, then c will also be positive and (c, d) will be a second 
pair. If not, then there is no second pair, i.e. N is a single. 

The algorithm can be simplified to yield a more explicit formula for 
r — R(N) and explicit formulas for a, ö, c and d. For this we shall use an old 
identity of LUCAS [4]: 

Multiplying both sides of (2.3) by ( - 1 ) r N and rearranging terms we get 

Equation (2.4) provides a solution to the linear diophantine equation 
aFr-1 -f bFr = N. It shows that AFr-\ + BFr = N will hold if we put 
A = J4r(jV) and B = Br(N), where 

(2.5) Ar(N) = {-lyFr^N and Br{N) = ~{-l)r Fr_2N. 

Thus a = Ar(N) and b = Br(N) is a particular solution of the equation 
a F r _ ! + bFr = N. Since (F r , Fr+i) = 1, from a particular solution we may 
obtain all solutions (a, b) by 

(2.6) a = Ar{N) - tFr, b = Br(N) + *F r _i , (t = 0, ±1, ±2, ± 3 , . . . ) . 

Then by Lemma 1.1 Hr(a,b) = N for all integers t. Now define gr(N) and 
hr(N) by 

(2.3) F2
r_x - F r_2 • Fr = ( - 1 y. 

(2.4) ( - 1 )rFr-iN • Fr_! - (-l)rFr_2AT • Fr = N. 

(2.7) 9T(N) = 
(-l)rFr-2N + 1  

FT- 1 

and 
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hr(N) = (~1)rf'-'Af - 1 

Then gr(N) and hr(N) are reals. For a and 6 as in (2.6), we have 1 < a 
iff t < hr(N) and 1 < b iff gr{N) < t. Hence (a, b) is a positive solution of 
aFr_ 1 + bFr = N iff 

(2.9) gr(N) < t < hr(N). 

Since t is integer valued, condition (2.9) is equivalent to 

(2.10) gr(N) < \gT(N]\ < t < [/i.r(7V)J < hr(N). 

Condition (2.9) is in turn equivalent to [gr(7V)] < hT(N) and also to 
gr(N) < [hr(N)\. 

From (2.3), (2.7) and (2.8), it is easy to see that 

( 2 . 1 1 ) hr(N)-gr(N) = 
N - F, r + l 

fi'r — 1 Fr 

The functions gr(N) and hr(N) give us a new algorithm to compute R(N). 
We have 

Theorem 2.12. Suppose N >1. Then R(N) is the largest integer 
r > 1 such that 

( 2 . 1 2 ) 
( — l ) r i V - 2 Í V -f- 1 

Fr-1 
< (-iyFr-iN-1 

Fr 

Furthermore, the set of r > 1 satisfying (2.12) is the set {2, 3 , . . . , R(N)}. 
Hence (2.12) can be used as an algorithm to calculate R(N). 

Proof . By Lemma 1.8, if r < R(N), then Fr+\ < N and hence by 
(2.11), gr(N) < hr(N). Thus 

(2.13) r < R(N) => gr(N) < hr(N). 

By (2.9) and the IVL, for all r < R(N), there exist t(gr(N) < t < hr(N)), 
and this imphes [^r(7V)] < j_/ir(7V)J. On the other hand, by (2.9), when 
R(N) < r, there is no integer t such that gr(N) < t < hr(N) and so we 
have not [^(jV)] < [hr(N)J. 

This shows that the set of r > 1 satisfying (2.12) is an interval. 
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This approach to R(N), thru gr(N) and hr(N), also gives a new algo-
rithm to decide whether TV is a single or a double. From (2.9) and (2.10) we 
have 

(2.14) TV is a single iff [^(TV)] = [M^OJ-
Also 
(2.15) TV is a double iff |"^r(iV)] < [hr(N)\. 

From (2.5), (2.6), (2.7) and (2.8) we can obtain explicit formulas for a,b,c 
and d: 

(2.16) a = Ar(N)- \gr(N)]Fr and b = Br{N) + r<7r(A01^-i , 
(2.17) c = Ar(N) - [hr(N)\Fr and d = Br{N) + [hr{N)\Fr^ . 

If TV is a single, c = a and d = b. If TV is a double, c = a — Fr and d — 6+Fr_i. 
Thus when r = Ä(TV), formulas (2.16) and (2.17) can be used as definitions 
of a.b.c and d. The ratio on the right side of (2.11) is not always less than 2 
however, even when r — R(N). In this case, when r = R(N), we have only 
the weak inequality 

( 2 . 1 8 ) R ( N ) < r => ~ < a + 1. 
r r — 1 * T 

Here a = (1 -f \fb)/2 = 1.61803 . . . so that a + 1 = 2.61803 . . . . The idea of 
the proof is the following: From Lemma 1.11 we see that R(N) < r implies 
TV < FrFr+1. Then (FrFr+\ — Fr-i)Fr-\Fr < a + 1 can be shown using 
Fr < aFiFr_i + Fr+i. 

Next we shall prove that there are no triples. The following lemmas will 
be used. 

L e m m a 2.19. If 1 < r, then FrFr+l < (1 + 2Fr+l )Fr_i + Fr. 

Proof. If 1 < r, then Fr < 1 + 2F r _i . Hence 

FrFr+i < (1 + 2F r_! )Fr+\ = Fr+i + 2Fr-i • Fr+1 
= Fr-i + 2 • Fr+l + Fr = (1 + 2F r + 1 )F r_i + Fr. 

Lemma 2.20. Suppose 1 < TV, TV = Hr(a,b), R(N) = r and 1 < b. 
Then a < 2Fr. 

Proof. Let r = R(N) and TV = Hr(a,b). Since 1 < TV and r = Ä(TV), 
we have 1 < r. We claim 

(2.21) a <b + 2Fr+l. 
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If not, then b -f 2Fr+i < a. Since 1 < b and N = Hr(a, b), by Lemma 2.19 
and Lemma 1.11 we have 

N = aFr-i+bFr > (b + 2Fr+1)Fr.l+bFr > {l + 2Fr+l)Fr_l+Fr > FrFr+l. 

But this contradicts Lemma 1.11 which says that N < FrFr+1, since r = 
R(N). Hence (2.21) holds. Now it is easy to see that 

N = aFr-.\ -f bFr = (6 + 2Fr+l - a)Fr + (a - 2Fr)Fr+1. 

Supposing 2Fr < a and using (2.21), we get the contradiction R(N) > r-f 1. 
So a < 2Fr. 

Theorem 2.22. If R(N) = r, then the equation N = Hr(a, b) has at 
most two solutions in positive integers a, b. There are no triples. 

Proof. Suppose the equation N = Hr(a, b) has three solutions in pos-
itive integers, say (a,6),(c, d) and a third solution (x,y) . Then c = a — Fr, 
d = 6 -f Ft_ 1, x = a — 2Fr and y = b + 2F r _i . But by Lemma 2.20, a < 2Fr. 
Hence x < 0, a contradiction. 

From Theorem 2.22, if r = R(N), then LM-AOJ < fPr (^) ] + 1. And so 
in (2.15), when ^ ( i V ) ] < [hT(N)J, we have r<7r(Ar)l + 1 = [hr(N)\. 

Following FnFn+i there is a very long interval consisting entirely of 
singlels. 

Suppose R(N) = r. Recall from Corollary 1.20 that if R(N) = r, then 
N must lie in the interval Fr+i < N < FrFr+i. We can show that most N 
in this interval are singles. 

Theorem 2.23. If FnFn+1 < N < FnFn+l + Fl + Fn+2, then N is a 
single. 

We won't prove this result, (Theorem 2.23.). However it will be clear 
how to do so after we have proved Lemma 3.1 in the next section. 

Taking a limit as n —» oc, one finds that the interval [ F n F n + i , FnFn+1 + 
l'n tn+2] occupies some 38% of the interval [In tn+i, in+i Fn+ 2]. (,Q2 = 
((1 - \ /5) /2) 2 = ( —.61803)2 = .381966 . ..) Thus on average more than 28% 
of N are singles. Actually, in the next section, we shall prove that 92.7% of 
N are singles. 

3. The number of N such that R(N) = r 

In this section we consider the problem of the number of N such that 
R(N) — r. Here r is a fixed positive integer. The number of such N must 
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be finite. By Lemma 1.11, the number of such N must be less than or equal 
to FrFr+i. We shall give an exact formula for this number. First we need 
some lemmas. 

L e m m a 3.1. Suppose R(N) = r and a,b,c,d are as defined in (2.16) 
and (2.17). Then N = Hr(a,b) = Hr(c,d). If N is a single, then c = a,d=b, 

(i) 1 <b<a< Ft and 1 < b < FR 

If N is a double, then we have c = a — Fr, d = b -f Fr-\, b < a, 

(ii) F r - i < d < c < Fr, Fr+1 < a < 2Fr and 1 < b < Fr-2-

P r o o f . Suppose a,6,c and d are as above and N > 1. Let r = R(N). 
Then N = Hr(a,b) = Hr(c,d). Suppose first N is a single. By (2.16) and 
(2.17), c = a,d = 6, 1 < a and 1 < b. By Lemma 1.2, N = Hr(a,b) = 
Hr(a -f Fr,b — Fr-1). Hence b < F r _ i , else N would be a double. By Lemma 
1.4, 6 < a. By Lemma 1.2 we know N — IIr(a,b) = IIr(a — Fr,b+ i v - i ) -
Hence a < Fr, else N would be a double. Therefore (i) holds. 

Next suppose N is a double. Then by (2.15), (2.16) and (2.17), c = 
a — Ft , d — 6-f Fr-i, 1 < a,b,c,d. By Lemma 2.20, a < 2FR. Since c = a — FR, 
this implies c < FR. By Lemma 1.4, since N = Hr(c,d), d < c. Hence d < FR. 
Since d < FR and d = b-\- F r _ i , b-\- FR_I < FR, so that b < FR — FR_I = F r_ 2 5 

i.e. b < FR-2- Since 0 < b and d = b -f i v _ i , FR-\ < d. Since F r_i < d 
and d < c, FR~\ < c. Since a = c + FR, this implies that FR+1 < a. Hence 
statement (ii) holds. 

L e m m a 3.2. If R(N) = r, then there exist unique positive integers x 
and y satisfying 

(3.2) N = Ht(X, y) and 1 < y < x < Fr. 

P r o o f . By Lemma 3.1. If /V is a single, then we can let x = a and 
y — b. If N is a double, then we can let x — c and y — d and we will have 
^ V £ £ ^ Fr. x and y are unique by Theorem 2.22, to the effect that 
N = Hr(x,y) has at most two solutions. Every N is either a single or a 
double. Note that if TV is a double, then x = a and y = b won't satisfy 
1 £ V < x < Fr since Fr+1 < a. 

L e m m a 3.3. Suppose R(N) = r. Then all solutions (x.y) of N = 
Hr(x,y) in positive integers satisfy either 

(3.3.1) 1 <y <x < FT 
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(3.3.2) Fr+1 < X < 2F r y 1 < y < F r _ 2 and y < x. 

But not both. 

Proof . By Theorem 2.22, N is either a double or a single. Hence there 
are only two cases to consider. If N is a single, then (x,y) = (a,b) and 
condition (3.3.1) holds by Lemma 3.1. (i). If N is a double, then (x,y) = 
(a, 6) or (x,y) — (c, d). In the first case, by Lemma 3.1 (ii) (3.3.2) holds. In 
the sceond case, by Lemma 3.1 (ii) (3.3.1) holds. 

L e m m a 3.4. Suppose R(N) — r. Then all solutions of N = Hr(x.y) 
in positive integers (x,y) satisfy the conditions x < 2F r and y < Fr. 

Proof . By Lemma 3.3, either (3.3.1) holds or (3.3.2) holds. (3.3.1) 
implies x < FT < 2Fr and y < Fr. (3.3.2) imphes x < 2Fr and y < Fr-% < 
Fr. Hence x < 2F r and y < Fr. 

L e m m a 3.5. If 0 < k, then for all positive integers a and b, 

0 < IIk(a,b) < Hk+l{a,b). 

Proof . Prom the definition it follows that / / „ (a , b) is a strictly increas-
ing sequence of positive integers. 

T h e o r e m 3.6. There exist integers x and y such that 

(3.6) N = Hn(x,y) and 1 < y < x < Fn 

i f f n = R(N). Furthermore x and y are unique. 

Proof . To prove the first part of the theorem suppose R(N) — n. Then 
by Lemma 3.2 there exist unique integers x and y suet that N = Hn(x,y) 
a^d 1 < y < % < Fn, i.e. (3.6). To prove the second part suppose x and 
y are integers satisfying (3.6). Then n > 0. Let R(N) — r. Then n < r. 
Let k — r — n. By definition of R(N) there are positive integers a and b 
such that N = Hr(a,b). By Lemma 1.3 (ii), since n — r — k, we have N — 
Hr{a, b) = Hn(Hk(a, 6), Hk+1 (a, b)) so that N = Hn{IIk(a, 6), IIk+l (a, b)). 

Thus x = Hk(a,b) and y = Hk+i(a,b) are particular solutions to the 
linear diophantine equation N = xFn-\ + yFn. Since (Fn,Fn+i) = 1, all 
solutions to the equation are given by 

x = Hk(a,b) - tFn and y - Hk+l (a , 6) + i F n _ i , 

where t is an integer. Since y < x, we have for some t the inequality 
Hk+i (a, b) + tFn—1 < Hk(a, b) - tFn. This implies 

t < (Hk(a, b) — Hk+i (a, b))jFn+\, 

so that 
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t < IIk(a,b) - Hk+l(a,b). 

Since x < Fn, we also have the inequality iifc(a, b)—tFn < which implies 

If 0 < k, then by Lemma 3.5 we have t < 0 and 0 < t + l so that —1 < / < 0. 
This is a contradiction since t is an integer. Hence k = 0. Thus r — n and 
hence R{N) — n. 

R e m a r k . Condition (3.6) cannot be replaced by the weaker condition 
N = Hn(x, y) and 1 < y < x, This condition is not strong enough to imply 
n = R{N). For example if N = 96, then R(N) = 6 but N = H5( 17,9) and 
9 < 17. Also N = H5(12,12) and 12 < 12. 

Theorem 3.7. Let r be fixed nonnegative integer. Then the number 
of N such that R(N) = r is exactly 

Proof. Let r be fixed nonnegative integer. We will use Theorem 3.6 to 
count the number of N such that R(N) = r. We will count pairs (x, y) such 
that 1 < y < x < Fr. For each such pair, we put N = Hr(x,y). For each N 
there is only one pair (x,y) satisfying N = Hr(x,y) and 1 < y < x < Fr, 
by Theorem 2.6. How many pairs (x ,y ) are there such that 1 < x < Frl 
For each such x, there are x choices of y such that 1 < y < x. Hence the 
number of N such that R(N) — r is given by the sum 

Example 3.7. The number of N such that R(N) = 5 is F5(F5 + l ) / 2 = 
5 • 6/2 — 15. By Corollary 1.20, these 15 N all he in the interval 8 = F6 < 
N < FSFQ = 40. They are the 15 values N = 8,11,14,16,17,19,20,22,24, 
25,27,30,32,35 and 40. 

In this section we first prove that there are infinitely many double 
numbers. Then we give a combinatorial formula for the number of double 
numbers N having a fixed value of R. Last we give an asymptotic estimate 
for the number of double numbers up to FnFn+i. 

Hk(a,b)/Fn <t + l . 

Fr {Fr + 1) 

2 

x = l 

4. Double numbers 
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L e m m a 4.1. For all n > 2, FnFn+\ is a double number. 

Proof . Suppose 2 < n. Recall that by Corollary 1.10, R(FnFn+1) = n. 
We have FnFn+1 = Fn (F n _i + Fn) ~ FnFn-i + FnFn = Hn(Fn,Fn). On 
the other hand, 

FnFn+1 = (Fn + Fn)Fn-1 + (Fn — Fn-i)Fn 

= Hn{2Fn,Fn - Fn_0 = Hn(2Fn, Fn-2)-

0 < Fn-2 since n > 2. The two representations of FnFn+i are distinct since 
Fn Fn—2 • 

L e m m a 4.2. For n > 4, if N = Fn(Fn+1 - 1), then R(N) = n and N 
is a double number. 

Proof . By an argument similar to that in the proof of Lemma 4.1 it is 
easy to see that 

(4.2) N = Hn(Fn,Fn - 1) = Hn(2Fn, Fn_2 - 1). 

To prove that R(N) = n we will use the IVL. Obviously n < R(N). Suppose 
that n + 1 < R(n). Then by the IVL there exist a > 1 and b > 1 such that 
N = Hn+i(a,b). Hence Fn(Fn+1 - 1) = aFn + bFn+Then Fn | 6, since 
(Fn,Fn+1) = 1. Let b — eFn, where 1 < e. Then we have a + ( e — l ) F n + 1 < 0, 
a contradiction. Thus R(N) = n. 

We give next a formula for the number of double numbers N with a 
fixed R value r. For this it is necessary first to characterise double numbers. 
From section 2 we have the following result. 

L e m m a 4.3. Suppose R(N) = r. Then N is a double number i f f 

(~l)rFr-2N + l 
Fr-1 

+ 1 
( - 1 )rFr-XN - 1  

Fr 

Proof . See the remark following Theorem 2.22 that N is a double iff 
+1= [hr(N)\. 

T h e o r e m 4.4. N is a double number and R(N) = r i f f there exist 
unique positive integers x and y such that 

(4.4) N = HT{x,y) and i < y < x < Fr. 

Proof . For the proof of one part of the theorem, suppose N is a double 
number and R{N) = r. By Lemma 3.1, there exist positive integers c and 
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d such that N = Hr(c,d) and Fr_i < d < c < Fr. Let x = c and y = d. 
Then (4.4) holds. Also since the condition F r _i < y < x < Fr implies 
1 < y < x < Fr, x and y are unique by Lemma 3.1. For the proof of the 
second part, suppose (4.4) for some positive integers x and y. Then since 
1 < r, 1 < y < x < Fr. Hence R(N) = r by Theorem 3.6. N cannot be a 
single since in that case, by Lemma 3.1, we would have x — a,y = b and 
b < Fr Hence N is a double. 

Note that if (x, y) satisfies Fr-\ < y < x < Fr, then (x + F r , y — F r_1) 
satisfies Fr+\ < x < 2Fr and 1 < y < F r _ A l s o if (x ,y ) satisfies F r + 1 < 
x < 2Fr and 1 < y < F r_2, then (x — Friy + F r_ 1) satisfies F r _ ! < y < 
x < Fr. So one could also prove a version of Theorem 4.4, with condition 
(4.4) replaced by 

N = Hr(x,y), Fr+1 < x < 2Fr and 1 < y < F r_2. 

Theorem 4.5. Let r > 3. The number of N such that N is a double 
number and R(N) = r is exactly 

Proof. Suppose r is a fixed positive integer. To count the number of 
double numbers N such that R(N) = r we will use representation (4.4) of 
Theorem 4.4. We can determine the number of double numbers N such that 
R(N) — r by counting pairs of integers (2, y) such that F r _ 1 < y < x < Fr. 
For each such pair (x, y) we can let N = H r { x i y) since N depends uniquely 
on (x,y). How many pairs of integers (x,y) are there such that F r _ 1 < y < 
X < Fr1 Since Fr — F r _ 1 = F r _ 2 , there are F r_2, there Eire F r_2 choices for 
x such that F r _ 1 < x < Fr. For each choice of x, there are x choices for y 
such that Fr-i < y < x. Therefore the numbers N such that R(N) — r is 
given by the sum 

Example. The number of N such that N is a double and R(N) = 6 is 
F4(F4 + l ) / 2 = 3-4 /2 = 6. By Corollary 1.20 and Theorem 2.23 with n = 5 
these N He in the interval 18 = 5 • 8 + 52 + 13 = F5F6 + F5

2 + Fx < N < 
F6F7 = 8 • 13 = 104. They are N = 78,83,88,91,96 and 104. 

Lemma 4.6. For all double numbers TV, N < FnFn+1 i f f R(N) < n. 

Proof. The first part of the lemma is the contrapositive of Lemma 
1.11, if R(N) < n then N < FnFn+1. For the proof of the second part 

Fr.2 ( / V - 2 + 1) 

2 

F -
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suppose TV is a double and N < FnFn+Let r = R(N). We will 
that r < n. Suppose not. Suppose n < r. Let N = Hr(a,b) where a 
are as in (2.16). By Lemma 3.1 (ii), since TV is a double, Fr+1 < a. 1 
N = Hr(a, b) = aFr-i + bFr > Fr+lFr+ Fr > Fn+2Fn > Fn • 
contradicting N < FnFn+ Therefore r < n. 

Theorem 4.7. For n > 1, the number of double numbers N < Fr 

is equal to 
Fn — l Fn-2 + Fn — 1 

2 
Proof. By Lemma 4.6 and Theorem 4.5, the number of double nu] 

N < FnFn+1 is 

£F~ilFr
2-'

+1) = \i&-,+Fr-t) 

r=3 r = 3 

/ n - 2 n - 2 \ = 2 £ ^ + £ Fi = 2 + Fn - V • 

What proportion of integers iV are double numbers? We shall shov 
on average approximately 7.3% of numbers are doubles. We shall shoi 
by proving that for n sufficiently large, approximately /2 of the nui 
N up to FnFn+1 are doubles. Here ß = (1 - Vh)/2 = - 6 1 8 0 3 . . . sc 
ß*/2 = .072949016.... 

Theorem 4.8. The probabihty that N is a double number is at 
totic to ß*/2. 

Proof. Let a = (1 + Vb)/2 and ß = (1 - >/5)/2. Then a/5 = 
It is known that Fn is asymptotic to an j \ J5 , i.e. that l i m i ^ / a 7 1 as 
By Lemma 4.6 and Theorem 4.7, the number of double numbers N 
F n F n + 1 , divided by the number of N up to FnFn+1 is equal to 

\Fn—iFn—2 + Fn — l)/2FnFn+i « Fn-iFn-2/^FnFn+i 

« ( ( a " " 1 / V 5 ) ( a n ~ 2 / V 5 ) ) / (^2(a n /Vb)(a n + l /Vb)) 

= a n - l a n ~ 2 / 2 a n a n + 1 = 1/2 a 4 = /34/2. 
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