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EXPONENTIAL STABILITY OF REGULAR
LINEAR SYSTEMS ON BANACH SPACES

Tran Thi Loan (Hanoi, Vietnam )

Abstract: The article deals with the vd-transformation in Banach space and its
application in studying the stability of trivial solution of differential equations. A sufficient
condition of exponential stability of regular linear systems with burfication on Banach
space will be proved.

vd-transformation and it’s properties

In this section we shall give the definition, examples and some properties of a
vd-transformation on Banach spaces. It is an expansion of a vd-transformation on
finite dimension spaces given by Yu. S. Bogdanov ([2]–[6]). From that, we shall give
the definition of regular linear equations which are applied to study the stability
of regular linear equations with burfication on Banach spaces.

Let E be a Banach space and G be an open simple connected domain
containing the origin O of E.

We define H as follows H = G×R = {η = (x, t) : x ∈ G, t ∈ R}.
Let v0:R

+ → R+ be a function which is continuous, monotone strictly
increasing and satisfies the following conditions:

v0(0) = 0; v0(t) → +∞ as t → +∞.

Let d:R+ ×R+ → R be a given real function of two variables: and d satisfies
the following conditions for all γ > 0, γ3 > γ2 > γ1 > 0;

(d1) d(γ2, γ1) = −d(γ1, γ2),
(d2) d(γ2, γ) > d(γ1, γ),
(d3) d(γ3, γ2) + d(γ2, γ1) ≥ d(γ3, γ1),
(d4) ∪γ∈R+{d(γ, γ1)} = R.
Suppose that, l:H → H is a diffeomorphism,

η = (x, t) 7→ η′ = (x′, t′)

satisfying the following equalities:

l(0, t) = (0, t), l(x, t) = (x′, t)
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for all t ∈ R. It is easy to prove that the set L of all those transformations L = {l}
is a group with the composition of maps.

Let v be a real function

v:H⋆ → R+, η = (x, t) → v(η) = v0(‖x‖)

where H⋆ = G⋆ ×R = (G \ {0})×R.
Since the function v:H⋆ → R+ is independent of t, that is, v(x, t) = v(x, t′)

for all t, t′ ∈ R, we can denote by v(x) the value of v(x, t) for any x ∈ G⋆ and
t ∈ R.

Definition. The transformation l ∈ L is called vd-transformation iff

(1) sup
η∈H⋆

|d{v(η), v[l(η)]}| < +∞

From the definition of function d, we also have

sup
η′∈H⋆

∣∣d
{
v(η′), v(l−1(η′))

}∣∣ < +∞.

Consequently, if we denote by Lvd the set of vd-transformation then it is a subgroup
of L.

Examples
1. Suppose v0(x, t) = ‖x‖, d0(γ1, γ2) = lnγ1

γ2
, and l(x, t) (with a fixed t) is a linear

transformation having bounded partial derivation with respect to t. Then, l is
v0d0-transformation if and only if it’s a Lyapunov transformation ([1]).

2. If v(x, t) = |x|2;E = R

d(γ1, γ2) =

{√
γ1 −√

γ2 if γ1 · γ2 ≥ 1
1√
γ2

− 1√
γ1

if γ1 · γ2 < 1,

then all conditions from d1 are satisfied. So

l(x, t) = (x +
1

2
sin t sin2 x, t)

is a vd-transformation.

From example 1, we can see that a vd-transformation is an expansion of
Lyapunov transformation, but it still keeps an important property, stability of
the trivial solution of a following differential equation on the Banach space E:

(2)

{
dx
dt = f(x, t)
f(0, t) ≡ 0
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We denote by x(t; ξ) the solution of equation (2) which satisfies the initial
condition x(t0, ξ) = ξ and suppose that

λ = lim
ε→0+

sup
‖ξ‖≤ε
t≥t0

‖(x(t; ξ)‖;λ1 = lim
ε→0+

sup
ε→0+

sup
v(ξ)≤ε
t≥t0

v(x(t; ξ)).

Definition. ([7]). The solution x = 0 of differential equation (2) is said to be
Lyapunov stable if for any ε > 0 there exists δ(ε) > 0 such that for each solution
x(t) of (2), with its initiala value x(t0) = ξ satisfying the condition ‖ξ‖ < δ(ε)

then the inequality ‖x(t, ξ)‖ < ε holds for all t ≥ t0.
From the definition we can see that the solution x = 0 of differential equation

(2) is stable iff λ = 0.

Proposition 1. λ = 0 if and only if λ1 = 0.

Proof. By the continuity of the function v we immediately have lim
ξ→0

v(ξ) = 0.

Since v(‖x‖) is monotone strictly increasing we can deduce lim
v(ξ)→0

ξ = 0.

Therefore

(3) lim
k→∞

ξk = 0 ⇔ lim
k→∞

v(ξk) = 0.

We assume that λ = 0, then:

lim
k→∞

‖x(tk, ξk)‖ = 0

for all sequences {εk} ⊂ R+ : εk → 0; {ξk} ⊂ E : ‖ξk‖ < εk and {tk} ⊂ R, t− k ≥
t0. Because of (3), we have

lim
k→∞

‖x(tk, ξk)‖ = 0 ⇔ lim
k→∞

v (x (tk, ξk)) = 0.

It follows that λ = 0 ⇔ λ1 = 0.

Proposition 2. A vd-transformation conserves the stability of trivial solution
x = 0 of differential equation (2).

Proof. By the vd-transformation

(x, t) → l(x, t) = (y, t),

the equation (2) is transformed to the following one:

(4)
dy

dt
= g(y, t)
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By assumption, the solution x = 0 of equation (2) is stable, that means:

lim
ε→0+

sup
‖x0‖≤ε

t≥t0

‖x(t;x0)‖ = 0 ⇔ lim
ε→0+

sup
v(x0)≤ε

t≥t0

v[x(t;x0)] = 0.

If the solution y = 0 of (4) is unstable, then

lim
ε→0+

sup
v(y0)≤ε

t≥t0

v [y (t, y0)] > 0.

It means that there exists a positive number δ such that

(5) ∃{ηn} ⊂ E : ηn → 0; ∃{tn} ⊂ R+ : tn ≥ t0; ∀nN : v [y (tn; ηn)] ≥ δ.

Since v [x (tn, ξn)] → 0 as n → ∞, where ξn, tn) = l−1(ηn, tn) one could say

(6) v [x (tn; ξn)] < δ, ∀n ∈ N.

From (5), (6) and d4) we deduce :

|d{v [x (tn; ξn)] , v [y (tn; ηn)]}| = d{v [y(tn; ηn)] , v [x (tn; ξn)]}

> d{δ, v [x (tn; ξn)]} → +∞ as n → ∞.

Consequently
sup
n∈N

|d{v [x (tn; ξn)] , v [l (x (tn; ξn))]}| = +∞

that contradicts the definition of 1.

Regular system

Definition. A transformation l ∈ L, satisfying the following condition for all
η ∈ H⋆ :

d{v (η) , v [l (η)]} = o(t) as t → ±∞,

is called a generalized vd-transformation.

Definition. A transformation y = L(t)x is a generalized Lyapunov one if:

(7) χ [L (t)] = χ
[
L−1 (t)

]
= 0

where χ [L (t)] := lim
t→∞

1
t ln‖L(t)‖ is called characteristic exponent of L(t).

By definition we immediately have following remarks:
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Remark 1. Generalized Lyapunov transformations conserve Lyapunov expo-
nents [1].

Remark 2. A generalized Lyapunov transformation is generalized vd-trans-
formation when

v(x) = ‖x‖, d (γ1, γ2) = ln
γ1
γ2

,

and l is homogeneously linear for x (where l(x, t) = (L(t)x, t)).

Now we shall prove a necessary and sufficient condition for which a differential
system on finite dimension spaces are regular. Since this condition plays an
important role for the conception of a regular differential equations on Banach
spaces and we could not find it in literature, we shall formulate it as a lemma.

We consider the following linear differential system:

(8)
dx

dt
= A(t)x

where x ∈ Rn, A(t) ∈ L(Rn,Rn) and is real continuous for all t ∈ R and
sup ‖A(t)‖ < ∞.

Let X(t) be a normal fundamental matrix of (8) and σx =
m∑

k=1

nkαk be the

sum of all its exponent numbers ([1]).

Definition. ([1]) The linear system (8) is said to be regular iff

σx = lim
t→∞

1

t

t∫

t0

SpA(τ)dτ.

Lemma. A necessary and sufficient condition that the system (8) to be regular
one is there exists a generalized Lyapunov transformation carrying the system (8)
to the system with constant matrix B ∈ L(Rn,Rn):

(9)
dy

dt
= By

Proof. Let y = L(t)x be a generalized Lyapunov transformation, X(t) be a normal
fundamental matrix of system (8). It follows that Y (t) = L(t)X(t) is a fundamental
matrix of system (9). Since

detY (t) = detL(t) detX(t),
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we have

det Y (t0) exp(t− t0) SpB = detL(t) detX(t0) exp

t∫

t0

SpA(t1)dt1

exp

t∫

t0

SpA(t1)dt1 = |c (t0)|
∣∣detL−1(t)

∣∣ exp [(t− t0) SpB] ,

where c(t0) = det
[
Y (t0)X

−1(t0)
]
,

⇒ 1

t

t∫

t0

SpA(t1)dt1 =
1

t
ln |c(t0)|+

1

t
ln

∣∣detL−1(t)
∣∣+

(
1− t0

t

)
SpB

⇒ lim
t→∞

1

t

t∫

t0

SpA(t1)dt1 = SpB + χ
[
detL−1(t)

]
.

Because of χ
[
L−1(t)

]
= 0 we have

χ
[
detL−1(t)

]
≤ nχ

[
L−1(t)

]
= 0

Analogously, from χ [L(t)] = 0 it follows that

χ [detL(t)] ≤ 0

On the other hand, since

detL(t). detL−1(t) = 0,

the following is held: χ [detL(t)] + χ
[
detL−1(t)

]
≥ 0.

Therefore χ [detL(t)] = χ
[
detL−1(t)

]
= 0

It follows from these equalities that

lim
t→∞

1

t
ln

∣∣detL−1(t)
∣∣ = 0

and finally

lim
t→∞

1

t

t∫

t0

SpA(t1)dt1 = SpB.
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Since the Lyapunov transformation conserves Lyapunov exponents and the X
is normal, Y is normal too and

σx = σy = SpB,

we have

σx = lim
t→∞

1

t

t∫

t0

SpA(t1)dt1,

i.e. the system (8) is regular.

Conversely, let the system (8) be regular. We will denote by X(t) the funda-
mental normal matrix of (8), which has the exponent numbers: λ1 ≤ λ2 ≤ . . . ≤ λn.
Consider the Jordan matrix B, in which λ1, . . . , λn are elements on the diagonal.

Denoting Y (t) the fundamental normal matrix of the system (9), we constate
that the column of which has the same exponent numbers (with the same order):
λ1, λ2, . . . , λn.

Putting L(t) = Y (t)X−1(t) we will prove that y = L(t)x is a generalized
Lyapunov transformation.

Suppose that

Y (t) =




y11(t) y12(t) . . . y1n(t)
y21(t) y22(t) . . . y2n(t)

...
...

. . .
...

yn1(t) yn2(t) . . . ynn(t)




X−1(t) =




x11(t) x12(t) . . . x1n(t)
x21(t) x22(t) . . . x2n(t)

...
...

. . .
...

xn1(t) xn2(t) . . . xnn(t)


 .

Tdilehen χ
[
y(k)

]
= λk, where y(k)(t) = colon (y1k(t) . . . ynk(t)).

Because of the regularity of (8), we have χ
[
x(k)(t)

]
= −λk, where x(k)(t) =

(xk1(t) . . . xkn(t)).
We consider now the diagonal matrix

∆ = diag (λ1, λ2, . . . , λn) .

We find then

L(t) = Y (t)e−t∆et∆X−1(t) = φ(t)Ψ(t)
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in which φ(t) = Y (t)e−t∆,Ψ(t) = et∆X−1(t). It follows that

χ [φ(t)] = max
j,k

χ
[
yjk(t)e

−λkt
]
= 0

χ [Ψ(t)] = max
j,k

χ
[
xj,k(t)e

λjt
]
= 0.

Consequently,
χ [L(t)] ≤ χ [φ(t)] + χ [Ψ(t)] = 0

Analogously we can prove that χ
[
L−1(t)

]
≤ 0.

However, from L(t) · L−1(t) = E, we immediately find that χ [L(t)] +

χ
[
L−1(t)

]
≥ 0, i.e. χ [L(t)] = χ

[
L−1(t)

]
= 0. The lemma is proved.

Definition. A linear differential equation:

(10)
dx

dt
= A(t)x,

where A(t) ∈ L(E,E) and is continuous for all t ∈ R and sup
t

‖A(t)‖ < ∞, is said

to be regular one iff there is a generalized Lyapunov transformation y = L(t)x
carrying which to the linear differential equation with constant operator:

(11)
dy

dt
= By.

Now we shall give a main theorem to regular differential equations on Banach
spaces.

Let consider differential equation

(12)
dx

dt
= A(t)x + f(x, t),

where A(t) ∈ L(E,E) and sup
t∈R

‖A(t)‖ < ∞, f ∈ C(1,0)(E ×R), f(0, t) ≡ 0,

‖f(x, t)‖ ≤ Ψ(t)‖x‖m (m > 1); χ[Ψ(t)] = 0.

Under these conditions, we show the following theorem:

Theorem. If the equation (10) is regular and all its characteristic exponents are
not larger than −λ < 0, the trivial solution x = 0 of the equation (10) is exponential
stability ([7]). I.e there exist N > 0, A > 0 such that

‖x(t)‖ ≤ Ae−N(t−t0)‖x(t0)‖
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for all solutions x(t) of (12).

Proof. We denote by X(t)(X(t0) = IdE) its Cauchy operator of equation (10)
([7], p. 147).

1. First we will estimate the resolvant operator K(t, τ) = X(t)X−1(τ)

(t0 ≤ τ ≤ t).
Because of the regularity of the equation (10), there is a generalized Lyapunov

transformation y = L(t)x carrying equation (10) to equation (11).
We have Y (t) = L(t)X(t) is resolvant operator of the equation (11).
If we put H(t, τ) = Y (t)Y −1(τ) then K(t, τ) = L(t)H(t, τ)L−1(τ).
Suppose that all characteristic exponents of the equation (10) are not larger

than α.
Hence all those of the equation (11) are not too than α, that is for every

solution y(t) = Y (t)y0 and ε > 0 there exists c > 0 we have

‖y(t)‖ ≤ ce(α+ε/2)t, ∀t ≥ t0.

Then, the operator’s family
{
e−(α+ε/2)tY (t), t ≥ t0

}
is point-bounded.

By virtue of the Banach–Steinhauss there exists c1, > 0 such that:

‖e(−α+ε/2)tY (t)‖ ≤ c1 ⇔ ‖Y (t)‖ ≤ c1e
(α+ε/2)t.

Therefore ‖H(t, τ)‖ = ‖Y (t−τ‖ ≤ c1e
(αε/2)(t−τ) for the equation with constant

operator (11)
On the other hand

χ [L(t)] = χ
[
L−1(t)

]
= 0 ⇔

{
‖L(t)‖ ≤ c2e

ε
2 t

‖L−1(τ)‖ ≤ c3e
ε
2 τ .

It follows that

‖K(t, τ)‖ ≤ ‖L(t)‖‖H(t, τ)‖‖L−1(τ)‖

(13)
≤ c1c2c3e

(α+ε)(t−τ)eετ = c(ε, t0)e
(α+ε)(t−τ)

where c = c1c2c3e
−(α+ε)τ .

Since K(t, t0) = X(t) we have

(14) ‖X(t)‖ ≤ ce(α+ε)t
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In the case, when α < 0, there exists a positive number ε such that α+ ε ≤ 0,
whence

(15) ‖K(t, τ)‖ ≤ ceεt, ‖X(t)‖ ≤ c.

2. We will now prove the theorem. Denoting

(16) y = χeγ(t−t0)

where γ is a positive number such that 0 < γ < λ, the equation (12) will be
transformed to:

(17)
dy

dt
= B(t)y + g(t, y)

with B(t) = A(t) + γIdE

(18) g(t, y) = exp(γ(t− t0))f
(
t, ye−γ(t−t0)

)
.

Now we show that the equation

(19)
dη

dt
= B(t)η

is regular. Indeed, by the regularity of (10) there is a generalized Lyapunov
transformation z = L(t)x carrying (10) to the equation with constant operator:

dz

dt
= Cz

where
C = L′(t)L−1(t) + L(t)A(t)L−1(t).

The transformation ξ = L(t)η implies the following:

dξ

dt
=

[
L′(t)L−1(t) + L(t)B(t)L−1(t)

]
ξ = (C + γIdE) ξ.

The regularity of (19) is proved.
We denote by η(t) the solution of (19) and then e−γ(t−t0)η(t) is the solution

of (10).
This implies:

χ
[
η(t)e−γ(t−t0)

]
≤ −λ

⇒ χ [η(t)] ≤ χ
[
eγ(t−t0)

]
+ χ

[
η(t)e−γ(t−t0)

]
≤ −λ+ γ < 0.



Exponential stability of regular linear systems on Banach space 97

By virtue of the estimation of the resolvant operator the following inequality
is true:

‖K(t, τ)‖ ≤ Neετ ; t0 ≤ τ < ∞,

where K(t, τ) is the resolvant operator of (10).
Now considerint the solution of (17)

y(t) = K(t, t0)y(t0) +

t∫

t0

K(t, τ)g(τ, y(τ))dτ,

we have

‖y(t)‖ ≤ ‖K(t, t0)‖ · ‖y(t0)‖+
t∫

t0

‖K(t, τ)‖ · ‖g(τ, y(τ))‖dτ

≤ Neε(t0)‖y(t0)‖+
t∫

t0

Neετeγ(τ−t0)Ψ(τ)‖y(τ)‖me−mγ(τ−t0)dτ

≤ Neεt0‖y(t0)‖ +
t∫

t0

Neετe(1−m)γ(τ−t0)ceετ‖y(τ)‖mdτ

= c1‖y(t0)‖+
t∫

t0

c2e
[2ε−(m−1)γ](τ−t0)‖y(τ)‖mdτ

where c1 = Neεt0 , c2 = cNe−2εt0 .

Hence

(20) ‖y(t)‖ ≤ c1‖y(t0)‖+
t∫

t0

c2e
−δ(τ−t0)‖y(τ)‖mdτ,

where δ = (m− 1)γ − 2ε.
We will find the positive number ε such that δ > 0.
Since

t∫

t0

e−δ(τ−t0)dτ =
1

δ
− 1

δ
e−δ(t−t0) <

1

δ
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there is ∆ > 0 such that

N = (m− 1)cm−1
1 ‖y(t0)‖m−1

t∫

t0

c2e
−δ(τ−t0)dτ < 1

provided that
‖y(t0)‖ < ∆.

We apply here the lemma of Bihari [8] and find

‖y(t)‖ ≤ c1‖y(t0)‖
[1−N ]

1
m−1

= A‖y(t0)‖, A =
c1

[1−N ]
1

m−1

⇒ ‖x(t)‖ ≤ Ae−γ(t−t0)‖x(t0)‖, (x(t0) = y(t0))

that is the exponential stability of the solution x = 0 of (12), and the proof of the
theorem is finished.
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