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A SEHGAL’S PROBLEM

Bertalan Kiraly (Eger, Hungary)

Abstract: In this paper we generalize the Krull intersection theorem to group rings
and given neccessary and sufficient conditions for the intersection theorem to hold for an
arbitrary group ring over a commutative integral domain.

1. Introduction.

Let S be a commutative noetherian ring with unity, and let I be an ideal with
I# 8. Let I¥ =N I". The Krull intersection theorem states that if x € I then
there exists ¢ in I such that x = xt.

The object of this paper is to generalize this result to group rings (see [8],

Problem 38).

Let R be a commutative ring with unity, G a group and RG its group ring
and let A(RG) denote the augmentation ideal of RG, that is the kernel of the ring
homomorphism ¢: RG — R which maps the group elements to 1. It is easy to see
that as an R-module A(RG) is a free module with the elements g — 1 (g € G) as a
basis. Let

A“(RG) = ﬁ AY(RG).

i=1

We shall say that the intersection theorem holds for A(RG) if there exists an element
a € A(RQG) such that AY(RG)(1 —a) =0.

Sufficient conditions for the intersection theorem to hold for certain RG are
given in [2], [9], [6]. In the last paper are given the neccessary and sufficient
conditions in the cases when G is finitely generated with a nontrivial torsion element
and R = Z the ring of integers, or if G is finitely genereted and R = Zp the ring
of p-adic integers.

In this paper we given neccessary and sufficient conditions for the intersection

theorem to hold for an arbitrary group ring over a commutative integral domain
(Theorem 3.1).

2. Notations and some known facts. If H is a normal subgroup of G, then
I(RH) (or I(H) for short when it is obvious from the context what ring R we are
working with) denotes the ideal of RG generated by all elements of the form h— 1,
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(h € H). It is well known that I(RH) is the kernel of the natural epimorphism
¢: RG — RG/H induced by the group homomorphism ¢ of G onto G'/H. It is clear
that I(RG) = A(RG).

If £ denotes a class of groups (by which we understand that K contains all
groups of order 1 and, with each H € K all isomorphic copies of H) we define
the class RK of residually-IC groups by letting G € RK if and only if: whenever
1 # g € G, there exists a normal subgroup Hj of the group G such that G/H, € K
and g ¢ Hy.

We use the following notations for standard group classes: N, — torsion-free
nilpotent groups, Np — nilpotent p-groups of finite exponent, that is, nilpotent
group in which for some n = n(G) every element g satisfies the equation g?" = 1.

Let K be a class of groups. A group G is said to be discriminated by K if
for every finite subset g1, 92, ..., g, of distinct elements of G, there exists a group
H € K and a homomorphism ¢ of G into H, such that ¢(g;) # ¢(g;) for ¢ # j, (1 <
i,j <n).

The n-th dimension subgroup D,,(RG) of G over R is the set of group elements
g € G such that g — 1 lies in the n-th power of A(RG). It is well known that for
every natural number n the inclusion

n(G) € Dn(RG)

holds, where 7, (G) is the n-th term of the lower central series of G.

Lemma 2.1. Let a class K of groups be closed under the taking of subgroups (that
is all subgroups of any member of the class K are again in the class K) and also
finite direct products (that is the direct products of finite member groups of the
class IC are again in the class K) and let G be a residually-IC group. Then G is
discriminated by K.

The proof can be obtained immediately.

The ideal A(RG) of the group ring RG is said to be residually nilpotent if
A¥(RG) = 0.

Lemma 2.2. ([1], Proposition 15.1.) If G is discriminated by a class of groups K
and for each H € K the equality AY(RH) = 0 holds, then A¥(RG) = 0.

Lemma 2.3. ([1], Proposition 1.12.) The right annihilator L of the left ideal I(RH)
is non-zero if and only if H is a finite subgroup of a group G. If H is finite, then
L= peq PRG.

If H, M are two subgroups of G, then we shall denote by [H, M] the subgroup
generated by all commutators [g,h] = g~ 'h~1gh,g € H,h € M.

A series
G=H,D2H,D...2H,D...
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of normal subgroups of a group G is called an N-series if [H;, H;] C H;1; for all
i,7 > 1 and also each of the Abelian groups H;/H; is a direct product of (possibly
infinitely many) cyclic groups which are either infinite or of order p*, where p is a
fixed prime and k is bounded by some integer depending only on G.

The ideal J,(R) of a ring R is defined by J,(R) = ﬂ p'R.
i=1

In this paper we shall use the following theorems:

Theorem 2.1. ([3], Theorem E.) Let G be a group with a finite N -series and R be
a commutative ring with unity satisfying J,(R) = 0. Then A“(RG) = 0.

We apply Theorem 2.1 for residually-N, groups. It is clear that the lower
central series of a nilpotent p-group of finite exponent is an N-series.

Theorem 2.2. Let R be a commutative ring with unity satisfying J,(R) = 0. If
G is a residually-N' group, then A®(RG) = 0.

The proof of this theorem follows from Lemmas 2.1 and 2.2 and Theorem 2.1
because the class N, is closed under the taking of subgroups and also finite direct
products.

Theorem 2.3. ([7], VI, Theorem 2.15.) If G is a residually torsion free nilpotent
group and R is a commutative ring with unity such that its additive group is torsion-
free, then AY(RG) = 0.

An element g of a group G is called a generalized torsion element if for all
natural numbers n the order of the element gv,(G) of the factor group G/v,(G)
is finite.

It is clear that torsion elements of a group G are generalized torsion elements

of G.

If g € G is a generalized torsion element then €, denotes the set of prime
divisors of the orders of the elements gv,(G) € G/v,(G) for all n = 2,3,. ...

Lemma 2.4. ([4]) Let g be a generalized torsion element of a group G,A an
arbitrary subset of Qg, r € (,cp Jp(R) and let

ze () )G wm(G).

peQ,\An=1

Then one of the following statements holds:
1) if A is the proper subset of Qg, then r(g — 1)z € A“(RG);
2) if A=Qy, thenr(g — 1) € AY(RG);
3) if A =R, then (g — 1)x € A¥(RG).
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We have the following theorem.

Theorem 2.4. ([4]) Let 2 be a nonempty subset of primes with m Jp(R) =0 and
pEN

suppose that the group G is discriminated by the class of groups Nq. If for every

proper subset A of the set Q) at least one of the conditions

() J»(R) =

peEA
2) G is discriminated by the class of groups NQ\A holds,
then AY(RG) = 0.

3. The intersection theorem. Let R be a commutative ring with unity.

Lemma 3.1. Let g € G and g*" € Di(RG) for a prime p and a natural number
n. Then there exists a natural number m such that

(g — 1) € AYRG).

Proof. We prove this by induction on t. For t = 1 the statement is obvious. Let

p*(g — 1) € A"Y(RG) for some s. From the decomposition gP" as (g — 1 + H”"
we have that

P - 1=p"(g - 1) +§ ("7 o +§ ("7 o

for every m. If m > n(s + t), then p® divides (p:l) for i = 1,2,...,t — 1 and

g*" € D{(RG). Therefore we have

t—1

g = 1=p™Mg-1)+p(g-1)*> dilg—1)"" +Z() 1),
=2

where d;p® = (p:l) fori=2,3,...,t—1. Since g*" —1 € A*(RG), by iteration from
the preceding identity p™(g — 1) € A*(RG) follows. The proof is complete .

Let p be a prime and n a natural number. Denote GP” is the subgroup of G
generated by all elements of the form ¢?", g € G.

Lemma 3.2. Let h € G ~,(G) for a natural number n. Then for all natural
numbers t and s for which n >t + s,

h—1=p*Fi(h) (mod A'(RQG))

holds, where Fy(h) € A(RG).
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Proof. Writing the element h as h = h? hE ... h2 y,  (hi € G,yn € 70(G)) and
using the identity

(1) ab—1=(a—1)b—1)+(a—1)+(b—1)
we have
h—1= (R Ry W — 1)y — 1) + (WY RE . kD — 1) + (yn — 1).
Since t < n, it follows that (y, — 1) € A*(RG). It is clear that p® divides (”;) for
j=1,2,...,t — 1. Then from the preceding identity

m m t—1
h=1=Y (W —1)b=p* > > dj(h; — 1)’b; =p°Fi(h) (mod A'(RG))
i=1 i=1 j=1
m t—1 ]
follows, where Fi(h) = p° szj(hi —1)’b;,b; € RG and p°d; = (pj ) for 1 <
i=1 j=1

j <t —1. The proof is complete .

Suppose further that R is a commutative integral domain. Let | G | be the
order of the group G.

Lemma 3.3. Let H be a subgroup of a group G and I(H)(1—a) = 0 for a suitable
element a € A(RG). Then H is finite and the order of H is invertible in R.

Proof. By the condition of our lemma the right annihilator of the left ideal I(H) is
non-zero. By Lemma 2.3 H is finite and 1 —a can be written as 1 —a = (3_, .y h)x
for a suitable element « € RG. If ¢(y) is the sum of the coefficients of the element
y € RG, then the map ¢: RG — R is a ring homomorphism of RG onto R, with
¢(1 —a) = ¢((Xopey M)w) = [H|d(x) = 1, that is [H| is invertible in R. The proof
is complete .

Let o(g) be the order of the element g € G and let D, (RG) be the w-th
dimension subgroup of G over R, that is D,,(RG) = N2>, D,,(RG). It is easy to see
that D,(RG) ={ge G|g—1¢€ AY(RG)}.

Let R* denotes the unit group of the ring R.

Lemma 3.4. Let the intersection theorem hold for A(RG). Then the set S =
{g € G |o(g) € R*} coincides with D,(RG) and it is the largest finite subgroup of
order invertible in R.

Proof. Let g € S. Then the order n = o(g) of the element g is invertible in R and
from the identity

Ozg”—lzn(g—1)+(Z)(g—1)2+...+(g—1)"
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we have

gl—nl(g1)((;)(91)+(g>(gl)2+...+(gl)”l>.

Hence, by iteration, we have g — 1 € AY(RG). This implies that S C D, (RG).

Conversely, it is clear that I(D,,(RG)) C A“(RG) and from A¥(RG)(1—a) =0
we have I(D,,(RG))(1 —a) = 0. Then by Lemma 3.3 the order of the subgroup
D, (RQ@) is invertible in R. Therefore D,,(RG) C S. The proof is complete .

Corollary. Let the intersection theorem hold for A(RG) and letg # 1 be an element

of finite order n of the group G = G/D,(RG). Then the prime divisors of n are
not invertible in R.

Lemma 3.5. Let G be a group having a p-element g and suppose that the inter-
section theorem holds for A(RG). If the ideal J,(R) is non-zero, then g € D,(RG).

Proof. Let AY(RG)(1 — a) = 0 for a suitable element a € A(RG) and let p™ be
the order of the element g € G. Therefore for every natural number ¢ we have
" € 1(G) C Dy(RG). If 0 # r € J,(R) then for every m > 1 for the element r
we have the decomposition r = p™r,, (r,, € R). Then by Lemma 3.1

r(g—1) =p"rm(g — 1) € AY(RG)

for an enough large integer m. Since ¢ is an arbitrary natural number, we conclude
that r(g — 1) € A“(RG), and so, r(g — 1)(1 — a) = 0. In the group ring over an
integral domain this equation implies that (¢ — 1)(1 — a) = 0. Then by Lemma
3.3 the order of the element ¢ is invertible in R. Consequently by Lemma 3.4
g € D,(RG). The proof is complete .

Let W,,(G) = [] G*"1(G).
n=1

Lemma 3.6. Let m = p{"'py'?...p"= be the prime power decomposition of the
order of the element g € G. Then for every prime p # p;, (i = 1,2,...,8) the
element g lies in Wp(G).

Proof. Since the numbers p and m are coprimes, for an arbitrary n we can be
choose the integers k£ and [ with km + Ip™ = 1. Then

n e

g= gkm+lp" — (gm)k(gl)P _ (gl)P c Gpn’}/n(G).

Therefore g € GP"7,,(G) for all n. Consequently g € W,(G).



A Sehgal’s problem 63

Let 7 be the set of those primes p for which the group G contains an element
of a prime order p and let 7* = {p € 7 | p € R*}, where R* is the unit group of R.
We recall that if the intersection theorem holds for A(RG), then by Lemma 3.4,
the set of the prime divisors of |D,,(RG)| coincides with 7*.

Let G = G/D.(RG).

Lemma 3.7. Let the intersection theorem hold for A(RG). Then for all p € 7\ 7*,
W,(G) is a torsion group with no p-elements and ﬂ W,(G) = (1).
pem\T*

Proof. Let AY(RG)(1 —a) = 0 for a suitable element a € A(RG). Suppose further

that p is a fixed prime in 7\ 7* and g = gD, (RG) is an arbitrary element of W,(G).
We shall prove that the element g has a finite order. For every n the element g lies

in the subgroup G* "yn (G). Therefore for the element g we have the decomposition

g=9% g5 -..gp hndn,

where h,, € v,(G),d,, € D,(RG),g9; € G,i=1,2,...,k. Since p € w \ 7*, clearly p
is not invertible in R and from Lemma 3.4 and from the definition of the set 7\ 7*
it follows that G contains a nontrivial p-element h = hD,,(RG). Let the order of
the element /& be p*. Then h?" € D, (RG) C Dy(RG) for every natural number t.
By Lemma 3.1 then there exists m such that

2) p™(h—1) € AYRG).

By Lemma 3.2 for an enough large n the element z = g% ¢¢ " .. .gin by € GP" 4, (G)
satisfies the condition

(3) r—1=p"F(z) (mod AY(RG)), Fi(z)ec A(RG).

Since d, — 1 € A“(RG) and g = xzdy, from (1) it follows that (¢ — 1)(h — 1) =
(x—1)(h—1) (mod A'(RQG)). Then by (2) and (3) we obtain

(g—1)(h—1) = F(2)p™(h—1)=0 (mod A"(RQG)).
Since t is an arbitrary natural number we conclude that
(4) (g—1)(h—1) € A”(RQG).

By the condition of our lemma it follows, that (¢g—1)(h—1)(1—a) = 0. The order of
the element h is not invertible in R, consequently, by Lemma 3.3 (h—1)(1—a) # 0,
and g—1 has a non-zero annihilator. Then by Lemma 2.3 the order of the element g

is finite. Therefore g is an element of finite order. Consequently, W, (G) is a torsion
subgroup of G.
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Now suppose that the element g = gD,,(RG) is a non-trivial p-element. (Note
that p € m \ 7*.) Since (4) is true for every p-element from the group G, it follows
that

(5) (9 —1)? € A°(RQ).

By Lemma 3.4 D, (RG) is finite and therefore the order of the element g is finite.
Let o(g) = I. From the identity

0—911—1(91)+<2

Z)(91)2+...+(91)l

and from (5) we conclude that i(g—1) € A“(RG). Hence l(g—1)(1—a) = 0, because
the intersection theorem holds for A(RG). Since R is an integral domain, it follows
that (¢ — 1)(1 — a) = 0, which is impossible by Lemma 3.3 because p divides o(g)
and therefore o(g) is not invertible in R. Consequently, for every p € 7 \ 7* the

subgroup W,(G) contains no p-elements.

Now we prove the equation m W,(G) = (1). Let 7 € m W, (G). Then
pET\T* pET\T*

the order o(7) of the element 7 is finite and by Corollary of Lemma 3.4. the prime

divisors of o(7) are not invertible in R, that is are lies in the set = \ 7*. This is

impossible since by above facts the subgroup W),(G) with no p-elements for all
p e\ m*. Consequently T =1 and Npep 5+ Wy (G) = (1). The proof is complete.

From Lemma 5.2 of [6] it we have

Lemma 3.8. Let Hq1, Hy be normal subgroups of a group G with Hy N Hy = (1).
Then I(Hy)NI(Hy) = I(H1)I(Hs).

Lemma 3.9. Let the set of elements of finite order of a group G form a finite
nilpotent group T(G) and let AY(RG/T(G)) = 0. Suppose that for all p € m\ *
the group W,(G) is finite with no p-elements and J,(R) = 0. Then the intersection
theorem holds for A(RG).

Proof. Note that in this case 7 = 7* and it is the set of prime divisors of the order
|T(G)| of the group T'(G).

We prove lemma by induction on the order of T(G). If |T(G)| = 1, then
A¥(RG) = 0 and in this case the proof is complete.

Suppose first that T'(G) is a p-group. If p € =\ 7*, then p is not invertible in R

and from the conditions of our lemma it follows that W, (G) = (1) and J,(R) = 0.
The group G/GP" ~,(G) is a nilpotent p-group of finite exponent and by Theorem
2.1 A°(RG/GP"~,(G)) = 0 for all n. Since W,(G) = (1) it follows, that G is a

residually-A,, group. Therefore by Theorem 2.2 A“(RG) = 0 and the intersection
theorem holds for A(RG).
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Now let p € n*, that is p is invertible in R. From A“(RG/T(G)) = 0 it
follows that A“(RG) C I(T(G)). If p™ is the order of T(G) then the element
1—(pm)~" > ger(c) 9 in ideal A(RG) and by Lemma 2.3

A°(RG)(1 — a) C I(T(G))(1 — a) = 0.

Now assume that there exist at least two different primes dividing |T'(G)|. Then
for the finite nilpotent group T'(G) we have the direct product decomposition

T(G)=5p, ®@Sp, ®...08,,,

of its Sylow p-subgroups Sy, (i = 1,2,...,k) with k > 2.
If 7* # (0, that is among the primes p; (i = 1,2,..., k) there exists p; which is
invertible in R, then by Lemma 2.3, the element b =1 — | S, =t > ges, 9 satisfies

the equation
(6) I(Sp,)(1 =) =0, bec A(RG).

By the induction hypothesis there exists an element ¢ € A(RG/S,,) such that

A“(RG/Sp,)(1 —¢) = 0. If ¢ € A(RG) is an element from the inverse image of ¢
by the homomorphism ¢: RG — RG/S,;, then

A*(RG)(1 - ¢) C I(S),).

Let 1 —a = (1—¢)(1 —b). Then from the above inclusion and from (6) we obtain
the equality AY(RG)(1 —a) = 0.

Suppose that 7 = ), that is all p; (i = 1,2,...,k) are not invertible in R. By
the induction there exist ¢, € AY(RG/Sy,) and ¢; € AY(RG/S),) such that

A“(RG/S,)(1—%)=0 and A“(RG/S,,)(1—c)=0.

Then AY(RG)(1—c1) C I(Sp,) and AY(RG)(1 —c2) C I(Sp,) for suitable elements
c1,c2 € A(RG). Hence by Lemma 3.8 we have

(7) AY(RG)(1 —c1)(1 —c2) C I(sz) N I(Spt) = I(sz)l(spt)-

We can be choose the integers n and m such that n|Sp,| +m|Sp,| = 1. It is easy to
see that the sum of the coefficients of the element 1 —d = n desm g+m deSm g
equals to 1 and therefore d € A(RG). Since T(G) is a finite group, by Lemma
2.3 it follows, that I(Sp,)I(Sp,)(1 —d) = 0. Then by (7) the element 1 —a =
(1 —¢1)(1 — e2)(1 — d) satisfies the condition A“(RG)(1 — a) = 0. The proof is
complete .
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We shall say that G is a generalized nilpotent group if it is discriminated by

o0
the class of the nilpotent group. This is equivalent to the equality m T (G) = (1).

n=1

Lemma 3.10. ([5]) Let g,h are an elements of a nilpotent group G. Suppose that
Yi41(G) = (1) and k™ = 1. Then the element h commute with g

We generalize this Lemma.

Lemma 3.11. Let G be a generalized nilpotent group, Q a subset of the primes
and let g € NpeaW,(G). If the prime divisors of the order o(h) of the element h
are in 2, then gh = hg. If the orders of the elements g and h are coprimes, then
gh = hg.

Proof. Let g € NpeaW,(G) and let ¢ = g~*h~1gh # 1 be the commutator of g and
h. Since G is a generalized nilpotent group, there exists an integer ¢ > 2 such that
¢ & 1141(G). Let g and h be the image of the elements g and h in G = G/v41(G).

First we suppose that A is a p-element (p € Q) of G and o(h) = p°. Since the
element g € NpeaW,(G), that for g we have
2s(t—1) 2s(t—1)

25(t—1)
_ P P p
9=9 9s -9 T2s(t—1)s

where Tog1—1) € Y254-1)(G), 9i € G,i=1,2,... k. Then

_ 25(t—1) _p?s(t=1) _p2e(t=1) .
9 =49 .o -G "'xZS(t—l)'

2s(t—1) 25(t—1) —

From Lemma 3.10 hg? =g’ h follow for all 4 = 1,2,..., k. Since t > 2,
we have 2s(t —1) > ¢ and therefore 54,1 is a central element of G. Consequently,
gh = hg.

Let h be a torsion element of G and let the prime divisors of the order of
h be in Q. Then the element h of the nilpotent group G has the decomposition
h = hihsy...h;, where | > 1,Efiw =1,p; € Q,i=1,2,...,1. From the above fact
we have that gh; = h;g for all i. Therefore gh = hg. Consequently ¢ € v;.1(G),
which is a contradiction.

Let g™ = h™ = 1. Suppose that n and m are coprimes. If the set 2 is the set

of the prime divisors of m then by Lemma 3.6 g € NpeqW,(G) and the by above
argument gh = hg. The proof is complete.

Lemma 3.12. Let {Hu} o be an arbitrary set of normal subgroups of a group
G. Suppose that H is a subgroup of G of finite exponent k. If g € Npex (HoH),
then gF € Npex Ha.
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Proof. Let g € Naex (HoH). Then for all a € K the element g lies in H,H and
gh € H, for a suitable element h € H. We shall show that for every o € K we
have g°h® € H, by induction on s.

For s = 1 the proof is similar as above. Suppose that ¢ 'h*~! € H,. Then
hghh™' = hg € H and hgg*~'h*~! = hg*h*~' € H,. Then h~'hg*h*~1h = h®g® €
H, since H, is a normal subgroup of G. If s = k then h® = 1 and therefore g* € H,.
Consequently, ¢¥ € Noex Hy.

Let G = G/D.(RG).

Lemma 3.13. Let the intersection theorem hold for A(RG). Then the following
assertionare satisfied:

1) If the set w\m* contains more than one element then the set T(G) of the torsion
elements of G form a finite normal subgroup of G, and for all p € w\ ©* the
subgroup W,(G) is finite with no p-elements and J,(R) = 0.

2) If 7\ 7 = {p} then G is a residually-N',, group and J,(R) = 0.

8) If T = 7* then either G is discriminated by the torsion free nilpotent groups, or
there exists a nonempty subset Q of the set of primes such that NpeaJp(R) =0,

the group G is discriminated by the class of groups N'q and for every proper
subset A of the set  at least one of the conditions

1) mpeAJp(R) =0
2) G is discriminated by the class of groups NQ\A
holds.
Proof. Let AY(RG)(1 — a) = 0 for a suitable element a € A(RG).
Case 1. Suppose that the set 7\ 7* contains more than one element. First we
prove that the elements of finite order of the group G form a normal subgroup.
Let g,h € G and o(g) = n,0(h) = m. It is evident that the order of g~ is
finite. Therefore it is enough to show that the order of the element gh is finite.

By Corollary of Lemma 3.4 it follows that the prime divisors of the integers n
and m are in 7 \ 7*. Let us denote by d = d(n, m) the greatest common divisor of

n and m. Then n = n'd and m = m’d for a suitable n" and m’ with d(n’,m’) = 1.
Put k = n'm'd. If d = 1 then by Lemma 3.7 gh = hg and therefore (gh)"™ = 1.

_ Let now d # 1. Suppose that k is a prime power p. Then g and h are p-elements
of G. Since 7\ 7* contains more than one element, there exists ¢ € 7\ 7* such that
q # p. By Lemma 3.6 g, h are in W,(G), which by Lemma 3.7 is a torsion group,
and therefore the order of the element gh is finite.

Let k be a composed number. Then for & we have the decomposition k = p®I
for some prime p € 7\ 7 and some natural number | where (I, p) = 1. Then there

- [t —sp®=—rl
exist integers s and r such that sp® + rl = 1. Hence gh = g°P §”h8p R, Since
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d(o(g"), o)) = d(o(g**"),o(K"")) = 1 then, Lemma 3.1 7”& =% g and

a—rl —rl o
q°° R =0 g°? . By the induction we have

—rl

(8) @h)' = @B @)

for every t. The orders of the elements g°?" and ESFQ are coprimes with p and
by Lemma 3.6 §SPW,ESPQ are in W,(G) which by Lemma 3.7 is a torsion group.
Therefore (ESPQESPQ)tl =1 for a suitable ¢;. By similar arguments we obtain that
@”Erl)t? = 1 for a suitable t5. Then by (8) the integer t = t1t5 satisfies the equality
(gh)t = 1. Consequently T'(G) is a torsion subgroup of G and clearly it is normal

in G.
Now we show that T'(G) is a torsion normal subgroup of G. It is clear that
T(G) is a generalized nilpotent group, because G is a generalized nilpotent group.

By Lemma 3.11. for T'(G) we have the direct product decomposition

9) @G = 1] S

pET\T*

of its Sylow p-subgroups S,,.

Let S, be the inverse image of S, in G. We shall show that (S,)I(S,) C
A“(RG) for p # g and p,q € Sp,p € 7\ 7. It will be sufficient to show that
(9—1)(h—1) € AY(RQ) for all g € Sp, and h € S,. By (9) for the elements g and

h we have the decompositions g = vz and h = wy where the elements x, y, P’ , w?
are in D, (RG) for suitable ¢ and j. Applying the identity (5) to the elements
g—1,h — 1 we have

(10) (g—Dh-1)=(@w-1(w—-1) (mod A”(RG)),

because z — 1 and y — 1 in A“(RG). For the elements v?' — 1 and w? — 1 we have

“pi_l:p"(v—l)Jr<2i>(v—1)2+...+(v—1)pi,

; , j ;
w? —1=¢"(w—1)+ ((]2)(11—1)24—...—1—(11)—1)‘1 .
Choose the integers s and [ such that sp® + ¢’ = 1. Multiplying these equations
by s(w — 1) and I(v — 1) respectively and adding we obtain
w=—1(w-1)=@w-=-1)(w=1)b+clv—-1)(w-1)+
+s(P —1)(w—1)+ (v —1)(w? —1),
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where

p==1(() -1+ (4 )=+t w7,

c= s(@)(v — 1)+ (Z;Z)(v 1244 (v — 1P,

Since the elements b,c € A(RG) and v — 1 and w? — 1 are in A“(RG), from
the above identity we conclude that (v — 1)(w — 1) € A'*(RG) for all integers
t > 1. Therefore (v — 1)(w — 1) € AY(RG) and by (10), (¢ — 1)(h — 1) € AY(RG).
Consequently I(S,)I(S5,) C AY(RG).

Now we show that T'(G) is a finite subgroup. Let ¢ be an arbitrary element of
w\ 7, Hy = Sp,Sp, ..., where ¢, p;, € w\ 7* and p; # ¢ for all 4. Then from the
above argument it follows that

I(Hy)I(Sy) C AY(RG) and I(Sy)I(H,) C AY(RQG).
Since AY(RG)(1 — a) = 0 we have that
(11) I(H)I(Sq)(1 —a) =0 and I(S))I(Hy)(1 —a)=0.

The prime g is not invertible in R and so, by Lemma 3.1, I(S;)(1—a) # 0. Therefore
by (11) the ideal I(H,) has a non-zero right annihilator. Consequently H, is a finite
subgroup of G and therefore the set 7 \ 7* is finite. Furthermore I(H,)(1 —a) # 0
because the order of H, is not invertible in R. It follows that S, is finite for all

p € 7\ 7. Then by (9) we obtain that 7(G) is finite. By Lemma 3.4 D,,(RG) is a
finite subgroup of G and from the isomorphism T(G) = T(G)/D.,(RG) it follows
that T'(G) is a finite subgroup of G.

Let p € w\ n*. Then in G there exists a p-element g such that g € D, (R
Therefore by Lemma 3.5 J,(R) = 0. From Lemma 3.7 we have that W,(G) C T(
and W,(G) contains no p-elements. Since T(G) is finite, it follows that W, (G
also a finite subgroup of G with no p-elements.

Case 2. Let w\7m* = {p}. Then from the Corollary of Lemma 3.4 it follows that
the elements of finite order of G are p-elements. By Lemma 3.7 W,(G) is a torsion

G).
G),
) is

group with no p-elements. Consequently W,(G) = (I) that is G is a residually
nilpotent p-group of finite exponent.

Case 3. Let m = n*. By Lemma 3.2 T(G) = D, (RG) and it is a finite group.

Assume G contains no generalized torsion element of infinite order, and let
V7 (G) be the isolator of v, (G) in G, that is

VI (G) ={g € G| g™ € 7(G) for some integer m > 1}.
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Then NS4 v/vn(G) = D, (RG) and therefore for every element g = gD,,(RG) there
exists an integer n such that g € \/7,(G). If ¢ is the homomorphism of G onto
the torsion free nilpotent group G/v,(G) then ¢(g) # 1, that is, G is a residually
torsion free nilpotent group.

Let now g be a generalized torsion element of G of infinite order. Since
N> 17 (G) € D, (RG) and the order of D, (RG) is finite, it follows that
9 € NeZi7n(G).

Let Q denote the set of prime divisors of the orders of the elements gy, (G) €
G/vn(G) for all n =2,3,.... It is obvious that 2 is non-empty.

Let r € NpeaJp(R). Then by Lemma 3.3 it follows that r(¢ — 1) € AY(RG)
and therefore (g —1)(1 —a) = 0 because A(RQG) satisfies the intersection theorem.
Since R is an integral domain and the order of the element g is infinite, from the
above equality it follows that » = 0. Consequently NyeqJp(R) = 0.

Now we show that if A is a subset of © such that A is either empty, or
NpeaJp(R) # 0 then the group G is discriminated by the class of groups N g\a.
Let h1 = hiDy(RG),hy = haDy(RG), ..., hy = hmDy(RG), m > 2 be an

arbitrary set of a distinct elements of G. Note that if h; = 1 for a some 7 then we
write h; D, (RG) = D, (RG) and h; = 1. Suppose further

K ={gn|gn=hi or gn=hih;'i>ji=1,2...,m,j=2.3,...,m}.

Note that hih; ' € D, (RG) for all i # j. Since m = m*, from the construction of
the set K it follows that the elements 1 # g; € K are of infinite order.

Suppose there exists an element g; # 1 in K such that

gi € [) G m(G)D.(RG)

n=1

for all p € Q\ A. Then by Lemma 3.12 g;* € N°%,GP" 4, (G) for every p € Q\ A,
where ¢t = |D,,(RG)|. Therefore

gi—1e [ (I(GC" (@)

pEQ\A n=1

For a non-zero element r € NyeaJp(R) the element r(g—1)(gf —1) is in A¥(RG) by
Lemma 3.3 (if A = 0, then (¢—1)(¢9!—1) € AY(RQG)). Therefore r(g—1)(gi —1)(1—
a) = 0 (respectively (g—1)(gf —1)(1—a) = 0). The right annihilator of the element
g is zero, because g is an element of infinite order. Therefore (gf — 1)(1 —a)r =0
(respectively (gf —1)(1 —a) = 0). Similarly, since g; is an element of infinite order,
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we conclude that the preceding equality implies (1—a)r = 0. This is a contradiction.
Consequently, there exists a prime p, € Q\ A such that

o0

) G (G D (RG) (K = M,

n=1

where either M is the empty set or M = {1}. Then for all g; € K there exists n
such that
gi € GP ~v,(G)D,(RG).

Therefore

hiGP" 7, (G) Dy (RG) # h;jGP*" 4, (G) Dy, (RG)
whenever i # j. Then by the homomorphism

$:G/Dy(RG) = G/GP*" 4, (G) Dy (RG)

we obtain that

¢(hiDu(RG)) # ¢(h;Du(RG))

whenever i # j. Consequently G is discriminated by the class of groups N. o\a- The
proof is complete.

Theorem 3.1. Let R be a commutative integral domain. The intersection theorem
holds for A(RG) if and only if D,(RG) is the largest finite subgroup of G of order
invertible in R and at least one of the following conditions holds:

1) G/D,(RQG) is a residually torsion free nilpotent group;

2) there exists a subset 0 of primes such that G/D,(RG) is discriminated by
the class of groups Nq, NpeaJy(R) =0 and for an arbitrary subset A of €,
Mpeadp(R) =0 or G/D,(RG) is discriminated by the class of groups N'g\a;

3) the set of the elements of finite order of G forms a finite normal subgroup

T(G), and for every prime divisor p of |T(G)|, which is not invertible in R, the
group W,(G/Dy,(RQ)) is finite with no p-elements and Jy(R) = 0.

Proof. Let the conditions 1) or 2) be satisfied. Then by Theorems 2.3 and 3.1
A“(RG) = 0 and therefore A“(RG) C I(D,(RG)). The order t = |D,(RG)| is
invertible in R and the element a =1 — ¢~1 > gep.(rG) 9 18 in A(RG). By Lemma
2.3 the element 1 — a satisfies the equality

A°(RG)(1 — a) € I(Du(RG)(1 — a) = 0,

that is in these cases the intersection theorem holds for A(RG).

Case 3. Let G = G/D,(RG). By Lemma 3.2 T(G) 2 D,,(RG) and because

Do (RG) 2 My (G),
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by the isomorphism T(G) = T(G)/D.(RG) we conclude that T(G) is a finite
nilpotent group.

Let g € T(G) and let the prime p divides |T(G)| and let p be not invertible in

R. Then g is an element of infinite order. By the conditions of our theorem W, (G)
and T'(G) are finite subgroups of G. It is clear that

g€ LG w(@)T(@G)
because in the antipodal case by Lemma 3.12
ng(G)l € ﬁ;’iﬁp ’Yn(a) = Wp(é),

which is a contradiction, since the order of the element g is infinite. Therefore
there exists an integer n such that g € G 7, (G)T(G). It is easy to see that H =

G/G" ~,(G)T(G) is anilpotent p-group of finite exponent and gG* 7, (G)T(G) is a
nontrivial element of H. Therefore G/T(G) is a residually nilpotent p-group of finite
exponent. Since J,(R) = 0 and the class of nilpotent p-groups of finite exponent
is closed under taking subgroup and finite direct product, from Lemma 2.1 and
Theorem 2.2 it follows that A“(RG/T(G)) = 0. Since RG) satisfies the conditions
of Lemma 3.5, there exists b € A(RG) with A“(RG)(1—b) = 0. Then A“(RG)(1 —
b) C I(D,(R@G)) for a suitable element b € A(RG). If c=1—1¢"! > geDu(RG) Y
(t = |Du(RG)|) then ¢ € A(RG) and the element 1 —a = (1 — b)(1 — ¢) satisfies
the equality A“(RG)(1 —a) = 0.

Sufficiency is proved in Lemmas 3.2 and 3.10. The proof is complete.
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