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A SEHGAL’S PROBLEM

Bertalan Király (Eger, Hungary)

Abstract: In this paper we generalize the Krull intersection theorem to group rings
and given neccessary and sufficient conditions for the intersection theorem to hold for an
arbitrary group ring over a commutative integral domain.

1. Introduction.

Let S be a commutative noetherian ring with unity, and let I be an ideal with
I 6= S. Let Iω = ∩∞

n=1I
n. The Krull intersection theorem states that if x ∈ Iω then

there exists t in I such that x = xt.
The object of this paper is to generalize this result to group rings (see [8],

Problem 38).
Let R be a commutative ring with unity, G a group and RG its group ring

and let A(RG) denote the augmentation ideal of RG, that is the kernel of the ring
homomorphism φ:RG → R which maps the group elements to 1. It is easy to see
that as an R-module A(RG) is a free module with the elements g − 1 (g ∈ G) as a
basis. Let

Aω(RG) =

∞⋂

i=1

Ai(RG).

We shall say that the intersection theorem holds for A(RG) if there exists an element
a ∈ A(RG) such that Aω(RG)(1 − a) = 0.

Sufficient conditions for the intersection theorem to hold for certain RG are
given in [2], [9], [6]. In the last paper are given the neccessary and sufficient
conditions in the cases when G is finitely generated with a nontrivial torsion element
and R = Z the ring of integers, or if G is finitely genereted and R = Zp the ring
of p-adic integers.

In this paper we given neccessary and sufficient conditions for the intersection
theorem to hold for an arbitrary group ring over a commutative integral domain
(Theorem 3.1).

2. Notations and some known facts. If H is a normal subgroup of G, then
I(RH) (or I(H) for short when it is obvious from the context what ring R we are
working with) denotes the ideal of RG generated by all elements of the form h− 1,
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(h ∈ H). It is well known that I(RH) is the kernel of the natural epimorphism
φ:RG → RG/H induced by the group homomorphism φ of G onto G/H. It is clear
that I(RG) = A(RG).

If K denotes a class of groups (by which we understand that K contains all
groups of order 1 and, with each H ∈ K all isomorphic copies of H) we define
the class RK of residually-K groups by letting G ∈ RK if and only if: whenever
1 6= g ∈ G, there exists a normal subgroup Hg of the group G such that G/Hg ∈ K
and g /∈ Hg.

We use the following notations for standard group classes: No — torsion-free
nilpotent groups, N p — nilpotent p-groups of finite exponent, that is, nilpotent
group in which for some n = n(G) every element g satisfies the equation gp

n

= 1.
Let K be a class of groups. A group G is said to be discriminated by K if

for every finite subset g1, g2, . . . , gn of distinct elements of G, there exists a group
H ∈ K and a homomorphism φ of G into H, such that φ(gi) 6= φ(gj) for i 6= j, (1 ≤
i, j ≤ n).

The n-th dimension subgroup Dn(RG) of G over R is the set of group elements
g ∈ G such that g − 1 lies in the n-th power of A(RG). It is well known that for
every natural number n the inclusion

γn(G) ⊆ Dn(RG)

holds, where γn(G) is the n-th term of the lower central series of G.

Lemma 2.1. Let a class K of groups be closed under the taking of subgroups (that
is all subgroups of any member of the class K are again in the class K) and also
finite direct products (that is the direct products of finite member groups of the
class K are again in the class K) and let G be a residually-K group. Then G is
discriminated by K.

The proof can be obtained immediately.
The ideal A(RG) of the group ring RG is said to be residually nilpotent if

Aω(RG) = 0.

Lemma 2.2. ([1], Proposition 15.1.) If G is discriminated by a class of groups K
and for each H ∈ K the equality Aω(RH) = 0 holds, then Aω(RG) = 0.

Lemma 2.3. ([1], Proposition 1.12.) The right annihilator L of the left ideal I(RH)
is non-zero if and only if H is a finite subgroup of a group G. If H is finite, then
L = (

∑
h∈H h)RG.

If H,M are two subgroups of G, then we shall denote by [H,M ] the subgroup
generated by all commutators [g, h] = g−1h−1gh, g ∈ H,h ∈ M .

A series
G = H1 ⊇ H2 ⊇ . . . ⊇ Hn ⊇ . . .
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of normal subgroups of a group G is called an N -series if [Hi, Hj ] ⊆ Hi+j for all
i, j ≥ 1 and also each of the Abelian groups Hi/Hj is a direct product of (possibly
infinitely many) cyclic groups which are either infinite or of order pk, where p is a
fixed prime and k is bounded by some integer depending only on G.

The ideal Jp(R) of a ring R is defined by Jp(R) =
∞⋂

i=1

piR.

In this paper we shall use the following theorems:

Theorem 2.1. ([3], Theorem E.) Let G be a group with a finite N -series and R be
a commutative ring with unity satisfying Jp(R) = 0. Then Aω(RG) = 0.

We apply Theorem 2.1 for residually-N p groups. It is clear that the lower
central series of a nilpotent p-group of finite exponent is an N -series.

Theorem 2.2. Let R be a commutative ring with unity satisfying Jp(R) = 0. If
G is a residually-N p group, then Aω(RG) = 0.

The proof of this theorem follows from Lemmas 2.1 and 2.2 and Theorem 2.1
because the class N p is closed under the taking of subgroups and also finite direct
products.

Theorem 2.3. ([7], VI, Theorem 2.15.) If G is a residually torsion free nilpotent
group and R is a commutative ring with unity such that its additive group is torsion-
free, then Aω(RG) = 0.

An element g of a group G is called a generalized torsion element if for all
natural numbers n the order of the element gγn(G) of the factor group G/γn(G)
is finite.

It is clear that torsion elements of a group G are generalized torsion elements
of G.

If g ∈ G is a generalized torsion element then Ωg denotes the set of prime
divisors of the orders of the elements gγn(G) ∈ G/γn(G) for all n = 2, 3, . . ..

Lemma 2.4. ([4]) Let g be a generalized torsion element of a group G,Λ an
arbitrary subset of Ωg, r ∈ ⋂p∈Λ Jp(R) and let

x ∈
⋂

p∈Ωg\Λ

∞⋂

n=1

I(Gpn

γn(G)).

Then one of the following statements holds:
1) if Λ is the proper subset of Ωg, then r(g − 1)x ∈ Aω(RG);
2) if Λ = Ωg, then r(g − 1) ∈ Aω(RG);
3) if Λ = R, then (g − 1)x ∈ Aω(RG).
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We have the following theorem.

Theorem 2.4. ([4]) Let Ω be a nonempty subset of primes with
⋂

p∈Ω

Jp(R) = 0 and

suppose that the group G is discriminated by the class of groups NΩ. If for every
proper subset Λ of the set Ω at least one of the conditions

1)
⋂

p∈Λ

Jp(R) = 0,

2) G is discriminated by the class of groups NΩ\Λ holds,
then Aω(RG) = 0.

3. The intersection theorem. Let R be a commutative ring with unity.

Lemma 3.1. Let g ∈ G and gp
n ∈ Dt(RG) for a prime p and a natural number

n. Then there exists a natural number m such that

pm(g − 1) ∈ At(RG).

Proof. We prove this by induction on t. For t = 1 the statement is obvious. Let

ps(g − 1) ∈ At−1(RG) for some s. From the decomposition gp
m

as (g − 1 + 1)
pm

we have that

gp
m − 1 = pm(g − 1) +

t−1∑

i=2

(
pm

i

)
(g − 1)i +

pm∑

i=t

(
pm

i

)
(g − 1)i

for every m. If m ≥ n(s + t), then ps divides
(
pm

i

)
for i = 1, 2, . . . , t − 1 and

gp
m ∈ Dt(RG). Therefore we have

gp
m − 1 = pm(g − 1) + ps(g − 1)

2
t−1∑

i=2

di(g − 1)
i−2

+

pm∑

i=t

(
pm

i

)
(g − 1)

i
,

where dip
s =

(
pm

i

)
for i = 2, 3, . . . , t−1. Since gp

m −1 ∈ At(RG), by iteration from

the preceding identity pm(g − 1) ∈ At(RG) follows. The proof is complete .

Let p be a prime and n a natural number. Denote Gpn

is the subgroup of G
generated by all elements of the form gp

n

, g ∈ G.

Lemma 3.2. Let h ∈ Gpn

γn(G) for a natural number n. Then for all natural
numbers t and s for which n ≥ t+ s,

h− 1 ≡ psFt(h) (mod At(RG))

holds, where Ft(h) ∈ A(RG).
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Proof. Writing the element h as h = hpn

1 hpn

2 . . . hpn

m yn (hi ∈ G, yn ∈ γn(G)) and
using the identity

(1) ab− 1 = (a− 1)(b − 1) + (a− 1) + (b− 1)

we have

h− 1 = (hpn

1 hpn

2 . . . hpn

m − 1)(yn − 1) + (hpn

1 hpn

2 . . . hpn

m − 1) + (yn − 1).

Since t < n, it follows that (yn − 1) ∈ At(RG). It is clear that ps divides
(
pn

j

)
for

j = 1, 2, . . . , t− 1. Then from the preceding identity

h− 1 ≡
m∑

i=1

(hpn

i − 1)bi ≡ ps
m∑

i=1

t−1∑

j=1

dj(hi − 1)jbi ≡ psFt(h) (mod At(RG))

follows, where Ft(h) = ps
m∑

i=1

t−1∑

j=1

dj(hi − 1)
j
bi, bi ∈ RG and psdj =

(
pn

j

)
for 1 ≤

j ≤ t− 1. The proof is complete .

Suppose further that R is a commutative integral domain. Let | G | be the
order of the group G.

Lemma 3.3. Let H be a subgroup of a group G and I(H)(1−a) = 0 for a suitable
element a ∈ A(RG). Then H is finite and the order of H is invertible in R.

Proof. By the condition of our lemma the right annihilator of the left ideal I(H) is
non-zero. By Lemma 2.3 H is finite and 1−a can be written as 1−a = (

∑
h∈H h)x

for a suitable element x ∈ RG. If φ(y) is the sum of the coefficients of the element
y ∈ RG, then the map φ:RG → R is a ring homomorphism of RG onto R, with
φ(1 − a) = φ((

∑
h∈H h)x) = |H |φ(x) = 1, that is |H | is invertible in R. The proof

is complete .

Let o(g) be the order of the element g ∈ G and let Dω(RG) be the ω-th
dimension subgroup of G over R, that is Dω(RG) = ∩∞

n=1Dn(RG). It is easy to see
that Dω(RG) = {g ∈ G | g − 1 ∈ Aω(RG)}.

Let R⋆ denotes the unit group of the ring R.

Lemma 3.4. Let the intersection theorem hold for A(RG). Then the set S =
{g ∈ G | o(g) ∈ R⋆} coincides with Dω(RG) and it is the largest finite subgroup of
order invertible in R.

Proof. Let g ∈ S. Then the order n = o(g) of the element g is invertible in R and
from the identity

0 = gn − 1 = n(g − 1) +

(
n

2

)
(g − 1)

2
+ . . .+ (g − 1)n
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we have

g − 1 = −n−1(g − 1)

((
n

2

)
(g − 1) +

(
n

3

)
(g − 1)2 + . . .+ (g − 1)n−1

)
.

Hence, by iteration, we have g − 1 ∈ Aω(RG). This implies that S ⊆ Dω(RG).

Conversely, it is clear that I(Dω(RG)) ⊆ Aω(RG) and from Aω(RG)(1−a) = 0
we have I(Dω(RG))(1 − a) = 0. Then by Lemma 3.3 the order of the subgroup
Dω(RG) is invertible in R. Therefore Dω(RG) ⊆ S. The proof is complete .

Corollary. Let the intersection theorem hold for A(RG) and let g 6= 1 be an element
of finite order n of the group G = G/Dω(RG). Then the prime divisors of n are
not invertible in R.

Lemma 3.5. Let G be a group having a p-element g and suppose that the inter-
section theorem holds for A(RG). If the ideal Jp(R) is non-zero, then g ∈ Dω(RG).

Proof. Let Aω(RG)(1 − a) = 0 for a suitable element a ∈ A(RG) and let pn be
the order of the element g ∈ G. Therefore for every natural number t we have
gp

n ∈ γt(G) ⊆ Dt(RG). If 0 6= r ∈ Jp(R) then for every m ≥ 1 for the element r
we have the decomposition r = pmrm(rm ∈ R). Then by Lemma 3.1

r(g − 1) = pmrm(g − 1) ∈ At(RG)

for an enough large integer m. Since t is an arbitrary natural number, we conclude
that r(g − 1) ∈ Aω(RG), and so, r(g − 1)(1 − a) = 0. In the group ring over an
integral domain this equation implies that (g − 1)(1 − a) = 0. Then by Lemma
3.3 the order of the element g is invertible in R. Consequently by Lemma 3.4
g ∈ Dω(RG). The proof is complete .

Let Wp(G) =

∞⋂

n=1

Gpn

γn(G).

Lemma 3.6. Let m = pm1
1 pm2

2 . . . pms
s be the prime power decomposition of the

order of the element g ∈ G. Then for every prime p 6= pi, (i = 1, 2, . . . , s) the
element g lies in Wp(G).

Proof. Since the numbers p and m are coprimes, for an arbitrary n we can be
choose the integers k and l with km+ lpn = 1. Then

g = gkm+lpn

= (gm)k(gl)
pn

= (gl)
pn

∈ Gpn

γn(G).

Therefore g ∈ Gpn

γn(G) for all n. Consequently g ∈ Wp(G).
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Let π be the set of those primes p for which the group G contains an element
of a prime order p and let π⋆ = {p ∈ π | p ∈ R⋆}, where R⋆ is the unit group of R.
We recall that if the intersection theorem holds for A(RG), then by Lemma 3.4,
the set of the prime divisors of |Dω(RG)| coincides with π⋆.

Let G = G/Dω(RG).

Lemma 3.7. Let the intersection theorem hold for A(RG). Then for all p ∈ π \π⋆,

Wp(G) is a torsion group with no p-elements and
⋂

p∈π\π⋆

Wp(G) = 〈1〉.

Proof. Let Aω(RG)(1−a) = 0 for a suitable element a ∈ A(RG). Suppose further

that p is a fixed prime in π\π⋆ and g = gDω(RG) is an arbitrary element ofWp(G).
We shall prove that the element g has a finite order. For every n the element g lies

in the subgroup G
pn

γn(G). Therefore for the element g we have the decomposition

g = gp
n

1 gp
n

2 . . . gp
n

k hndn,

where hn ∈ γn(G), dn ∈ Dω(RG), gi ∈ G, i = 1, 2, . . . , k. Since p ∈ π \ π⋆, clearly p
is not invertible in R and from Lemma 3.4 and from the definition of the set π \π⋆

it follows that G contains a nontrivial p-element h = hDω(RG). Let the order of

the element h be ps. Then hps ∈ Dω(RG) ⊆ Dt(RG) for every natural number t.
By Lemma 3.1 then there exists m such that

(2) pm(h− 1) ∈ At(RG).

By Lemma 3.2 for an enough large n the element x = gp
n

1 gp
n

2 . . . gp
n

k hn ∈ Gpn

γn(G)
satisfies the condition

(3) x− 1 ≡ pmFt(x) (mod At(RG)), Ft(x) ∈ A(RG).

Since dn − 1 ∈ Aω(RG) and g = xdn, from (1) it follows that (g − 1)(h − 1) ≡
(x− 1)(h− 1) (mod At(RG)). Then by (2) and (3) we obtain

(g − 1)(h− 1) ≡ Ft(x)p
m(h− 1) ≡ 0 (mod At(RG)).

Since t is an arbitrary natural number we conclude that

(4) (g − 1)(h− 1) ∈ Aω(RG).

By the condition of our lemma it follows, that (g−1)(h−1)(1−a) = 0. The order of
the element h is not invertible in R, consequently, by Lemma 3.3 (h−1)(1−a) 6= 0,
and g−1 has a non-zero annihilator. Then by Lemma 2.3 the order of the element g
is finite. Therefore g is an element of finite order. Consequently, Wp(G) is a torsion

subgroup of G.
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Now suppose that the element g = gDω(RG) is a non-trivial p-element. (Note

that p ∈ π \ π⋆.) Since (4) is true for every p-element from the group G, it follows
that

(5) (g − 1)2 ∈ Aω(RG).

By Lemma 3.4 Dω(RG) is finite and therefore the order of the element g is finite.
Let o(g) = l. From the identity

0 = gl − 1 = l(g − 1) +

(
l

2

)
(g − 1)2 + . . .+ (g − 1)l

and from (5) we conclude that l(g−1) ∈ Aω(RG). Hence l(g−1)(1−a) = 0, because
the intersection theorem holds for A(RG). Since R is an integral domain, it follows
that (g − 1)(1− a) = 0, which is impossible by Lemma 3.3 because p divides o(g)
and therefore o(g) is not invertible in R. Consequently, for every p ∈ π \ π⋆ the

subgroup Wp(G) contains no p-elements.

Now we prove the equation
⋂

p∈π\π⋆

Wp(G) = 〈1〉. Let v ∈
⋂

p∈π\π⋆

Wp(G). Then

the order o(v) of the element v is finite and by Corollary of Lemma 3.4. the prime
divisors of o(v) are not invertible in R, that is are lies in the set π \ π⋆. This is

impossible since by above facts the subgroup Wp(G) with no p-elements for all

p ∈ π \ π⋆. Consequently v = 1 and ∩p∈π\π⋆Wp(G) = 〈1〉. The proof is complete.

From Lemma 5.2 of [6] it we have

Lemma 3.8. Let H1, H2 be normal subgroups of a group G with H1 ∩H2 = 〈1〉.
Then I(H1) ∩ I(H2) = I(H1)I(H2).

Lemma 3.9. Let the set of elements of finite order of a group G form a finite
nilpotent group T (G) and let Aω(RG/T (G)) = 0. Suppose that for all p ∈ π \ π⋆

the group Wp(G) is finite with no p-elements and Jp(R) = 0. Then the intersection
theorem holds for A(RG).

Proof. Note that in this case π = π⋆ and it is the set of prime divisors of the order
|T (G)| of the group T (G).

We prove lemma by induction on the order of T (G). If |T (G)| = 1, then
Aω(RG) = 0 and in this case the proof is complete.

Suppose first that T (G) is a p-group. If p ∈ π \π⋆, then p is not invertible in R
and from the conditions of our lemma it follows that Wp(G) = 〈1〉 and Jp(R) = 0.

The group G/Gpn

γn(G) is a nilpotent p-group of finite exponent and by Theorem

2.1 Aω(RG/Gpn

γn(G)) = 0 for all n. Since Wp(G) = 〈1〉 it follows, that G is a

residually-N p group. Therefore by Theorem 2.2 Aω(RG) = 0 and the intersection
theorem holds for A(RG).
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Now let p ∈ π⋆, that is p is invertible in R. From Aω(RG/T (G)) = 0 it
follows that Aω(RG) ⊆ I(T (G)). If pn is the order of T (G) then the element

1− (pn)
−1∑

g∈T (G) g in ideal A(RG) and by Lemma 2.3

Aω(RG)(1 − a) ⊆ I(T (G))(1 − a) = 0.

Now assume that there exist at least two different primes dividing |T (G)|. Then
for the finite nilpotent group T (G) we have the direct product decomposition

T (G) = Sp1 ⊗ Sp2 ⊗ . . .⊗ Spk
,

of its Sylow p-subgroups Spi , (i = 1, 2, . . . , k) with k ≥ 2.

If π⋆ 6= ∅, that is among the primes pi (i = 1, 2, . . . , k) there exists pj which is

invertible in R, then by Lemma 2.3, the element b = 1− | Spj |−1∑
g∈Spj

g satisfies

the equation

(6) I(Spj )(1 − b) = 0, b ∈ A(RG).

By the induction hypothesis there exists an element c ∈ A(RG/Spj ) such that

Aω(RG/Spj )(1 − c) = 0. If c ∈ A(RG) is an element from the inverse image of c
by the homomorphism φ:RG → RG/Spj , then

Aω(RG)(1 − c) ⊆ I(Spj ).

Let 1 − a = (1− c)(1 − b). Then from the above inclusion and from (6) we obtain
the equality Aω(RG)(1 − a) = 0.

Suppose that π⋆ = ∅, that is all pi (i = 1, 2, . . . , k) are not invertible in R. By
the induction there exist c1 ∈ Aω(RG/Spl

) and c̃2 ∈ Aω(RG/Spt) such that

Aω(RG/Spl
)(1− c1) = 0 and Aω(RG/Spt)(1− c̃2) = 0̃.

Then Aω(RG)(1− c1) ⊆ I(Spl
) and Aω(RG)(1− c2) ⊆ I(Spt) for suitable elements

c1, c2 ∈ A(RG). Hence by Lemma 3.8 we have

(7) Aω(RG)(1 − c1)(1 − c2) ⊆ I(Spl
) ∩ I(Spt) = I(Spl

)I(Spt).

We can be choose the integers n and m such that n|Spl
|+m|Spt | = 1. It is easy to

see that the sum of the coefficients of the element 1−d = n
∑

g∈Sp1
g+m

∑
g∈Sp2

g

equals to 1 and therefore d ∈ A(RG). Since T (G) is a finite group, by Lemma
2.3 it follows, that I(Spl

)I(Spt)(1 − d) = 0. Then by (7) the element 1 − a =
(1 − c1)(1 − c2)(1 − d) satisfies the condition Aω(RG)(1 − a) = 0. The proof is
complete .



66 B. Király

We shall say that G is a generalized nilpotent group if it is discriminated by

the class of the nilpotent group. This is equivalent to the equality
∞⋂

n=1

γn(G) = 〈1〉.

Lemma 3.10. ([5]) Let g, h are an elements of a nilpotent group G. Suppose that
γt+1(G) = 〈1〉 and hns

= 1. Then the element h commute with gn
s(t−1)

.

We generalize this Lemma.

Lemma 3.11. Let G be a generalized nilpotent group, Ω a subset of the primes
and let g ∈ ∩p∈ΩWp(G). If the prime divisors of the order o(h) of the element h
are in Ω, then gh = hg. If the orders of the elements g and h are coprimes, then
gh = hg.

Proof. Let g ∈ ∩p∈ΩWp(G) and let c = g−1h−1gh 6= 1 be the commutator of g and
h. Since G is a generalized nilpotent group, there exists an integer t ≥ 2 such that
c /∈ γt+1(G). Let g and h be the image of the elements g and h in G = G/γt+1(G).

First we suppose that h is a p-element (p ∈ Ω) of G and o(h) = ps. Since the
element g ∈ ∩p∈ΩWp(G), that for g we have

g = gp
2s(t−1)

1 gp
2s(t−1)

2 . . . gp
2s(t−1)

k x2s(t−1),

where x2s(t−1) ∈ γ2s(t−1)(G), gi ∈ G, i = 1, 2, . . . , k. Then

g = gp
2s(t−1)

1 . . . gp
2s(t−1)

2 . . . gp
2s(t−1)

k . . . x2s(t−1).

From Lemma 3.10 hgp
2s(t−1)

i = gp
2s(t−1)

i h follow for all i = 1, 2, . . . , k. Since t ≥ 2,

we have 2s(t−1) ≥ t and therefore x2s(t−1) is a central element of G. Consequently,

gh = hg.

Let h be a torsion element of G and let the prime divisors of the order of
h be in Ω. Then the element h of the nilpotent group G has the decomposition

h = h1h2 . . . hl, where l ≥ 1, h
pi

ni

i = 1, pi ∈ Ω, i = 1, 2, . . . , l. From the above fact

we have that ghi = hig for all i. Therefore gh = hg. Consequently c ∈ γt+1(G),
which is a contradiction.

Let gn = hm = 1. Suppose that n and m are coprimes. If the set Ω is the set
of the prime divisors of m then by Lemma 3.6 g ∈ ∩p∈ΩWp(G) and the by above
argument gh = hg. The proof is complete.

Lemma 3.12. Let {Hα}α∈K be an arbitrary set of normal subgroups of a group
G. Suppose that H is a subgroup of G of finite exponent k. If g ∈ ∩α∈K(HαH),
then gk ∈ ∩α∈KHα.
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Proof. Let g ∈ ∩α∈K(HαH). Then for all α ∈ K the element g lies in HαH and
gh ∈ Hα for a suitable element h ∈ H . We shall show that for every α ∈ K we
have gshs ∈ Hα by induction on s.

For s = 1 the proof is similar as above. Suppose that gs−1hs−1 ∈ Hα. Then
hghh−1 = hg ∈ H and hggs−1hs−1 = hgshs−1 ∈ Hα. Then h−1hgshs−1h = hsgs ∈
Hα sinceHα is a normal subgroup ofG. If s = k then hs = 1 and therefore gk ∈ Hα.
Consequently, gk ∈ ∩α∈KHα.

Let G = G/Dω(RG).

Lemma 3.13. Let the intersection theorem hold for A(RG). Then the following
assertionare satisfied:

1) If the set π\π⋆ contains more than one element then the set T (G) of the torsion
elements of G form a finite normal subgroup of G, and for all p ∈ π \ π⋆ the
subgroup Wp(G) is finite with no p-elements and Jp(R) = 0.

2) If π \ π⋆ = {p} then G is a residually-N p group and Jp(R) = 0.
3) If π = π⋆ then either G is discriminated by the torsion free nilpotent groups, or

there exists a nonempty subset Ω of the set of primes such that ∩p∈ΩJp(R) = 0,
the group G is discriminated by the class of groups NΩ and for every proper
subset Λ of the set Ω at least one of the conditions
1) ∩p∈ΛJp(R) = 0

2) G is discriminated by the class of groups NΩ\Λ
holds.
Proof. Let Aω(RG)(1 − a) = 0 for a suitable element a ∈ A(RG).

Case 1. Suppose that the set π \ π⋆ contains more than one element. First we

prove that the elements of finite order of the group G form a normal subgroup.

Let g, h ∈ G and o(g) = n, o(h) = m. It is evident that the order of g−1 is

finite. Therefore it is enough to show that the order of the element gh is finite.

By Corollary of Lemma 3.4 it follows that the prime divisors of the integers n
and m are in π \ π⋆. Let us denote by d = d(n,m) the greatest common divisor of

n and m. Then n = n
′
d and m = m

′
d for a suitable n

′
and m

′
with d(n

′
,m

′
) = 1.

Put k = n
′
m

′
d. If d = 1 then by Lemma 3.7 gh = hg and therefore (gh)nm = 1.

Let now d 6= 1. Suppose that k is a prime power p. Then g and h are p-elements
of G. Since π \π⋆ contains more than one element, there exists q ∈ π \π⋆ such that

q 6= p. By Lemma 3.6 g, h are in Wq(G), which by Lemma 3.7 is a torsion group,

and therefore the order of the element gh is finite.

Let k be a composed number. Then for k we have the decomposition k = pαl
for some prime p ∈ π \ π⋆ and some natural number l where (l, p) = 1. Then there

exist integers s and r such that spα + rl = 1. Hence gh = gsp
α

grlh
spα

h
rl
. Since
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d(o(grl), o(h
spα

)) = d(o(gsp
α

), o(h
rl
)) = 1 then, Lemma 3.11 grlh

spα

= h
spα

grl and

gsp
α

h
rl
= h

rl
gsp

α

. By the induction we have

(8) (gh)t = (gsp
α

h
spα

)t(grlh
rl
)t

for every t. The orders of the elements gsp
α

and h
spα

are coprimes with p and

by Lemma 3.6 gsp
α

, h
spα

are in Wp(G) which by Lemma 3.7 is a torsion group.

Therefore (gsp
α

h
spα

)t1 = 1 for a suitable t1. By similar arguments we obtain that

(grlh
rl
)t2 = 1 for a suitable t2. Then by (8) the integer t = t1t2 satisfies the equality

(gh)t = 1. Consequently T (G) is a torsion subgroup of G and clearly it is normal

in G.

Now we show that T (G) is a torsion normal subgroup of G. It is clear that

T (G) is a generalized nilpotent group, because G is a generalized nilpotent group.

By Lemma 3.11. for T (G) we have the direct product decomposition

(9) T (G) =
∏

p∈π\π⋆

Sp

of its Sylow p-subgroups Sp.

Let Sp be the inverse image of Sp in G. We shall show that I(Sp)I(Sq) ⊆
Aω(RG) for p 6= q and p, q ∈ Sp, p ∈ π \ π⋆. It will be sufficient to show that
(g− 1)(h− 1) ∈ Aω(RG) for all g ∈ Sp, and h ∈ Sq. By (9) for the elements g and

h we have the decompositions g = vx and h = wy where the elements x, y, vp
i

, wqj

are in Dω(RG) for suitable i and j. Applying the identity (5) to the elements
g − 1, h− 1 we have

(10) (g − 1)(h− 1) ≡ (v − 1)(w − 1) (mod Aω(RG)),

because x− 1 and y− 1 in Aω(RG). For the elements vp
i − 1 and wqj − 1 we have

vp
i − 1 = pi(v − 1) +

(
pi

2

)
(v − 1)2 + . . .+ (v − 1)p

i

,

wqj − 1 = qj(w − 1) +

(
qj

2

)
(v − 1)2 + . . .+ (w − 1)q

j

.

Choose the integers s and l such that spi + lqj = 1. Multiplying these equations
by s(w − 1) and l(v − 1) respectively and adding we obtain

(v − 1)(w − 1) = (v − 1)(w − 1)b+ c(v − 1)(w − 1)+

+ s(vp
i − 1)(w − 1) + l(v − 1)(wqj − 1),
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where

b = −l(

(
qj

2

)
(w − 1) +

(
qj

3

)
(w − 1)2 + . . .+ (w − 1)q

j−1),

c = −s(

(
pi

2

)
(v − 1) +

(
pi

3

)
(v − 1)2 + . . .+ (v − 1)p

i−1).

Since the elements b, c ∈ A(RG) and vp
i − 1 and wqj − 1 are in Aω(RG), from

the above identity we conclude that (v − 1)(w − 1) ∈ At(RG) for all integers
t ≥ 1. Therefore (v − 1)(w − 1) ∈ Aω(RG) and by (10), (g − 1)(h− 1) ∈ Aω(RG).
Consequently I(Sp)I(Sq) ⊆ Aω(RG).

Now we show that T (G) is a finite subgroup. Let q be an arbitrary element of
π \ π⋆, Hq = Sp1Sp2 . . ., where q, pi,∈ π \ π⋆ and pi 6= q for all i. Then from the
above argument it follows that

I(Hq)I(Sq) ⊆ Aω(RG) and I(Sq)I(Hq) ⊆ Aω(RG).

Since Aω(RG)(1 − a) = 0 we have that

(11) I(Hq)I(Sq)(1 − a) = 0 and I(Sq)I(Hq)(1 − a) = 0.

The prime q is not invertible in R and so, by Lemma 3.1, I(Sq)(1−a) 6= 0. Therefore
by (11) the ideal I(Hq) has a non-zero right annihilator. Consequently Hq is a finite
subgroup of G and therefore the set π \ π⋆ is finite. Furthermore I(Hq)(1− a) 6= 0
because the order of Hq is not invertible in R. It follows that Sp is finite for all

p ∈ π \ π⋆. Then by (9) we obtain that T (G) is finite. By Lemma 3.4 Dω(RG) is a

finite subgroup of G and from the isomorphism T (G) ∼= T (G)/Dω(RG) it follows
that T (G) is a finite subgroup of G.

Let p ∈ π \ π⋆. Then in G there exists a p-element g such that g ∈ Dω(RG).

Therefore by Lemma 3.5 Jp(R) = 0. From Lemma 3.7 we have thatWp(G) ⊆ T (G),

and Wp(G) contains no p-elements. Since T (G) is finite, it follows that Wp(G) is
also a finite subgroup of G with no p-elements.

Case 2. Let π\π⋆ = {p}. Then from the Corollary of Lemma 3.4 it follows that

the elements of finite order of G are p-elements. By Lemma 3.7 Wp(G) is a torsion

group with no p-elements. Consequently Wp(G) = 〈1〉 that is G is a residually
nilpotent p-group of finite exponent.

Case 3. Let π = π⋆. By Lemma 3.2 T (G) = Dω(RG) and it is a finite group.

Assume G contains no generalized torsion element of infinite order, and let√
γn(G) be the isolator of γn(G) in G, that is

√
γn(G) = {g ∈ G | gm ∈ γn(G) for some integer m ≥ 1} .



70 B. Király

Then ∩∞
n=1

√
γn(G) =Dω(RG) and therefore for every element g = gDω(RG) there

exists an integer n such that g ∈
√
γn(G). If φ is the homomorphism of G onto

the torsion free nilpotent group G/γn(G) then φ(g) 6= 1̃, that is, G is a residually
torsion free nilpotent group.

Let now g be a generalized torsion element of G of infinite order. Since
∩∞
n=1γn(G) ⊆ Dω(RG) and the order of Dω(RG) is finite, it follows that

g ∈ ∩∞
n=1γn(G).

Let Ω denote the set of prime divisors of the orders of the elements gγn(G) ∈
G/γn(G) for all n = 2, 3, . . .. It is obvious that Ω is non-empty.

Let r ∈ ∩p∈ΩJp(R). Then by Lemma 3.3 it follows that r(g − 1) ∈ Aω(RG)
and therefore r(g−1)(1−a) = 0 because A(RG) satisfies the intersection theorem.
Since R is an integral domain and the order of the element g is infinite, from the
above equality it follows that r = 0. Consequently ∩p∈ΩJp(R) = 0.

Now we show that if Λ is a subset of Ω such that Λ is either empty, or
∩p∈ΛJp(R) 6= 0 then the group G is discriminated by the class of groups NΩ\Λ.

Let h1 = h1Dω(RG), h2 = h2Dω(RG), . . . , hm = hmDω(RG), m ≥ 2 be an

arbitrary set of a distinct elements of G. Note that if hi = 1 for a some i then we
write hiDω(RG) = Dω(RG) and hi = 1. Suppose further

K =
{
gn | gn = hi, or gn = hih

−1
j , i ≥ j, i = 1, 2, . . . ,m, j = 2, 3, . . . ,m

}
.

Note that hihj
−1 ∈ Dω(RG) for all i 6= j. Since π = π⋆, from the construction of

the set K it follows that the elements 1 6= gi ∈ K are of infinite order.

Suppose there exists an element gi 6= 1 in K such that

gi ∈
∞⋂

n=1

Gpn

γn(G)Dω(RG)

for all p ∈ Ω \ Λ. Then by Lemma 3.12 gi
t ∈ ∩∞

n=1G
pn

γn(G) for every p ∈ Ω \ Λ,
where t = |Dω(RG)|. Therefore

gti − 1 ∈
⋂

p∈Ω\Λ

∞⋂

n=1

I(Gpn

γn(G)).

For a non-zero element r ∈ ∩p∈ΛJp(R) the element r(g−1)(gti−1) is in Aω(RG) by
Lemma 3.3 (if Λ = ∅, then (g−1)(gti−1) ∈ Aω(RG)). Therefore r(g−1)(gti−1)(1−
a) = 0 (respectively (g−1)(gti−1)(1−a) = 0). The right annihilator of the element
g is zero, because g is an element of infinite order. Therefore (gti − 1)(1 − a)r = 0
(respectively (gti − 1)(1− a) = 0). Similarly, since gi is an element of infinite order,
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we conclude that the preceding equality implies (1−a)r = 0. This is a contradiction.
Consequently, there exists a prime p◦ ∈ Ω \ Λ such that

∞⋂

n=1

Gp◦
n

γn(G)Dω(RG)
⋂

K = M,

where either M is the empty set or M = {1}. Then for all gi ∈ K there exists n
such that

gi ∈ Gp◦
n

γn(G)Dω(RG).

Therefore
hiG

p◦
n

γn(G)Dω(RG) 6= hjG
p◦

n

γn(G)Dω(RG)

whenever i 6= j. Then by the homomorphism

φ:G/Dω(RG) → G/Gp◦
n

γn(G)Dω(RG)

we obtain that
φ(hiDω(RG)) 6= φ(hjDω(RG))

whenever i 6= j. Consequently G is discriminated by the class of groups NΩ\Λ. The
proof is complete.

Theorem 3.1. Let R be a commutative integral domain. The intersection theorem
holds for A(RG) if and only if Dω(RG) is the largest finite subgroup of G of order
invertible in R and at least one of the following conditions holds:

1) G/Dω(RG) is a residually torsion free nilpotent group;
2) there exists a subset Ω of primes such that G/Dω(RG) is discriminated by

the class of groups NΩ, ∩p∈ΩJp(R) = 0 and for an arbitrary subset Λ of Ω,
∩p∈ΛJp(R) = 0 or G/Dω(RG) is discriminated by the class of groups NΩ\Λ;

3) the set of the elements of finite order of G forms a finite normal subgroup
T (G), and for every prime divisor p of |T (G)|, which is not invertible in R, the
group Wp(G/Dω(RG)) is finite with no p-elements and Jp(R) = 0.
Proof. Let the conditions 1) or 2) be satisfied. Then by Theorems 2.3 and 3.1

Aω(RG) = 0 and therefore Aω(RG) ⊆ I(Dω(RG)). The order t = |Dω(RG)| is
invertible in R and the element a = 1− t−1

∑
g∈Dω(RG) g is in A(RG). By Lemma

2.3 the element 1− a satisfies the equality

Aω(RG)(1 − a) ⊆ I(Dω(RG)(1 − a) = 0,

that is in these cases the intersection theorem holds for A(RG).

Case 3. Let G = G/Dω(RG). By Lemma 3.2 T (G) ⊇ Dω(RG) and because

Dω(RG) ⊇ ∩∞
n=1γn(G),
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by the isomorphism T (G) ∼= T (G)/Dω(RG) we conclude that T (G) is a finite
nilpotent group.

Let g ∈ T (G) and let the prime p divides |T (G)| and let p be not invertible in

R. Then g is an element of infinite order. By the conditions of our theorem Wp(G)

and T (G) are finite subgroups of G. It is clear that

g ∈ ∩∞
n=1G

pn

γn(G)T (G)

because in the antipodal case by Lemma 3.12

g|T (G)| ∈ ∩∞
n=1G

pn

γn(G) = Wp(G),

which is a contradiction, since the order of the element g is infinite. Therefore

there exists an integer n such that g ∈ G
pn

γn(G)T (G). It is easy to see that H̃ =

G/G
pn

γn(G)T (G) is a nilpotent p-group of finite exponent and gG
pn

γn(G)T (G) is a

nontrivial element of H̃ . ThereforeG/T (G) is a residually nilpotent p-group of finite
exponent. Since Jp(R) = 0 and the class of nilpotent p-groups of finite exponent
is closed under taking subgroup and finite direct product, from Lemma 2.1 and
Theorem 2.2 it follows that Aω(RG/T (G)) = 0. Since RG) satisfies the conditions

of Lemma 3.5, there exists b ∈ A(RG) with Aω(RG)(1− b) = 0. Then Aω(RG)(1−
b) ⊆ I(Dω(RG)) for a suitable element b ∈ A(RG). If c = 1− t−1

∑
g∈Dω(RG) g

(t = |Dω(RG)|) then c ∈ A(RG) and the element 1 − a = (1 − b)(1 − c) satisfies
the equality Aω(RG)(1 − a) = 0.

Sufficiency is proved in Lemmas 3.2 and 3.10. The proof is complete.
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