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ON A PROBLEM CONCERNING
PERFECT POWERS IN LINEAR RECURRENCES

Péter Kiss (EKTF, Hungary)

Abstract: For a linear recurrence sequence {Gn}ff’zo of rational integers of order
k > 2 satisfying some conditions, we show that the equation sG7, = w9, where w > 1
and 7 are positive integers and s contains only given primes as its prime factors, implies
the inequality ¢ < qg, where qg is an effective computable constant depending on the
sequence, the prime factors of s and 7.

Let G = {G,}72, be a linear recurrence sequence of order k > 2 defined by
Gn=A1Gn1+ AsGro+ -+ ApGrop (n > k),

where Aj,..., Ay are given rational integers with A, # 0 and the initial values
Go,G1,...,Gk—1 are not all zero integers. We denote by a = «ay,as,...,as the
distinct roots of the polynomial

g(z) = b — Ayl — AgpR 2 — = Ay

furthermore we suppose that |a] > |a;| for 2 < ¢ < s, and the roots a =
a1, Q9,...,as have multiplicity m; = 1,ma,...,ms. In this case |a] > 1 and,
as it is well known, the terms of G can be writen in the form

(1) G, =ad" + ga(n)ag + -+ gs(n)al (n>0),

where g; (2 < ¢ < s) is a polynomial of degree m,; — 1, furthermore a and the
coefficients of g; are elements of the algebraic number field Q(ay, ..., as).

Several authors investigated the perfect powers in the recurrences G. Among
others T. N. Shorey and C. L. Stewart [6] proved that for a given integer d(# 0)
the equation

Gy = dw?

with positive integers z,w(> 1) and ¢ implies the inequality ¢ < N, where N is
an effectively computable constant depending only on d and G. In [4] we gave
an improvement of this result substituting d by integers containing only fixed
prime factors. For second order recurrences (k = 2) A. Pethd obtained more strict
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results (e.g. see [5]). In [2] B. Brindza, K. Liptai and L. Szalay proved, under some
conditions, that for recurrences G and H the equation

G Hy = w!

can be satisfied only if ¢ is bounded above. We proved [3] that for a sequence G
and fixed positive integer n from

G GLT = wl,
with 0 < r < ¢/2, it follows that ¢ is bounded above.

In this note we prove the following theorems.

Theorem 1. For given primes p1,...,p: let S be a set of integers defined by

¢
S={n:neN, nsz;-B", Bi > 0}.

i=1

Let v > 1 be an integer and let G be a linear recurrence defined in (1) satisfying
the conditions a # 0 and G,, # aa™ for n > ng. Then the equation

(2) sG = w?

with positive integers s € S, w > 1 and © > xg (zo depends on G and r) implies
that q < qo, where qq is an effectively computable constant depending on ng,r, the
sequence G and the primes p1,...,Dp;.

Theorem 2. Let G be a linear recurrence defined by (1) satisfying the conditions
a# 0 and G, # aa™ for n > ng. If

GG =l

for positive integers x,y,q and r with the conditions (¢,7) = 1 and y < ny, then
q < q1, where q1 is a constant depending on G,ng and ni, but does not depend on
T.

In the proofs we need some lemmas.

Lemma 1. Let wi,wa,...,w, (w; # 0 or 1) be algebraic numbers and let
V1,2, - - - » Yo be not all zero rational integers. Suppose that wy, . ..,w, have heights
My, ..., M,(> 4), furthermore |v;| < B (B >4) fori=1,2,...v—1 and |y,| < B'.
Further let

A =y logwr + y2logws + -+ + 7, log wa,
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where the logarithms mean their principal values. If A # 0, then there exists an
effectively computable constant ¢ > 0, depending only on v, M, ..., M,_1 and the
degree of the field Q(w1,...,wy), such that for any 6 with 0 < < 1/2 we have

|A‘ > (5/Bl)clogM7,e—6B.
(see A. Baker [1]).

Lemma 2. Let a,b,c,q and r be positive integers with 0 < r < q and (¢,7) = 1. If
(3) a7 =,
then for any integer r1 with 0 < r1 < q there is a positive integer d, such that

atTY = 9,

Proof of Lemma 2. From (3)

(&) -

follows. Let = and y be integers for which rx + qy = r1. Then
b rT c qx
(z) =)
DY) (B ey ()"
a a - \a \a a
71 T LY q
(9) al =a? """ = (C b+a) =d1
a a*ry

follows, where d is an integer since a4~ 5" is integer.

and

from which

Proof of Theorem 1. In the proof we denote by c1, ca, . .. effectively computable
positive constants, which depend only on ng,r, the sequence G and the primes
D1, - ., Pt Suppose that equation (2) holds with the conditions given in the theorem.
We can suppose that

(4) s=pit---pyt, where 0 <w; < qforl<i<t.
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Namely if

t t t q
— Ui +qui _ u; v;
s=[Ipim =11ei (1P -
i=1 i=1 i=1

t
then w/ [] p;* is also an integer and greater than 1.
i=1

By (1), equation (2) can be written in the form

(5) A= :<1+@(%)1+-~)r,

Sa’l‘al”l‘

where |A| # 1 if © > ng. Using the properties of the exponential and logarithm
functions, by (5) and |a| > |ay| (1 =2,...,5)

Al < L+ eme]”
and
(6) |log ||| < re™¢2" = elogr—ca®

follows. On the other hand, by (5)

t

(7) |log |A|| = |qlogw — rlog|a|] — zrlog |a| — ZUZ logp;| .
i=1

By (2) and (4) it follows that

q

w

i
H pi
i=1

Gl >

t
where w/ [] p; > 1 is an integer since any prime factor of s divides w. From this

i=1
t
log (H pi)
1 i=1

inequality, using (1),
log (|a|"|a|™) > c3qlogw
qlogw

follows and so, if ¢ is large enough,

(8) q < cqrx and x > cs5qlog w.
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Since u; < ¢ < cqrzx, using Lemma 1 with v < t 43, w, = w, M, = 2w (> 4),
B’ = q and B = cyar, from (7) we obtain the inequality

9) llog |A|| > (§/q)c 108 2we—dcars — o (Iog a—log §)cq log 2w—dcara
for any 0 < 6 < 1/2. By (6) and (9) we obtain that
(log ¢ — log d)ce log 2w + deqrz > —logr + cox
and
(10) crlogqlogw > cgx,

if we choose zg and § such that

logr
Co — 0cyr — & > 0,
i.e.
cy — loigr
<
Cyr

But by (10) and (8)
log qlogw > coqlogw

which implies that ¢ is bounded above.

Proof of Theorem 2. Using Lemma 2 with a = G, b = G, and m = 1, the
equation of the theorem can be transformed into the form

GG, = d,

where d is an integer. From this, by Theorem 1, our assertion follows if we choose
the set S such that G; € S for any 0 < i < ny.
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