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ON A PROBLEM CONCERNING
PERFECT POWERS IN LINEAR RECURRENCES

Péter Kiss (EKTF, Hungary)

Abstract: For a linear recurrence sequence {Gn}∞n=0 of rational integers of order
k ≥ 2 satisfying some conditions, we show that the equation sGr

x = wq , where w > 1
and r are positive integers and s contains only given primes as its prime factors, implies
the inequality q < q0, where q0 is an effective computable constant depending on the
sequence, the prime factors of s and r.

Let G = {Gn}∞n=0 be a linear recurrence sequence of order k ≥ 2 defined by

Gn = A1Gn−1 +A2Gn−2 + · · ·+AkGn−k (n ≥ k),

where A1, . . . , Ak are given rational integers with Ak 6= 0 and the initial values
G0, G1, . . . , Gk−1 are not all zero integers. We denote by α = α1, α2, . . . , αs the
distinct roots of the polynomial

g(x) = xk −A1x
k−1 −A2x

k−2 − · · · −Ak,

furthermore we suppose that |α| > |αi| for 2 ≤ i ≤ s, and the roots α =
α1, α2, . . . , αs have multiplicity m1 = 1,m2, . . . ,ms. In this case |α| > 1 and,
as it is well known, the terms of G can be writen in the form

(1) Gn = aαn + g2(n)α
n
2 + · · ·+ gs(n)α

n
s (n ≥ 0),

where gi (2 ≤ i ≤ s) is a polynomial of degree mi − 1, furthermore a and the
coefficients of gi are elements of the algebraic number field Q(α1, . . . , αs).

Several authors investigated the perfect powers in the recurrences G. Among
others T. N. Shorey and C. L. Stewart [6] proved that for a given integer d(6= 0)
the equation

Gx = dwq

with positive integers x,w(> 1) and q implies the inequality q < N , where N is
an effectively computable constant depending only on d and G. In [4] we gave
an improvement of this result substituting d by integers containing only fixed
prime factors. For second order recurrences (k = 2) A. Pethő obtained more strict
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results (e.g. see [5]). In [2] B. Brindza, K. Liptai and L. Szalay proved, under some
conditions, that for recurrences G and H the equation

GxHy = wq

can be satisfied only if q is bounded above. We proved [3] that for a sequence G
and fixed positive integer n from

Gr
nG

q−r
x = wq ,

with 0 < r ≤ q/2, it follows that q is bounded above.
In this note we prove the following theorems.

Theorem 1. For given primes p1, . . . , pt let S be a set of integers defined by

S = {n : n ∈ N, n =
t∏

i=1

pβi

i , βi ≥ 0}.

Let r ≥ 1 be an integer and let G be a linear recurrence defined in (1) satisfying
the conditions a 6= 0 and Gn 6= aαn for n ≥ n0. Then the equation

(2) sGr
x = wq

with positive integers s ∈ S, w > 1 and x > x0 (x0 depends on G and r) implies
that q < q0, where q0 is an effectively computable constant depending on n0, r, the
sequence G and the primes p1, . . . , pt.

Theorem 2. Let G be a linear recurrence defined by (1) satisfying the conditions
a 6= 0 and Gn 6= aαn for n ≥ n0. If

Gq−r
y Gr

x = wq

for positive integers x, y, q and r with the conditions (q, r) = 1 and y < n1, then
q < q1, where q1 is a constant depending on G,n0 and n1, but does not depend on
r.

In the proofs we need some lemmas.

Lemma 1. Let ω1, ω2, . . . , ωv (ωi 6= 0 or 1) be algebraic numbers and let
γ1, γ2, . . . , γv be not all zero rational integers. Suppose that ω1, . . . , ωv have heights
M1, . . . ,Mv(≥ 4), furthermore |γi| ≤ B (B ≥ 4) for i = 1, 2, . . . v−1 and |γv| ≤ B′.
Further let

Λ = γ1 logω1 + γ2 logω2 + · · ·+ γv logωv,
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where the logarithms mean their principal values. If Λ 6= 0, then there exists an
effectively computable constant c > 0, depending only on v,M1, . . . ,Mv−1 and the
degree of the field Q(ω1, . . . , ωv), such that for any δ with 0 < δ < 1/2 we have

|Λ| > (δ/B′)c logMve−δB.

(see A. Baker [1]).

Lemma 2. Let a, b, c, q and r be positive integers with 0 < r < q and (q, r) = 1. If

(3) aq−rbr = cq,

then for any integer r1 with 0 < r1 < q there is a positive integer d, such that

aq−r1br1 = dq.

Proof of Lemma 2. From (3)

(
b

a

)r

=
( c
a

)q

follows. Let x and y be integers for which rx + qy = r1. Then

(
b

a

)rx

=
( c
a

)qx

and (
b

a

)rx(
b

a

)qy

=

(
b

a

)r1

=
( c
a

)qx( b

a

)qy

from which (
b

a

)r1

aq = aq−r1br1 =

(
cxbya

ax+y

)q

= dq

follows, where d is an integer since aq−r1br1 is integer.

Proof of Theorem 1. In the proof we denote by c1, c2, . . . effectively computable
positive constants, which depend only on n0, r, the sequence G and the primes
p1, . . . , pt. Suppose that equation (2) holds with the conditions given in the theorem.
We can suppose that

(4) s = pu1
1 · · · put

t , where 0 ≤ ui < q for 1 ≤ i ≤ t.
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Namely if

s =

t∏

i=1

pui+qvi
i =

t∏

i=1

pui

i

(
t∏

i=1

pvii

)q

,

then w/
t∏

i=1

pvii is also an integer and greater than 1.

By (1), equation (2) can be written in the form

(5) λ =
wq

sarαxr
=

(
1 +

g2(x)

a

(α2

α

)x
+ · · ·

)r

,

where |λ| 6= 1 if x > n0. Using the properties of the exponential and logarithm
functions, by (5) and |α| > |αi| (i = 2, . . . , s)

|λ| <
∣∣1 + e−c1x

∣∣r

and

(6) | log |λ|| < re−c2x = elog r−c2x

follows. On the other hand, by (5)

(7) | log |λ|| =
∣∣∣∣∣q logw − r log |a| − xr log |α| −

t∑

i=1

ui log pi

∣∣∣∣∣ .

By (2) and (4) it follows that

Gr
x >




w
t∏

i=1

pi




q

,

where w/
t∏

i=1

pi > 1 is an integer since any prime factor of s divides w. From this

inequality, using (1),

log (|a|r|α|rx) > c3q logw


1−

log

(
t∏

i=1

pi

)

q logw




follows and so, if q is large enough,

(8) q < c4rx and x > c5q logw.
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Since ui < q < c4rx, using Lemma 1 with v ≤ t + 3, ωv = w, Mv = 2w (≥ 4),
B′ = q and B = c4xr, from (7) we obtain the inequality

(9) | log |λ|| > (δ/q)c6 log 2we−δc4rx = e−(log q−log δ)c6 log 2w−δc4rx

for any 0 < δ < 1/2. By (6) and (9) we obtain that

(log q − log δ)c6 log 2w + δc4rx > − log r + c2x

and

(10) c7 log q logw > c8x,

if we choose x0 and δ such that

c2 − δc4r −
log r

x
> 0,

i.e.

δ <
c2 − log r

x

c4r
.

But by (10) and (8)
log q logw > c9q logw

which implies that q is bounded above.

Proof of Theorem 2. Using Lemma 2 with a = Gy, b = Gx and r1 = 1, the
equation of the theorem can be transformed into the form

Gq−1
y Gx = dq,

where d is an integer. From this, by Theorem 1, our assertion follows if we choose
the set S such that Gi ∈ S for any 0 < i < n1.
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