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STUDYING AND IMPROVING LINEAR MAPPINGS
BY ARTIFICIAL NEURAL NETWORKS

Emdéd Kovacs (EKTF, Hungary)

Abstract: The aim of this paper is to evaluate the effectiveness of artificial neural
networks studying linear mappings and, on the other hand,improve deformed linear
mappings given by wrong pairs of points. In this latter case the artificial neural network
is applied to give the best fitting linear mapping of the given set of data.

1. Introduction

Artificial neural networks or simply neural nets are widely used in computer
graphics e.g. in surface reconstruction from insufficient or scattered data [4]-[7].
Generally neural nets is a useful tool for handling any kind of data which have
deformity or deficiency from a certain point of view. The main feature of the neural
nets is the ability of studying, which means that the given data can improve the
structure of the net. Neural nets can be classified by the type of input data or the
method of studying [2]. In this paper the well-known back-propagation algorithm
is used, which will be discussed in Section 2.

Our purpose was to use neural nets studying linear mappings from exact
and also from deformed data. Planar linear mappings, like rotation or affine
transformation play essential role in computer graphics. Even if we want to display
spatial objects or movements with our computer, a classical parallel projection or
other kind of (degenerate) linear mapping has to be used. Of course each of these
linear mappings has a linear system of equations (or a matrix) which transforms the
co-ordinates of the points. Hence in the first part of the research, when the neural
nets have to be trained by these well-known mappings, we could evaluate the speed
of training. Since every linear mapping has a crucial number of points, with which
the transformation is uniquely determined, the nets are trained by that amount of
pair of points (e.g. three pairs of points for a planar affine transformation).

However it can be happened, that among the data there are one or more ’false’
pair of points. If five or more general pairs of points are given in the plane there
is no exact linear transformation which maps the points onto their image points,
since the most general linear transformation, the projective transformation is given
by four pairs of points. Hence we can compute a system of equations from four
pairs, but there is no guarantee that this mapping will transform the rest of the
points onto their given images, usually the computed images and the given image
points will be far from each other. With the help of the neural nets we will give a
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mapping for any number of given points, which will be linear and has the smallest
error in the image points.

2. The neural network and the back-propagation algorithm

Studying the planar linear mappings the applied neural network is a two
layered network with two or three input nodes in the first layer and two or three
output nodes in the second layer entirely connected to each other. The layers consist
of two or three nodes according ot the current transformations e.g. we use projective
co-ordinates to describe the projective mappings, and points has three projective co-
ordinates in the plane (for the use of projective geometry see [1]). Since neural nets
and especially the back-propagation algorithm are well-known computational tools,
we give only a short description of the algorithm referring mainly the differences
between the widely used method and the present one. For a more detailed survey
see e.g.[3].

The main difference, as we can see from the algorithm presented below, that
since we want to compute linear mappings, the nodes of the neural net has no
the generally used sigmoid function to compute the output, but a simple weighted
sum is computed instead. Hence some of the training rules which would consist the
derivative of the sigmoid function, will be simplified.

STEP 1. Set all weights w;; to small random values (where w;; denotes the
weight associated to the connection between the i™ node of the input layer and the
4™ node of the output layer.

STEP 2. Present a randomly chosen input, i.e. the co-ordinates of an input
point.

STEP 3. Calculate the output, i.e. the weighted sum of the coordinates

output; = Z w;; input,

K2

STEP 4. Adapt weights by the equation
wi; = w;;j + N input,

where n € [0,1] is the so called gain term, while d; is the difference between the
desired and the received output value in the j** output node.

STEP 5. Repeat by going STEP 2. until the net is trained.

The network is said to be trained if all the outputs fit the desired output
points, or, in case of over-defined data, if the changes of the weights fall under a
predefined limit.
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3. Training by well-defined linear mappings

Basic theorems of geometry state how many pairs of points determine uniquely
a certain transformation in the plane. Hence if we want to define a rotation, an
affine or a projective transformation, we have to give two, three or four pairs of
general points (any three among them should be non-collinear).

Our question is to evaluate how fast the neural network can be trained by a
set of data described above. On the other hand, we want to examine how exact the
training is, since after the training procedure theoretically the weights should be
equal to the coefficients of the appropriate system of equations. Indeed, if a general
affine transformation is given by the equations

T = a1z +ay +as

g = a1 + a2y + a3
then comparing it with the equations yield the output of the network

output; = wi input; +ws1 input, +ws; inputs

output, = w12 input,; +wag input, +wss input,

where inputs = 1, one can easily see, that the a;; = w;; must hold for all 4, j.

In case of well-defined linear mappings every run was successful under 1100
iteration (accuracy was 107°) and the training was exact. The following table shows
the results after 1000 runs.

transformation iterations
translation 343
rotation 400

affine tr. 500
projective tr. 1068

Our other table shows how the number of iteration changes in term of accuracy,
in case of projective transformation.

accuracy iterations
107° 500
10710 916
10715 1705
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4. Training by over-defined data

If we consider an arbitrary linear mapping, then a certain number belongs to
that mapping, which shows how many pairs of points define the mapping uniquely.
If the number of input points exceeds this limit then our data set is said to be
over-defined.

An over-defined set of data does not necessary mean false data set. We can
compute the image of several points by a transformation, and if these pair of points
are considered as the input data, the neural network has to produce exactly the
same transformation. If we consider an affine transformation and 50 points and
their images as input data, the training of the net will be slower than in the case
of three points, but the same transformation will be received.

This table shows how the number of iterations changes if the number of points
increases. Since one iteration means to feed all of the given points as input for the
net, the total number of input simply the product of the number of iterations and
the number of input points.

points iterations
3 500

10 61

100 6

However over-defined data set could mean arbitrary pairs of points, the number
of which is greater than the necessary number of data. In this case the set could be
called false data, since there is no transformation which could map these points to
their images. More precisely, if we consider affine transformations and the number
of input points is 4, then there is no affine transformation for these points (of
course a projective transformation can be easily computed from these data). But
if we have 5 or more pairs of arbitrary points, then generally there is no any kind
of linear transformation mapping these points to their images. This problem can
occur e.g. as a wrong scanning or digitalisation of an image. Of course the false
data are normally not completely wrong, perhaps only a corner of a figure will be
curved, but the theoretical problem remains the same.

In this very case one can try to find a mapping which produced this image,
but that transformation will not be linear, or can find a linear mapping which is
close to the original one, that is the input points will be mapped almost to their
images. Neural networks are applicable for both problems, but in this paper we
consider only the latter case.

If we have a set of false data, first we have to decide which type of linear
mapping is the desired. The main difference is, that affine transformation will
preserve parallelism, but probably the difference between the desired and actual
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output will be larger. If we need smaller error, projective transformation has to be
chosen.

Since the neural net does not ’know’ if the set of data is correct or false,
the training algorithm will be the same described above, however the number of
iterations can be increased significantly. The error of the transformation can be
measured by corrupting original transformations. Since neural networks minimize
the cost function equal to the mean square difference (see [2]), the error (measured
by Euclidean distance of the desired and actual output) will be lower, than the
squareroot of the distortion of the original transformation.

5. Conclusion

In this paper artificial neural net with back-propagation training algorithm
will be used to study linear mappings. First the effectiveness of the net will be
discussed when exact linear transformation will be trained from a set of input
data, the number of which were the same as the theoretical limit for the unique
determination of the transformation. The training was succesfull and fast, even for
larger number of input points.

On the other hand correction of corrupted linear transformation has been
discussed. If the number of input points are exceeds the limit mentioned above,
then there is no theoretical way to find linear mapping which transforms the given
data to their images. Here arbitrary set of input points was given, and the neural
net, trained by these data, has found the best fitting linear mapping.
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