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ON A PROBLEM CONNECTED WITH MATRICES OVER Z3

Aleksander Grytczuk (Zielona Góra, Poland)

Abstract: In this note we give an explicit form of the matrix A = (aij)n×n with
elements aij ∈ Z3, which satisfy all conditions of some problem posed by Stewart M.
Venit (see [3], p. 476 — Unsolved Problems). Moreover, we prove that if α1, α2, . . . , αn

are the characteristic roots of this matrix then for every prime number p the following
congruence is true αp

1 + αp
2 + · · ·+ αp

n ≡ 2n− 1 (mod p).

1. Introduction

In [3] (p. 476 — Unsolved Problems — TYCMJ 186 — by Stewart M. Venit)
one can find the following problem: For each positive integer n show that there is
one and only one n× n matrix A satisfying the following conditions:

(C1) all entries of A are in the set {0, 1, 2}
(C2) the submatrix consisting of the first k rows and k columns of A has

determinant equal to k for k = 1, 2, . . . , n.
(C3) all entries of A not on the main diagonal or not on the diagonals directly

above or below are zero.
In the present note we prove that the matrix An (aij)n×n, where aij ∈ Z3 =

{0, 1, 2} and a12 = a21 = 0 given by

aij = aji =





1, if i = j = 1 or |i− j| = 1 for max(i, j) ≥ 3
2, if i = j ≥ 2
0, in the other cases and if (i, j) = (1, 2)

(1)

satisfies the conditions (C1)–(C3) and is determined uniquely.

2. Results

First, we prove the following

Theorem 1. For each positive integer n ≥ 2 there is exactly one of the matrix An =
(aij)n×n with elements over Z3 such that the conditions (C1)–(C3) are satisfied.
The matrix An given by (1) has the following form:
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An =




1 0 0 0 . . . 0
0 2 1 0 . . . 0
0 1 2 1 . . . 0
...

...
...

...
. . .

...
0 0 . . . 1 2 1
0 0 . . . 0 1 2




n×n

(2)

Proof of Theorem 1. It is easy to see that for n = 2 the matrix A2 satifying the
conditions (C1)–(C3) is the form

A2 =

(
1 0
0 2

)

and we see that the matrix A2 is determined uniquely. For n = 3 we obtain that
the matrix A3 has the following form

A3 =




1 0 0
0 2 1
0 1 2




We note that the matrix A3 is determined uniquely and the conditions (C1)–(C3)
are satisfied. Further, we shall prove Theorem 1 by induction with respect to n.
Suppose that m ≥ 3 and the matrices An for n ≤ m has the form (2) and are
determined uniquely. By inductive assumption it follows that the matrix Am+1 has
the following form

Am+1 =




1 0 0 0 . . . 0
0 2 1 0 . . . 0
0 1 2 1 . . . 0
...

...
...

...
. . .

...
0 0 . . . 1 2 y
0 0 . . . 0 x z




(m+1)×(m+1)

(3)

where x, y, z ∈ Z3 = {0, 1, 2}. Suppose that in (3) we have x = y = 1 and z = 2.
Using Laplace’s theorem to the first row of the matrix Am+1 we obtain

detAm+1 = det




1 0 0 0 . . . 0
0 2 1 0 . . . 0
0 1 2 1 . . . 0
...

...
...

...
. . .

...
0 0 . . . 1 2 1
0 0 . . . 0 1 2




m×m



On a problem connected with matrices over Z3 11

On the other hand it is well-known (see [2], p. 39) that

detAm+1 = m+ 1. (4)

By (4) and the inductive assumption it follows that the matrix Am+1 satisfies
the conditions (C1)–(C3), if x = y = 1 and z = 2. Now, we can assume that
the elements x, y, z ∈ Z3 take different values than x = y = 1 and z = 2.
Using Laplace’s theorem to (3) with respect to the last row and by the inductive
assumption we obtain

detAm+1 = mz − xy (m− 1) . (5)

Consequently, we can consider the following equation generated by (5)

mz − xy (m− 1) = m+ 1 (6)

where x, y, z ∈ Z3 = {0, 1, 2}. Analyzing (6) we obtain, that this equation has
exactly one solution in elements x, y, z ∈ Z3, namely x = y = 1 and z = 2.
Therefore the matrix Am+1 is determined uniquely. Hence the inductive proof is
complete.

Now, we prove the following theorem:

Theorem 2. Let An be the matrix defined by (1) and let α1, α2, . . . , αn be the
characteristic roots of An. Then for every prime number p, the following congruence

αp
1 + αp

2 + · · ·+ αp
n ≡ 2n− 1 (mod p) (7)

holds.

Proof of Theorem 2. It is well-known that if f ∈ Z [x] and x1, x2, . . . , xn are the
roots of f , then

Sjp ≡ Sj (mod p) (8)

for j = 1, 2 . . . and every prime number p, where

Sk = xk
1 + xk

2 + · · ·+ xk
n.

The congruence (8) has been noticed without proof by E. Lucas in 1878. The proof
of (8) one can find, for example in [1]. Substituting j = 1 in (8) and remarked that

S1 = TrAn = 2n− 1

we obtain, that

Sp = αp
1 + αp

2 + · · ·+ αp
n ≡ S1 = 2n− 1 (mod p)

and the proof of the Theorem 2 is complete.
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Substituting n = p in (7), where p is a prime number we obtain the following

Corollary. Let p be the a prime number and let αj j = 1, 2, . . . , p be the
characteristic roots of the matrix Ap given by (1), then

αp
1 + αp

2 + · · ·+ αp
p ≡ −1 (mod p).

I would like to thank Professor Peter Kiss for his valuable remarks and
comments for the improvement of the exposition of this paper.
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