CONVERGENCE OF HOMOGENEOUS MATRIX-VALUED Λ -MARTINGALES

Tibor Tómács (Eger, Hungary)

Abstract. I. Fazekas in [3] studied the classical martingale convergence theorem of Doob for one-parameter Λ -martingales. The theme of this paper is similar but for two-parameters homogeneous Λ -martingales.

1. Preliminary result

Let (Ω, \mathcal{F}, P) be a probability space in which $(\xi_i: i = 1, 2, ...)$ is a sequence of random variables. Let $(\mathcal{F}_i: i = 1, 2, ...)$ be a sequence of σ -subalgebras of \mathcal{F} . We call the process (ξ_i, \mathcal{F}_i) i = 1, 2, ... a linear martingale if ξ_i are \mathcal{F}_i -measurable and integrable for every i = 1, 2, ... furthermore

$$\mathbb{E}(\xi_i \mid \mathcal{F}_{i-1}) = a_1(i)\xi_{i-1} + \dots + a_m(i)\xi_{i-m}$$

for every i > m integers where m is a fixed integer. This process satisfies equation $\mathbb{E}(X_t \mid \mathcal{F}_{t-1}) = \Lambda(t)X_{t-1}$ for every $t \geq m$ where

$$X_{t} = \begin{pmatrix} \xi_{t} \\ \vdots \\ \xi_{t-m+1} \end{pmatrix} \quad \text{and} \quad \Lambda(t) = \begin{pmatrix} a_{1}(t) & \dots & a_{m}(t) \\ 1 & & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & & 1 & 0 \end{pmatrix}.$$

Generalized we call an m-dimensional process (X_t, \mathcal{F}_t) $t = 1, 2, \ldots \Lambda$ -martingale if X_t integrable, $\Lambda(t)$ are given non-random matrices for every t positive integers and $\mathbb{E}(X_t \mid \mathcal{F}_{t-1}) = \Lambda(t)X_{t-1}$ $(t = 1, 2, \ldots)$. If $\Lambda(t)$ does not depend on t then X_t is called a homogeneous martingale. Let $\Delta_t = X_t - \Lambda(t)X_{t-1}$, A(s, s) = I the identity matrix and

$$A(t,s) = \Lambda(t)A(t-1,s)$$

for every t>s furthermore we assume that the limit $A(s)=\lim_{t\to\infty}A(t,s)$ exists

for every $s=1,2,\ldots$ Let $Y_t=\sum_{s=1}^t A(s)\Delta_s$ which is called the accompanying martingale of X_t . I. Fazekas proved in [3] the following theorem:

If $||A(t,s) - A(s)|| \le c_{t-s}$ $(t \ge s)$, $\sum_{n=0}^{\infty} c_n < \infty$, there exists a positive function $f(\omega)$ for which $f(\omega)||\Delta_s(\omega)|| \le ||A(s)\Delta_s(\omega)||$ for every $s \ge 1$ and $\omega \in \Omega$ and

54 T. Tómács

 $\sup_t \mathbb{E}||X_t|| < \infty$ then $\lim_{t \to \infty} X_t = X_\infty$ almost surely. (||.|| denotes the norm of matrix.) In this paper this result is extended to two-parameter version.

2. Main result

Let \mathbb{N} denote the set of positive integers and let m be a fixed positive integer. Let (Ω, \mathcal{F}, P) be a probability space in which $(\xi_{ij}: i, j \in \mathbb{N})$ is a sequence of real-valued random variables. Let $(\mathcal{F}_{ij}: i, j \in \mathbb{N})$ be a sequence of σ -subalgebras of \mathcal{F} which satisfies the so-called condition (F4) introduced by Cairoli and Walsh [2]:

$$\mathbb{E}(\xi \mid \mathcal{F}_{ij}) = \mathbb{E}(\mathbb{E}(\xi \mid \mathcal{F}_{i\infty}) \mid \mathcal{F}_{\infty j}) = \mathbb{E}(\mathbb{E}(\xi \mid \mathcal{F}_{\infty j}) \mid \mathcal{F}_{i\infty}), \tag{F4}$$

for every $i, j \in \mathbb{N}$ where $\mathcal{F}_{i\infty} = \sigma\{\mathcal{F}_{ij}: j \in \mathbb{N}\}$ and $\mathcal{F}_{\infty j} = \sigma\{\mathcal{F}_{ij}: i \in \mathbb{N}\}$ ($\sigma\{.\}$ means generated σ -algebra).

In order to study a convergence property of ξ_{ij} we introduce the following matrix:

$$X_{ij} = \begin{pmatrix} \xi_{i,j-m+1} & \dots & \xi_{i,j} \\ \vdots & \ddots & \vdots \\ \xi_{i-m+1,j-m+1} & \dots & \xi_{i-m+1,j} \end{pmatrix}$$

Definition 1. Let Λ_{kl} be given non-random real matrices (their types are $m \times m$). Suppose that $\Lambda_{0,0} = I$ (the identity matrix),

$$\Lambda_{ij}\Lambda_{kl} = \Lambda_{i+k,j+l} \quad \forall i, j, k, l \in \mathbb{N} \cup \{0\}$$
 (1)

 X_{ij} is \mathcal{F}_{ij} -measurable and integrable for every $i, j \in \mathbb{N}$. If

$$\mathbb{E}(X_{i+k,j+l} \mid \mathcal{F}_{ij}) = \Lambda_{kl} X_{ij}$$

for every $k, l \in \mathbb{N} \cup \{0\}$ and i, j > m integers then the process $(X_{ij}, \mathcal{F}_{ij})$ $i, j \in \mathbb{N}$ is called a homogeneous matrix-valued Λ -martingale.

Let us introduce the martingale difference

$$\Delta_{ij} = X_{ij} - \mathbb{E}(X_{i,j} \mid \mathcal{F}_{i-1,j}) - \mathbb{E}(X_{i,j} \mid \mathcal{F}_{i,j-1}) + \mathbb{E}(X_{i,j} \mid \mathcal{F}_{i-1,j-1})$$

= $X_{ij} - \Lambda_{1,0} X_{i-1,j} - \Lambda_{0,1} X_{i,j-1} + \Lambda_{1,1} X_{i-1,j-1}$

for i, j > 1 integers, $\Delta_{1,1} = X_{1,1}$, $\Delta_{i,1} = X_{i,1} - \Lambda_{1,0} X_{i-1,1}$ for i > 1 integers and $\Delta_{1,j} = X_{1,j} - \Lambda_{0,1} X_{1,j-1}$ for j > 1 integers.

Lemma 1. With the previous notations and conditions $X_{ij} = \sum_{k=1}^{i} \sum_{l=1}^{j} \Lambda_{i-k,j-l} \Delta_{k,l}$ for every $i, j \in \mathbb{N}$.

Proof. Using (1) we have this lemma by induction.

Definition 2. We assume that Λ_{kl} is convergent and $\Lambda = \lim_{\substack{k \to \infty \\ l \to \infty}} \Lambda_{kl}$. Then

$$Y_{ij} = \sum_{k=1}^{i} \sum_{l=1}^{j} \Lambda \Delta_{k,l}$$

is called the accompanying martingale of X_{ij} .

Lemma 2. If $f: \mathbb{R}^+ \to \mathbb{R}^+$ is a convex non-decreasing function and

$$\sup_{i,j} \mathbb{E}f(\|X_{ij}\|) < c < \infty$$

then $\sup_{i,j} \mathbb{E}f(\|Y_{ij}\|) < c$ as well. (In this paper $\|.\|$ denotes the norm of a matrix.)

Proof. Let r, s be fixed integers, $1 \le i \le r$, $1 \le j \le s$ and

$$Y_{ij}^{(rs)} = \sum_{k=1}^{i} \sum_{l=1}^{j} \Lambda_{r-k,s-l} \Delta_{k,l}.$$

Then it is easy to see that $(f(\|Y_{ij}^{(rs)}\|, \mathcal{F}_{ij}) \ 1 \le i \le r, \ 1 \le j \le s$ is a real submartingale, so we get by Lemma 1

$$\mathbb{E}f(\|Y_{ij}^{(rs)}\|) \le \mathbb{E}f(\|Y_{rs}^{(rs)}\|) = \mathbb{E}f(\|X_{rs}\|) < c$$

for every $1 \le i \le r$, $1 \le j \le s$ integers. On the other hand $\lim_{\substack{r \to \infty \\ s \to \infty}} Y_{ij}^{(rs)} = Y_{ij}$ thus by Fatou's lemma we have Lemma 2.

Theorem. Let the process $(X_{ij}, \mathcal{F}_{ij})$ $i, j \in \mathbb{N}$ is a homogeneous matrix-valued Λ -martingale which is satisfies (F4). Let us suppose that Λ_{kl} is convergent, $\Lambda = \lim_{\substack{k \to \infty \\ l \to \infty}} \Lambda_{kl}$ and there exist constants c_{kl} such that

$$\|\Lambda_{kl} - \Lambda\| < c_{kl} \quad and \quad \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} c_{kl} < \infty$$
 (2)

for every $k, l \in \mathbb{N}$. If

$$\|\Delta_{kl}\| \le q^{k+l} \tag{3}$$

for every $k, l \in \mathbb{N}$ where 0 < q < 1 is a fixed real number and

$$\sup_{k,l} \mathbb{E}\left(\|X_{kl}\| \log^+(\|X_{kl}\|)\right) < \infty \tag{4}$$

56 T. Tómács

then X_{ij} converges almost surely.

Proof. We get by Lemma 1 and (2)

$$||X_{ij} - Y_{ij}|| = \left\| \sum_{k=1}^{i} \sum_{l=1}^{j} (\Lambda_{i-k,j-l} \Delta_{kl} - \Lambda \Delta_{kl}) \right\| \le$$

$$\le \sum_{k=1}^{i} \sum_{l=1}^{j} ||\Lambda_{i-k,j-l} - \Lambda|| \cdot ||\Delta_{kl}|| \le \sum_{k=1}^{i} \sum_{l=1}^{j} c_{i-k,j-l} ||\Delta_{kl}||.$$

Let r = i - k and s = j - l thus we have by (3)

$$||X_{ij} - Y_{ij}|| = \sum_{r=0}^{i-1} \sum_{s=0}^{j-1} c_{rs} ||\Delta_{i-r,j-s}|| \le \sum_{r=0}^{i-1} \sum_{s=0}^{j-1} c_{rs} q^{i-r+j-s} =$$

$$= \frac{1}{q^{-(i+j)}} \sum_{r=0}^{i-1} \sum_{s=0}^{j-1} c_{rs} q^{-(r+s)}$$

So we get by Kronecker's lemma (see it for example [4]) that $\lim_{\substack{i \to \infty \\ j \to \infty}} ||X_{ij} - Y_{ij}|| = 0.$

By (4), Lemma 2 and Cairoli's theorem (see in [1]) there exists $\lim_{\substack{i \to \infty \\ j \to \infty}} Y_{ij}$ thus the Theorem is proved.

References

- [1] R. CAIROLI, Une inegalite pour maringales a indices multiples et ses applications, Seminaire de Probabilities IV, Universite de Strasbourg, Lecture Notes in Math. Vol. 124, (1970), 1–27, Springer-Verlag, Berlin.
- [2] R. CAIROLI AND J. B. WALSH, Stochastic integrals in the plane, Acta Math. Hung., 134 (1975), 111–183.
- [3] I. FAZEKAS, On the convergence of linear martingales, *Publ. Math. Debrecen*, **34** (1987), 99–104.
- [4] I. FAZEKAS AND T. TÓMÁCS, Strong laws of large numbers for pairwise independent random variables with multidimensional indices, *Publ. Math. Debrecen*, **53/1–2** (1998), 149–161.

Tibor Tómács

Institute of Mathematics and Informatics Eszterházy Károly College Leányka str. 4. H-3300 Eger, Hungary

e-mail: tomacs@ektf.hu