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SOME REMARKS ON FERMAT’S EQUATION
IN THE SET OF MATRICES

Zhenfu Cao (China), Aleksander Grytczuk (Poland)

Abstract. Let Z be the set of integers and SL2(Z) the set of 2×2 integral matrices with
detA=1 for A∈SL2(Z). If any two of SL2(Z) are commutative, then the set of such matrices we
denote by SL2(Z). In this paper, we prove that Fermat’s equation (∗) Xn+Y n=Zn has a solution
in the set SL2(Z) if and only if n≡1 (mod 6) or n≡5 (mod 6). This criterion is connected with
a criterion given recently by Khazanov [4]. Moreover, we indicate a subclass of the matrices of
SL2(Z) for which (∗) has no solutions for arbitrary positive integers n≥2.
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1. Introduction

Following recently results given by Wiles [8] and Taylor and Wiles [7] we know
that Fermat’s equation

Xn + Y n = Zn (∗)
has no solutions in positive integers if n > 2. But in contrast to this situation
Fermat’s equation (∗) has infinitely many solutions in 2 × 2 integral matrices for
exponent n = 4. This fact was discovered in 1966 by Domiaty [3]. He remarked
that if

X =

(
0 1
a 0

)
, Y =

(
0 1
b 0

)
, Z =

(
0 1
c 0

)
,

where a, b, c are integer solutions of the Pythagorean equation a2 + b2 = c2 then
X4 + Y 4 = Z4. Another results connected with Fermat’s equation in the set of
matrices are described by Ribenboim in [5].

Important problem in these investigations is to give a necessary and sufficient
condition for solvability of (∗) in the set of matrices. Let Z be the set of integers
and SL2(Z) the set of 2 × 2 integral matrices with detA = 1 for A ∈ SL2(Z).
If any two of SL2(Z) are commutative, then the of such matrices we denote by
SL2(Z). Recently, Khazanov [4] find such condition for the case when the matrices
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X,Y, Z ∈ SL2(Z). He proved that there are solutions of (∗) in X,Y, Z ∈ SL2(Z) if
and only if the exponent n is not multiple of 3 or 4.

In this paper, we firstly prove the following:

Theorem 1. The Fermat’s equation (∗) has a solution in SL2(Z) if and only if
n ≡ 1 (mod 6) or n ≡ 5 (mod 6).

From Theorem 1 follows that the set of exponents n mod 12 for which (∗) is
solvable reduce to 4 classes when X,Y, Z ∈ SL2(Z), but if X,Y, Z ∈ SL2(Z) then
Khazanov’s result implies that this set has 6 classes mod 12.

Moreover, we consider the set of matrices of the following form:

G2(k,∆) =

{(
r s
ks r

)
; r, s ∈ Z, 0 < k ∈ Z, det

(
r s
ks r

)
= ∆

}
, (1)

where k > 0,∆ 6= 0 are fixed integers. We note that if ∆ = 1 then G2(k,∆) =
G2(k, 1) ⊂ SL2(Z). In [2], using Wiles’ result on Fermat’s last theorem, we proved

Theorem 2. The Fermat’s equation (∗) has no solutions in elements X,Y, Z ∈
G2(k,∆) for arbitrary positive integers n ≥ 2.

In this paper, we give a new proof of Theorem 2 without using a strong result
of Wiles.

2. Proof of Theorem 1

In the proof of Theorem 1 we use of the following:

Lemma 1. Let A =

(
a b
c d

)
be a given integral matrix. Then for every natural

number n ≥ 2

An =

(
a b
c d

)n

=

(
F (a) bΨ1

cΨ1 F (d)

)
(2)

where F (a) = F (a; b, c, d), F (d) = F (d; a, b, c),Ψ1 = Ψ1(a, b, c, d) are polynomials
such that

F (a)− F (d) = (a− d)Ψ1. (3)

The proof of this Lemma is given in [1].

Now, suppose that there exists elements X,Y, Z ∈ SL2(Z) such that

Xn + Y n = Zn. (4)
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By the assumption, we know that detX = detY = detZ = 1, so Z−1 ∈ SL2(Z)
and consequently we have XZ−1 = Z−1X,Y Z−1 = Z−1Y . Hence (4) is equivalent
to

(XZ−1)n + (Y Z−1)n = I, (5)

where I is identity matrix and Z−1 is inverse matrix to Z. Let A = XZ−1 and
B = Y Z−1, then by the assumption it follows that detA = detB = 1 and (5)
reduce to the equation

An +Bn = I (6)

where A,B ∈ SL2(Z). Let A =

(
a b
c d

)
and B =

(
e f
g h

)
. Then by Lemma 1

An =

(
F (a) bΨ1

cΨ1 F (d)

)
, Bn =

(
G(e) fΨ2

gΨ2 G(h)

)
(7)

where
F (a)− F (d) = (a− d)Ψ1, G(e)−G(h) = (e− h)Ψ2. (8)

From (6) and (7) we obtain

F (a) +G(e) = F (d) +G(h) = 1, bΨ1 + fΨ2 = cΨ1 + gΨ2 = 0. (9)

Since detA = detB = 1 then by Cauchy’s theorem on product of determinants
follows detAn = detBn = 1 and consequently from (7) we get

F (a)F (d)− bcΨ2
1 = G(e)G(h)− gfΨ2

2 = 1. (10)

From (9) we have bΨ1 = −fΨ2 and cΨ1 = −gΨ2, thus bcΨ2
1 = fgΨ2

2. By the last
equality and (10), it follows that

F (a)F (d) = G(e)G(h). (11)

On the other hand from (9) we have F (a) = 1 − G(e) and F (d) = 1 − G(h) and
substitutting to (11) we obtain

G(e) +G(h) = 1. (12)

From (12) and the fact that F (a) + F (d) = 2− (G(e) +G(h)) follows

F (a) + F (d) = 1. (13)

From (13) and (12) we have

TrAn = F (a) + F (d) = 1, T rBn = G(e) +G(h) = 1. (14)
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Let α, β be the eigenvalues of the matrix A. Then it is well-known that the matrix
An has eigenvalues αn, βn such that

TrAn = αn + βn, detAn = αnβn. (15)

By (15) and (14) it follows that

αn + βn = 1, αnβn = 1. (16)

From (16) we obtain
α2n − αn + 1 = 0. (17)

Let αn = x then (17) reduce to quadratic equation with the following complex
roots

x1 =
1 + i

√
3

2
, x2 = x̄1 =

1− i
√
3

2
. (18)

Now, we observe that the condition αn = x1, x2, where x1, x2 are given by (18)

implies that α is a complex number. Sincce α =
a+d+

√
(a+d)2−4 detA

2 and detA = 1

then (a + d)2 − 4 < 0 so is equivalent to −2 < a + d < 2. Hence it remains to
consider three following cases: 1. a+ d = −1; 2. a+ d = 0; 3. a+ d = 1.

In the first case we have α = −1+i
√
3

2 is the root of unity of degree 3. If
we consider the exponent n with respect to modulo 6 then we get α6k = 1 6=
x1, x2;α

6k−1 = α 6= x1, x2;α
6k+2 = α2 = −1−i

√
3

2 6= x1, x2;α
6k+3 = α3 = 1 6=

x1, x2; α6k+4 = α 6= x1, x2 and α6k+5 = α2 = −1−i
√
3

2 6= x1, x2. Hence in this case
the equation (6) is impossible.

Suppose that case 2 is satisfied. Then we have α = i and by similar way
considering the exponent n with respect to modulo 4 we obtain in all cases that
αn = in 6= x1, x2.

It remains to consider the last case, i.e. a + d = 1. In this case we have
α = 1+i

√
3

2 and consequently the equality αn = x1, x2 is possible when n ≡ 1
(mod 6) or n ≡ 5 (mod 6).

Now, suppose that n ≡ 1(mod 6) or n ≡ 5(mod 6). Let M =

(
a b
c d

)
be the

integral matrix such that TrM = detM = 1. It is easy to see that this condition
is equivalent to that the matrix M has eigenvalues: α = 1+i

√
3

2 , β = 1−i
√
3

2 . Put
A = Mx, B = My, C = Iz . Then by the condition detM = 1 follows detA =
detB = detC = 1 so the matrices A,B,C ∈ SL2(Z). On the other hand since
α 6= β then the matrix M is diagonalizable over the complex field. Hence there is a
nonsigular matrix P such that M = PDP−1, where D = diag{α, β}. By induction
it follows that for every natural number k we have

Mk = PDkP−1 = Pdiag{αk, βk}P−1. (19)
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Using (19) we obtain that equation (6) is equivalent to

αnx + αny = 1, βnx + βny = 1. (20)

Since α = 1+i
√
3

2 then α2 = −1+i
√
3

2 = ǫ1, where ǫ1 is the root of unity of degree 3.

Similarly we obtain that β2 =
(

1−i
√
3

2

)2

= −1−i
√
3

2 = ǫ2 = ǭ1.

On the other hand we observe that if ǫ is the root of unity of degree 3 then we
have

αm =





1, if m = 6k,
−ǫ2, if m = 6k + 1,
ǫ, if m = 6k + 2,
−1, if m = 6k + 3,
ǫ2, if m = 6k + 4,
−ǫ, if m = 6k + 5.

(21)

where in (21) ǫ = ǫ1 when α = 1+i
√
3

2 and α is replaced by β and ǫ = ǫ2 in other
case.

Let n ≡ 1 (mod 6). Then we take x ≡ 1 (mod 6) and y ≡ 5 (mod 6) or
x ≡ 5 (mod 6) and y ≡ 1 (mod 6). Hence we have nx ≡ 1 (mod 6) and ny ≡ 5
(mod 6) or nx ≡ 5 (mod 6) and ny ≡ 1 (mod 6). From (21) it follows that in
these cases we have

αnx + αny = −ǫ2 − ǫ = 1,

because ǫ2 + ǫ+ 1 = 0. In similar way we obtain

βnx + βny = 1.

Hence equation (6) has a solution in elements A,B,C ∈ SL2(Z) if n ≡ 1 (mod 6).
Let us suppose that n ≡ 5 (mod 6). Taking x ≡ 1 (mod 6), y ≡ 5 (mod 6)

or x ≡ 5 (mod 6), y ≡ 1 (mod 6) we obtain nx ≡ 5 (mod 6), ny ≡ 1 (mod 6)
or nx ≡ 1 (mod 6), ny ≡ 5 (mod 6). Hence, we see that we have the same case
as in the previous consideration. The proof of Theorem 1 is complete.

3. Proof of Theorem 2

Let X,Y, Z ∈ G2(k,∆) and let

X =

(
r1 s1
ks1 r1

)
, Y =

(
r2 s2
ks2 r2

)
, Z =

(
r3 s3
ks3 r3

)
.

Then we have Z−1 = 1
∆

(
r3 −s3

−ks3 r3

)
. Suppose that for some natural number

n ≥ 2 we have Xn + Y n = Zn. Then multyplying the last equation by Z−n we get

(XZ−1)n + (Y Z−1)n = I, (22)
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because XZ−1 = Z−1X and Y Z−1 = Z−1Y . On the other hand we have

XZ−1 =

(
r1 s1
ks1 r1

)
1

∆

(
r3 −s3

−ks3 r3

)

=
1

∆

(
r1r3 − ks1s3 s1r3 − r1s3
k(s1r3 − r1s3) r1r3 − ks1s3

)
=

1

∆

(
R S
kS R

)
=

1

∆
A (23)

and

Y Z−1 =

(
r2 s2
ks2 r2

)
1

∆

(
r3 −s3

−ks3 r3

)

=
1

∆

(
r2r3 − ks2s3 s2r3 − r2s3
k(s2r3 − r2s3) r2r3 − ks2s3

)
=

1

∆

(
M N
kN M

)
=

1

∆
B. (24)

From (22)–(24) we obtain

An +Bn = ∆nI =

(
∆n 0
0 ∆n

)
. (25)

On the other hand we have

An =

(
R S
kS R

)n

=

(
Rn Sn

kSn Rn

)
, Bn =

(
M N
kN M

)n

=

(
Mn Nn

kNn Mn

)
. (26)

From (25) and (26) we obtain

Rn +Mn = ∆n, Sn +Nn = 0 (27)

because k > 0. It is easy to check that

detA = det

(
R S
kS R

)
= det

(
r1 s1
ks1 r1

)
det

(
r3 −s3

−ks3 r3

)
= ∆2.

Similarly we get detB = ∆2. Hence by Cauchy’s theorem it follows that

detAn = (detA)n = ∆2n, detBn = (detB)n = ∆2n. (28)

From (26) we have

detAn = R2
n − kS2

n, detBn = M2
n − kN2

n. (29)

By (28) and (29) it follows that

R2
n −M2

n = k(S2
n −N2

n) = k(Sn −Nn)(Sn +Nn). (30)
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But from (27) we have Sn +Nn = 0 and therefore by (30) it follows that

R2
n −M2

n = (Rn −Mn)(Rn +Mn) = 0. (31)

Since by (27) Rn + Mn = ∆n 6= 0, then from (31) we obtain that Rn = Mn so
2Rn = ∆n. From (28), (29) and the last equality we get

3∆2n = −k(2Sn)
2 (32)

and we see that (32) is impossible, because ∆ 6= 0 and k > 0.
The proof of Theorem 2 is complete.

Remark. Let K = Q(
√
k) be quadratic number field with k > 0 and k ≡ 2, 3

(mod 4). Then it is well-known that every integer element α in such field has the
form: α = r + s

√
k, where r, s ∈ Z. Denote by RK the ring of integer elements of

this field K and by G2(k) the set of matrices of the form:

G2(k) =

{(
r s
ks r

)
; r, s ∈ Z, 0 < k ∈ Z, k ≡ 2, 3 (mod 4)

}
.

It is easy to see that the mapping Φ : G2(k) → RK defined by the formula

Φ

((
r s
ks r

))
= r + s

√
k

is an isomorphism. Hence from Theorem 2 we obtain the following:

Corollary. The Fermat’s equation αn+βn = γn, n ≥ 2 has no solutions in elements
α, β, γ ∈ RK with the same norm, i.e. if N(α) = N(β) = N(γ) = ∆.
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