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SOME REMARKS ON FERMAT’S EQUATION
IN THE SET OF MATRICES

Zhenfu Cao (China), Aleksander Grytczuk (Poland)

Abstract. Let Z be the set of integers and SL2(Z) the set of 2x2 integral matrices with
det A=1 for AeSL2(Z). If any two of SL2(Z) are commutative, then the set of such matrices we
denote by SL2(Z). In this paper, we prove that Fermat’s equation (x) X"+Y™=2" has a solution
in the set SL(Z) if and only if n=1 (mod 6) or n=5 (mod 6). This criterion is connected with
a criterion given recently by Khazanov [4]. Moreover, we indicate a subclass of the matrices of

SL2(Z) for which (x) has no solutions for arbitrary positive integers n>2.

AMS Classification Number: 11C20, 11D41

1. Introduction

Following recently results given by Wiles [8] and Taylor and Wiles [7] we know
that Fermat’s equation
X" 4y =7n (%)

has no solutions in positive integers if n > 2. But in contrast to this situation
Fermat’s equation (*) has infinitely many solutions in 2 x 2 integral matrices for
exponent n = 4. This fact was discovered in 1966 by Domiaty [3]. He remarked

that if
0 1 0 1 0 1
x=(a0) =0 0) 2= (1 0):

where a, b, c are integer solutions of the Pythagorean equation a? 4+ b> = ¢ then
X%+ Y* = Z* Another results connected with Fermat’s equation in the set of
matrices are described by Ribenboim in [5].

Important problem in these investigations is to give a necessary and sufficient
condition for solvability of () in the set of matrices. Let Z be the set of integers
and SLs(Z) the set of 2 x 2 integral matrices with det A = 1 for A € SLy(Z).
If any two of SLy(Z) are commutative, then the of such matrices we denote by

SLy(Z). Recently, Khazanov [4] find such condition for the case when the matrices
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X,Y,Z € SLy(Z). He proved that there are solutions of (%) in X,Y, Z € SLy(Z) if
and only if the exponent n is not multiple of 3 or 4.

In this paper, we firstly prove the following:

Theorem 1. The Fermat’s equation (%) has a solution in SLs(Z) if and only if
n=1 (mod6)orn=5 (mod6).
From Theorem 1 follows that the set of exponents n mod 12 for which (x) is

solvable reduce to 4 classes when X,Y,Z € SLy(Z), but if X,Y,Z € SLy(Z) then
Khazanov’s result implies that this set has 6 classes mod 12.

Moreover, we consider the set of matrices of the following form:

GﬂhA):{(é i)nwez,0<k61da<é j):A}, (1)

where k > 0,A # 0 are fixed integers. We note that if A = 1 then Ga(k,A) =
Ga(k,1) C SLy(Z). In [2], using Wiles’ result on Fermat’s last theorem, we proved

Theorem 2. The Fermat’s equation (x) has no solutions in elements XY, 7 €
Ga(k, A) for arbitrary positive integers n > 2.

In this paper, we give a new proof of Theorem 2 without using a strong result
of Wiles.

2. Proof of Theorem 1
In the proof of Theorem 1 we use of the following:
Lemma 1. Let A = (Z Z) be a given integral matrix. Then for every natural
n
n_ [Q b - F(CL) bW,
4 _(c d) _(0\111 F(d) (2)

where F(a) = F(a;b,c,d), F(d) = F(d;a,b,c), V1 = ¥1(a,b,c,d) are polynomials
such that

number n > 2

F(a) — F(d) = (a — d)¥. (3)

The proof of this Lemma is given in [1].

Now, suppose that there exists elements X,Y, Z € SLy(Z) such that

X" 4Yn=2" (4)
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By the assumption, we know that det X = detY =detZ =1, s0 Z~! € SLy(Z)
and consequently we have XZ 71 = Z71X Y Z~! = Z71Y. Hence (4) is equivalent
to

(Xz—l)n 4 (YZ—I)n _ I, (5)

where I is identity matrix and Z~! is inverse matrix to Z. Let A = XZ~! and
B = YZ~! then by the assumption it follows that det A = det B = 1 and (5)
reduce to the equation

A"+ B =1 (6)
where A, B € SL2(Z). Let A = <Z Z) and B = <; {L> Then by Lemma 1
n __ F(a) blel n __ G(e) f\II
A= ( e, F(d)) , B = (9\112 G(h2)> @
where
F(a) — F(d) = (a—d)¥y, G(e) —G(h)= (e —h)¥s. (8)

From (6) and (7) we obtain
F(a)+ G(e) =F(d)+ G(h) =1, b¥;+ fUy=c¥q 4 g¥y =0. 9)

Since det A = det B = 1 then by Cauchy’s theorem on product of determinants
follows det A™ = det B™ = 1 and consequently from (7) we get

F(a)F(d) — bc¥? = G(e)G(h) — gf P32 = 1. (10)

From (9) we have b¥; = —fUy and c¢¥; = —gVU,, thus be¥? = fgW¥3. By the last
equality and (10), it follows that

F(a)F(d) = G(e)G(h). (11)

On the other hand from (9) we have F(a) = 1 — G(e) and F(d) = 1 — G(h) and
substitutting to (11) we obtain

G(e) + G(h) = 1. (12)
From (12) and the fact that F(a) + F(d) = 2 — (G(e) + G(h)) follows

F(a)+ F(d) = 1. (13)
From (13) and (12) we have

TrA"™ = F(a) + F(d) =1, TrB™ =G(e) + G(h) = 1. (14)
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Let «, 8 be the eigenvalues of the matrix A. Then it is well-known that the matrix
A™ has eigenvalues o™, 8™ such that

TrA™ = o™ + 8", det A" = a"B". (15)

By (15) and (14) it follows that

a"+pr =1, a"g" =1. (16)
From (16) we obtain
a® —a"+1=0. (17)
Let @™ = z then (17) reduce to quadratic equation with the following complex
roots
1+14v3 1—1v3
xlz%\/_,m:il:T“/_. (18)

Now, we observe that the condition o” = z1,z2, where x1,z2 are given by (18)

implies that « is a complex number. Sincce o = ot (a+2d)274 detA ond det A =1
then (a + d)? — 4 < 0 so is equivalent to —2 < a + d < 2. Hence it remains to
consider three following cases: 1. a+d=—-1;2. a+d=0;3. a+d=1.

—1451\/5

In the first case we have a = is the root of unity of degree 3. If

we consider the exponent n with respect to modulo 6 then we get of* = 1 #

. 6k—1 _ ) 2 _ 2 _ —1-iV3 ) _ _
x1,x0;a%F 1 = o £ 2y, 29;0%F2 = 2 = TZ\/_ £ 21, 29;003 = o =1 £
71, T9; %% = # 21,19 and P = o? = *1*2i‘/§
the equation (6) is impossible.

# x1, 2. Hence in this case

Suppose that case 2 is satisfied. Then we have o = ¢ and by similar way
considering the exponent n with respect to modulo 4 we obtain in all cases that
a =i # xq1,x9.

It remains to consider the last case, i.e. a + d = 1. In this case we have
a = # and consequently the equality o™ = x1,x2 is possible when n = 1
mod 6) orn =5 (mod 6).

Now, suppose that n = 1(mod 6) or n = 5(mod 6). Let M = <Ccl 2) be the

integral matrix such that TrM = det M = 1. It is easy to see that this condition

is equivalent to that the matrix M has eigenvalues: a = H;‘/g, B = lféﬁ. Put
A= M?* B = MY,C = I*. Then by the condition det M = 1 follows det A =
det B = det C = 1 so the matrices A, B,C € SL2(Z). On the other hand since
«a # [ then the matrix M is diagonalizable over the complex field. Hence there is a
nonsigular matrix P such that M = PDP~!, where D = diag{«, 3}. By induction
it follows that for every natural number k& we have

M* = PD¥P~! = Pdiag{a”, ¥} P71 (19)
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Using (19) we obtain that equation (6) is equivalent to
a™ o™ =1, M +p" =1 (20)

Since a = % then o? = _1+T“/§ = €1, where €1 is the root of unity of degree 3.

=N 2 .
Similarly we obtain that 82 = (1*;‘/3) = *1*2“/3 = €9 = €.

On the other hand we observe that if € is the root of unity of degree 3 then we
have
1, if m = 6k,
—€2, ifm=6k+1,
€, if m=06k+2,
-1, if m =6k+ 3,
€2, if m=6k+4,
—e, if m =6k +5.

where in (21) € = €; when a =
case.

Let n =1 (mod 6). Then we take x =1 (mod 6) and y =5 (mod 6) or
=5 (mod6)andy=1 (mod 6). Hence we havenz =1 (mod 6) and ny =5
(mod 6) or ne =5 (mod 6) and ny =1 (mod 6). From (21) it follows that in
these cases we have

—1+é¢§ and « is replaced by 8 and € = € in other

2

a™ +a™=—e"—e=1,

because €2 + € + 1 = 0. In similar way we obtain
6nw + Bny - 1.

Hence equation (6) has a solution in elements A, B,C € SLy(Z)ifn=1 (mod 6).

Let us suppose that n =5 (mod 6). Takingz =1 (mod 6),y=5 (mod 6)
orz=5 (mod6),y=1 (mod6)weobtainnr=5 (mod6),ny=1 (mod 6)
ornr=1 (mod6),ny=5 (mod 6). Hence, we see that we have the same case
as in the previous consideration. The proof of Theorem 1 is complete.

3. Proof of Theorem 2

Let X,Y,Z € Ga(k,A) and let

. T1 S1 o ) 52 o T3 S3
X<k31 r1>’ Y<k32 r2>’ Z(k53 713)'
T3 —S83

-1 _ 1
Then we have Z7* = = <—k:33 rs

>. Suppose that for some natural number
n > 2 we have X" +Y"™ = Z™. Then multyplying the last equation by Z~™ we get

(XZ Y+ (yz7hn =1, (22)
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because XZ 1 =Z"1X and YZ~! = Z~1Y. On the other hand we have
(o osi N1 [ o —s3
Xz - <k81 7“1) A (—k83 T3 )
_ 1 rrs—ksiss  siz—msyy _ 1L (R Sy _ 1,
T A \k(sirs —ris3) rirs—ksiss)  A\kS R) A
1 (2 os2\ 1
Yz o (k?SQ 7"2) A (
. 1 ( ’r‘27“3—k‘8283 82T3—T283) 1 (M N)_ ]_B

B A k(SQTg — 7"283) T9Tr3 — k?8283

From (22)—(24) we obtain

A”+B”—A”I—<A 0 >

and

On the other hand we have

g (B S\'_(BRu Su\ go_(M N\'_ (M, N,
“\ks rR) “\kS, R,)'" “\kN M) T\kN, M, )

From (25) and (26) we obtain

because k > 0. It is easy to check that

det A = det (]fs, Z) = det (]:911 ii) det (71;333 T':3> = A2,
Similarly we get det B = A%, Hence by Cauchy’s theorem it follows that
det A™ = (det A)™ = A*", det B" = (det B)" = A*",
From (26) we have
det A" = R2 — kS2, det B" = M? — kN?2.
By (28) and (29) it follows that

R721 - Ms = k(Si - NTZL) = k(Sn - Nn)(Sn + Nn)

(24)

(26)

(27)
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But from (27) we have S,, + N,, = 0 and therefore by (30) it follows that
R? — M? = (R, — M,)(R,, + M,) = 0. (31)

Since by (27) R, + M,, = A™ # 0, then from (31) we obtain that R, = M, so
2R, = A™. From (28), (29) and the last equality we get

3A%" = —k(25,)? (32)

and we see that (32) is impossible, because A # 0 and &k > 0.
The proof of Theorem 2 is complete.

Remark. Let K = Q(Vk) be quadratic number field with & > 0 and k = 2,3
(mod 4). Then it is well-known that every integer element « in such field has the

form: o = r + sk, where r, s € Z. Denote by Ry the ring of integer elements of
this field K and by Ga(k) the set of matrices of the form:

Ga(k) = {(I:S i) ir,s€Z,0<keZ,k=2,3 (mod 4)}

It is easy to see that the mapping ® : Ga(k) — Ry defined by the formula

o((5 1) -rems

is an isomorphism. Hence from Theorem 2 we obtain the following:

Corollary. The Fermat’s equation o™+ " = 4™, n > 2 has no solutions in elements
a, B,v7 € Rk with the same norm, i.e. if N(a) = N(8) = N(vy) = A.
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